Republic of Iraq Ministry of Higher Education and Scientific Research University of Kerbala-College of Science Chemistry Department

Preparation and Characterization of ZnS/Doped ZnS Nanoparticles for Dyes Photodegradation

A thesis

Submitted to the Council of the College of Science/ University of Kerbala as a Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry

By

Bedour Ali Mohammed AL-Samawi

B.Sc of Kerbala University / 2005

Supervisor

Asst.prof.Dr. Luma Majeed Ahmed

2018AD

1439AH

Dedication

To my mother...

To my family who make my dreams possible To my husband, who supported me along the way

To my friends...

Who helped me all the time

Bedour Hti / 2018

Acknowledge

First of all, I want to thank the almighty Allah who enabled me the power during this work in particular.

I would like to extend my deep thanks, gratitude, and appreciation to my superisor Asst. *Prof. Dr. Luma Majeed Ahmed* for their continuous support and invaluable suggestions and great contributions since the very beginning of this work.

Also, I want to thank all faculty members of department of chemistry in college of science in university of kerbala, for their worthless support of the work.

Finally, I want to thank my family and friend for their continual support throughout this journey. They were my source of encouragement along the way.

Bedour

Supervisor Certification

I certify that this thesis (Preparation and Characterization of ZnS/Doped ZnS Nanoparticles for Dyes Photodegradation) was conducted under my supervision at the Department of chemistry, College of science, University of kerbala, as apartial fulfillment of the requirements for the degree of Master in chemistry.

Signature:

Name: Asst.Prof .Dr .Luma Majeed Ahmed

Address:Kerbala University / College of science /Department of chemistry

Date: / / 2018

Report of the head of Chemistry Department Chairman of Postgraduates Studies Committee

According to the recommendation presented by the chairman of the postgraduate studies committee, I forward this thesis(Preparation and Characterization of ZnS/Doped ZnS Nanoparticles for Dyes Photodegradation) for discussion .

.

Sigature:

Head of Chemistry Dept : Asst. Prof. Dr. Haitham Dalol A- Shably

Address:Kerbala University / College of science /Department of chemistry

Date: / / 2018

Committee Certification

We are the examination committee, certify that we have read the thesis entitled (Preparation and Characterization of ZnS/Doped ZnS Nanoparticles for Dyes Photodegradation) and examined the student (Bedour Ali Mohammed) in its content and that in our opinion it is adequate as a thesis for the degree of master of science in chemistry.

(Chairman)

Signature:

Assistant Professor Dr.Abdulkareem

Alsammarraie

(Member)

Assistant Professor Dr. Muhsen

(Member)

Signature:

Abood Muhsen Al-ibadi

Date: / / 2018

Signature:

Assistant Professor Dr.Hayder Hamid Al-Hmedawi Date: / /2018

(Member and Supervisor)

Signature: Assistant Prefessor Dr. Luma Majeed Ahmed Kerbala University College of science Department of Chemistry Date: / /2018 Approved by the College Committee of Graduate Studies

Signature:

Professor

Dr. Amir Abd AL-Ameer Mohammed Ali

(Dean of College)

Report of Linguistic Evaluator

I certify that the linguistic evaluator of this thesis (Preparation and Characterization of ZnS/Doped ZnS Nanoparticles for Dyes Photodegradation) was carried out by me and it is linguistically sound.

Signature:

Name: Asst.Prof. Dr.Tafeeq Majeed

Address: Department of English /College of Education / University of Kerbala

Date: / / 2018

Report of Scientific Evaluator

I certify that the Scientific evaluator of this thesis(Preparation and Characterization of ZnS/Doped ZnS Nanoparticles for Dyes Photodegradation) was carried out by me and it is accepted scientifically.

Signature:

Name: Asst.Prof. Dr.Abbas Jassim Attieh

Address: Babylon University / College of science /Department of chemistry

Date: / / 2018

Abstract

In this work, the practical part consists of three parts, the **first part** deals with the preparation of ZnS as nanopowder and then loaded metals (Cr & Mn) on this surface by using co-precipitation method.

The **second part** is concerned with investigated the characteristics of prepared samples and a commercial ZnS. The atomic absorption analysis was used to estimate if the used metals loaded or not loaded on prepared ZnS. XRD data were useful to calculate the mean crystal size by Scherer equation. The mean crystal sizes for all samples are sequence:

 $\label{eq:commercial_commercial$

The AFM images indicated that the shapes for all samples are semispherical and the no.of particles sizes for them contain (2.5-6) crystals. The fluorescence technique was employed to measure the Bg for all samples. The Bg values for most samples decreases with increasing the mean crystal sizes and the ranges of Bg for all studied were ranged (3.260-3.577) eV.

The **third part** focused on studying the effect of different parameters on photodecolorization of RB5 dye from aqueous solution on studied photocatalyst samples. The parameters include: type of metals, mass of catalyst, initial of pH of solution, temperature and oxidation agent $(K_2S_2O_8)$.

The best metallization on prepared ZnS are produced for Cr: ZnS, Mn: ZnS: Cr $_{(2)}$, hence, in this work these samples were studied and compared with prepared ZnS. The optimum dose of studied photo-catalysts such as commercial ZnS, prepared ZnS, prepared Cr:ZnS and prepared Mn:ZnS:Cr₍₂₎, that found equal to 2.5g, 1g, 1g, and 1.5 g respectively. The effect of initial pH is played a vital role to improve the photoreaction, and the maximum rates of reaction for commercial ZnS, prepared ZnS, prepared ZnS, and prepared Mn:ZnS:Cr₍₂₎ was 4.1, 6.3, 4.1, and 6.3 respectively.

The effect of temperature was investigated at temperature range (283.15-303.15) K. The results were indicated that the activation energies for all studied samples are ranged (13.420-42.35) kJ mol⁻¹. Moreover, the thermodynamics parameter such as $\Delta H^{\#}$, $\Delta S^{\#}$ and $\Delta G^{\#}$ for all studied samples were calculated and found that the photoreaction is exothermic with using commercial ZnS, and prepared Cr: ZnS as photocatalyst. But the photoreaction is endothermic with using prepared ZnS and Mn:ZnS:Cr₍₂₎ as photocatalysts.

The oxidation agent such as $K_2S_2O_8$ is very important to raise the rate of reaction and to decrease the illumination times, hence, the optimum concentration of $K_2S_2O_8$ is ranged (7-8) mmoles/L with using all the studied samples

Content		
	Acknowledgement	
Abstract		
Contents		III-V
	List of tables	VI-VIII
	List of figures and schemes	IX-XIII
	List of abbreviations and symbols	XVI - XV
	Chapter One: Introduction	
1.1	General Introduction	1-2
1.2	Advanced oxidation process	3-4
1.3	Photocatalysis	4-5
1.4	Photocatalyst	5-9
1.5	ZnS Bulk	9-10
1.6	ZnS Nano powder	10-11
1.7	Co-precipitate method	11
1.8	Adsorption	12
1.8.1	Adsorption on Catalyst Surface	12-13
1.8.2	Dyes adsorption	13
1.8.3	Adsorption of Oxygen and water	14
1.9	Dye	15
1.9.1	Classification of Dyes	15
1.9.2	Reactive black 5 dye	16-17
1.10	Literature Review	18
1.11	The Aim of the Present Work	19
	Chapter two: Experimental	
2.1	Chemicals	20
2.2	Instruments	21
2.3	Preparation of Bare and Metallized ZnS	21
2.3.1	Preparation of Cr: ZnS	22
2.3.2	Preparation of Mn: ZnS and Cr: ZnS: Mn _{(1), (2)}	23
2.3.3	Preparation of ZnS nanoparticle	24
2.4	Characterization	24
2.4.1	X-Ray Diffraction Spectroscopy (XRD)	24
2.4.2	Atomic Force Microscopy (AFM)	25
2.4.3	Atomic Absorption Spectrophotometry.	25-26
2.4.4	Band gap energy measurements	26
2.5	Photocatalytic decolorization Reaction of reactive black 5 (RB5)	27
2.5.1	Calibration Curve of reactive Black 5 dye	28

2.5.2	Kinetic studied of photocatalytic decolorization of dye	28-29
2.6	Light Intensity Measurement	29-30
2.7	Activation Energy	30
2.8	Thermodynamic Parameters	31
	Chapter Three: Results and Discussion	
3.1	Characterization of Catalyst	32
3.1.1	XRD Analysis	32
3.1.2	Atomic Force Microscopy (AFM)	33-39
3.1.3	Band gap energy measurements	39-41
3.1.4	Atomic Absorption Spectrophotometry (A.A)	41-42
3.2	Effect of different parameters on the photocatalytic decolorization of RB5	42
3.2.1	Effect of the mass of commercial ZnS	42-43
3.2.2	Effect of initial pH of the solution	43-44
3.2.3	Effect of temperature	44-46
3.2.4	Effect of addition of $K_2S_2O_8$	46-47
3.3	Effect of different parameters on the photocatalytic	47
	decolorization of RB5 dye for Cr: ZnS	
3.3.1	Effect of the mass of Cr: ZnS	47-49
3.3.2	Effect of initial pH of the solution	49-51
3.3.3	Effect of temperature	51-53
3.3.4	Effect of addition of K ₂ S ₂ O ₈	53-55
3.4	Effect of different parameters on the photocatalytic decolorization of RB5 dye for Mn:ZnS:Cr ₍₂₎	55
3.4.1	Effect of the mass of Mn:ZnS:Cr ₍₂₎	55-56
3.4.2	Effect of initial pH of the solution	56-58
3.4.3	Effect of temperature	58-60
3.4.4	Effect of addition of K ₂ S ₂ O ₈	60-62
3.5	Effect of different parameters on the photocatalytic	62
	decolorzation of RB5 dye for prepared ZnS.	
3.5.1	Effect of the mass of prepared ZnS	62-64
3.5.2	Effect of initial pH of the solution	64-66
3.5.3	Effect of temperature	66-68
3.5.4	Effect of addition of $K_2S_2O_8$	68-70
3.6	Characterization of Catalyst	71
3.6.1	XRD Analysis	71
3.6.2	Atomic Force Microscopy (AFM)	71
3.6.3	Band gap energy (Bg) measurements	71
3.6.4	Atomic Absorption Spectrophotometry	71

3.7	Effect of different parameters on the photocatalytic	72
	decolorization of RB5 dye	
3.7.1	Effect of Mass of catalysts.	72
3.7.1.1	Effect of Mass of commercial ZnS catalysts on studied dye	72-73
3.7.1.2	Effect of Mass of Cr: ZnS catalysts on studied dye	73
3.7.1.3	Effect of Mass of Mn:ZnS:Cr ₍₂₎ catalysts on studied dye	74
3.7.1.4	Effect of Mass of prepared ZnS catalysts on studied dye	75-76
3.7.2	Effect of initial Ph	76
3.7.2.1	Effect of initial pH of the solution dye for commercial ZnS	76-77
3.7.2.2	Effect of initial pH of the solution dye for Cr: ZnS	77
3.7.2.3	Effect of initial pH of the solution dye for Mn:ZnS:Cr ₍₂₎	78
3.7.2.3	Effect of initial pH of the solution dye for prepared ZnS	79-80
3.7.3	Effect of temperature	80
3.7.3.1	Effect of temperature of the solution dye for commercial	80-81
	ZnS	
3.7.3.2	Effect of temperature of the solution dye for Cr:ZnS	81
3.7.3.3	Effect of temperature of the solution dye for $Mn:ZnS:Cr_{(2)}$.	82
3.7.3.4	Effect of temperature of the solution dye for prepared ZnS.	83-84
3.7.4	Effect of $K_2S_2O_8$	84
3.7.4.1	Effect of addition $K_2S_2O_8$ on the solution dye for	84-85
	commercial ZnS	
3.7.4.2	Effect of addition $K_2S_2O_8$ on the solution dye for Cr :ZnS	85-86
3.7.4.3	Effect of addition $K_2S_2O_8$ on the solution dye for	86-87
	Mn:ZnS:Cr ₍₂₎	
3.7.4.4	Effect of addition $K_2S_2O_8$ on the solution dye for prepared	87-88
	ZnS	
Chapter Four: Conclusions and Recommendations		
4.1	Conclusions	89
4.2	Recommendations	89
	References	90-101

	List Tables	page
1-1	Effects of textile wastewater into the environment	2
1-2	differences of crystal structure of ZnS phases	
2-1	Chemicals and their commercial sources	
2-2	Utilized Instruments	21
2-3	Calibration Curve of Mn and Cr standard Concentrations	25
2-4	Relationship between absorbance and different concentrations of RB5	28
3-1	Mean Crystallite Sizes and particle sizes of commercial ZnS, prepared ZnS and elements loaded on ZnS	39
3-2	Measured Band gap energy from Fluorescence spectra	41
3-3	Loaded Calculations of Mn,Cr on prepared ZnS Surface	42
3-4	The change of $\ln C_o/C_t$ with irradiation time at different mass of commercial ZnS	42
3-5	The change of irradiation time with PDE% on different mass of commercial ZnS.	43
3-6	The change of $\ln C_0/C_t$ with irradiation time at different initial pH of dye by commercial ZnS	43-44
3-7	The change of irradiation time with PDE%. at different initial pH of dye by commercial ZnS	44
3-8	The change of $\ln C_o/C_t$ with irradiation time at different temperature by commercial ZnS	45
3-9	The change of irradiation time with PDE% at different temperature of dye by commercial ZnS	45
3-10	Relationship between $1/T$ with lnk_{app} and $ln (k_{app}/T)$.	45
3-11	The calculated activation kinetic and thermodynamics parameters for decolourization of RB5 with using commercial ZnS	46
3-12	The change of $\ln C_0/C_t$ with irradiation time at different addition of $K_2S_2O_8$ for commercial ZnS	46
3-13	The change of irradiation time with PDE% at different addition of $K_2S_2O_8$ for ZnS commercial	47
3-14	The change of $\ln C_0/C_t$ with irradiation time at different mass of ZnS :Cr	48
3-15	The change of irradiation time with PDE% at different mass of ZnS :Cr	48-49
3-16	The change of $\ln C_o/C_t$ with irradiation time at different initial pH of dye by Cr: ZnS.	49-50

2 17	Change of implicition time with DDEW at different initial all	50 51
3-17	Change of irradiation time with PDE% at different initial pH	50-51
2.10	of dye by Cr: ZnS.	50
3-18	Relationship between $1/T$ with lnk_{app} and $ln (k_{app}/T)$.	52
3-19	The calculated activation kinetic and thermodynamics	52
	parameters for decolourization of RB5 with using Cr: ZnS	
3-20	The change of $\ln C_o/C_t$ with irradiation time at different	52
	temperature by Cr: ZnS.	
3-21	The change of irradiation time with PDE% at different	53
	temperature of dy by Cr:ZnS	
3-22	The change of $\ln C_o/C_t$ with irradiation time at different	54
	addition of $K_2S_2O_8$ for Cr: ZnS.	
3-23	The change of irradiation time with PDE% at different	54-55
	addition of $K_2S_2O_8$ for Cr:ZnS.	
3-24	The change of $\ln C_0/C_t$ with irradiation time at different mass	55-56
	of Mn:ZnS :Cr ₍₂₎	
3-25	The change of irradiation time with PDE% at different mass	56
5 25	of MnCr: ZnS	20
3-26	The change of $\ln C / C$ with irradiation time at different initial	57
5 20	pH of dve by Mn·ZnS·Cr	51
3 27	The change of irradiation time with $PDE\%$ at different initial	57 58
5-27	pH of dva by Mp:7pS·Cr	57-58
2 20	The abange of $\ln C / C$ with irrediction time on different	58 50
5-20	The change of InC_0/C_t with mathematication time on different temperature by Mp/ZnS:Cr	30-39
2.20	$\frac{\text{lemperature by WIII.ZIIS.Cr}_{(2)}}{\text{The sharpes of implication times with DDE}^{0/2}}$	50
5-29	The change of irradiation time with PDE% at different	39
2.20	temperature of dye by $\text{Mn:ZnS:Cr}_{(2)}$.	(0)
3-30	Relationship between $1/1$ with lnk_{app} and $ln(k_{app}/1)$.	60
3-31	The calculated activation kinetic and thermodynamics	60
	parameters for decolourization of RB5 with using Mn:	
	$ZnS:Cr_{(2)}.$	
3-32	The change of $\ln C_o/C_t$ with irradiation time at different	60-61
	addition of $K_2S_2O_8$ for Mn::ZnS:Cr (2).	
3-33	The change of irradiation time with PDE% at different	61-62
	addition of $K_2S_2O_8$ for Mn:ZnS:Cr ₍₂₎ .	
3-34	The change of $\ln C_0/C_t$ with irradiation time at different mass	62-63
	of prepared ZnS.	
3-35	The change of irradiation time on different at mass of	63-64
	prepared ZnS with photocatalytic Decolourization efficiency	
3-36	The change of $\ln C_0/C_1$ with irradiation time at different initial	64-65
	pH of dye by prepared ZnS	
3-37	The change of irradiation time with PDE% at different initial	65-66
	pH of dye by prepared ZnS	
3-38	The change of $\ln C_{n}/C_{t}$ with irradiation time at different	66-67

	temperature by prepared ZnS	
3-39	The change of irradiation time with PDE% at different	67-68
	temperatures of dye by prepared ZnS	
3-40	Relationship between $1/T$ with lnk_{app} and $ln (k_{app}/T)$.	68
3-41	The calculated activation kinetic and thermodynamics	68
	parameters for decolourization of RB5 with using prepared	
	ZnS	
3-42	The change of $\ln C_o/C_t$ with irradiation time at different	69
	addition of $K_2S_2O_8$ with prepared ZnS.	
3-43	The change of irradiation time with PDE% at different	70
	addition of $K_2S_2O_8$ for prepared ZnS	

	Titles of Figures	page
1-1	Band gap energy and band edge positions of varies photo semiconductor	5
1.2	Simplified optical transition of semiconductor. (a) Direct band	6
1-2	gap (b) Indirect band gap	
1-3	schematic of photocatalytic reaction on photocatalyst surface	7
	Formation of the Schottky barrier between n-type	9
1-4	semiconductors and metals (a) before interaction and	
	(b) after interaction	
1-6	Structural formula of reactive black 5 dye	16
2-1	The resulting solution at pH=10-12 via preparation prosess	22
2-2	Schematic diagram for prepared of metalized ZnS nanoparticle	23
2-3	Schematic diagram of prepared of ZnS nanoparticle	24
2-4	Calibration curve at different Concentrations of Manganese	26
2-5	Calibration curve at different concentrations of Chromium	26
2-6	Schematic diagram of photoreactor	
2-7	Calibration curve at different concentration of RB5 dye	28
3-1	XRD patterns for all prepared samples with commercial ZnS.	32
3-2	AFM Image of commercial ZnS a) 2 - Dimensions Image	33
	b) 3- Dimensions Image and c) TheHistogram.	
3-3	AFM Image of ZnS :Mn a) 2 - Dimensions Image	34
	b) 3- Dimensions Image and c) TheHistogram.	
3-4	AFM Image of ZnS: Cr a) 2 - Dimensions Image	35
J- -	b) 3- Dimensions Image and c) TheHistogram.	
3-5	AFM Image of Mn :ZnS : $Cr_{(1)}$ a)2 - Dimensions Image	36
	b) 3- Dimensions Image and c) TheHistogram.	
3-6	AFM Image of Mn ZnS :Cr (2) a) 2 - Dimensions Image	37
50	b) 3- Dimensions Image and c) TheHistogram.	
3-7	AFM Image of prepared ZnS: a)2 - Dimensions Image	38
57	b) 3- Dimensions Image and c) TheHistogram	
3-8	Fluorescence spectra of commercial ZnS.	39
3-9	Fluorescence spectra of Mn Loaded on ZnS.	40
3-10	Fluorescence spectra of Cr Loaded on ZnS.	40
3-11	Fluorescence spectra of Mn and Cr Loaded on ZnS $_{(1)}$.	40

3-12	Fluorescence spectra of Mn,Cr loaded on ZnS (2).	41
3-13	Fluorescence spectra of prepared ZnS	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	72
3-14	mass of commercial ZnS. (b) Relationship between apparent	
	rate constant and different mass of commercial ZnS	
3-15	Effect of different mass of commercial ZnS on	72
5-15	photodecolorization efficiency.	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	73
3-16	mass of Cr: ZnS. (b) Relationship between apparent rate	
	constant and different mass of Cr: ZnS.	
3 17	Effect of different mass of Cr:ZnS on photodecolorization	73
5-17	efficiency.	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	74
3-18	mass of Mn:ZnS: $Cr_{(2)}$. (b) Relationship between apparent rate	
	constant and different mass of Mn:ZnS:Cr ₍₂₎ .	
3_10	Effect of different mass of Mn:ZnS:Cr ₍₂₎ on	74
5-17	photodecolorization efficiency	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	75
3-20	mass of prepared ZnS. (b) Relationship between apparent rate	
	constant and different mass of prepared ZnS.	
3 21	Effect of different mass of prepared ZnS on	75
5-21	photodecolorization efficiency.	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	76
3 22	initial pH of dye solution for commercial ZnS .(b) Relationship	
5-22	between apparent rate constant and different initial pH of dye	
	solution for commercial ZnS.	
3 73	Effect of different initial pH of dye solution on	76
5-25	photodecolorization efficiency for commercial ZnS.	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	77
3-24	initial pH of dye solution for Cr: ZnS .(b) Relationship between	
J-24	apparent rate constant and different initial pH of dye solution	
	for Cr: ZnS.	
3_25	Effect of different initial pH of dye solution on	77
5-25	photodecolorization efficiency for Cr: ZnS.	

	(a) The change of $\ln C_0/Ct$ with Irradiation time at different	78
3-26	initial pH of dye solution for Mn:ZnS:C $r_{(2)}$.(b) Relationship	
	between apparent rate constant and different initial pH of dye	
	solution for Mn:ZnS:Cr _{(2).}	
2 27	Effect of different initial pH of dye solution on	78
3-27	photodecolorization efficiency for Mn:ZnS:Cr _{(2).}	
	(a) The change of $\ln C_0/Ct$ with Irradiation time at different	79
2 28	initial pH of dye solution for prepared ZnS .(b) Relationship	
3-20	between apparent rate constant and different initial pH of dye	
	solution for prepared ZnS.	
3 20	Effect of different initial pH of dye solution on	79
3-29	photodecolorization efficiency for prepared ZnS.	
	(a) The change of $\ln C_0/Ct$ with Irradiation time at different	80
3 30	temperature of dye solution for commercial ZnS. (b) Effect of	
5-50	different temperature of dye solution on photodecolorization	
	efficiency by commercial ZnS.	
3 31	(a) Arrhenius plot by commercial ZnS (b) Eyring–Polanyi plot	80
5-51	$\ln (k_{app}/T)$ VS.1000/T.	
	(a) The change of $\ln C_0/C_t$ with Irradiation time at different	81
3-32	temperature of dye solution for Cr:ZnS .(b) Effect of different	
5-52	temperature of dye solution on photodecolorization efficiency	
	by Cr:ZnS.	
3-33	(a) Arrhenius plot by Cr:ZnS . (b) Eyring–Polanyi plot ln	81
5-55	(k _{app.} /T) VS.1000/T.	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	82
3-34	temperature of dye solution for Mn:ZnS:Cr ₍₂₎ .(b) Effect of	
5 54	different temperature of dye solution on photodecolorization	
	efficiency by Mn:ZnS:Cr ₍₂₎ .	
3-35	(a) Arrhenius plot by Mn:ZnS:Cr ₍₂₎ (b) Eyring–Polanyi plot ln	82
5 55	$(k_{app} / T) VS.1000 / T$.	
	(a) The change of $\ln C_0/Ct$ with Irradiation time at different	83
3-36	temperature of dye solution for prepared ZnS (b) Effect of	
5 50	different temperature of dye solution on photodecolorization	
	efficiency by prepared ZnS	
3-37	(a) Arrhenius plot by prepared ZnS (b) Eyring–Polanyi plot ln	83
5-57	(k _{app} /T) VS.1000/T.	

	(a) The change of ln C _o /Ct with Irradiation time at different	84
3-38	addition $K_2S_2O_8$ for commercial ZnS. (b) Relationship	
	between apparent rate constant and different addition $K_2S_2O_8$	
2 20	Effect of different addition K2S2O8 for commercial ZnS on	84
5-39	photodecolorization efficiency.	
	(a) The change of ln C _o /Ct with Irradiation time at different	85
3-40	addition $K_2S_2O_8$ for Cr :ZnS. (b) Relationship between	
	apparent rate constant and different addition $K_2S_2O_8$ for Cr	
	:ZnS.	
3 /1	Effect of different addition K ₂ S ₂ O ₈ for Cr:ZnS on	86
5-41	photodecolorization efficiency	
	(a) The change of $\ln C_0/Ct$ with Irradiation time at different	86
3 12	addition $K_2S_2O_8$ for Mn:ZnS:Cr ₍₂₎ . (b) Relationship between	
5-42	apparent rate constant and different addition $K_2S_2O_8$ for	
	Mn:ZnS:Cr _{(2).}	
3 13	Effect of different addition K ₂ S ₂ O ₈ for Mn:ZnS:Cr ₍₂₎ on	87
3-43	photodecolorization efficiency.	
	(a) The change of $\ln C_o/Ct$ with Irradiation time at different	87
3-44	addition $K_2S_2O_8$ for prepared ZnS. (b) Relationship between	
	apparent rate constant and different addition $K_2S_2O_8$ for	
	prepared ZnS	
3-45	Effect of different addition $K_2S_2O_8$ for prepared ZnS on	88
5-45	photodecolorization efficiency.	

List of abbreviations	The Meaning
and symbols	
A 1-	The total ways again of the electrone in filled
$\Delta \kappa$	hand is zero
	Atomio Eoros Mioroscomy
	Atomic Force Microscopy
AOPs	Advanced Oxidation Processes
СВ	Conduction Band
Co	Initial Concentration
Ct	Concentration of substrate at time t of
	irradiation.
VB	Valance Band
CWAO	Catalytic wet air oxidation
e	Negative Electron
E fermi	Fermi Energy
Ea	Activation Energy
Eg	band gap energy
E	Standard potential energy
eV	Electron Volt
E _{vacum}	Potential energy at vacuum
Evs NHE	Normal hydrogen electrod
FCC	Face – Centered Cubic
FWHM	Full width half –maximum
G	Gram
h^+	Positive Hole
H^{+}	Hydronium ion
Нср	Hexagonal Close -Packed
I _o	Light intensity
K	Kelvin
k _{app}	Rate of constant
kJ	Kilo Joule
L	Mean Crystallite Size
mL	milli liter
mmole	Millimole
Mol	Mole

Nm	Nanometer
PDE	Photo decolourization efficiency
PEG	Poly ethylene glycol
RB5	Reactive black 5
rpm	Root per min
t	Time of irradiation
Т	Temperature
UV-A	Ultra violet light in the range from 315
	to 380nm
V	Volt
V _{ac}	vacum energy
VS	Verse
WAO	Wet air oxidation
XRD	X-Ray Diffraction
ZB	Zinc blend
Λ	Wavelength
ФМ	working function of the metal

CHAPTER ONE INTRODUCTION

1. Introduction

1.1 General Introduction

Large amounts of wastewaters are generated during processes involved dyes in the manufacture, utilization from them particularly that employed in textile, paper, leather, printing and carpet industries, and in disposal of dyes[1,2].

The major sources of water contamination [3] in the last years; textile industry was regarded as a higher impact to produce polluted water by discharging their effluents into different receiving groups including ponds, rivers and other public sewer. The textile industries can also be ordered into two groups via dry and wet fabric industry. Solid wastes are generated in dry fabric industry whereas liquid wastes are formed in wet fabric industries. This effluent wastewater contains chemicals like acids, alkalis, dyes, hydrogen peroxide, starch, surfactants dispersing agents and soaps of metals. Major sources of pollutants that load from the textile industries are produced from the several of their wet processing operations such as scouring, bleaching, mercerizing and dyeing [4,5].

In view of the fact that the dyeing process normally uses large amount of water for dyeing, fixing and washing processes. In recent times, the recovery and reuse of wastewater has received considerable attention because of the scarcity of water. The interest today is not in technologies for color removal but in technologies that can generate reusable water, removed toxicity, mineralizes aromatic compounds or recover the dyes, recover the salt, do not produce toxic sludge, possibly do not yield sludge at all [6-8]. The disposal of wastewater leads to damages the environment via containing on carcinogenic and toxic compounds which destroy the aquatic life [2], and can explain the effect of textile waste water in table (1-1) below in:

Textile Wastewater Discharge of the Environment		
Direct Effects	Indirect Effects	
Changed of color.	• Damaged of aquatic life such as	
	Fishes, mammals and plants.	
• Very low sunlight penetration that	.Eutrophication.	
reach to water which causes a damage		
flora and fauna of ecosystem.		
•The pollution of ground water due to	•Coloured allergen accelerates	
filtering of contaminants via soil.	Genotoxicity and micro toxicity.	
• Doing of depressing of receiving	• Suppression of immune system	
Water. Suppression in the streams re-	of human beings	
oxygenation capacity.		

 Table 1-1: Effects of textile wastewater into the environment [9].

Hence, the decolourization process of dye from wastewater is very important subject to remove the organic or inorganic substances that appearance color in water [6, 10].

Many techniques were used to treat wastewater such as adsorption [11,12], bio-removal [13], extraction [14], photocatalytic decolorization [15,16], coagulation [17,18] photo fenton and fenton-like [19,20] and using dielectric barrier discharge [21]. The summarized method for treatment of wastewater can be explained in the scheme (1-1).

Scheme 1-1: Treatment methods for the degradation of dyes in textile wastewater [7, 22, 23].

1.2 Advanced Oxidation processes

Advanced oxidation processes (AOPs) are vital processes that have two stages: the 1st Stage uses strong oxidants, that leads to mainly formed a hydroxyl radicals, the 2nd Stage is performed by reacting these oxidants with organic contaminants in water[24,25]. Because of the AOPs are versatility, thereby they enhanced by different possible ways for hydroxyl radical production, which allow to obtain a better compliance with specific treatment requirements. The produced hydroxyl radicals acted as a powerful oxidizing agent. These oxidizing agents have an oxidation potential equal to 2.8V and gives faster rates of oxidation reactions as compared with conventional oxidants such as hydrogen peroxide or potassium permanganate.

In fact, the hydroxyl radicals react with most dyes with high rate reaction constants; hence, they easily attack the most part of organic molecules. This process is regarded as a little selectivity which is a useful attribute for an oxidant used in wastewater treatment and for solving the pollution problems [26, 27]. Photo oxidation can take place at any temperature and pressure, but does not yield any secondary components.

The essential mechanism of advanced oxidation processes is the generation of 'OH ions [24, 27]. These processes can appeare in the scheme (1-2) and Scheme (1-3).

	Homogeneous Proc	ess
Non- Photochemi	cal	Photochemical
Ozonation in alkaline m	edia (O ₃ /HO ⁻)	• Photolysis
Ozonation with hydroge	en peroxide (O ₃ /H ₂ O ₂)	• UV/O ₃
Fenton (Fe ²⁺ or Fe ³⁺ /H ₂	O ₂)	• UV/O ₃ /H ₂ O ₂
•Electro chemical-oxic	lation	• UV /H ₂ O ₂
•Wet air oxidation (W	VAO)	•Photo Fenton $(Fe^{2+}/H_2O_2/UV).$

Scheme 1-2: Types and classification of advanced oxidation processes (Homogeneous process) [28], [29].

•Catalytic wet air oxidation (CWAO).

•Heterogeneous photocatalysis

•Fenton catalytic ozonation.

Scheme 1-3: Types and classification of advanced oxidation processes (heterogeneous process) [28], [29].

1.3 Photocatalysis

It is a Greek word, which consists of combination of two words: the 1st word is photo ("phos" means lights) and the 2nd word is catalysis ("katalyo" means to break apart, decompose). Generally, the term photocatalysis is employed to describe process that used light to stimulate a photocatalyst and accelerated the rate of chemical reaction [9]. In other words, photocatalysis is defined as a process that used a semiconductor to absorb the light energy which must be greater than or equal to its band gap that leads to generate an excitations of valence band electrons in the conduction band. Hence, the charge separation leads to the creation of electron-hole pairs which can further generate free radicals such as (•OH) in the system for redox of the substrate. The resulting hydroxyl radicals are given a high efficient for oxidizing and degrading of organic pollutants [30]. There are two types of photocatalysis [28, 31]:

a. Homogeneous photocatalysis:

This process occurs when the reactant and photocatalyst exist in the same phase, such as used coordination compound, or dyes, or natural pigments with light and O_2 or O_3 .

b. Heterogeneous photocatalysis:

In this type, the reactant and photocatalyst will be found in different phases. The principle of heterogeneous photocatalysis is based on the activation of a semiconductor like (TiO₂, CdS, ZnO, ZnS *etc.*) by using appropriate wavelengths from radiation [28,31].Heterogeneous photocatalysis is deemed as one of the advanced oxidation processes (AOPs), which have a cost-effective

treatment method for removing of toxic pollutants from industrial waste water and formed end products such as CO_2 , H_2O and mineral acids [32].

1.4 Photocatalyst

Photocatalysts are photo-active catalysts which play a vital role in the improvement of the rates of photochemical reactions. The ideal photocatalyst must be stable, highly photoactive, inexpensive and nontoxic. From the other hand, photocatalysts have the ability to initiate redox processes with enhancing of incident light on the catalyst surface that due to find of a band gap in the semiconductor [33, 34]. The primary principle for the degradation of organic compounds is recognized on the redox potential of the H₂O/OH couple, whereas, OH⁻ is generated OH at $E^{\circ} = -2.8V$, that lies within the band gap of the semiconductor [34]. Figure (1-1) explains several photo semiconductors that have enough band gap energies for catalyzing a wide range of chemical reactions.

Figure 1-1: Band gap energy and band edge positions of varies photo semiconductor [35].

In general, the characterized of any bulk semiconductors are dependent on the band gap energy (Eg), which is defined as the minimum energy required to excite an electron from the ground state (valence energy band) into the vacant conduction energy band[36]. There are two types of band gap in semiconductors:

Direct band gap and (b) Indirect band gap.

A direct band gap means that the minimum of the conduction band lies directly above the maximum of the valence band in momentum space. Thereby no momentum transfer is required to takeoff the electron from the

valence band into the conduction band ($\Delta k = 0$). But indirect band-gap semiconductors do not have the lowest conduction band energy at the point. Thereby the fast electron has to transfer momentum to an electron in the valence band in order to excite it into the conduction band ($\Delta k \neq 0$) [37]. Figure (1-2) explained the direct and indirect band gap of photo semiconductors.

Figure 1-2: Simplified optical transition of semiconductor. (a) Direct band gap (b) Indirect band gap [38].

When a semiconductor catalyst such as (ZnS) is illuminated with photons whose energy is equal to or greater than their band-gap energy [39] that will lead to the generated a positive hole (+) in the valence band and an electron (e⁻) in the conduction band (CB). The positive hole oxidizes either pollutant directly or water to produce \cdot OH radicals, but the electron in the conduction band reduces the oxygen adsorbed on the catalyst as soon as in figure (1-3), and can explain in five steps[40, 41]:

(1) Absorption of light-UV by a semiconductor to create electron-hole pairs (exciton).

(2) Charge separation and migration to the surface of the semiconductor.

(3), (4) steps, the converted of O_2 and H_2O to OH radical.

(5)Return electron from conduction band to valance band by recombination process.

Figure 1-3: schematic of photocatalytic reaction on photocatalyst surface [40].

The electron-hole pair which encourages the reduction and oxidation of species that adsorbed on the semiconductor surface [42]. The photo efficiency of any photo reaction can be reduced by the electron-hole recombination, which tallies to the degradation of the photoelectric energy into heat.

$$e^- + h^+ \to N + E$$
 (1-1)

Where: *N* is the neutral center and *E* is the energy released under the form of light $(h\bar{v} \le hv)$ or of heat [39].

In order to decrease the recombination process and increase life time of photohole must perform that through modification of photocatalyst surface, which can be represented as follows scheme (1-4).

Scheme 1-4: Modification of Photocatalyst on surface [43].

The modification type in this study was done by metal-Semiconductor modification. So, when any metal such as (Mn, Cr) is loaded on photocatalyst surface, for instance; ZnS and then irradiated, the atom utilizes the photon energy (hu) and reduces a crystal size. Briefly, it can be clarified role of loaded metal which results in addition charge carriers in presence of light and increase the surface area, which rise the decolonization efficiency of dye[44].Several studies have designated that the photocatalytic rate increases with catalyst loading with metal, but at high concentrations of metal load that will lose the efficiency, because of light scattering and screening effects happened [45].

From the other side, the agglomeration (particle–particle interaction) also increases at high solids concentration that leads to reduce the surface area available for light absorption. Although the number of active sites in solution will increase with catalyst loading while photocatalytic degradation rate decrease light penetration because of excessive particle concentration. The compromise between these two opposing phenomena results and so on optimum catalyst loading for the photocatalytic reaction [40]. When such an n-type semiconductor is contacted in an electrolyte solution, electrons in the donor levels go out to the electrolyte since the donor level in an *n*-type semiconductor that may be more cathodic than the electrode potential of electrolyte solutions. This flow of electrons in the donor level to an electrolyte results in the formation of a so-called Schottky-type [46].

The loaded of metal on semiconductor leads to formation of Schottky barrier, that takes place between an n-type semiconductor like (ZnS, ZnO, TiO₂...etc) and a metal interface. In fact, when the metals have lower Fermi energies (E Fermi) compared to semiconductors then the metal and semiconductor must link. This flow electron from the semiconductor to the metal continued until the Fermi of the semiconductor reaches to equilibrium with that of the metal, hence, that will guide to a constant value of E Fermi for both of the devices. Moreover, that will be due to this deformation band structure between the semiconductor and the metal [33,47]. Figure (1-4) explains how Schottky barrier generates.

Figure 1-4: Formation of the Schottky barrier between n-type semiconductors and metals (a) before interaction and (b) after interaction[33].

Where, ΦM is the working function of the metal, which is defined as the energy necessary to carry an electron from the metallic Fermi energy to the vacuum. XSM is the electron affinity, the energy difference between the minimum conduction band (CB) and the vacuum (Vac) energy.

1.5 ZnS Bulk

Zinc sulphide is one of the very important II-VI group of compound semiconductors with have energy band gap about (3.72-3.77) eV in the bulk form, so, it is deemed as ideal for short wavelength optoelectronic applications [48-51]. ZnS is a non-toxic, abundant and eco-friendly and good chemical stability against

oxidation and hydrolysis. It is high stable in a large pH range and can be synthesized from earth-abundant components ,in addition ,it is widely employed in many fields of application such as electronics, solar cells, light emitting diodes, catalyst, including lasers, active sensors and waste water treatment [52-55]. In general, ZnS is a polymorphous material that has two crystalline forms namely: Zinc Blend (sphalerite) and Wurtzite. In both forms the co-ordination geometry at Zn and S is tetrahedral. Both structures have similar closest neighbor connections, but the distances and angles to furthermore neighbor's quietly differ. Table (1-2) explains the differences between the two crystal structures of ZnS phases.

Zinc blend(ZB)	Wurtzite Zinc(WZ)
1. Cubic form (fcc).	1. Hexagonal form (hcp).
2. It is more stable than (WZ).	2. Less stable than (ZB).
3. Band gap of (ZB) approximately 3.72 eV.	3. Band gap is 3.77 eV.
4. Zinc blend has four asymmetric units in its	4. wurtzite has 2 units in itself.
unit cell.	
Zinc Blend ABCABC	Wurtzite ABABAB

Table 1-2: differences of crystal structure of ZnS phases [53, 56].

1.6 ZnS Nano powder

Semiconductor nanocrystals are tiny crystalline particles. In fact, the nano powder has a size-dependent on the optical and electronic property and the ideal dimensions are in the range of (1-100) nm. So, the size of nanocrystals regard as bridge of the gap at range between small molecules and large crystals, displaying discrete electronic transitions of isolated atoms and molecules, as well as enabling the exploitation of the useful properties of crystalline materials. Semiconducting nanoparticles involved in photo conversion systems present a temperately wide energy gap between the conduction band (CB) and the valence band (VB) [36]. ZnS nano powder is considered as a good photo catalyst due to fast generation of the electron-hole pairs (exciton) by photo-excitation and highly negative reduction potentials of excited electrons; as if conduction band position of ZnS in aqueous solution is higher than that of other semiconductors such as TiO₂ and ZnO. Since, a larger ratio of surface to volume of a catalyst would facilitate to give a better catalytic activity [9,50]. The enhanced surface to volume ratio will reason to increase of surface states, which change the activity of electrons and holes will effect on the chemical reaction dynamics. However, the size quantization increases the band gap of photo catalysts to enhance the redox potential of conduction band electrons and valence band holes [57,58].

The manner, ZnS nanopowder keeps unusual physical and chemical properties compared with the ZnS Bulk like: enhanced surface to volume ratio, the quantum size

effect, surface and volume effect, macroscopic quantum tunneling effect, more optical absorption, chemical activity and thermal resistance, catalysis, and the low melting point [53].

1.7 Co-precipitate method

Co-precipitation method is a wide chemical method (Bottom-Up approach) that used to prepare nanomaterials. It is involved several nucleation, growth and secondary stages: process such as agglomeration, attrition and breakage. The particles obtained with a convention co-precipitation process are relatively larger with a broad size distribution, due to a difficulty to avoid the nucleation during the subsequent growth of nuclei [59]. Although co-precipitation is the most widely employed method but the nanoparticles are prepared by this method tends to be rather poly disperses and the control process on their shapes is very difficult [60].

Nanoparticles also attracted magnetically the synthesized nanoparticles that must be protected through surface modification. Hence, in this method, it can use that organic additives or stabilizers such as 1% poly vinyl alcohol (PVA), poly ethylene glycol (PEG) that used to be an

important factor in preparing mono-disperse magnetite particles of varying sizes, and in addition to the usual flocculation. In fact, the effect of the parameters such as pH, salt type, the ionic strength of the precipitation medium, and temperature of the reaction, allows one controlled on the crystal and particle sizes, shape, and composition of the resultant magnetic nanoparticles. Other parameters are affected the size and mono disperse of nanoparticles that involve the amount of stabilizing ions, the found of other ions, chelation and adsorption of additives on the nuclei and growing crystals [60].

Advantage: This method is characterized by being simple, effective and fast preparative method; easy control of particle size and arrangement, very powerful for synthesis the particles that are loaded on the surface.

Disadvantage: The particles deposited on the surface that is easy to aggregate and difficult to control the shapes [61-63].

8 Adsorption

Adsorption is a process that takes place when a gas or liquid solute as adsorptive, which accumulate on the surface of a solid (adsorbent), and then forming a molecular, ionic, or atomic film. The species like: molecules, atoms and ions of the adsorptive will adhere to the adsorbent are called adsorbate, it is possible to find the difference between adsorption of the gas phase and the liquid phase as a multilayer for the gas phase adsorption and a monolayer for the liquid phase [64].

Adsorption technique proved an efficient and an economical process for the treatment of dyes effluents. The efficiency of the technique lies in choosing the suitable adsorbent. Hence, the chosen adsorbent should be easily available, cheap and should have no economic value [65].

Generally, adsorption of Liquid-Solid interface can take place in solution. This interface is decidedly heterogeneous, so that most solids used as adsorbents, but characterized surfaces by being poorly [66]. The classification of adsorption depends on the strength of the binding forces is more common, to physical adsorption (physisorption) and chemical adsorption (chemisorption). The type of forces for physical adsorption involve Vander Waal's forces, hydrogen bonding and ionexchange processes, whereas the electrostatic, covalent and Coordinate displacements are the main factors in chemical adsorption [67,68].

1.8.1 Adsorption on Catalyst Surface

The Adsorption process on catalyst surface is considered the important phenomena of catalysis that occur on the surface. The role of using catalyst for increasing the rate of reaction can be explained in term of adsorption of the reactants on the surface of the catalyst. So, adsorption helps the reactions by leading to concentrate of the reactant molecules on the surface of the catalyst. since the adsorption is an exothermic process, thereby, the heat of adsorption shall exist the reactants via activated of reactant molecules, and then leads to chemical reaction, that depends upon lowering the activation energy of the reaction. This behavior will enhance rate of reaction and changing in oriented for the reaction (mechanism). At last, the adsorbed molecules separate from catalyst surface and yield of reactive atoms or free radicals that employed to eliminate the pollutants from the waste water [69].

The essential mechanism of using catalysts to start the reaction, can be explained by the following steps [70]:

1. Diffusion of reactants on the surface of the catalyst.

2. Adsorption of reactants on the surface of the solid catalyst. The catalyst surface is unbalanced attractive forces, since the presence of these unsatisfied forces or free valences.

3. The adsorbed reactant molecules undergo a **chemical reaction** to form an intermediate activated complex. This complex is highly unstable.

4. The activated complex breakdowns to form the products. Hence, the products separate from catalyst surface, this is called **desorption**.

5. Diffusion of product molecules away from catalyst surface.

1.8.2 Dyes adsorption

Photo catalysis through excitation of adsorbed dyes when light with energy are less than the band gap of the irradiated semiconductor will
be absorbed by the adsorbed dye molecules. Dye molecules will be decolorized by a photosensitization process, at energy of light less, the excited (dye*) is recognized to inject an electron to the conduction band of the semiconductor. The following equations can be explained the process in this pathway [71,72] :

$Dye + h\nu \rightarrow {}^{1}Dye^{*} \text{ or } {}^{3}Dye^{*}$	(1-2)
¹ Dye [.] or ³ Dye [.] + Semiconductor \rightarrow Dye ^{.+} + $e^{-}_{semiconductor}$	r (1-3)
$e_{\text{semiconductor}}^{-} + O_2 \rightarrow O_2^{-} + \text{Semiconductor}$	(1-4)
$Dye^{+} + O_2^{-} \rightarrow DyeO_2 \rightarrow degradation \ products$	(1-5)
$Dye^{+} + HO_2(or HO) \rightarrow degradation p$	(1-6)
$Dye^{+} + 2 HO^{-} \rightarrow H_2O + products oxidation$	(1-7)
$Dye^{+} + HO^{-} \rightarrow Dye + HO^{-}$	(1- 8)
$Dye^{+} + H_2O \rightarrow Dye + HO^{-} + H^{+}$	(1-9)

1.8.3 Adsorption of Oxygen and water

The activity of any catalyst depends upon the ability for many metals; metal sulfides and metal oxides on produced surface hydroxyl groups [73]. Oxygen reduction reaction (ORR) depends on oxygen adsorbed on catalyst surface and produces a several intermediates (O_2^{-} , 'OH, and 'OOH), according to the following mechanism [74].

In outset, dissolved oxygen in solution is reduced by e^- of conductive band on catalyst surface, and the super oxide anion (O_2^-) will generate.

$$0_2 + e^- \rightarrow 0_2^-$$
 ... (1-10)

The superoxide anion radical may be gone in other reduced process to generate hydrogen peroxide.

$$O_2^{\cdot} + H^+ \rightarrow HO_2^{\cdot}$$
 ... (1-11)

 $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$... (1-12)

$$0_2^{-} + H0_2^{-} \rightarrow H0_2^{-} + 0_2$$
 ... (1-13)

$$HO_2^- + H^+ \to H_2 O_2$$
 ... (1-14)

The H_2O_2 is either split under light or reacted with super oxide anion that will produce hydroxyl radical, which is contributed for dye degradation [15].

$$\begin{array}{ll} H_2 \, O_2 \ + \ O_2^- \ \rightarrow \ HO^+ \ + \ HO^- \ + \ O_2 & \dots \ (1-15) \\ H_2 \, O_2 \ \rightarrow \ 20 \ H^- & \dots \ (1-16) \end{array}$$

In general, the surface of any catalyst can be coverage by oxygen, is independent on temperature and oxygen pressure. However, the ratio of adsorption concentration increases with the oxygen pressure [75]. From the other hand, the water oxidation $(2H_2O \rightarrow O_2 + 4e^- + 4H^+)$ is a vital key step in both natural and artificial photosynthesis [76].

Water is oxidized by a positive hole to produce a hydroxyl radical (OH) which in turn oxidizes of organic dye pollutants [15]. This behavior can be applied, according to following equations.

$$\begin{array}{ll} H_2 0 + h^+ \rightarrow HO^+ + H^+ & \dots (1-17) \\ HO^+ Dye \rightarrow Products & \dots (1-18) \end{array}$$

1.9 Dye

Azo dyes are recognized as a wide common classification of dyes, that consist of approximately 60-70% of the available dyes. The most communal colors of azo dye are deemed on found azo bonds (-N=N-) in the molecule of dye to prepare the monoazo, diazo, triazo,...etc, in different colors such as red, orange and yellow [77].

1.9.1 Classification of Dyes

There are different ways for classification of dye molecules. It can be classified in terms of chemical structure, colour and application methods. However, the classification that based on application is often favorable, like: direct, disperse, developed, acidic, reactive...etc as shown in scheme 1-5. The other classification based on chemical structure for the common class of the dyes is presented such as azo, xanthene, triaryl methane, diphenyl methane, quiniolineetc. Other than the above, dyes are also classified based on their particle charge upon dissolution in aqueous medium like cationic (all basic dyes), anionic (direct, acid, and reactive dyes), and non-ionic (dispersed dyes) [78].

Scheme 1-5: Classification of dye according to their application [79].

Reactive black 5 dye

The reactive dyes are a most consumed in the dye market, that attitude to high ability for producing strong covalent bonds with cellulosic fibers by the hydroxyl groups in highly alkaline medium. This behavior leads to a high fastness [80,81]. In addition, they have a low cost, highly soluble in water as anionic electrophiles, since they contain one or more reactive groups, which are linked a covalent bond with hydroxyl group of cellulosic fibers and becomes a part of it [82]. Reactive dye is having a wide range of color can be given bright colors fastness to washing [15] [83-86] that due to the natural chromophoric groups (like azo, metallized azo, phthalocyanine, anthraquinone, formazane and oxazine group) and the bridging groups (like ether or ester linkage as a covalent chemical bond) that linkage obtains between the dye and the fibers [15].These dye had many kinds, so, they have a general formula structure S-F-T-X, where, S is solubilizing group like- SO₃ group, F is chromophore groups like azo or aromatic ring groups, T is abridge group such as sulphide, imino, oxide, ethyl & methyl groups and X is active group such as vinyl sulfone and dichlorotriazine that accountable to bound with cellulosic fibers [80,86]. In general, the chromophore groups in these dyes are determined the kind of the absorbed light area, hence, the azo bond has absorption in a visible light area, while, in the UV light area the aromatic ring has absorption [87]. Reactive Black 5 (RB5) is one of the reactive azo dye that used in textile industries and caused a pollution of river water. When this dye is extremely contacted it may cause allergic reactions of breathing and hardly skin irritation. The chemical formula of RB5 is $C_{26}H_{21}N_5Na_4O_{19}S_6$, with weight 991.82 g/mol [11].The chromophore of RB5 molecule absorbs the visible light at 596 nm [88]. The structure of this dye can be explained in figure (1-6).

Figure1-6: Structural formula of reactive black 5 dye [19,89].

When UV-light focus on RB5 dye solution in presence photocatalyst, the series of redox reactions were obtained and leaded to formed ahydroxyl radical.

In outset, azo bond is oxidative cleavage either C-N or N-N cleavage by attaching the hydroxyl radical that generated via photocatalysis process [81,90] in presence the prepared photocatalysts. The intermediate I and intermediate II were produced with liberated N₂. After that the C-S bond is cleavage in series steps to generate CO_2 and H₂O and inorganic anions [81], as notice in scheme (1-6).

Scheme 1 -6: Summarized of photo degradation mechanism for RB5 dye

(Modified from ref.[81, 91]).

1.10 Literature Review

ZnS nanoparticles have been prepared by different ways. Parvaneh and coworkers [92] prepared ZnS nanoparticles by Co- precipitation method using EDTA as stabilizer and capping agent, wherase, Ayodhya and coworkers [58] used the same method with various capping agent like PVP(poly vinyl pyrrolidone, PVA (poly vinyl alcohol, and PEG-4000(poly ethylene glycol).

Pathak and coworkers [93] synthesized ZnS nanoparticles by the mechanochemical route and measured the crystallite size of as prepared nanoparticles are found to be in the range (4–7 nm).

Chandran and coworkers [94] prepared bare ZnS nanoparticles by hydrothermal method and then calculated the average crystallite size of the sample using Scherrer equation, which found to be 20.036 nm.

Bera and coworkers [95] found the sizes of the prepared crystals for ZnS and Mn doped ZnS nanoparticles are increased with doped.

Shanmugam and coworkers [96] noticed the prepared cerium-doped zinc sulfide nanorods are had a flower-shaped morphology,that indicated to successfully synthesize under air atmosphere through simple chemical precipitation method.

Silvaa and coworkers [97] employed the sonochemical method to prepare ZnS nanoparticles as a nanocrystalline powder with crystallite size around 2 nm.

Mahammed and Ahmed [17] proved that the prepared bare zinc sulfide and chromium (1:1)% doped on bare zinc sulfide via Precipitation method are sucssusfuly synthesis by measured XRD data, AFM analysis and Fluorescence spectra, these prepared photocatalyst were applied in decolorization of reactive black 5 dye and changed the Efficiency percentage from 59% to 94% with Cr doped on ZnS nanopowder.

Goharshadi and coworkers [3] successfully synthesized ZnS nanoparticles with an average particle size of 2 nm under using ultrasonic with irradiation, without any surfactant and high temperature treatment. They found that the photocatalytic activity of semiconducting sulfide quantum dots for degradation of reactive black 5 was investigated in little time (10 min) using 0.2 g ZnS NPs in a neutral pH .

1.11 The Aim of the Present Work

In this work there are many aims as that following:

- 1. Preparation of ZnS nanoparticle.
- 2. Metalized of ZnS nanoparticle by different types of metals (Mn, Cr).
- 3. Study the characterizations of all samples by employing XRD and AFM analysis, atomic absorption analysis and fluorescence then it compares the characterizations of prepared (bare and metalized ZnS) with the commercial ZnS.
- 4. Study the effects of the followings on photocatalytic activity on decolorization of reactive black 5 dye:
- a. Type of metal.
- b. Weight of catalyst.
- c. Initial pH of solution.
- d. Temperature.
- e. Amount of $K_2S_2O_8$.

5.Suggested a suitable mechanism for decolorization of reactive black dye.

CHAPTER TWO EXPERIMENTAL

This chapter displays the used chemicals, instruments, methods of preparation of bare and metalized ZnS nanoparticles, characterized of

prepared materials with a vital equations.

2.1 Chemicals

Table 2-1 lists the chemicals used in this work. All the chemicals were obtained without further purification.

NO	Chemicals	Company supplied
1	Absolut ethanol (99.98) % (C_2H_5OH).	J. K. Baker, Netherlands.
2	Hydrochloric acid (36.5-38.0) % (HCl).	J. K. Baker, Netherlands.
3	Sulphuric acid (99.00) % (H ₂ SO ₄).	CDH, India.
4	Sodium hydroxide 99.00% (NaOH).	Panareac, Spain.
	1, 10- Phenanthroline ($C_{12}H_8N_2$).	Riedel-De-Haen AG, Seelze,
5		Hannover, Germany.
6	Potassium oxalate ($K_2C_2O_4$).	Riedel-De-Haen AG,
		Seelze,Hannover, German
7	Iron (III) sulfate (Fe ₂ (SO ₄) ₃).	Panareac, Spain.
8	Zinc sulfate hepta-hydrate	Labochemie, India.
	(ZnSO ₄ .7H ₂ O).	
9	Reactive black 5 ($C_{26}H_{21}N_5Na_4O_{19}S_6$).	Hilla textile factory.
10	Zinc sulfide commercial (ZnS).	Thomas baker, India.
11	Persulphate potassium ($K_2S_2O_8$).	Maknur Laboratories, Canada.
12	Thiourea (NH ₂ CSNH ₂)	Fluka –Garantie,Switzerland.
13	Poly (ethylene glycol) (PEG)	CDH, India.
	$H(OCH_2 CH_2)_n O_4$	
14	Manganese (II) Chloride -tetra hydrate	Riedel-De-Haen AG, Seelze,
	$(MnCl_2.4H_2O).$	Hannover, Germany
15	Chromium (III) Chloride (CrCl ₃).	BDH Limited Poole England
		General Purpose reagent.
16	Ammonia (NH ₄ OH).	Sinopharm Chemical
		Reagent, China.

 Table 2-1: Chemicals and their commercial sources

2.2 Instruments

Different instruments were used in this study. Types of instruments and the suppliers companies are listed in table 2-2.

No.	Instrument	Company
1	Sensitive balance.	BL 210 S, Sartorius, Germany.
2	UV-Visible spectrophotometer.	Cary 100Bio, Shimadzu (Varian),
		Germany
3	Ultrasonic.	FALC,Italy.
4	High Pressure Mercury Lamp UV	Rudium, China.
	A (400W).	
5	Oven.	Memmert, Germany.
6	Centrifuge.	Hettich- Universall II, Germany.
7	Hot plate Stirrer.	Heido-MrHei-Standard, Germany
8	Atomic absorption	AA-6300, Shimadzu, Japan.
	spectrophotometer.	
9	Fluorescence Spectrometer.	FS-2, Scinco, Korea.
10		
10	X-Ray Diffraction Spectroscopy.	Lab X- XRD 6000, Shimadzu, Japan.
11	pH meter.	Hanna Instruments- Mauritius, India.
12	Scan Probe Microscope	AFM model, AA 3000, Advanced
		Angstrom Inc.,USA.
13	UV- Visible spectrophotometer.	AA-1800, Shimadzu, Japan.

Table 2-2: Utilized Instruments.

2.3 Preparation of Bare and Metallized ZnS

Co-precipitation method was done to prepare bare ZnS and (Cr, Mn) loaded ZnS nanopartiles. The metals loaded method was performed as a single form of meal and as mixture of two metals (Cr and Mn) in colloidal solution [98].

2.3.1Preparation of Cr: ZnS

The prepared solutions were dissolved in distill water then shaking by ultrasonic (FALC) for 10 min to ensure getting for homogenous solution. The metal loaded Zinc sulfide procedure was modified from procedure in reference [51]. 0.05 M (7.188gm) from ZnSO₄ was used as starting material. The equal volume from 0.05M (3.740 gm) thiourea was taken in a burette and added drop by drop into ZnSO₄ solution with vigorous stirring (Labtech-magnetic stirrer) for about 25 minutes to get ZnS solution, and simultaneously 0.05M (0.307gm) from CrCl₃ was added to this solution as drop -drop using burette for 25 min to create the Cr loaded ZnS. This final formed solution was followed by drop wise addition of 1% of poly ethylene glycol - 4000 (PEG- 4000) in 100 ml D.W as neutral capping agent solution under vigorous stirring for 1 hour. Afterwards, 0.1M from ammonia solution was added slowly to solution of metal until the pH reached to range between 10 and 12 that is necessary to generate the metal complex. The produced material is shown in figure 2-1. Finally, the metal complex solution was filtrated under vacuum using Büchner's funnel. The precipitate was washed twice by using distill water until the solution becomes the output of washing neutral (pH=7), then used absolute ethanol to remove the impurities. The produced precipitate for Cr/ZnS was grey color as seen in figure 2-2. This catalyst was dried overnight by silica gel powder in desiccator then dried in oven at less 100 °C for 2h to obtain powder sample.

figure2-1: The resulting solution at pH=10-12

via preparation prosess.

2.3.2 Preparation of Mn: ZnS and Cr: ZnS: Mn (1), (2)

The precipitates of (Mn: ZnS) and Cr:ZnS:Mn are prepared in the same way as the chromium loaded on ZnS, whereas all prepared solutions were dissolved in distill water, then the solutions are mixed with the same concentrations [46]. After that, add 0.05 M (0.494gm) of MnCl₂.4H₂O at loaded Mn on ZnS, while the addition of mixture solutions from 0.05M (0.247gm) of $MnCl_2.4H_2O$ and 0.05 M (0.153 gm) CrCl₃) were applied either in the addition process is consecutive where Mn solution was firstly added then Cr solution to form Cr:ZnS:Mn₍₁₎ or the addition was perform at the same time to prepare Cr: $ZnS:Mn_{(2)}$ Subsequently. For all prepared catalysts must precipitate by slowly adding 0.1M from ammonia solution to solutions until the pH touched to (10-12). Finally the metal complex solutions were filtrated. The precipitates were twice times by using distill water then used absolute ethanol to remove the impurities. The precipitates are dried overnight by silica gel powder in desiccator, and then dried in oven at less 100 °C for 2h to obtain powder sample.

Figure 2-2: Schematic diagram for prepared of metalized ZnS nanoparticle.

2.3.3 Preparation of ZnS nanoparticle

It is prepared with the same steps and materials that used for metallized ZnS, but without addition of any solution of metals. At last, the white nanopowder was generated, according to the following steps in figure 2-3.

Figure 2-3: Schematic diagram of prepared of ZnS nanoparticle

2.4Characterization

2.4.1 X-Ray Diffraction Spectroscopy (XRD)

The characterization of the crystal morphology and the size of the commercial and prepared bare and metalized of ZnS were employed by XRD measurements. The average crystallite sizes in nm, were calculated for all samples by Debye-Scherrer formula [99].

$$L = \frac{K\lambda}{\beta\cos\theta} \qquad ...(2-1)$$

Where L is the average crystallite size, k is the constant crystal lattice (0.90), $\lambda = 0.154$ nm which is the wavelength of the radiation, β is the full width at half maximum in radians and θ is the angle of diffraction.

2.4.2 Atomic Force Microscopy (AFM)

The AFM images as two and three dimensions were noted with instrument (SPM AA-3000, USA). This technique was taken to find the particle sizes (D_p) for all studied samples. Very slight amount of each sample was suspended in absolute ethanol and treated by ultrasonic instrument for 10 min in power of 25 kHz. One drop of each of the obtained colloidal solutions was dropped on (1 × 2 cm) glass slides. The crystallinity index was calculated by depending upon the mean crystal size and practical size via the following equation [100]:

Crystallinity Index =
$$\frac{D_p}{L}$$
 ...(2-2)

Where: D_p is the particle size which is measured by the AFM analysis and L is the average crystallite size that calculated by Scherrer equation (equation 2-8).

2.4.3 Atomic Absorption Spectrophotometry.

Atomic absorption instrument was estimated to measure the residue amount of Cr or Mn in filter solutions after loading them on prepared ZnS. This analysis was done with passing mixture of air and acetylene via the flame using (Shimadzu-AA-6300) instrument. The analyzed samples were determined after using a calibration curve for these metals at wavelength of Mn and Cr equal to 279.5 nm and 357.9 nm respectively. These results note in figure 2-4 and figure 2-5. From other hand, the amount of Mn and Cr in solutions were listed before and after loaded on prepared ZnS surface, that is explained in the table 2-3.

Intensity	C/ppm (Mn)	Intensity	C/ppm(Cr)
0.000	0.000	0.000	0.000
0.021	1.000	0.014	0.610
0.061	3.000	0.024	1.061
0.100	5.000	0.046	2.000

Table 2-3: Calibration Curve of Mn and Cr standard Concentrations.

Figure 2-4: Calibration curve at different Concentrations of

Figure 2- 5: Calibration curve at different concentrations of Chromium.

2.4.4 Band gap energy measurements

In order to calculate the band gap energy in (eV) for all studied samples, the fluorescence spectroscopy was employed, and then applied the produced wavelength (λ) in equation (2-10) at the maximum intensity in the fluorescence spectra of all studied samples [101].

Band gap (eV)
$$=\frac{1240}{\lambda_{(nm)}}$$
 ... (2-3)

2. 5 Photocatalytic decolorization Reaction of reactive black 5 (RB5)

In this work, all experimental for photocatalytic decolorization of dye was done inside a homemade photo reactor. The rector has been irradiated from outside using a high pressure mercury lamp UV-A (400 Watt), which was employed as a source of radiation in figure 2-6. This lamp of incident light is having a wavelength about 365 nm. All solutions were prepared from appropriate grams of photocatalyst samples were added to 100 mL of 25 ppm from reactive black 5 dye solution. The produced suspension solutions were subjected to UV-A light flux at intensity equal to 1.47×10^{-6} Einstein s⁻¹. The light intensity was calculated by chemical actinometer [102] according to item 2.6. At different time intervals, about 3.5 mL was taken out with using syringe, and then carried out double separated processes by using centrifuge at 10 min and 4000 rpm. The formed filters were studied by reading the absorption at 595 nm to find the residue concentrations of dye after irradiation.

Figure 2-6: Schematic diagram of photoreactor.

Where: High pressure mercury lamp(400W)(1), 400 cm³ Pyrex glass beaker (2), Teflon bar (3), magnetic stirrer (4), fan (5), vacuum fan (6) and wooden box(7).

2.5.1 Calibration Curve of reactive Black 5 dye

The calibration curve was obtained by using series of standard RB5 dye in aqueous solutions, which explained in table 2-4 and figure 2-7. The absorbance of all prepared standard solution was applied at wavelength equal to 595 nm.

Table 2-4: Relationship between absorbance a	and different concentrations of RB5.
--	--------------------------------------

Conc. of RB5 dye (ppm)	Abs at 595 nm
0	0.000
1	0.025
5	0.142
10	0.264
20	0.469
30	0.691
40	0.895
50	1.099

Figure 2-7: Calibration curve at different concentration of RB5 dye.

2.5.2 Kinetic studied of photocatalytic decolorization of dye

Photocatalytic decolorization of RB5 in solution has been performed by focusing UV light irradiation on dye solution in presence of photocatalyst.

The rate constant (k_{app}) of photocatalytic decolorization of RB5 dye was measured using Langmuir-Hinshelwood expression for the first order kinetics according the following equations:[32, 103]

$$C_{t=} C_{0} \exp^{(-k_{app} \cdot t)}$$
 ... (2-4)

$$\ln(C_{o}/C_{t}) = k_{app} t$$
 ... (2-5)

where: C_t is a concentration of the reactive black 5 dye at t time of irradiation. C_o is an initial concentration of same studied dye at (dark reaction) in 0 min as the time of irradiation.

The photocatalytic decolorization efficiency (PDE) was calculated via the following equation [104,105]:

PDE =
$$\frac{(Co-Ct)}{Co} \times 100$$
 ...(2-6)

2.6 Light Intensity Measurement

The calculated through light intensity was Actinometric method[102], which was widely applied to estimate the light flux density. This method deals with the measurement of the standard or reference photochemical reaction, whose quantum yield is accurately known in order to standardize the used light source. The ferrioxalate actinometric solution was the most used to find the light intensity, which applied on the same photocatalytic reactor. Briefly, freshly prepared was done by mixing 40 mL of 0.15 M (3.94gm) of $Fe_2(SO_4)_3$, 50 mL of 0.45 M(3.74gm) of K₂C₂O₄ and 10 mL of 0.05 M of H₂SO₄. After that, the actinometric solution was irradiated from outside using mercury lamp UV (A) for (5, 10 and 15) min. Under these conditions, the color solution changed from yellow to the yellowish green color, that indicated to the generated of ferrioxalate complex K₃[Fe $(C_2O_4)_3$].3H₂O is formed.

The idea of this reaction was recognized to illuminate undergoes simultaneous reduction of Fe^{3+} to Fe^{2+} and oxidation of oxalate to carbon dioxalate. Under light excitation, the potassium ferrioxalate decomposes according to the following equations [102,106]:

$$Fe(C_2 O_4)_3^{3-} \xrightarrow{hv} Fe^{2+} + C_2 O_4^{--} + 2C_2 O_4^{2-} \qquad \dots (2-7)$$

$$Fe(C_2 O_4)_3^{3-} + C_2 O_4^{-} \xrightarrow{\Delta} Fe^{2+} + 2CO_2 + 3C_2 O_4^{2-} \qquad \dots (2-8)$$

After the passage of irradiation time at (5, 10 and 15) min, exact 2.5mL of the irradiated solution pull it out, and centrifuged at (6000 rpm, for 10 min). After filtration, the 0.5 mL from filtered solution was added to 2.5 mL of 1% from 1, 10-phenanthroline, and a red orange complex (tris-phenanthroline) was occurred.

The quantity of the produced ferrous ions during the irradiation period is monitored by conversion to the colored tris-phenanthroline. The light intensity had been calculated via the following equations [106].

$$I_0 = \frac{AV_1 V_2}{\varepsilon t Q_\lambda V_2} \qquad \dots (2-9)$$

$$I_{o} = \frac{1.838 \times 100 \times 3}{1045 \times 1000 \times 600 \times 1.2 \times 0.5} \qquad \dots (2-10)$$
$$I_{o} = 1.47 \times 10^{-6} \quad \text{Einstein s}^{-1}$$

Where: I_o is light intensity, A is absorbent of ferrous ions trisphenanthroline at 510 nm, V_1 is volume of solution irradiated (100 cm³), V_3 is the final volume after complexation with 1, 10-phenonethroline (3 cm³), ϵ is molar absorbent coefficient (slope value), t is irradiation time, Q is quantum yield (1.2) and V_2 is the aliquot of the irradiated solution taken for the determination of the ferrous ions (0.5 cm³).

2.7 Activation Energy

In general, Arrhenius equation [77] played an ideal equation to calculate the activation energy. The equation was plotted in the range of temperatures (283.15–303.15 K).

Ln
$$k_{app.} = -\frac{Ea}{RT} + Ln A$$
 ... (2-11)

where: k_{app} is apparent rate constant, T is absolute temperature of reaction, Ea is the apparent activation energy, R is the gas constant (8.314 J mol⁻¹ K⁻¹), and A is frequency constant

2.8 Thermodynamic Parameters

The thermodynamics parameters such as $\Delta H^{\#}$ and $\Delta S^{\#}$ values were determined by plotting Eyring-Polanyi equation [107]

Ln
$$\frac{k_{app}}{T} = \frac{-\Delta H^{\#}}{RT} + (Ln \frac{k_B}{h} + \frac{\Delta S^{\#}}{R})$$
 ... (2-12)

Where k_{app} is the apparent rate constant, k_B is Boltzmann's constant, T is the temperature of reaction, R is the gas constant, and h is Plank's constant.

The free energy $\Delta G^{\#}$ [108] was calculated via equation (2-13)

$$\Delta G^{\#} = \Delta H^{\#} - T\Delta S^{\#} \qquad \dots (2-13)$$

CHAPTER THREE RESULTS AND DISCUSSION

3.1. Characterization of Catalyst 3.1.1. XRD Analysis

The XRD patterns of the ZnS commercial, metalized of ZnS and bare prepared by co-precipitation method are shown in figure 3-1.

Figure 3-1: (a) XRD patterns for commercial ZnS. (b) XRD patterns for all prepared samples.

3.1.2 Atomic Force Microscopy (AFM)

AFM images were used to measure particle sizes of commercial ZnS, prepared ZnS and metalized as explained in figures 3-2 to 3-7 respectively. Crystallinity index was calculated by depending on particle sizes attained from AFM and mean crystallite sizes obtained from XRD as shown in equation 2-9 and results listed in table 3-1.

Figure3- 2: AFM Image of commercial ZnS a) 2 - Dimensions Image b) 3- Dimensions Image and c) TheHistogram.

Figure3-3: AFM Image of ZnS :Mn a) 2 - Dimensions Image

b) 3- Dimensions Image and c) TheHistogram.

Figure 3-4: AFM Image of ZnS: Cr a) 2 - Dimensions Image

b) 3- Dimensions Image and c) TheHistogram.

Figure3-5: AFM Image of Mn :ZnS :Cr₍₁₎ a) 2 - Dimensions Image b) 3- Dimensions Image and c) TheHistogram.

Figure3-6: AFM Image of Mn ZnS :Cr (2) a) 2 - Dimensions Image b) 3- Dimensions Image and c) TheHistogram.

Figure3-7: AFM Image of prepared ZnS bare: a)2 - Dimensions Image b) 3- Dimensions Image and c) TheHistogram.

Sample	Average crystallite size(L)/nm	Particle size /nm	Crystallinty index
commercial ZnS	40.4018	108.870	2.690
ZnS:Mn	15.251	90.250	5.917
ZnS:Cr	16.215	82.330	5.077
Mn:ZnS:Cr ₍₁₎	18.757	113.880	6.071
Mn:ZnS:Cr ₍₂₎	17.114	93.740	5.477
Prepared ZnS	19.986	51.020	2.552

Table 3-1: Mean Crystallite Sizes and particle sizes of commercial ZnS, preparedZnS and elements loaded on ZnS.

3.1.3. Band gap energy measurements

The band gaps for the prepared samples were investigated by measuring the fluorescence spectra in figures 3-8 to 3-13 respectively. The band gaps (Eg) were calculated employing the previous expression in equation 2-10 for optical absorption of the above prepared photo-catalysts and the results are listed in Table 3-2.

Figure 3-8: Fluorescence spectra of commercial ZnS.

Figure 3-9: Fluorescence spectra of Mn Loaded on ZnS.

Figure 3-10 : Fluorescence spectra of Cr Loaded on ZnS.

Figure 3-11: Fluorescence spectra of Mn and Cr Loaded on ZnS (1).

Figure 3-12: Fluorescence spectra of Mn,Cr loaded on ZnS $_{\rm (2)}$

Figure 3-13: Fluorescence spectra of prepared ZnS.

Table 3-2:	Measured	Band gap	energy from	Fluorescence	spectra.
-------------------	----------	----------	-------------	--------------	----------

Sample	Commercial ZnS	ZnS:Mn	ZnS:Cr	Mn:ZnS:Cr ₍₁₎	Mn:ZnS:Cr ₍₂₎	Prepared ZnS
λ / nm	351.6	348	347.1	346.6	347.5	348.5
E _g / eV	3.526	3.563	3.572	3.577	3.568	3.558

3.1.4 Atomic Absorption Spectrophotometry (A.A)

Atomic absorption spectrometry is an analytical technique that used of the wavelengths of light specifically absorbed by elements to measure the rest concentrations of elements [109] (Mn, Cr) in solution via loading them on the surface of these samples. The difference between concentrations before and after loading was compared in table 3-3.

sample	[Cr] /ppm [Cr]/ppm		[Mn]/ppm	Mn/ppm
	before loaded	After loaded	before loaded	After loaded
ZnS:Mn	-	-	9895.500	32.003
ZnS:Cr	7916.260	0.0795	-	-
Mn:ZnS:Cr ₍₁₎	7916.260	0.0341	9895.500	21.317
Mn:ZnS:Cr ₍₂₎	7916.260	0.0079	9895.500	21.836

 Table 3-3: Loaded Calculations of Mn,Cr on prepared ZnS Surface

3.2 Effect of different parameters on the photocatalytic decolorization of RB5.

3.2.1. Effect of the mass of commercial ZnS

The effect of commercial ZnS dose on the photocatalytic for decolourization of RB5 dye solution that shown in figure 3-14(a), the rates of reaction were found to be directly proportional to the catalyst dosage from 0.5 to 3 g/100 mL. The decolourization rate levels reach maximum at 2.5g/100 mL as optimum catalyst commercial ZnS dosage. The results are listed in tables 3-4 and 3-5 and plotted in figures 3-14(b) and 3-15.

Table 3-4: The change of ln C₀/C_t with irradiation time at different mass of commercial ZnS.

Time of	Dose/ g	$ln C_o / C_t$					
t/min		0.5	0.75	1	2	2.5	3
0	0		0	0	0	0	0
10	0.110		0.200	0.634	0.598	0.985	0.740
20	0.200		0.247	_	1.161	1.688	1.639
30	0.2	298	0.414	1.678	1.738	2.123	1.639
40	0.4	414	0.633	1.752	2.912	-	-
50	0.:	510	0.807	-	-	-	-
60		-	0.807	1.919	-	-	-
70	0.0	674	1.032	2.269	-	-	-
80	0.9	994	1.454	2.336	-	-	-
90		-	1.890	2.525	-	-	-
100		-	_	2.659	-	-	-
k _{app} /min ⁻¹	0.0	010	0.017	0.051	0.066	0.089	0.079

Time of irradiation	g/g	PDE%						
t/min	Dose	0.5	0.75	1	2	2.5	3	
0	0		0	0	0	0	0	
10	10.465		18.160	46.999	45.047	62.681	52.320	
20	18.139		21.933	71.333	68.690	81.521	80.590	
30	25.8	313	33.962	81.333	82.428	88.043	90.717	
40	33.9	953	46.933	82.666	-	-	-	
50	4	0	55.424	83.333	-	-	-	
60	_		55.424	85.333	-	-	-	
70	49.069		64.386	89.666	-	-	-	
80	63.023		76.650	90.333	-	-	-	
90	-		84.905	92	_	_	-	
100	-		-	93	-	-	-	

 Table 3-5: The change of irradiation time with PDE% on different mass of commercial ZnS.

3.2.2. Effect of initial pH of the solution

The most important parameter that influences on the photocatalytic decolourization of dye is the initial pH of solution, the relationship between the rate constant and pH is explained at conducting a series of experiments of dye concentration 25 ppm in 100 mL, dose of ZnS bulk is 2.5 g/100 mL within range pH (3-11), light intensity equal to 1.47×10^{-6} Einstein s⁻¹. The kinetic results listed in tables 3-6 and 3-7 and plotted in figures 3-22 and 3-23. The rate constant of reaction increases with increasing the solution pH up to the maximum level at pH=4.1 and then decrease. The decolorization percentage of BR5 increased with the increase of pH and the maximum of efficiency percentage 92.326% at 25 min.

Table 3-6: The change of ln C₀/Ct with irradiation time at different initial pH ofdyeby commercial ZnS.

Time of irradiation					ln C _o /	C _t		
t/min	pF	3	4.1	6.3	7	8	9	11
0	(0	0	0	0	0	0	0
5	0.4	471	0.672	1.815	0.575	0.449	0.251	0.050
10	0.9	908	1.319	2.679	1.005	0.787	0.467	0.103
15	1.2	255	1.813	5.111	1.420	1.070	0.666	-
20	1.5	509	2.646	5.411	1.536	1.1082	0.793	0.229
25	1.7	789	2.869	8.117	1.942	-	1.013	0.287

30	1.819	-	8.363	-	1.682	1.188	-
35	2.295	-	8.117	-	2.309	1.332	0.428
40	-	-	-	-	-	-	0.521
50	-	-	-	-	-	-	0.666
55	-	-	-	-	-	-	0.776
65	-	-	-	-	-	-	0.928
70	-	-	-	-	-	-	1.107
k_{app}/min^{-1}	0.068	0.122	0.089	0.082	0.062	0.039	0.014

Table 3-7: The change of irradiation time with PDE%. at different initial pH ofdye by commercial ZnS.

Time of irradiation]				PDE%			
t/min	рН	3	4.1	6.3	7	8	9	11
U IIIII		0	0	0	0	0	0	0
0		0	0	0	0	0	0	0
5	37	7.592	48.936	44.927	43.773	36.217	22.260	4.910
10	59	9.705	73.286	62.681	63.396	54.487	37.328	9.821
15	71	.498	83.687	80.434	75.849	65.705	48.630	
20	77	7.886	92.907	81.521	78.490	66.987	54.794	20.535
25	83	3.292	94.326	87.681	85.660	-	63.698	25
30	83	3.783	-	88.043	_	81.410	69.520	-
35	89	9.926	-	87.681	_	90.064	73.630	34.821
40		-	_	-	-	-	78.767	40.625
50		-	-	_	_	-	-	48.660
55		-	-	_	-	-	-	54.017
60		-	-	-	-	-	-	59.598
65		-	_	_	_	-	-	60.491
70		-	_	_	_	-	-	66.964
	I		1			1		

3.2.3. Effect of temperature

The photocatalytic decolorization of RB5 was studied at different temperatures in the range (283.15-303.15) K. Under the determined experimental condition with initial dye concentration equal to 25ppm, ZnS dosage 2.5 g /100mL pH equal to 4.1, light intensity equal $to1.47 \times 10^{-6}$ Einstein. The results indicate that the decolorization efficiency of RB5 decreases with increase of temperature. The results are listed in tables 3-8,3-9 and 3-10 and plotted in figures 4-17. Arrhenius relationship is plotted in figure 3-31(a) to calculate the activation energy of the reaction. Moreover, Eyring equation is plotted in figure 3-31(b) to calculate the change in entropy and change in enthalpy for this The results of the activation photoreaction. energy and the thermodynamics functions are shown in Table 3-11.

Time of irradiation	C)		$ln C_o / C_t$									
t/min	$\begin{bmatrix} n \\ n \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$		17	20	25	30						
0	()	0	0	0	0						
5	0.2	0.276 0.596 0.257		0.257	0.111	0.161						
10	0.7	.732 0.985		0.363	0.320	0.403						
15	1.2	203	1.631	0.686	0.405	0.551						
20	1.5	516	1.688	-	0.618	0.460						
25	1.878		1.878		1.878		1.878		2.094	1.036	0.728	0.551
30	2.330		2.330		2.330		2.330 -		-	1.223	0.951	0.809
35				1.351	1.352	1.013						
40	-		-	1.729	-	1.129						
k _{app} /min ⁻¹	0.0)76	0.089	0.041	0.033	0.027						

Table 3-8: The change of $\ln C_0/C_t$ with irradiation time at different temperature by commercial ZnS.

Table 3-9: The change of irradiation time with PDE% at different temperatureof dye by commercial ZnS.

Time of irradiation	C			PDF	%	
t/min	o /L	10	17	20	25	30
0	0		0	0	0	0
5	2	4.166	44.927	22.695	10.591	14.939
10	5	1.944	62.681	30.496	27.414	33.231
15		70	80.434	49.645	33.333	42.378
20	7	8.055	81.521	-	46.105	36.890
25	8	4.722	87.681	64.539	51.713	42.378
30	9).277 -		70.567	61.370	55.487
35		-	-	74.113	74.143	63.719
40		-	-	82.269	-	67.682

Table 3-10: Relationship between 1/T with lnk_{app} and $ln(k_{app}/T)$.

1/T(K)	ln k _{app}	$\ln(k_{app}/T)$
3.531	-2.570	-8.216
3.446	-2.410	-8.080
3.411	-3.186	-8.867
3.354	-3.405	-9.102
3.298	-3.586	-9.300

Sample	Ea	ΔH [#]	ΔS [#]	ΔG [#]	
	/ kJmol ⁻¹	/ kJ mol ⁻¹	/ J mol ⁻¹ K ⁻¹	/kJ mol ⁻¹	
Commercial ZnS	42.350	-44.790	-6.114	-43.018	

Table 3-11: The calculated activation kinetic and thermodynamics parametersfor decolourizationof RB5 with using commercial ZnS.

3.2.4. Effect of addition of K₂S₂O₈

Under the determined experimental condition with 25ppm of studied dye, 2.5 g /100mL of ZnS dosage, best pH at 4.1 and best temperature 290.15 K, light intensity equal to 1.47×10^{-6} Einstein. The photocatalytic decolorization rate of RB5 increased with increasing the addition of K₂S₂O₈ and reached to maximum value at 8 mmole/L, and then it decreases that due to K₂S₂O₈ acts as a scavenger for •OH. The results listed in the tables 3-12 and 3-13and plotted in figures 3-38 and 3-39.

Table 3-12: The change of $\ln C_0/C_t$ with irradiation time at different addition of $K_2S_2O_8$ for commertial ZnS.

Time of irradiatio n t/min	$D_{8'}$ L^{-1}		$ln C_o / C_t$							
	K ₂ S ₂ C mmole	0	3	4	5	7	8	9	10	
0	0		0	0	0	0	0	0	0	
0.5	-		-	-	-	-	-	0.378	0.011	
1	-		-	-	-	-	0.462	0.697	-	
1.5	-		-	-	-	-	-	1.096	0.391	
2	-		-	0.354	0.338	0.705	0.871	1.246	0.835	
2.5	-		-	-	-	-	-	1.677	1.597	
3	-		0.726	-	-	-	1.285	2.147	2.062	
3.5	-		-	-	-	-	-	2.448	2.157	
4	-		_	0.680	0.606	1.403	1.768	-	-	
5	0.596	5	-	-	-	-	2.138	-	-	
6	-		0.861	0.922	0.912	1.853	2.419	-	-	
7	-		_	-	-	-	2.895	-	-	
8	-		-	1.334	1.304	2.660	-	-	-	
9	-		1.319	-	-	-	-	-	-	
10	0.985	5	_	1.674	1.572	3.255	-	-	-	
12	-		1.711	2.107	1.786	-	-	-	-	
14	-		-	2.513	2.292	-	-	-	-	
15	1.631	1	1.935	-	-	-	-	-	-	
18	-		2.127	-	-	-	-	-	-	
20	1.688		-	-	-	-	-	-	-	
25	2.094	1	-	-	-	_	-	_	_	
k _{app} /min ⁻¹	0.089)	0.130	0.137	0.157	0.327	0.418	0.011	0.009	
Time of irradiation	2O8 le L ⁻¹		PDE%							
---------------------	------------------------------------	---	--------	-------	-------	--------	-------	-------	-------	
t/min	$\mathbf{K}_2 \mathbf{S}_2$ / mmol	0	3	4	5	7	8	9	10	
0	0		0	0	0	0	0	0	0	
0.5	-		-	-	-	-	-	31.54	1.156	
1	-		-	-	-	-	37.01	50.23	-	
1.5	-		-	-	-	-	-	66.58	32.36	
2	-		-	29.87	28.72	50.602	58.17	71.26	56.64	
2.5	-		-	-	-	-	-	81.30	79.76	
3	-		51.624	-	-	-	72.35	88.31	87.28	
3.5	-		-	-	-	-	-	91.35	88.43	
4	-		-	49.36	45.47	75.421	82.93	-	-	
5	32.857		-	-	-	-	88.22	-	-	
6	-		57.761	60.25	59.84	84.337	91.10	-	-	
7	-		-	-	-	-	94.47	-	-	
8	-		-	73.67	72.87	93.012	-	-	-	
9	-		73.285	-	-	-	-	-	-	
10	52.285		-	81.26	79.25	96.144	-	-	-	
12	-		81.949	87.84	83.24	-	-	-	-	
14	-		-	91.89	89.89	-	-	-	-	
15	67.714		85.559	-	-	-	-	-	-	
18	-		88.086	-	-	-	-	-	-	
20	72.000		-	-	-	-	-	-	-	
21	-		89.891	-	-	-	-	-	-	
25	78.857		-	-	-	-	-	-	-	
30	87.142		-	-	-	-	-	-	-	
35	92.571		-	-	-	-	-	-	-	

Table 3-13: The change of irradiation time with PDE% at different addition of $K_2S_2O_8$ for ZnS commercial.

3.3 Effect of different parameters on the photocatalytic decolorization of RB5 dye for Cr: ZnS

3.3.1. Effect of the mass of Cr: ZnS

These experiments were carried out at different doses of in the ranged 0.5 g to 2 g/100mL of Cr: ZnS at pH 6.3 and temperature 290.15 K light, intensity equal to 1.47×10^{-6} Einstein. The results are given in tables 3-14 and 3-15 and plotted in figures 3-16and 3-17. The photo-decolorization efficiency with using Cr :ZnS was increment with the increasing of the dosage of catalyst and the maximum value was found at 1g/100mL.

Time of	50	$ln C_o / C_t$					
Inaciation	se/	0.5	0.75	1	2		
t/min	D_0	0.5	0.75	1	2		
0		0	0	0	0		
5	0.	.101	0.010	0.229	0.038		
10	0.	.188	0.036	0.391	0.093		
20		-	0.155	0.459	0.102		
30		-	0.250	0.875	0.127		
40		-	0.305	1.210	0.135		
50	0.	.655	0.312	1.373	0.110		
60		-	0.497	1.438	0.144		
70	0.	.935	0.642	-	0.127155		
80	1.	.134	0.713	-	0.188		
90	1.	.225	0.756	-	0.179		
100	1.	.315	-	2.105	0.045		
110	1.	.425	-	2.187	0.282		
120	1.	.501	-	2.277	0.253		
130	1.	.512	-	2.607	0.263		
140	1.	.789	1.260	2.698	0.188		
150	1.	.661	1.530	2.798			
155		-	-	-	0.282		
160	1.	.688	1.578	2.852	-		
170		-	2.176	-	0.225		
180		-	2.559	-	-		
185		-	-	-	0.272		
200		-	-	-	0.515		
215		-	-	-	0.541		
k _{app} /min ⁻¹	0.	.012	0.011	0.019	0.002		

Table 3-14: The change of $\ln C_0/C_t$ with irradiation time at different mass of ZnS :Cr.

Table 3-15: The change of irradiation time with PDE% at different mass of ZnS:Cr.

Time of irradiation	ас			PDE %	
t/min	Dose/	0.5	0.75	1	2
0	0		0	0	0
5	9.6	520	1.030	20.512	3.731
10	17	.21	3.608	32.371	8.955
20	42.	025	14.432	36.858	9.701
30	41.265		22.164	58.333	11.940
40	47.848		26.288	70.192	12.686
50	48.101		26.804	74.679	10.447

60	46.582	39.175	76.282	13.432
70	60.759	47.422	85.897	11.940
80	67.848	51.030	86.538	17.164
90	70.632	53.092	86.858	16.417
100	73.164	52.061	87.820	4.477
110	75.949	56.185	88.782	24.626
120	77.721	59.793	89.743	22.388
130	77.974	67.525	92.628	23.134
140	83.291	71.649	93.269	17.164
150	81.012	78.350	93.910	-
155	-	-	-	24.626
160	81.518	79.381	94.230	-
170	-	88.659	-	20.149
180	-	92.26804	-	-
185	-	-	_	23.880
200	-	-	-	40.298
215	-	-	_	41.791

3.3.2. Effect of initial pH of the solution

Initial pH of 25 ppm solution of RB5was investigated when control the pH ranges of (3-11), using 1g of Cr: ZnS at 290.15 K, light intensity equal to 1.47×10^{-6} Einstein. The practically data explain in tables 3-16 and 3-17, and drawn in figures 3-24 and 3-25 The best photocatalytic decolorization of studied dye occurred at pH 4.1.

Table 3-16: The change of $\ln(C_0/C_t)$ with irradiation time at different initial pH of dye by Cr: ZnS.

Time of					ln C _o /	C _t		
irradiation	Ŧ							
	þf	3	4.1	6.3	7.1	8	9	11
t/min								
0		-	0	0	0	0	0	0
2		-	0.016	-	-	-	-	-
4		-	0.045	-	-	-	-	-
5	0.1	7768	-	0.229	0.049	0.075	0.043	0.016
6		-	0.057	-	-	-	-	-
8		-	0.081	-	-	-	-	-
10		-	0.088	0.391	_	0.188	0.088	0.044
12		-	0.131	-	-	-	_	-

14	-	0.171	-	-	-	-	-
16	-	0.184	-	-	-	-	-
18	-	0.225	-	-	-	-	-
20	-	0.269	0.459	0.013	-	0.189	0.069
25	-	0.419	-	-	-	-	-
30	-	0.566	0.875	-	-	-	0.085
35	-	0.649	-	-	-	-	-
40	-	0.727	1.210	-	-	-	0.105
45	-	0.825	-	-	-	-	-
50	-	0.891	1.373	-	-	-	0.151
60	-	-	1.438	0.710	0.463	-	0.217
70	-	-	-	0.719	0.545	-	-
75	0.978	-	-	-	-	-	0.314
80	1.009	-	-	0.746	0.604	-	-
85	-	2.046	-	-	-	-	-
90	1.110	-	-	0.853	0.740	-	0.384
100	1.122	-	2.105	0.927	0.641	-	-
105	-	-	-	-	-	-	0.468
110	1.394	-	2.187	0.905	0.693	0.649	-
115	-	-	-	-	-	-	-
120	1.492	-	2.277	0.949	0.991	0.659	0.579
130	1.545	-	2.607	1.031	1.000	0.790	-
135	-	-	-	-	-	-	0.70415
140	1.6017		2.698	1.056	1.125	0.844	
145	-	-	-	-	-	-	-
150	-	-	2.798	1.081	1.177	0.876	-
155	-	-	-	-	-	-	0.855
160	-	-	2.852	-	-	0.955	-
170	-	-	-	-	-	1.057	1.023
180	-	-	-	-	-	1.136	-
185	-	-	-	-	-	-	1.288
190	-	-	-	-	-	1.259	-
k _{app} /min ⁻¹	0.012	0.020	0.009	0.007	0.007	0.006	0.005

Table 3-17: Change of irradiation time with PDE% at different initial pH of dyeby Cr: ZnS.

Time of irradiation					PDE %	, 0		
t/min	pE	3	4.1	6.3	7.1	8	9	11
0		0	0	0	0	0	0	0
2		-	1.685	-	-	-	-	-
4		-	4.494	-	-	-	-	-
5	16.	279	-	20.512	4.782	7.2847	4.244	1.642

6	-	5.617	-	-	-	-	-
8	-	7.865	-	-	-	-	-
10	36.434	8.426	32.371	-	17.218	8.488	4.379
12	-	12.359	-	-	-	-	-
14	-	15.730	-	-	-	-	-
16	-	16.853	-	-	-	-	-
18	-	20.224	-	-	-	-	-
20	52.325	23.595	36.858	1.304	29.801	17.241	6.751
25	-	34.269	-	-	-	-	-
30	55.426	43.258	58.333	15.652	37.417	24.137	8.211
35	-	47.752	-	-	-	-	-
40	-	51.685	70.192	22.173	39.072	29.177	10.036
45	-	56.179	-	-	-	-	-
50	58.914	58.988	74.679	47.826	40.728	33.952	14.051
55	59.302	60.674	-	-	-	-	-
60	62.015	61.235	76.282	50.869	37.086	-	19.525
65	-	61.797	-	-	-	-	-
70	62.403	62.921	85.897	51.304	42.052	-	-
75	-	66.853	-	-	-	-	27.007
85	-	87.078	-	-	-	-	-
90	67.054	-	86.858	57.391	52.317	-	31.934
100	67.441	-	87.820	60.434	47.350	-	-
105	-	-	-	-	-	-	37.408
110	75.193	-	88.782	59.565	49.999	47.745	-
120	77.519	-	89.743	61.304	62.913	48.275	43.978
130	78.682	-	92.628	64.347	63.245	54.641	-
135	-	-	-	-	-	-	50.547
140	79.844	-	93.269	65.217	67.549	57.029	-
150	-	-	93.910	66.086	69.205	58.355	-
155	-	-	-	-	-	-	57.481
160	-	-	94.230	-	-	61.538	-
170	-	-	-	-	-	65.252	64.051
180	-	-	-	-	-	67.904	-
185	-	-	-	-	-	-	72.445
190	-	-	_	_	-	71.618	_
200	-	-	-	-	-	73.740	80.291
210	-	-	-	-	-	75.862	-

3.3.3. Effect of temperature

The figures 4-23 and 4-24 note that the photocatalytic decolorization of RB5 dye on ZnS:Cr by keeping all other experimental conditions constant at different temperature was raised with decreasing temperature. This behavior indicates the reaction is exothermic. The values of apparent

activation energy and $\Delta H^{\#}$, $\Delta S^{\#}$ by Erying equation were shown in tables from 3-18 to 3-21 and plotted in figures 3-32 and 3-33.

1/T(K)	ln k _{app}	ln(k _{app} /T)
3.531	-4.350	-9.996
3.470	-4.500	-10.239
3.446	-4.585	-10.255
3.411	-4.767	-10.436

Table 3-18: Relationship between 1/T with lnk_{app} and $ln(k_{app}/T)$.

Table 3-19: The calculated activation kinetic and thermodynamics parametersfor decolourization of RB5 with using Cr: ZnS.

Sample	Ea	$\Delta \mathbf{H}^{\#}$	$\Delta S^{\#}$	$\Delta G^{\#}$	
	$/kJ mol^{-1}$	$/kJ mol^{-1}$	$/J \text{ mol}^{-1} \text{K}^{-1}$	/kJmol ⁻¹	
Cr:ZnS	27.954	-29.230	-5.550	-27.625	

Table 3-20: The change of lnC ₀ /C _t with irradiation time at differen	t temperature
by Cr: ZnS.	

Time of		$ln C_o/C_t$					
irradiation	С С		T	1	Γ		
t/min	_/L	10	15	17	20		
0		0	0	0	0		
5	(0.165	0.135	0.071	0.119		
10	(0.202	0.188	0.171	0.187		
15		-	-	0.221	-		
20	0.249		0.262	0.267	0.195		
30	0.375		0.395	-	-		
40	(0.525	0.553	0.333	0.395		
50	(0.559	0.662	-	0.509		
60	(0.757	0.760	-	0.521		
70	(0.965	0.766	-	0.525		
80		1.054	0.796	-	0.655		
90		1.129	-	0.755	0.727		
100		-	_	0.782	0.826		
110	-				1.006		
120	-		-	0.945	1.118		

130	-	1.361	1.009	1.081
140	-	-	-	1.163
k_{app}/min^{-1}	0.012	0.010	0.010	0.008

 Table 3-21: The change of irradiation time with PDE% at different temperature of dye by Cr:ZnS.

Time of	۲)			PDE %																							
irradiation	O_{o}/T	10	15	17	20																						
0		0	0	0	0																						
5		15.288	12.676	6.882	11.298																						
10		18.295	17.183	15.789	17.067																						
15		-	-	19.838	-																						
20		22.055	23.098	23.481	17.788																						
30	30 31.		32.676	27.530	14.903																						
40	40.852		40.852		40.852		40 40.852		42.535	28.340	32.692																
50	42.857		42.857		50 42.857		50 42.857		42.857		42.857) 42.857		50 42.857		50 42.857		50 42.857) 42.857) 42.857		48.450	29.149	39.903
60		53.132	53.239	29.554	40.625																						
70	61.904		70 61.904		70 61.904		70 61.90		53.521	39.271	40.865																
80		65.162	54.929	50.202	48.076																						
90	67.669		00 67.669		0 67.669		55.211	53.036	51.682																		
100	77.694		55.492	54.251	56.25																						
110	78.696		62.253	58.704	63.461																						
120		-	67.887	61.133	67.307																						
130	- 74.		74.366	63.562	66.105																						
140	_		74.929	63.967	68.75																						

3.3.4. Effect of addition of K₂S₂O₈

Under the determined experimental conditions with 25ppm of dye concentration,1 g /100mL from Cr:ZnS dosage, initial pH equal to 4.1 and temperature at 290.15K, light intensity equal to 1.47×10^{-6} Einstein.. The rate of photocatalytic decolorization of RB5 was raised with increasing the addition of K₂S₂O₈ and reached to maximum value at 7mmole/L, after that the rate was decreased. The measured results listed in the tables 3-22 and 3-23and plotted in figures 3-40and 3-41.

Time of irradiation	08 6 L ⁻¹		$ln C_o / C_t$						
t/min	$ m K_2S_20$	0	3	4	7	8	9	10	
0	0		0	0	0	0	0	0	
2	-		-	-	-	0.094	-	-	
4	-		-	-	-	0.160	-	-	
5	0.229		0.050	0.140	0.419	-	0.186	0.129	
10	0.391		0.202	-	0.874	-	0.730	0.894	
15	-	-		0.381	2.456	1.795	1.591	-	
20	0.459		0.530	0.706	2.967	2.984	-	1.972	
25	-		0.887	0.922	4.066	-	-	2.493	
30	0.875		1.939	-	5.164	-	-	2.730	
35	-		2.034	2.246	-	-	-	-	
40	1.210		-	-	-	-	-	-	
50	1.373		-	-	-	-	-	-	
60	1.438		-	-	-	-	-	-	
100	2.105		-	-	-	-	-	-	
110	2.187		-	-	-	-	-	-	
120	2.277		-	-	-	-	-	-	
130	2.607		-	-	-	-	-	-	
140	2.698		-	-	-	-	-	-	
150	2.798		-	-	-	-	-	-	
160	2.852		-	-	-	-	-	-	
k_{app}/min^{-1}	0.039		0.048	0.048	0.159	0.123	0.091	0.094	

Table 3-22: The change of lnC_0/C_t with irradiation time at different addition of $K_2S_2O_8$ for Cr: ZnS.

Table 3-23: The change of irradiation time with PDE% at different addition of $$K_2S_2O_8$$ for Cr:ZnS.

Time of irradiation	${ m D_{8'}}{ m L^{-1}}$				PDE%)		
t/min	K ₂ S ₂ C mmole	0	3	4	7	8	9	10
0	0		0	0	0	0	0	0
2	-		-	-	-	9.025	-	-
4	-		-	-	-	14.801	-	-
5	20.512		4.901	13.141	34.28	-	17.03	12.173
6	-		-	-	-	23.465	-	-
8	-		-	-	-	25.992	-	-
10	32.371	32.371		16.666	58.28	42.960	51.85	59.130
15	-		31.045	31.730	91.42	83.393	79.62	-
20	36.858		41.176	50.641	94.85	94.945	83.70	86.086
25	-		58.823	60.256	98.28	96.028	85.55	91.739

30	58.333	85.620	75.320	99.42	-	-	93.478
35	-	86.928	89.423	-	-	-	-
40	70.192	92.156	-	-	-	-	-
45	-	95.424	-	-	-	-	-
50	74.679	-	-	-	-	-	-
60	76.282	-	-	-	-	-	-
70	85.897	-	-	-	-	-	-
80	86.538	-	-	-	-	-	-
90	86.858	-	-	-	-	-	-
100	87.820	-	-	-	-	-	-
110	88.782	-	-	-	-	-	-
120	89.743	-	-	-	-	-	-
130	92.628	-	-	-	-	-	-
140	93.269	-	_	-	_	-	-
150	93.910	-	_	-	_	-	-
160	94.230	-	-	-	_	-	-

3.4 Effect of different parameters on the photocatalytic decolorization of RB5 dye for $Mn:ZnS:Cr_{(2)}$

3.4.1. Effect of the mass of Mn:ZnS:Cr₍₂₎

Under experimental condition, the effect of Mn:ZnS:Cr $_{(2)}$ dose on decolourization of RB5 dye solution was done. The rates of reaction were found to be directly proportional to the catalyst dose and the maximum value was obtained at 1.5 g/100 mL. While with increases of Mn: ZnS:Cr₍₂₎ dosage more than 1.5 g/100 mL the rate of decolourization is decreased. The results were recorded in tables3-24 and 3-25 and plotted in figures 3-18 and 3-19.

Table 3-24: The change of ln C₀/C_t with irradiation time at different mass of Mn:ZnS :Cr₍₂₎

Time of irradiation	i/ g		$ln C_o / C_t$							
t/min	Dose	0.5	1	1.5	2					
0		0	0	0	0					
5	0.080		0.080		5 0.0		0.059	0.180	0.209	
10	0.088		0.088		-	0.373				
20	0.161		0.161		-	0.428	0.251			
30	30 0.225			0.522	0.191					
40	0.250		-	0.591	0.320					
50	0.	.286	-	0.727	0.504					
60	0.	347 0.454		0.786	0.517					
70	0.	.401	0.550	1.027	0.594					
80	0.	.519	0.592	1.036	0.730					

90	-	0.598	1.062	0.770
100	-	0.724	-	0.954
110	-	0.454	-	0.963
120	-	-	-	-
130	-	0.867	-	0.916
150	-	0.952	-	0.993
170	-	1.085	-	1.121
180	-	1.225	-	-
$k_{app/} \min^{-1}$	0.006	0.006	0.013	0.007

Table 3-25: The change of irradiation time with	PDE% at different mass of
MnCr: ZnS ₍₂₎	

Time of	8			PDE%									
t/min	Dose/	0.5	1	1.5	2								
0		0	0	0	0								
5	7.	711	5.802	16.513	18.888								
10	8.	457	4.095	31.192	20.370								
20	14	.925	5.119	34.862	22.222								
30	20	.149	_	40.672	17.407								
40	22	.139	9.556	44.648	27.407								
50	24	.875	16.040	51.681	39.629								
60	29	.353	36.518	54.434	40.370								
70	33	.084	42.320	64.220	44.814								
80	40.547		40.547) 40.547		44.709	64.525	51.851				
90	-		-		-		-		0 -		-	65.443	53.703
100	67	.661	45.051	66.360	61.481								
110	71	.890	51.535	70.336	61.851								
120	70	.646	44.368	73.394	52.592								
130	72.636		58.0-20	-	60								
140	74.129		48.122	-	60.740								
150	74	.875	61.433	-	62.962								
160	75	.870	61.092	-	63.703								
170		-	66.211	-	67.407								
180	_		70.648	-	-								

3.4.2. Effect of initial pH of the solution

In order to study the effect of pH on this reaction, the range of initial pH was applied from 3.1 to 11 at 25 ppm dye concentration, 1.5 g/100mL catalyst and light intensity equal to 1.46×10^{-6} Einstein s⁻¹. The initial pH of the solution is adjusted before irradiation and it is not controlled during the reaction, but at decolorization the pH reaches to neutral. The kinetic

results listed in tables 3-26 and 3-27 and plotted in figures 3-26 and 3-27. The rate constant of reaction increases with the increase of the pH of solution up to the maximum level at pH=6.3 and then decrease.

Time of irradiation			$ln C_o / C_t$						
t/min	hq	3	4.1	6.3	7.1	9	11		
0	0		0	0	0	0	0		
5	0.012	2	0.100	0.180		0.011	0.041		
10	0.02	5	0.122	0.373	0.054	0.007	0.064		
20	0.102	2	0.309	0.428	0.130	0.053	0.072		
30	0.11	1	0.131	0.522	0.221	0.057	0.094		
40	0.12	0	0.144	0.591	0.295	0.061	-		
50	0.25	3	0.319	0.727	0.353	0.153	-		
60	0.418		0.358	0.786	0.364	0.207	0.140		
70	0.424	4	0.498	1.027	0.280	0.293	0.142		
80	0.392	2	0.492	1.036	0.432	0.543	0.193		
90	0.45	0	0.505	1.062	-	0.590	-		
100	0.43	7	0.819	-	-	-	0.218		
110	0.562	2	0.838	-	0.493	-	-		
120	0.58	5	0.865	-	-	-	-		
130	0.592	2	0.885	-	-	-	0.384		
170	-		-	-	-	-	0.653		
180	-		-	-	-	-	0.771		
195	-		-	-	-	-	0.956		
210	-		-	-	-	-	1.0376		
240	_			-	-	-	1.134		
k_{app}/min^{-1}	0.004	4	0.006	0.013	0.005	0.005	0.004		

Table 3-26: The change of lnC_0/C_t with irradiation time at different initial pH of dye by Mn:ZnS:Cr₍₂₎.

Table 3-27: The change of irradiation time with	PDE% at different initial pH of
dye by Mn:ZnS:Ci	f (2)•

Time of irradiation				F	PDF%		
t/min	Hq	3	4.1	6.3	7.1	9	11
0	C)	0	0	0	0	0
5	1.2	65	9.523	16.513	11.450	1.123	4.020
10	2.5	31	11.507	31.192	5.343	0.749	6.281
20	9.7	04	26.587	34.862	12.213	5.243	7.035
30	10.5	548	12.301	40.672	19.847	5.618	9.045

40	11.392	13.492	44.648	25.572	5.992	12.311
50	22.362	27.380	51.681	29.770	14.23	9.799
60	34.177	30.158	54.434	30.534	18.726	13.065
70	34.599	39.285	64.220	24.427	25.468	13.316
80	32.489	38.888	64.525	35.114	41.947	17.587
90	36.286	39.682	65.443	25.572	44.569	19.598
100	35.443	55.952	66.360	31.297	55.056	19.598
110	43.037	56.746	70.336	38.931	56.179	21.105
120	44.303	57.936	73.394	20.610	58.052	27.638
130	44.725	58.730	-	37.786	56.928	31.909
140	-	-	-	38.167	58.426	38.190
150	-	-	-	-	-	40.954
160	-	-	-	-	-	42.964
170	-	-	-	-	-	47.989
180	-	-	-	-	-	53.768
195	-	-	-	-	-	61.557
210	-	-	-	_	-	64.572
240	-	-	_	-	-	67.839

3.4.3. Effect of temperature

The photocatalytic declolzation of RB5 was performed at different temperatures in the range (283.15-293.15)K. Under the determined experimental condition with initial dye concentration equal to 25ppm,Mn: Zns:Cr₍₂₎ dosage 1.5 g /100mL pH equal to 6.3, light intensity equal to 1.46x10⁻⁶ Einstein s⁻¹. The results indicate that the decolorization efficiency of RB5 increases with increase of temperature, and the reaction is endothermic by using this photocatalyst. The results are listed in tables 3-28 and 3-29 and plotted in figure 3-34. Arrhenius and Erying relationship are plotted in figure 3-35 .The results of the activation energy and the thermodynamics functions are shown in table 3-30 and 3-31.

Table 3-28: The change of lnC_o/C_t with irradiation time on different temperatures by $Mn:ZnS:Cr_{(2)}$.

Time of irradiation	C			$ln C_o / C_t$	
t/min	_o /L	10	15	17	20
0		0	0	0	0
5		-	0.010	0.022	0.095
10		-	0.085	0.130	0.125
20		-	0.121	0.156	0.153
30		0.200	0.183	0.182	0.214
35		_	_	0.1957	
40		0.225	0.278	0.223	0.276

45	-	-	0.251	-
50	0.266	-	0.280	0.368
55		-	0.310	-
60	0.342	-	0.474	0.549
65	-	-	0.567	-
70	0.444	0.541	0.607	0.643
80	0.450	0.553	-	0.702
90	-	0.565	-	0.714
100	-	0.707	-	0.811
110	-	0.722	-	0.818
120	0.653	0.767	-	0.825
130	0.794	0.782	-	0.926
140	0.812	0.806	-	0.950
150	0.908	0.925	-	1.039
160	0.928	1.029	-	1.092
170	1.036	1.091	-	1.138
180	1.222	1.157	-	1.148
190	_	_	_	1.258
k_{app}/min^{-1}	0.006	0.006	0.007	0.007

Table 3-29: The change of irradiation time with PDE% at differenttemperatures of dye by Mn:ZnS:Cr(2).

Time of irradiation	C]	PDF%	
t/min	₅ /L	10	15	17	20
0	(0	0	0	0
5	9.6	577	1.071	2.222	9.063
10	12.	499	8.214	12.222	11.782
20	17.	338	11.428	14.444	14.199
30	18.	145	16.785	16.666	19.335
35		-	-	17.777	-
40	20.	161	24.285	20	24.169
45		-	-	22.222	-
50	23.	387	37.499	24.444	30.815
55		-	-	26.666	
60	29.	032	41.071	37.777	42.296
65		-	-	43.333	-
70	35.	887	41.785	45.555	47.432
75		-	-	51.111	
80	36.	290	42.499	65.555	50.453
90	37.	096	43.214	-	51.057
100	37.	499	50.714	-	55.589
110	41.	532	51.428	-	55.891
120	47.	983	53.571	-	56.193
130	54.	838	54.285	-	60.422
140	55.	645	55.357	-	61.329
150	59.	677	60.357		64.652
160	60.	483	64.285	_	66.465

170	64.516	66.428	-	67.975
180	70.564	68.571	-	68.277
190	-	69.285	-	71.601

Table 3-30: Relationship between 1/T with lnk_{app} and $ln(k_{app}/T)$.

1/T(K)	ln k _{app}	ln(k _{app} /T)
3.531	-5.099	-10.745
3.470	-5.051	-10.714
3.446	-4.933	-10.604
3.411	-4.919	-10.600

Table 3-31: The calculated activation kinetic and thermodynamics parametersfor decolourization of RB5 with using Mn: ZnS:Cr(2).

Samala	Ea	$\Delta H^{\#}$	$\Delta {oldsymbol{\mathcal{S}}}^{\#}$	ΔG #
Sample	/kJ mol ⁻¹	$/kJ mol^{-1}$	$/J \text{ mol}^{-1} \text{K}^{-1}$	/kJmol ⁻¹
Mn:ZnS:Cr(2)	13.420	11.026	-3.590	1.044

3.4.4. Effect of addition of K₂S₂O₈

In addition of $K_2S_2O_8$ to solution of RB5 dye using Mn:ZnS:Cr ₍₂₎ as photocatalyst at experimental condition constant, the rates of reaction were found to be directly proportional with increasing of $K_2S_2O_8$.The maximum value was produced at 8 mmole/L. And then, at more than that concentration of $K_2S_2O_8$ the rate of decolourization decreased. The results were recorded in tables 3-32 and 3-33 and plotted in figures 3-42and 3-43.

Time of	nole			ln (C_o/C_t		
t/min	$K_2S_2O_8/m_L$	0	3	4	7	8	10
0	0		0	0	0	0	0
2	-		-	-	0.410	0.573	-
4	-		-	-	0.788	1.062	-
5	0.180		0.271	0.374	-	-	0.714
6	-		-	-	0.940	1.556	-
8	-		-	-	1.424	1.832	-
10	0.373		0.565	0.579	2.140	1.979	1.721
12	-		0.548	0.789	2.397	2.358	-
14	-		0.600	0.959	2.523	2.726	-
15	-		-	-	-	-	2.626
16	-		0.945	0.805	2.833	-	-
18	-		1.267	1.164	-	-	-
20	0.428		1.320	0.729	-	-	-
22	-		1.436	1.422	-	-	-
24	-		1.566	1.652	-	-	-
25	-		-	-	-	-	4.360
26	-		1.893	1.770	-	-	-
28	-		1.926	2.058	-	-	-
30	0.522		2.069	2.383	-	-	-
40	0.591		-	-	-	-	-
50	0.727		-	-	-	-	-
60	0.786		_	-	-	-	-
70	1.027		_	-	-	-	-
80	1.036		_	-	-	-	-
90	1.0625		-	-	-	-	-
k _{app} /min ⁻¹	0.013		0.065	0.084	0.186	0.206	0.173

Table 3- 32: The change of lnC_0/C_t with irradiation time at different additions of $K_2S_2O_8$ for Mn::ZnS:Cr $_{(2)}$.

Time of irradiation	18/ L ⁻¹				PDE %		
t/min	K ₂ S ₂ O mmole	0	3	4	7	8	10
0	0		0	0	0	0	0
2	-		-	-	33.689	43.636	-
4	-		_	-	54.545	65.454	-
5	16.513		23.786	31.205	-	-	51.063
6	-		-	-	60.962	78.909	-
8	-		-	-	75.93583	84	-
10	31.192		43.203	43.971	88.235	86.181	82.127
12	-		42.233	54.609	90.909	90.545	-
14	-		45.145	61.702	91.978	93.454	-
15	-		-	-	-	-	92.765
16	-		61.165	55.319	94.117	-	-
18	-		71.844	68.794	-	-	-
20	34.862		73.300	51.773	-	-	-
22	-		76.213	75.886	-	-	-
24			79.126	80.851			
25	-		-	-	-	-	98.723
26	-		84.951	82.978	-	-	-
28	-		85.436	87.234	-	-	-
30	40.672		87.378	90.780	-	-	-
40	44.648		-	-	_	-	-
50	51.681		-	-	_	-	-
60	54.434		-	-	_	-	-
70	64.220		-	-	_	-	-
80	64.525		-	-	-	-	-
90	65.443		-	-	-	-	-
100	66.360		-	-	-	-	-
110	70.336		_		-	-	-
115	_		_	_	_	_	-
120	73.394		_		_	_	_

Table 3-33: The change of irradiation time with PDE% at different additions of $K_2S_2O_8$ for Mn:ZnS:Cr₍₂₎.

3.5 Effect of different parameters on the photocatalytic decolorzation of RB5 dye for prepared ZnS .

3.5.1. Effect of the mass of prepared ZnS

The relationship between the photodecolorzation efficiency of RB5 and concentration of photocatalyst was performed by conducting experiments at different doses of the ranged (0.5- 2.5) g of prepared ZnS, pH 6.3 and the temperature was 288.15 K light intensity equal to 1.46×10^{-6} Einstein s⁻¹. The results are given in tables 3-34,3-35 and plotted in figures 3-20 and 3-21. The best dosage of prepared bare ZnS was found at 1g/100mL.

The photo-decolorization efficiency increased with the increasing of the dosage of catalyst up to a maximum value at 1gm/100mL.

Time of	50			ln C _o /	C _t	
irradiation	33				1	1
t/min	Dose	0.5	1	1.5	2	2.5
0		0	0	0	0	0
5	0.	089	0.011	0.028	0.010	0.028
10	0.	093	0.017	0.038	0.058	0.033
20	0.	114	0.046	0.057	0.058	0.049
30		-	0.052	0.043	0.075	0.060
40	0.	146	0.061	0.092	0.102	0.084
50	0.	155	0.080	0.112	0.143	0.096
60	0.	195	0.133	0.158	0.162	0.125
70		-	0.172	0.151	0.191	0.135
80		-	0.225	0.194	0.265	0.110
90		-	0.193	0.239	0.300	0.142
100		-	0.218	-	0.328	0.147
110	0.	346	-	-	0.284	0.207
115		-	0.281	-	-	-
120	0.	370	-	-	0.356	0.254
130	0.	398	0.428	-	0.325	0.229
140	0.	458	-	-	0.365	0.266
145		-	0.675	-	-	-
150	0.	482	-	0.719	0.410	0.371
160	0.	557	0.891	-	-	0.380
165		-	-	-	0.457	-
170		-	-	-	-	0.419
175	0.	704	1.290	-	-	-
180		-	-	-	0.483	0.460
190	0.	904	1.570	-	_	-
205	1.	053	2.050	-	-	0.502
210		-	_	-	0.602	-
215		-	_	-	-	0.506
220		-		-	0.948	0.593
k _{app} /min⁻¹	0.	003	0.006	0.003	0.003	0.002

Table 3-34: The change of lnC_0/C_t with irradiation time at different mass of prepared ZnS .

 Table 3-35 : The change of irradiation time on different at mass of prepared ZnS with photocatalytic Decolourization efficiency

Time of	ad			PDE %	6	
irradiation	Dose/	0.5	1	1.5	2	2.5
0	0		0	0	0	0

5	8.582	1.188	2.816	1.014	2.838
10	8.955	1.782	3.822	5.679	3.275
20	10.820	4.554	5.633	5.679	4.803
30	2.985	5.148	4.225	7.302	5.895
40	13.619	5.940	8.853	9.736	8.078
50	14.365	7.722	10.663	13.387	9.170
60	17.723	12.475	14.688	15.010	11.790
70	-	15.841	14.084	17.444	12.663
80	-	20.198	17.706	23.326	10.480
90	-	17.623	21.327	25.963	13.318
100	-	19.603	-	27.991	13.755
110	29.291	-	-	24.746	18.777
115	30.970	24.554	-	-	-
120	32.835	-	-	30.020	22.489
130	36.753	34.851	-	27.789	20.524
140	38.246	-	-	30.628	23.362
145	42.723	49.108	_	-	-
150	-	-	51.307	33.671	31.004
160	-	59.009	-	-	31.659
165	-	-	-	36.713	-
170	-	-	-	-	34.279
175	50.559	72.475	-	-	-
180	-	-	-	38.336	36.899
190	59.514	79.207	-	-	-
195	-	-	-	34.077	-
205	65.111	87.128	-	-	39.519
210	-	-	-	45.233	-
215	-	-	-	-	39.738
240	-	-	-	61.257	-
245	-	-	-	-	44.759
275	-	-	-	-	53.711
290	_	-	_	_	75.982
305	-	-		-	79.694

3.5.2. Effect of initial pH of the solution

The effect of pH on decolonization was studied by keeping all other experimental conditions constant and changing the value of initial pH solution from 3.1 to 9 and results are illustrated in figures 3-28 and 3-29 and listed in tables 3-36 and 3-37. The rate constant increased with increasing in pH and the maximum value at pH 6.3, after that the values decreased with increasing of pH.

Time of				$ln C_o/C$	t	
madiation	Ηd	2.1		()	_	0
t/min	-	3.1	4.1	6.3	7	9
0	(0	0	0	0	0
5	0.0)37	0.006	0.011	0.008	0.037
10		-	0.040	0.017	0.019	0.074
20		_	0.087	0.046	0.038	0.117
30	0.1	134	0.117	0.052	0.076	0.176
40	0.1	163	0.146	0.061	0.119	0.178
50	0.1	188	0.153	0.080	0.188	0.253
60	0.2	231	0.173	0.133	0.224	0.264
70	0.2	244	0.218	0.172	0.245	0.323
80		_	0.277	0.225	0.294	0.391
90	0.3	359	0.300	0.193	0.305	0.520
100	0.3	367	0.328	0.218	0.337	0.458
110	0.3	373	0.340	-	0.361	0.464
115		-	-	0.281	-	-
120	0.4	410	0.355	-	0.398	0.467
130	0.4	465	0.361	0.428	0.442	-
135		-	-	-	-	-
140	0.4	515	0.395	-	0.455	-
145		-	-	0.675	-	-
150	0.4	594	0.446	-	-	-
160		-	-	0.891	-	-
165	0.8	306	0.482	-	-	0.641
175		-	-	1.290	-	-
180	0.8	320	0.762	-	-	0.718
190	1.02	2303	-	1.570	-	-
195		-	-	-	0.744	-
205		_	-	-	-	-
210	1.1	191	-	-	0.871	0.995
225		-	-	-	-	-
240		-	-	-	1.286	-
250		-	-	-	1.574	-
270			-	-	-	-
285		-	-	-	-	-
k _{app} /min ⁻¹	0.0	003	0.003	0.006	0.004	0.004

Table 3-36: The change of ln C_0/C_t with irradiation time at different initials pH of dye by prepared ZnS .

Time of irradiation		PDE %						
t/min	Ηc	2 1	<i>A</i> 1	6.2	7	0		
	1	3.1	4.1	0.5	/	9		
0	()	0	0	0	0		
5	3.7	/19	0.627	1.188	0.836	3.697		
10	9.5	504	3.974	1.782	1.882	7.218		
20	12.	190	8.368182	4.554437	3.765	11.091		
30	12.	603	11.087	5.148	7.322	16.197		
40	15.	082	13.598	5.940575	11.29705	16.373		
50	17.	148	14.225	7.722	17.154	22.359		
60	20.	661	15.899	12.475	20.083	23.239		
70	21.	694	19.665	15.841	21.757	27.640		
80	29.	752	24.267	20.198	25.523	32.394		
90	30.	165	25.941	17.623	26.359	40.598		
100	30.	785	28.033	19.603	28.661	36.795		
110	31.198		28.870	-	30.334	37.147		
115	-		-	24.554	-	-		
120	33.677		29.9163	-	32.845	37.323		
130	37.	190	30.334	34.851	35.774	-		
135		_	-	-	-	37.852		
140	40.	289	32.635	-	36.61087	-		
145		_	-	49.108	-	-		
150	44.	834	35.983	-	-	40.669		
160		_	-	59.009	-	-		
165	55.	371	38.284	-	-	47.359		
175		-	-	72.475	-			
180	55.	991	53.347	-	-	51.232		
190	64.	049	-	79.207	-	-		
195		_	-	-	52.510	-		
205		_	-	87.128	-	-		
210	69.	628	63.598	-	58.158	63.028		
225		_	69.246	_	_	-		
240		_	-	-	72.384	67.957		
250		_	-	-	79.288	-		
270		-	-			80.633		
285		_	-	_	-	86.443		

Table 3-37: The change of irradiation time with PDE% at different initials pHof dye by prepared ZnS .

3.5.3. Effect of temperature

The photocatalytic declolzation of RB5 was determined at different ranges of temperature the (283.15-293.15) K. The experimental condition with initial dye concentration equal to 25ppm, dosage of prepared ZnS 1 g /100mL and pH equal to 6.3, light intensity equal to 1.46x10⁻⁶ Einstein s⁻¹. The results show that the decolorization efficiency of RB5 increases with increase of temperature. That ensured this reaction is endothermic. The results are registered in tables 3-38 and 3-39 and plotted in figures

3-36 and 3-37. The activation energy for photocatalytic and the thermodynamics functions are shown in table 3-40 and 3-41.

Time of		$ln C_o/C_t$						
irradiation	U		1	0, 1				
t/min	$T/^{0}$	10	15	17	20			
U/mm								
0	0		0	0	0			
5	(0.021	0.008	0.011	0.018			
10	(0.043	0.017	0.017	0.025			
20	(0.051	0.063	0.046	0.050			
30	(0.085	-	0.052	0.069			
40	(0.111	-	0.061	0.096			
50	(0.114	-	0.080	0.114			
60	(0.117	-	0.133	0.145			
70	(0.138	-	0.172	0.171			
80	(0.159	0.102	0.225	0.195			
90	(0.184	0.252	0.245	0.212			
100	(0.200	-	0.268	-			
105	-		0.295	-	0.249			
110	0.219		-	_	-			
115		-	-	0.281	-			
120	(0.226	0.331	-	0.284			
130	(0.291	-	0.428	-			
135		-	0.382	_	0.321			
140	(0.316	-	-	-			
145		-	-	0.675	-			
150	(0.356	0.462	-	-			
155		-	-	-	0.340			
160		-	-	0.891	-			
165	(0.375	-	-	-			
175		-	-	1.290	-			
180	(0.434	0.505	-	-			
190		-	-	1.570	-			
205		-	-	-	-			
210	(0.593	0.540	-	-			
220		-	-	-	0.590			
240	(0.747	1.049	-	-			
250		-	-	-	0.833			
255		-	-	_	-			
260		-	-	-	-			
270		-	-	-	-			
300		-	-	-	-			
k _{app} /min ⁻¹	(0.002	0.003	0.006	0.003			

Table 3-38: The change of $\ln C_0/C_t$ with irradiation time at differenttemperatures by prepared ZnS.

Time of		PDE %						
Infaulation	°C	10	1.5	17	20			
t/min	T/	10	15	17	20			
0	0		0	0	0			
5	4	2.105	0.882	1.188	1.801			
10	4	.2105	1.764	1.782	2.477			
20	4	5.000	6.176	4.554	4.954			
30	8	8.157	-	5.148	6.756			
40	1	0.526	4.117	5.940	9.234			
50	1	0.789	6.764	7.722	10.810			
60	1	1.052	8.823	12.475	13.513			
70	1	2.894	9.411	15.841	15.765			
80	1	4.736	9.705	20.198	17.792			
90	1	6.842	22.352	21.782	19.144			
100	1	8.157	-	23.564	-			
105	1	9.736	25.588	-	22.072			
115	-		-	24.554	-			
120	2	0.263	28.235	-	24.774			
130	2	5.263	-	34.851	-			
135		-	31.764	-	27.477			
140	2	7.105	-	-	-			
145		_	-	49.108	-			
150		30	37.058	-	-			
155		_	-	-	28.828			
160		_	-	59.009	-			
165	3	1.315	-	-	-			
175		-	-	72.475	33.108			
180	3	5.263	39.705	-	-			
190		-	-	79.207	36.261			
205		-	-	87.128	-			
210	4	4.736	41.764	-	-			
220		-	-	-	44.594			
240	5	2.631	65	-	-			
250		-	-	-	56.531			
255		65	-	-	-			
260		-	-	-	73.198			
270		-	68.823	-	-			
300		-	71.470	-	-			

Table 3-39: The change of irradiation time with PDE% at different temperaturesof dye by prepared ZnS.

1/T(K)	ln k _{app}	ln(k _{app} /T)
3.531	-5.991	-11.637
3.470	-5.744	-11.408
3.446	-5.099	-10.769
3.411	-5.914	-11.595

Table 3-40: Relationship between 1/T with lnk_{app} and $ln(k_{app}/T).$

Table 3-41:	The calculated activation kinetic and thermodynamics parameters
	for decolourization of RB5 with using prepared ZnS.

Contralto	Ea	$\Delta H^{\#}$	$\Delta S^{\#}$	$\Delta G^{\#}$
Sample	/kJ mol ⁻¹	/kJ mol ⁻¹	$/\mathbf{J} \mathbf{mol}^{-1} \mathbf{K}^{-1}$	/kJmol ⁻¹
Prepared ZnS	20.760	18.366	-3.302	19.323

3.5.4. Effect of addition of $K_2S_2O_8$

The influence of addition $K_2S_2O_8$ on the rate of decolorization was studied at 25 ppm of RB5 dye solution, 1g of prepared ZnS, pH 6.3 and temperature ranges (288.15-290.15) K, light intensity equal to 1.46×10^{-6} Einstein s⁻¹. The photocatalytic decolorization of RB5 was increased with increasing the addition of $K_2S_2O_8$ and the maximum value reaches at 8mmole/L and after then decreases. The result listed in the tables 3-42 and 3-43 and plotted in figures 3-44and 3-45.

Table 3-42: The change of lnC_0/C_t with irradiation time at different additions of $K_2S_2O_8\,$ with prepared ZnS .

Time of irradiation	K ₂ S ₂ O ₈ / mmole L ⁻¹		$ln C_o / C_t$				
t/min		0	3	7	8	10	
0	()	0	0	0	0	
2	-	-	-	0.019	0.006	0.018	
4	-	-	-	0.060	0.074	0.067	

5	0.011	0.057	-	-	-
6	-	-	0.087	0.106	0.122
8	-	-	0.104	0.139	0.168
10	0.017	0.081	0.129	0.228	0.229
15	-	0.127	0.186	-	-
20	0.046	0.177	0.244	-	-
25	-	0.220	0.313	-	1.449
30	0.052	0.313	-	1.941	2.231
35	-	0.427	-	3.392	2.853
40	0.061	-	-	-	-
45	-	-	-	-	-
50	0.080	-	-	-	-
60	0.133	-	-	-	-
70	0.172	-	-	-	-
80	0.225	-	-	-	-
90	0.245	-	-	-	-
100	0.268	-	-	-	-
115	0.281	-	-	-	-
130	0.428	-	-	-	-
145	0.675	-	-	-	-
160	0.891	-	-	-	-
175	1.290	-	-	-	-
180	-	-	-	-	-
190	1.570	-	-	-	-
k _{app} /min ⁻¹	0.006	0.010	0.012	0.077	0.069

Table 3-43: The change of irradiation time with PDE% at different additions of $K_2S_2O_8$ for prepared ZnS.

Time of irradiation	$O_{8'}$			PDE %)	
t/min	K ₂ S ₂ (mmole	0	3	7	8	10
0	0		0	0	0	0
2	-		-	1.909	0.672	1.789
4	-		-	5.902	7.174	6.560
5	1.188		5.583	-	-	-
6	-		-	8.333	10.089	11.530
8	-		-	9.895	13.004	15.506
10	1.782		7.868	12.152	20.403	20.477
15	-		11.928	17.013	28.923	33.002
20	4.55	54	16.243	21.701	39.237	53.280

25	_	19.796	26.909	57.623	76.540
30	5.148	26.903	35.243	85.650	89.264
35	-	34.771	-	96.636	94.234
40	5.940	-	65.798	-	-
45	-	-	83.333	-	-
50	7.722	-	-	-	-
60	12.475	-	-	-	-
70	15.841	-	-	-	-
80	20.198	-	-	-	-
90	21.782	-	-	-	-
100	23.564	-	-	-	-
115	24.554	-	-	-	-
130	34.851	-	-	-	-
145	49.108	-	-	-	-
160	59.009	-	-	-	-
175	72.475	-	-	-	-
190	79.207	-	-	-	-

3.6. Characterization of Catalyst

3.6.1. XRD Analysis

From XRD data for all studied samples are observed that the essential peaks are occurred at miller indexes (111), (200) and (311) at (26.44 ° - 27.76 °), 32.98 ° and 58.6 ° (JCPDS Card No 65-9585) respectively [110-112]. In fact, the diffraction peaks of miller index (111) at 26.44 for ZnS prepared is slightly shift to large angles (2 θ) at range (26.92°-27.6°) for dispersed Mn &Cr ions in ZnS matrix. This behavior may be assigned to the small ionic radii of Cr³⁺ (0.63 Å) & Mn²⁺ (0.81Å) that interaction with Zn²⁺ (0.74 Å) in ZnS matrix [113,114]. The new peaks for organic moiety of (PEG) which used as capping agent are observed as small and broading peaks at range13°-26° [115].

3.6.2 Atomic Force Microscopy (AFM)

From the results in AFM images, which indicates to all samples are semispherical grains. The particle sizes for all samples are more than the mean crystal size, that is beyond to the particles could be formed from several crystal size [116] and particle sizes contain from 2.5-6crystals.

3.6.3. Band gap energy (Bg) measurements

The results of measured Bg of the most samples were obtained, that the values of band gaps increased with decreased mean crystal size. But, the Bg of prepared bare & metalized ZnS were found, that the Bg of prepared ZnS was small value (3.558 eV) and had a large mean crystal size 19.986 nm. This behavior is obeyed the reported in nanofield [117]. From other hand, the Bg of most metalized prepared samples were shifted to large values with decreasing the mean crystal sizes for them [118].

3.6.4 Atomic Absorption Spectrophotometry

The atomic absorption technique was employed to ensure if all the addition amounts of Mn & Cr loading on ZnS surface. The activity of Cr:ZnS was more than the activity of Mn:ZnS That attitude to the work functions for these metals compared with work function for ZnS. The work functions for the (111) crystal plane for Cr and Mn are 4.5 eV and 4.1 eV, whereas, the work function of Zn in ZnS have a high work

function 4.22 eV[119]. In fact, the interaction for the metal which have a high work function is best, hence, the Cr loaded on prepared ZnS leads to improve the photo catalytic effect [45].

3.7 Effect of different parameters on the photocatalytic decolorization of RB5 dye

3.7.1 Effect of Mass of catalysts.

3.7.1.1 Effect of Mass of commercial ZnS catalysts on studied dye.

Figure 3-14: (a) The change of ln C₀/C_t with Irradiation time at different mass of commercial ZnS. (b) Relationship between apparent rate constant and different mass commercial ZnS.

Figure 3-15: Effect of different mass of commercial ZnS on

photodecolorization efficiency.

Based on the above results in figure 3-14 $_{(a,b)}$, the rate of reaction increase with increasing the amount of ZnS, and the maximum rate constant value is obtained at 2.5 g of commercial ZnS. Then the rate constant depresses, this behavior is beyond to screening effect[45,94].The highest PDE% for photodecolorization of studied dye reaches to 87.681 % at 25 min in figure 3-15.

3.7.1.2 Effect of Mass of Cr: ZnS catalysts on studied dye

Figure 3-16: (a) The change of $\ln C_0/C_t$ with Irradiation time at different mass of Cr: ZnS. (b) Relationship between apparent rate constant and different mass of Cr: ZnS.

Figure 3-17: Effect of different mass of Cr:ZnS on photodecolorization

efficiency.

3.7.1.3 Effect of Mass of Mn:ZnS:C₍₂₎ catalysts on studied dye.

(a)

(b)

Figure 3-18: (a) The change of $\ln C_0/C_t$ with Irradiation time at different mass of Mn:ZnS:Cr₍₂₎. b)Relationship between apparent rate constant and different mass of Mn:ZnS:Cr₍₂₎

Figure 3-19: Effect of different mass of Mn:ZnS:Cr₍₂₎ on photodecolorization efficiency.

3.7.1.4. Effect of Mass of prepared ZnS catalysts on studied dye.

Figure 3-20: (a) The change of ln C₀/C_t with Irradiation time at different mass of (b) Relationship between apparent rate constant and different prepared ZnS mass of prepared ZnS.

Figure 3-21: Effect of different mass of prepared ZnS onphotodecolorization

efficiency.

From figures $3-16_{(a,b)}$, $3-18_{(a,b)}$ and $3-20_{(a,b)}$, The rates of reaction for prepared Cr:ZnS, Mn:ZnS:Cr₍₂₎ and ZnS are equal to 89.743,73.349 and 34.851 at 120 min respectively in figures (3-17), (3-19) and (3-21) that refer to improvement the rates of reaction with loaded metals and the maximum value of rate of reaction is obtained by using Cr:ZnS. From the other hand, the best doses of prepared photocatalysts are 1 g, 1.5 g and 1

g for prepared Cr: ZnS, Mn:ZnS: $Cr_{(2)}$ and prepared ZnS respectively. These weights are regarded economic compared with using 2.5 g of commercial ZnS.

3.7.2. Effect of initial pH

3.7.2.1Effect of initial pH of the solution dye for commercial ZnS

(a)

(b)

Figure 3-22: (a) The change of ln C₀/C_t with Irradiation time at different initial pH of dye solution for commercial ZnS .(b) Relationship between apparent rate constant and different initial pH of dye solution for commercial ZnS.

Figure 3-23: Effect of different initial pH of dye solution on photodecolorization

efficiency for commercial ZnS.

The pH of solution is an important parameter to improve the value rate of reaction and efficiency percentage, hence, the optimum value of pH value is equal to 4.1, and the PDE% raised from 87.681 % to 94.396% at 25 min and 2.5g, see figures $3-22_{(a,b)}$ and 3-23.

3.7.2.2. Effect of initial pH of the solution dye for Cr: ZnS.

Figure 3-24: (a) The change of ln C₀/C_t with Irradiation time at different initial pH of dye solution for Cr: ZnS .(b) Relationship between apparent rate constant and different initial pH of dye solution for Cr: ZnS.

Figure 3-25: Effect of different initial pH of dye solution on photodecolorization

efficiency for Cr: ZnS.

3.7.2.3. Effect of initial pH of the solution dye for Mn:ZnS:Cr₍₂₎.

(a)

(b)

Figure 3-26: (a) The change of ln C₀/C_t with Irradiation time at different initial pH of dye solution for Mn:ZnS:Cr₍₂₎.(b) Relationship between apparent rate constant and different initial pH of dye solution for Mn:ZnS:Cr₍₂₎.

Figure 3-27: Effect of different initial pH of dye solution on photodecolorization efficiency for Mn:ZnS:Cr₍₂₎.

3.7.2.4. Effect of initial pH of the solution dye for prepared ZnS.

Figure 3-28: (a) The change of ln C₀/C_t with Irradiation time at different initial pH of dye solution for prepared ZnS .(b) Relationship between apparent rate constant and different initial pH of dye solution for prepared ZnS

Figure 3-29: Effect of different initial pH of dye solution on photodecolorization

efficiency for prepared ZnS.

Depending on the figures $3-24_{(a,b)}$, $3-26_{(a,b)}$, $3-28_{(a,b)}$, the results explain the optimum values of initial pH for using prepared Cr:ZnS, Mn:ZnS:Cr₍₂₎ and prepared ZnS as photocatalysts are 4.1, 6.3 and 6.3 respectively. From figures 3-25, 3-27 and 3-29, the PDE % for prepared catalysts are 86.538, 64.525 and 20.198 at 80 min, for prepared Cr:ZnS, Mn:ZnS:Cr₍₂₎ and prepared ZnS respectively, whereas, with increasing the time of

irradiation the PDE% increases also to be 87.078 at 85 min for Cr:ZnS , but for Mn:ZnS:Cr₍₂₎ is 73.394 at 120 min and be 87.128 at 205 min for prepared ZnS.

3.7.3. Effect of temperature

3.7.3.1Effect of temperature of the solution dye for commercial ZnS.

Figure 3-30: (a) The change of $\ln C_0/C_t$ with Irradiation time at different temperatures of dye solution for commercial ZnS .(b) Effect of different temperatures of dye solution on photodecolorization efficiency by commercial

ZnS.

Figure 3-31: (a) Arrhenius plot by commercial ZnS(b) Eyring–Polanyi plot

ln (k_{app}/T) VS.1000/T

The rate of reaction decreases with increasing temperature during used commercial ZnS as agreement with the results that reported in ref.[3]. The best temperature for this reaction is 17° C and given PDE% 87.681 at 25 min, that noted in figures 3- $30_{(a,b)}$, figures 3- $31_{(a,b)}$ and the results listed in table 3-13, that found the reaction is exothermic, less random and spontaneous. From the other hand, the value of apparent activation energy is low, so, the reaction is fast at optimum conditions.

Figure 3-32: (a) The change of ln C_o/C_t with Irradiation time at different temperatures of dye solution for Cr:ZnS .(b) Effect of different temperature of dye solution on photodecolorization efficiency by Cr:ZnS.

(a**)**

(b)

Figure 3-33: (a) Arrhenius plot by Cr:ZnS . (b) Eyring–Polanyi plot ln (k_{app}/T) VS.1000/T .

3.7.3.3Effect of temperature of the solution dye for Mn:ZnS:Cr₍₂₎.

Figure 3-34: (a) The change of $\ln C_0/C_t$ with Irradiation time at different temperatures of dye solution for Mn:ZnS:Cr₍₂₎.(b) Effect of different temperatures of dye solution on photodecolorization efficiency by Mn:ZnS:Cr₍₂₎.

Figure 3-35: (a) Arrhenius plot by Mn:ZnS:Cr₍₂₎ (b) Eyring–Polanyi plot ln (k_{app} /T)

3.7.3.4. Effect of temperature of the solution dye for prepared ZnS.

(a)

(b)

Figure 3-36: (a) The change of ln C₀/Ct with Irradiation time at different temperatures of dye solution for prepared ZnS (b) Effect of different temperatures of dye solution on photodecolorization efficiency by prepared ZnS.

Figure 3-37: (a) Arrhenius plot by prepared ZnS (b) Eyring–Polanyi plot ln (k_{app} /T) VS.1000/T.

All results are reported in figures $3-32_{(a,b)}$ - $3-37_{(a,b)}$, and tables (3-21)-(3-43). The reactions that using prepared ZnS & Mn:ZnS:Cr₍₂₎ are endothermic and nonspontaneous, that referred to dominate the change in entropy on the direct of photoreaction[120]. While by using prepared Cr:ZnS as photocatalyst, the reaction is exothermic and spontaneous

[121], that indicated the changes in entropy & enthalpy are dominated on the push the reaction. In general, values for all prepared photocatalysts are having a low values for activation energies, this behavior is ensured the activities for these catalysts in photoreaction after control on the optimum condition.

3. 7.4. Effect of K₂S₂O₈

3.7.4.1Effect of addition $K_2S_2O_8\,$ on the solution dye for commercial ZnS.

(a)

(**b**)

Figure 3-38: (a) The change of $\ln C_0/C_t$ with Irradiation time at different additions $K_2S_2O_8$ for commercial ZnS. (b) Relationship between apparent rate constant and different additions $K_2S_2O_8$.

Figure3-39: Effect of different additions K₂S₂O₈ for commercial ZnS on photodecolorization efficiency.

The used of oxidant agent like $K_2S_2O_8$ is plays a vital role to improve the rate of reaction and the efficiency percentage. The figures $3-38_{(a,b)}$ & 3-39 show, that the rate constant increases with increasing the concentration of $K_2S_2O_8$ and gives a maximum value equal to 8 mmole/L at 7 min with PDE % 94.471%. The raise in rate of reaction depended upon formed hydroxyl radical [102].

$S_2 O_8^{2-} + e^{cb} \rightarrow S O_4^{-} + S O_4^{2-}$	(3-1)
$SO_4^{-} + e^{cb} \rightarrow SO_4^{2-}$	(3-2)
$\mathrm{SO}_4^- + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{OH} + \mathrm{SO}_4^{2-} + \mathrm{H}^+$	(3-3)

While, with increasing of $K_2S_2O_8$, which leads to depress the rate of reaction due to the oxidant reagent acts as scavenger for hydroxyl radical [102].

$$SO_4^{2-} + h_{vb}^+ \rightarrow SO_4^{-}$$
 ... (3-4)
 $SO_4^{2-} + OH \rightarrow SO_4^{-} + OH^{-}$... (3-5)

3.7.4.2. Effect of addition K₂S₂O₈ on the solution dye for Cr :ZnS.

Figure 3-40: (a) The change of ln C₀/Ct with Irradiation time at different additions K₂S₂O₈ for Cr :ZnS . (b) Relationship between apparent rate constant and different additions K₂S₂O₈ for Cr :ZnS

Figure 3-41: Effect of different additions K₂S₂O₈ for Cr:ZnS on

photodecolorization efficiency.

3.7.4.3. Effect of addition $K_2S_2O_8$ on the solution dye for Mn:ZnS:Cr₍₂₎.

Figure 3-42: (a) The change of $\ln C_0/C_t$ with Irradiation time at different additions $K_2S_2O_8$ for $Mn:ZnS:Cr_{(2)}$. (b) Relationship between apparent rate constant and different additions $K_2S_2O_8$ for $Mn:ZnS:Cr_{(2)}$.

Figure 3-43: Effect of different additions K₂S₂O₈ for Mn:ZnS:Cr₍₂₎

on photodecolorization efficiency.

3.7.4.4 Effect of addition $K_2S_2O_8$ on the solution dye for prepared ZnS.

Figure 3-44: (a) The change of ln C₀/C_t with Irradiation time at different additions K₂S₂O₈ for prepared ZnS. (b) Relationship between apparent rate constant and different addition K₂S₂O₈ for prepared ZnS.

Figure 3-45: Effect of different additions K₂S₂O₈ for prepared ZnS

on photodecolorization efficiency.

The figures 3-40 (a,b)- 3-45 obtain that the best addition of oxidation agent are 7 mmole /L at 30 min, PDE% 99.428 % for Cr:ZnS nanopowder ,but 8 mmole /L at 14 min % PDE 93.450 % for Mn:ZnS:Cr₍₂₎ nanopowder and 8 mmole /L at 45 min PDE% 83.333% for prepared ZnS nanopowder.

CHAPTER FOUR CONCLUSIONS AND RECOMMENDATIONS

4.1: Conclusions

The main conclusions in this work can be summarized to:

- 1. The photodecolorization of RB5 dye from aqueous solution by using commercial ZnS and the prepared samples was obeyed the pseudo first order.
- 2. All the prepared samples are having a nano size, that proved by XRD and AFM analysis.
- 3. XRD data were proved that the Cr & Mn are really loaded on prepared ZnS.
- 4. Atomic absorption analysis was indicated the loading Cr & Mn on prepared ZnS.
- 5. AFM images for all samples obtained the shapes for studied samples are semi-spherical and the particles sizes contain from 2.5-6 crystals.
- 6. Band gap for Cr: ZnS is more than the band gap for prepared ZnS, and equal to 3.572 eV and 3.558 eV respectively.
- 7. The dose of prepared photocatalysts that used to deoclorize RB5 dye are less amounts than that used by commertial ZnS.
- 8. The best pH for reaction is occurred at acidic medium 4.1 for commercial ZnS& prepared Cr:ZnS and the reactions for both are exothermic. While, the optimum pH for prepared Mn:ZnS:Cr $_{(2)}$ & prepared ZnS are 6.3 and the reactions for both are endothermic.
- 9. The best concentrations of oxidation agent ($K_2S_2O_8$) are ranged from 7 mmole/L to 8 mmole/L for all used samples, and the % PDE values increased in ranged from 83.333% to 99.428%.

4.2 Recommendations:

Future studies can be completed:

- 1. A study the loaded of other metals like Pt, Pd, Au and Ag on ZnS surface in different methods such as photodeposition, hydrothermal, and microwave method.
- 2. The BET analysis can be used to explore the properties of surface area and the EDX analysis can be employed to find out the amount of metals loaded on the surface.
- 3. Study the photo decolorization of these prepared samples with different type of dyes.

REFERENCES

References:

- W. Xiaoning, J. Jia & Y. Wang, "Enhanced Photocatalytic-Electrolytic Degradation of Reactive Brilliant Red X-3B in The Presence of Water Jet Cavitation", *Ultrasonic Sonochemistry*, vol.23, no.1, 2015, pp. 93-99.
- T. Robinson, G. McMullan, R. Marchant & P. Nigam, "Remediation of Dyes in Textiles Effluent: A critical Review on Current Treatment Technologies with A proposed Alternative", *Bioresource Technol*, vol. 77, no.3, 2001, pp. 247-255.
- E. K. Goharshadi, M. Karimi, M. Hadadian & H.A.Toupkanloo, "Photocatalytic Degradation of Reactive Black 5 Azo Dye by Zinc Sulfide Quantum Dots Prepared by A sonochemical Method", *Materials Science in Semiconductor Processing*, vol.16, no.4, 2013, pp.1109-1116.
- K.V. Radha, V. Sridevi & K. Kalaivani, "Electrochemical Oxidation for The Treatment of Textile Industry Wastewater", *Bioresource Technology*, vol.100, no.2, 2009, pp.987-990.
- S. A. Paul, S. K. Chavan & S. D. Khambe ,"Studies on Characterization of Textile Industrial Waste water in Solapur City", *International Journal of Chemical* Sciences, vol.10, no.2, 2012, pp.635-642.
- D. Rajkumar, B.J. Song & J.G. Kim, "Electrochemical Degradation of Reactive Blue 19 in Chloride Medium for The Treatment of Textile Dyeing Wastewater with Identification of Intermediate Compounds", *Dyes Pigments*, vol.72, no.1, 2007, pp. 1-7.
- G. N. P. Kumar & K. B. Sumangala, "Decolorization of Azo Dye Red 3BN by Bacteria", *International Research Journal of Biological Sciences*, vol.1, no.5, 2012, pp. 46-52.
- 8. A. K. Verma, R. R. Dash & P. Bhunia,"A review on Chemical Coagulation/Flocculation Technologies for Removal of Colour

from Textile Wastewaters", *Journal of environmental management*, vol. 93, no.1, 2012, pp.154-168.

- S. Khan & A. Malik, "Environmental and Health Effects of Textile Industry Wastewater", *Environmental Deterioration and Human Health*, A. Malik, E. Grohmann, R.Akhtar (Ed.), ISBN:978-94-007-7889-4 Springer Dordrecht Heidelberg London New York Netherlands, 2014.P. 55-71.
- 10.L. Ahmad, S. W. Puasa & M. M. D. Zulkali, "Micellar-Enhanced Ultrafiltration for Removal of Reactive Dyes from an Aqueous Solution", *Desalination*, vol. 191, issue 1-3, 2006, pp. 153-161.
- 11.M.T. Amin, A. A. Alazba & M. Shafiq, "Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics", *Sustainability*, vol. 7, no.1, 2015, pp.15302-15318.
- 12.M. Farnane, H. Tounsadi, A. Machrouhi, A. Elhalil, F. Z.Mahjoubi M. Sadiq, M. Abdennouri, S. Qourzal & N. Barka," Dye removal from AqueousSolution by Raw Maize Corncob and H₃PO₄Activate Maize Corncob", *Journal of Water Reuse and Desalination*,vol.8,no.2,2018pp.214-224.
- 13.M. S. Zuraida, C. R. Nurhaslina & H. Ku Halim, "Removal of Synthetic Dyes from Wastewater by Using Bacteria, Lactobacillus delbruckii ", *International Refereed Journal of Engineering and Science*, vol. 2, no. 5, 2013, pp. 01-07.
- 14. M. Shafiq, A.A. Alazba & M.T. Amin," Removal of Heavy Metals from Wastewater using Date Palm as a Biosorbent: A Comparative Review", *Sains Malaysiana*, vol.47, no.1,2018, pp.3549.
- 15.L. M. Ahmed, F.T. Tawfeeq, M. H. Abed Al-Ameer, K. Abed Al Hussein & A. R. Athaab, "Photo-degradation of Reactive Yellow 14 Dye (A Textile Dye) Employing ZnO as Photocatalyst", *Journal of Geoscience and Environment Protection*, vol. 4, no.1, 2016, pp. 34-44.
- 16.L. M. Ahmed, Q. M. Mahdi, F. S. Mahmoud, M. J. Mahammed & N. S. Ahmed, "Kinetic study for The Decolorization of

Dispersive Blue 26 dye from Suspension Solution of Commercial ZnO", *Journal of Kerbala University.*, *the Fifth Scientific Conference of the College of Science University of Kerbala*, 2017, pp. 127-136.

- 17.B. A.Mahammed & L.M. Ahmed," Enhanced Photocatalytic Properties of Pure and Cr-Modified ZnS Powders Synthesized by Precipitation Method" *Journalof Geoscience and Environment Protection*, vol.5, no.1, 2017, pp.101-111.
 - 18.R. M. Mohamed, N. M. Nanyan, N. Abdul Rahman, N. M. A. Kutty & A.H. Kassim, "Colour Removal of Reactive Dye from Textile Industrial Wastewater using Different Types of Coagulants ", *Asian Journal of Applied Sciences*, vol. 2, no. 5, 2014, pp.650-657.
 - 19.M. Qiu, J. Shou, P. Ren & K. Jiang, " A comparative Study of The Azo Dye Reactive Black 5 Degradation by UV/TiO₂ and Photo-Fenton Processes ", *Journal of Chemical and Pharmaceutical Research*, vol. 6, no. 7, 2014, pp. 2046-2051.
 - 20.N. M. Hilal, "Treatment of Reactive Dyeing Wastewater by Different Advanced Oxidation Processes", *Der Chemica Sinica*, vol. 2, no. 4, 2011, pp. 262-273.
 - 21.B. P. Dojčinović, G. M. Roglić, B. M. Obradović, M. M. Kuraica, T. B. Tosti, M. D. Marković & D. D. Manojlović, "Decolorization of Reactive Black 5 Using Adielectric Barrier Discharge in The presence of Inorganic Salts", *Journal of the Serbian Chemical Society*, vol. 77, no. 4, 2012, pp. 535–548.
 - 22.C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni & A. B. Pandit, "A critical Review on Textile Wastewater Treatments: Possible Approaches", *Journal of environmental management*, vol.182, no.1,2016, pp. 351-366. And references there in.
 - 23.H. A. Begum, A. K. Mondal & T. Muslim,"Adsorptive Removal of Reactive Black 5 from Aqueous Solution Using Chitin Prepared from Shrimp Shells", *Journal Bangladesh Pharmaceutical*, vol.15, no.2, 2012, pp.145-152. And references there in.

- 24.S. Atalay& G. Ersöz, "Novel Catalysts in Advanced Oxidation of Organic Pollutants",1sted., Springer International Publishing, AG Switzerland,2016, CH3:Advanced Oxidation Processes, P. 23-34.
- 25.A.S. Stasinakis,"Use of Selected Advanced Oxidation Processes (AOPs) for Wastewater treatment-a mini review", *Global Nest Journal*, vol.10, no.3, 2008, pp.376-385.
- 26.A. Asghar, A. A. Abdul Raman & W. M. A. W. Daud. "Advanced Oxidation Processes for in-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Textile Wastewater Treatment: A review", *Journal of cleaner production*, vol. 87, no.1, 2015, pp.826-838.
- 27.M. A. Hassaan & A. El Nemr, "Advanced Oxidation Processes for Textile Wastewater Treatment," *International Journal of Photochemistry and Photobiology*, vol.2, no.3, 2017, pp. 85-93. And references there in.
- 28.A. L. N. Mota , L. F . Albuquerque, L. T. C. Beltrame, O. Chiavone-Filho, A. Machulek Jr & C. A. O. Nascimento, "Advanced Oxidation Processes And Their Application In The Petroleum Industry: A Review", *Brazilian Journal of Petroleum and Gas*, vol. 2, no. 3, pp. 122-142, 2008. And references there in.
- 29.R.C. Pawar & C. S. Lee, "Heterogeneous Nanocompositephotocatalysis for Water Purification,1st ed., Elsevier, William Andrew, USA, 2015,CH1, p.3.
- 30.K. T. Al-Rasoul, I. M. Ibrahim, I. M. Ali& R.M.AL-Haddad, "Synthesis, Structure And Characterization Of ZnS Qds And Using It In PhotocatalyticReaction", *International Journal Science and Technology Research*, vol.3. ISSN 2277-8616, 2014, pp. 213-217. And references there in.
- 31.R.Ameta&S.C.Ameta,"Photocatalysis:Principlesand Applications,1sted., CRC press, Boca Raton, 2017,CH1, p. 1.
- 32.A. Eyasu,O.P.Yadav & R. K. Bachheti,"Photocatalytic Degradation of Methyl Orange Dye Using Cr-Doped ZnS Nanoparticles Under visible radiation", *International Journal Science and Technology Research*, vol.5, no.4, 2013, pp. 1452-1461.

- 33.M. R. Khan, T. W. Chuan & A. Yousuf, "Schottky Barrier and Surface Plasmonic Resonance Phenomena Towards The Photocatalytic Reaction: Study of Their Mechanisms to Enhance Photocatalytic Activity", *Catalysis Science & Technology*, vol.5, no.5, 2015, pp.2522-2531.
- 34.D. Beydoun, R. Amal, G. Low & S. MC. Evoy,"Role of nanoparticles in photocataly-sis", *Journal of Nanoparticle Research*, vol.1, no.4, 1999, pp.439-458.
- 35.S. Wang, J. H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn,S. Thawessak, M. Xiao &L. Wang, "Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications", *Journal of Materials Science & Technology*, vol.33, no.1, 2017, pp. 1-22.
- 36.A. M. Smith & S. Nie, "Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering", *Accounts of Chemical Research*, vol. 43, no.2, 2010, pp. 190-200. And references there in.
- 37.L. Gu, V. Srot, W. Sigle, C. Koch, P. Van Aken & F. Scholz,"Band-gap Measurements of Direct and Indirect Semiconductors Using Monochromated Electrons", *Physical Review B*, vol. 75, no.19, 2007, pp.195-214.
- 38.M. Fujita, "Silicon Photonics: Nanocavity Brightens Silicon", *Nature Photonics*, vol.7, no.4, 2013, pp.264-265.
- 39. J. M. Herrmann, "Heterogeneous Photocatalysis: Fundamentals and Applications to The Removal of Various Types of Aqueous Pollutants", *Catalysis today*, vol. 53, no.1, 1999, pp.115-129.
- 40.S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown & M. A. Hashib, "Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A review on Current Status and Developments", *Desalination*, vol.26, no.1(1), 2010, pp. 3-18.And references there in.
- 41.J. Ran, J. Zhang, J. Yu & M. Jaroniec,"Earth-abundant Cocatalysts for Semiconductor-based Photocatalytic Water Splitting", *Chemical Society Reviews*, vol.43, no.22, 2014, pp. 7787-7812.
- 42.U. Jabeen, S. M. Shah & S. U. Khan, "Photo Catalytic Degradation of Alizarin Red S Using ZnS and Cadmium Doped

ZnS Nanoparticles under Unfiltered Sunlight", *Surfaces and Interfaces*, vol. 6, 2017, pp.40-49. And references there in.

- 43.M. Hoffmann, S. Martin, W. Choi & D. Bahneman, "Environmental Applications of Semiconductor Photo Catalysis", *Chemical Reviews*, vol. 95, no.1,1995, pp. 69-96.
- 44.P. Sivakumar, G. G. Kumar& S. Renganathan, "Synthesis and characterization of ZnS-Ag nanoballs and its application in photocatalytic dye degradation under visible light", *Journal of Nanostructure in Chemistry*, vol. 4, no.107, 2014, pp.1-9.
- 45. L. M. Ahmed, I. Ivanova, F. H. Hussein & D. W. Bahnemann, "Role of Platinum Deposited on TiO2 in Photocatalytic Methanol Oxidation and Dehydrogen-ation Reactions", International Journal of Photoenergy, vol.2014, no.1, 2014, pp. 1-9. And references there in.
- 46. B.Ohtani,"TitaniaPhotocatalysisbeyondRecombination:Acritical
- Review", Catalysts, vol. 3, no.4, 2013, pp.942-953.
- 47.Y. Liu, L. Guo, W. Yan & H. Liu, "A composite Visible –light Photocatalyst for Hydrogen Production", *Journal of power Sources*, vol. 159, no.1, 2006, pp. 1300-1304.
- 48.K. Priya,V. K. Ashith, G. K. Rao &G. Sanjeev,"A comparative Study of Structural, Optical and Electrical Properties of ZnS Thin Films Obtained by Thermal Evaporation and Silar techniques", *Ceramics International*, vol. 43,no.13, 2017, pp.10487-10493.And references there in.
- 49.K. P. Tiwary, S. K. Choubey & K. Sharma,"Structural and optical properties of ZnS Nanoparticles Synthesized by Microwave Irradiation method", *Chalcogenide Letters*, vol.10, no.9, 2013, pp. 319-23. And references there in.
- 50.H. Labiadh, B.Sellami, A.Khazi, W.Saidani & S.Khemais,"Optical Properties and Toxicity of Undoped and Mndoped ZnS Semiconductor Nanoparticles Synthesized through The Aqueous Route", *Optical Materials*, vol. 64, 2017, pp. 179-186. And references there in
- 51.B. Bodo, D. Prakash & P. K. Kalita, "Synthesis and Characterization of ZnS: Mn Nanopartilces", *International Journal of Applied Physics and Mathematics*, vol 2, no.3, 2012, pp.181-183.

- 52.A. L. Donne, D. Cavalocli, R. A. Mereu & M. Perani, "Study of The Physical Properties of ZnS Thin Films Deposited by RF Sputtering," *Materials Science in Semiconductor Processing*, vol.71, 2017, pp. 7-11. And references there in.
- 53.N. Kaur, S. Kaur, J. Singh& M. Rawat,"A Review on Zinc Sulphide Nanoparticles: From Synthesis, Properties to Applications", *J Bioelectron Nanotechnol*, vol.1,no.1, 2016, pp.1-5. And references there in.
- 54.P. Weide, K.Schulz, S. Kaluza, M. Rohe& R. Beranek,"Controlling the Photocorrosion of Zinc Sulfide Nanoparticles in Water by Doping with Chloride and Cobalt Ions", *Langmuir*, vol. 32, no. 48, 2016, pp.12641-12649. And references there in.
- 55.S. Ummartyotin & Y. Infahsaeng,"A comprehensive Review on ZnS: From Synthesis to An approach on Solar Cell", *Renewable and Sustainable Energy Reviews*, vol. 55, no.1 2016, pp. 17-24. And references there in.
- 56.X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu &Y. Bando,"ZnS Nanostructures: From Synthesis to Applications", *Progress in Materials Science*, vol.56, no.2, 2011, pp.175-287.
- 57.S. A. Feng, J. H. Zhao& Z. P. Zhu, "The Manufacture of Carbon Nanotubes Decorated with ZnS to Enhance the ZnS Photocatalytic Activity", *New Carbon Materials*, vol.23, no.3, 2008, pp.228-234.
- 58.D. Ayodhya, M.Venkatesham & A. S. Kumari,"Synthesis, Characterization of ZnS Nanoparticles by Coprecipitation Method Using Various Capping agents-Photocatalytic Activity and Kinetic Study", *Journal of Applied Chemistry*, vol. 6, no.1, 2013, pp.101-109. And references there in.
- 59.T. Sulistyaningsih, S. J. Santosa & D. Siswanta,"Synthesis and Characterization of Magnetites Obtained from Mechanically and Sonochemically Assissted Co-precipitation and Reverse Coprecipitation Methods", *International Journal of Materials, Mechanics and Manufacturing*, vol.5, no.1, 2017, pp.16-19.
- 60. C. S. S R. Kumer, Magnetic Nanomaterials, Challa, Nanomaterialsforlifesciece,1sted.,WilyVCHVerlagGmbH&CoKG

aA,USA,2009,ISBN:978-3-527-32154-4,CH7:Core Magnetic Nanomaterials in medical Dianosis and Therapy, pp.260-261.

- 61. H. Kumar,S. P. Manisha & P. Sangwan ,"Synthesis and characterization of MnO₂ Nanoparticles Using Co-precipitation Technique", *International Journal of Chemical Engineering*, vol.3,no. 3, 2013, pp.60-155.
- 62.A. Ali, M. Z. H. Zafar, I.U.Haq, A. R. Phull, J. S. Ali & A. Hussain," Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles", *Nanotechnology, Science and Applications*, vol. 9, no.49, 2016, pp.49-67.
- 63.V. A. Basiuk & E. V. Basiuk,"Green processes for Nanotechnology", 1st ed., Springer, Switzerland, 2015, CH₃, P.77.
- 64.M. Králik, "Adsorption, Chemisorption, and Catalysis." *Chemical Papers*, vol.68, no. 12, 2014, pp.1625-1638.
- 65. S. Nethaji, A. Sivasamy & A. B. Mandal. "Adsorption Isotherms, Kinetics and Mechanism for The Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans regia Shell Biomass", *International Journal of Environmental Science and Technology*, vol.10, no.2, 2013, pp.231-242.
- 66.J. J. Kipling ,"*Adsorption from Solutions of Non-electrolytes*,1st ed., Academic Press, London, 2017,CH1, pp.1-2
- 67.A. K. Bajpai & M. Rajpoot,"Adsorption Techniques A review", Journal of Scienctific & Industrials Research, vol.58, no.11, 1999, pp.844-860.
- 68.V. Bolis, "Fundamentals in Adsorption at the Solid-gas Interface. Concepts and Thermodynamics", *Calorimetry and Thermal Methods in Catalysis*, A. Auroux(Ed), ISBN: 978-3-642-11953-8, Springer Berlin Heidelberg, 2013, pp. 3-50.
- 69.H. H. Schobert, Chemistry of Fossil Fuels and Biofuels, 1st ed., Cambridge, New York, Melbourne, 2013, ISBN :97,8-0-521-11400-4, pp.210-211.
- 70.R. Sajar," Essential Chemistry Xii",1st ed. Vptyagi, Virat Bhavne,India,2009, ISBN:978-81-8332-571-4.

- 71.M. Grätzel," Energy Resources through Photochemistry and Catalysis", 1sted., Academic Press, INC, London, 2012, CH 7, P.244.
- 72.F. H. Hussein, "Photochemical Treatments of Textile Industries Wastewater," *Asian Journal of Chemistry*, vol.24, no.12, 2012, pp.5427-5434.
- 73.F. Bebensee, F. Voigts & W. Maus-Friedrichs. "The Adsorption of Oxygen and Water on Ca and CaO Films Studied with MIES, UPS and XPS," *Surface Science*, vol. 602, no.9, 2008, pp. 1622-1630. And references there in.
- 74.R. Li, L. Wang, Q. Yue, H. Li, S. Xu & J. Liu, "Insights into The Adsorption of Oxygen and Water on Low-Index Pt Surfaces by Molecular Dynamics Simulations." *New Journal of Chemistry*, vol.38, no.2, 2014, pp. 683-692. And references there in.
- 75.W. Izydorczyk & B. Adamowicz, "Computer Analysis of Oxygen Adsorption at SnO," *Optica Applicata*, vol. 37, no.4, 2007, pp.378-385. And references there in.
- 76.X. Yu, X. Zhang, H. Wang & G. Feng, "High Coverage Water Adsorption on the CuO (111) Surface," *Applied Surface Science*, vol. 425, 2017, pp. 803-810. And references there in.
- 77.S.S. Zuafuani & L. M. Ahmed, "Photocatalytic Decolourization of Direct Orange Dye by Zinc Oxide under UV Irradiation," *International Journal of Chemical Sciences*, vol.13, no.1, 2015, pp.187-196. And references there in.
- 78.M. T. Yagub, T. K. Sen, S. Afroze & H. M. Ang,"Dye and Its Removal From Aqueous Solution by Adsorption: A review". Advances in colloid and interface science, vol.209, no.1, 2014, pp. 172-184. And references there in.
- 79.T. W. Seow & C. K. Lim, "Removal of Dye by Adsorption: A Review." *International Journal of Applied Engineering Research*, vol.11, no.4, 2016, pp. 2675-2679. And references there in.
- 80.S. K. Chinta & S. V. Kumar, "Technical Facts & Figures of Reactive Dyes Used in Textiles." *International Journal of Engineering and Management Sciences*, vol.4, no.3, 2013, pp. 308-312. And references there in.

- 81.G. Li, S. Park & B. E. Rittmann, "Degradation of Reactive Dyes in a Photocatalytic Circulating-bed Biofilm Reactor," *Biotechnology and Bioengineering*, vol.109, no.4, 2012, pp. 884-893. And references there in.
- 82. S. W. Puasa, M. S. Ruzitah & A. S. A. Sharifah, "Competitive Removal of Reactive Black 5/Reactive Orange 16 from Aqueous Solution via Micellar-Enhanced Ultrafiltration, "*International Journal of Chemical Engineering and Applications*, vol 3, no.5, 2012, pp. 354-358.
- 83.S. H. Lin & C. L. Lai, "Catalytic oxidation of Dye Wastewater by Metal Oxide Catalyst and Granular Activated Carbon", *Environment International*, vol. 25, no.1 1999, pp. 497-504. And references there in.
- 84.S. Alahiane, S. Qourzal, M. El Ouardi, A. Abaamrane & A. Assabbane, "Factors Influencing the Photocatalytic Degradation of Reactive Yellow 145 by TiO₂-Coated Non-Woven Fibers", *American Journal of Analytical Chemistry*, vol. 5, 2014, pp. 445-454. And references there in.
- 85.I. A. Bhatti, S. Adeel & M. Abbas, "Effect of Radiation on Textile Dyeing", Textile Dyeing, P. Hauser (Ed.), ISBN 978-953-307-565-5, InTech, CH 1, p.4, 2011.
- 86.A. I. Ahmed, "Texile Dyer and Printer-Reactive Dyes Development- A Review", *Technology of Textile Processing*, A. A. Shenai (Ed.), SEVAK Publications, Bombay, 400 031, 1995, pp. 19-24.
- 87.A. H. Mahvi, M. Ghanbarian, S. Nasseri & A. Khairi "Mineralization and Discoloration of Textile WasteWater By TiO₂ Nanoparticles", *Desalination*, vol. 239, 2009, pp. 309–316. And references there in.
- 88.T. Hadibarata, L. A. Adnan, A. R. M. Yusoff, A. Yuniarto, M. M. F. A. Zubir, A. B. Khudhair... &M.A. Naser ,"Microbial Decolorization of an Azo dye Reactive Black 5 Using White-Rot Fungus Pleurotus Eryngii F032. *Water, Air, & Soil Pollution*, vol. 224, no. 6, 2013, pp.1-9. And references there in.
- 89.M. Sagarika, N. Dafale & N. Neti Rao,"Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor

using acclimatized activated textile sludge", *Biodegradation*, vol.17, no.5, 2006, pp. 403-413.

- 90.F.H.Hussein, "Photochemical Treatments of Textile Industrie Wastewater", *Advances in Treating Textile Effluent*, Peter J. Hauser (Ed.), ISBN: 978-953-307-704-8, InTech, 2011.
- 91.M. Mashkour, A. Al-Kaim, L. Ahmed & F. Hussein, "Zinc Oxide Assisted Photocatalytic Decolorization of Reactive Red 2 Dye", *International Journal of Chemistry Science.*, vol. 9, no.3, 2011, pp. 969-979.
- 92.P. Iranmanesh, S.Saeednia, M. Nourzpoor," Characterization of ZnS Nanoparticles synthesized by Co-precipitation Method", *Chinese Physics B*, vol.24, no.4, 2015, pp. 046104.
- 93.C.S. Pathak, M.K. Mandal, V. Agarwala ,"Synthesis and Characterization of Zinc sulphide Nanoparticles prepared by Mechanochemicalroute",*SuperlatticesandMicrostructures*,vol.58, no.1,2013,pp.135-143.
- 94.A.Chandran, N.Francis, T.Jose & K. C. George, "Synthesis, Structural, Characterization and Optical Bandgap Determination of ZnS Nanoparticles", *SBCademic Review*, vol. XVII, No.1&2 ,2010, pp. 17-21.
- 95.K. Bera, S. Saha , P. C. Jana," Investigation of Structural and Electrical properties of ZnS and Mn doped ZnS nanoparticle", vol.5,no.1,2018, pp.6321–6328.
- 96.N. Shanmugam, S. Cholan, G. Viruthagiri, R. Gobi & N. Kannadasan, "Synthsis and Characterization of Ce³⁺⁻doped flower like ZnS nanorods", *Applied of Nanoscience*, vol.4, no.3, 2014, pp 359–365.
- 97.R.C.Silvaa, Li. A. Silvaa, P. L. B. Araújoa, E.S. Araújoa, R. Francisca ,S.Santosa, K. A. S.Aquinoa, "ZnS Nanocrystals as an Additive for GammaIrradiatedPoly(VinylChloride)", *MaterialsResearch*vol.20 ,no.2,2017, pp.851-857.
- 98.S. Dilpazir, M. Siddiq & A. Iqbal," Synthesis of Zinc Sulphide Nanostructures by Co-precipitation: Effects of Doping on Electro-optical Properties", *Kenkyu Journal of Nanotechnology* & *Nanoscience*,vol.1,no.1,2015,pp. 34-39.

- 99.S. A. Sundar & N. J. John, "Synthesis and Studies on Structural and Optical Properties of Zinc Oxide and Manganesedoped Zinc Oxide Nanoparticles. *Nanosystems: Physics, Chemistry, Mathematics*, vol.7, no.6, 2016, pp.1024-1030.
- 100. X. Pan, I. Medina-Ramirez, R. Mernaughc & J. Liu, "Nano Characterization and Bactericidal Performance of Silver Modified Titania Photocatalyst," *Colloids and Surfaces B: Biointerfaces*, vol.77, no. 1, 2010, pp. 82-89.
- 101. M. Sugiyama, K. Fujii, and S. Nakamura, Eds., Solar to Chemical Energy Conversion. Springer, 2016.
- 102. S. Ahmed, "Photo Electrochemical Study of Ferrioxalate Actinometry at A glassy Carbon Electrode", *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 161, no.2, 2004, pp. 151-154.
- 103. M. T. Eesa, A. M. Juda & L. M. Ahmed, "Thermodynamic and kinetic study for Photocatalytic Decolourization Of Light Green SF (Yellowish) Dye Using Commercial Bulk Titania and Commercial Nano Titania ", *International Journal of science and research*, vol. 5, no. 11, 2016, pp. 1495-1500. And references there in.
- 104. R. G. Saratale, G. D. Saratale, J. S. Chang & S. P. Govindwar, "Ecofriendly Degradation of Sulfonated Diazo Dye C.I. Reactive Green 19A using Micrococcus Glutamicus NCIM-2168", *Bioresource Technology*, vol. 100, no. 17, 2009, pp. 3897-3905.
- 105. A. Giwa, P. O. Nkeonye, K. A. Bello, E. G. Kolawole & A. O. Campos," Solar Photocatalytic Degradation of Reactive Yellow 81 and Reactive Violet 1 in Aqueous Solution Containing Semiconductor Oxides, *International Journal of Applied*, vol.2, no.4, 2012, pp.90-105.
- 106. B. Sivasankar, "Engineering Chemistry",1st ed. ,Tata McGraw-Hill, New Delhi, 2008, CH6, P.196.
- 107. V. Stavila, J. Volponi, A. M. Katzenmeyer, M. C. Dixon & M. D. Allendorf, "Kinetics and Mechanism of Metal-Organic Frame Work Thin Film Growth:Systematic Investigation of HKUST-1 Deposition on QCM Electrodes", *Chemical Science*, vol.3, no.5, 2012, pp.1531-1540.

- 108. M. Doğan, M. H. Karaoğlu & M. Alkan, "Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite", *Journal of Hazardous Materials*, vol.165, no.1, 2009, pp. 1142-1151.
- 109. B.N. Paula, S. Chandaa, S. Dasa, P. Singha, B.K. Pandeya & S.S.Girib," Mineral Assay in Atomic Absorption Spectroscopy", *The Beats of Natural Sciences*, vol.1, no.4,2014,pp.1-17.
- 110. B. Barman & K. C. Sarma, "Synthesis And Optical Properties of ZnS Nanoparticles in PVA Matrix", *Optoelectronics And Advanced Materials – Rapid Communications*, vol. 4, no. 10, 2010, pp. 1594 – 1597.
- 111. S. Wang, S. B. Mirov, V. V. Fedorov & R. P. Camata, "Synthesis and spectroscopic properties of Cr doped ZnS crystalline thin films", *Proceedings of Spie*, vol. 5332, no.1, 2004, pp. 13-20.
- 112. A. N. Krasnov, J. P. Bender & W. Y. Kim, "Increase luminance of ZnS/Mn thin-film electroluminescent displays due to Ag Co-doping", *Thin Solid Films*, vol. 467, no .1,2004, pp. 247-252.
- 113. D. A. Reddy, G. Murali, R.P. Vijayalakshmi & B.K. Reddy, "Room-temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles", *Applid Physics American*.A, vol. 105, no.1, 2011, pp.119–124.
- 114. M. Bodke, H. Khawal, U. Gawai & B. Dole, "Synthesis and Characterization of Chromium Doped Zinc Sulfide Nanoparticles", *Open Access Library Journal*, vol.2, e1549, 2015, pp. 1-8.
- 115. K. Shameli, M.B. Jazayeri,S.D. Sedaghat, P. Jahangirian, H. Mahdavi, &M. Y.Abdollahi," Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method", *International Journal of Molecular Sciences*,vol.13, no.1, 2012, pp.6639-6650.
- 116. D. Ozkaya," Particle Size Analysis of Supported Platinum Catalysts by TEM", *Platinum Metals Rev*, vol. 52, no. 1, 2008, pp. 61–62.
- 117. Y. Shin, Y. Hwang, Y. Um, D. A. Tuan & S. Cho, "Structural and Optical Properties of Polycrystalline NiO Thin Films

Prepared by Using the Oxidation of the Metallic Ni", *Journal of the Korean Physical Society*, vol.63, no.6, 2013, pp. 1199-1202.

- 118. R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink & C. D.M. Doneg, "Size Effects on Semiconductor Nanoparticles", Nanoparticles, workhorses of nanoscience, de Mello Donega (Ed.), Springer, 2014, ISBN: 978-662-44822-9.
- 119. H. Skriver & N. Rosengaard, "Surface Energy and Work Function of Elemental Metals", *The American Physical Phenomena*, vol. 46, no. 11, 1992, pp. 7157-7168. And references there in.
- 120. L.M. Ahmed ,S. I. Saaed, & A.A. Marhoon, "Effect of Oxidation Agents on Photo-Decolorization of Vitamin B₁₂ in the Presence of ZnO/UV-A System", *Indonesian Journal of Chemistry*, vol.18, no.2, 2018,pp. 272 - 278.
- 121. M. T. Jaafar," UV-A Activated ZnO Mediated Photocatalytic Decolorization of Nigrosine (Acid Black 2) Dye in Aqueous Solution", *Journal of Geoscience and Environment Protection*, vol.5, no.1, 2017, pp.138-147.

الخلاصة

يتكون الجزء العملي لهذا العمل من ثلاثة اجزاء. تضمن **الجزء الاول** تحضير كبريتيد الخارصين النانوي ومعدنة سطحه بالمنغنيز والكروم كل على انفراد او معا بطريقة الترسيب المصاحب.

يتضمن الجزء الثاني التحقق من خواص كبريتيد الخارصين التجاري والمحضر. حيث استخدمت تقنية الامتصاص الذري اللهبي لتخمين كون الفلزات حملت ام لا على سطح ZnS المحضر. تم الاستفادة من نتائج XRD لحساب معدل الحجم البلوري باستخدام معادلة شرر، اذ وجد تسلسل قيم الحجوم البلورية لكل العينات يتبع التسلسل :

commercial ZnS > prepared ZnS > Mn:ZnS: $Cr_{(1)}$ > Mn:ZnS: $Cr_{(2)}$ > Cr:ZnS> Mn:ZnS.

اشارت صور تحليل مجهر القوة الذرية الى كون اشكال النماذج المدروسة كانت شبه كرويه وكل جسيمة منها تحتوي تقريبا من 2.5 الى 6 بلورة استعملت تقنية التفلور لقياس مقدار طاقة الفجوة للنماذج المدروسة، اذ وجد بان طاقة الفجوة تتناقص لأغلب النماذج مع زيادة معدل الحجم البلوري، اذ تقع قيمتها لكل العينات المدروسة ضمن مدى من3.260 الكترون. فولت الى 3.577 الكترون. فولت.

ركز **الجزء الثالث** على دراسة العوامل المختلفة المؤثرة على الازالة اللونية للصبغة الفعالة السوداء 5 من محلولها المائي بوجود العوامل الضوئية المساعدة المدروسة وتشمل العوامل المدروسة: نوع الفلزات ، وكمية العامل المساعد ، الدالة الحامضية الابتدائية للمحلول، درجة الحرارة، العامل المؤكسد (بيرسلفات البوتاسيوم).

وجد ان افضل معدنة تمت على سطح كبريتيد الخارصين المحضر باستخدام الكروم وعند استخدام مزيج من المنغنيز والكروم معا في المزيج الثاني. عينت افضل كمية من كبريتيد الخارصين التجاري و من كبريتيد الخارصين المحضر المجرد و من كبريتيد الخارصين الممعدن بالكروم و من كبريتيد الخارصين الممعدن بمزيج من الكروم والمنغنيز معا فكانت 2.5 غم/100 مليلتر، 1 غم/100 مليلتر، 1غم/100 مليلتر، 1.5 غم/100 مليلتر على التوالي. لعبت عملية استخدام الدالة الحامضية دور فعال في عملية تحسين الازالة اللونية للصبغة، ووجد ان اعلى سرعة للتفاعل عند دالة حامضية لمحاليل الصبغة المحفزة ضوئيا لكبريتيد الخارصين بالكروم، وكبريتيد الخارصين المحضر المعدن بالكروم والمنغنيز معا معدن بالكروم، وكبريتيد الخارصين المحضر المعدن بالكروم والمنغنيز معا تساوي الى بالكروم، وكبريتيد الخارصين المحضر المعدن بالكروم والمنغنيز معا تساوي الى تم التحقق من تأثير درجة الحرارة ضمن المدى من 283.15 كلفن الى 303.15 كلفن. اذ اشارت النتائج ان قيم طاقات التنشيط لجميع العينات المدروسة تقع ضمن المدى من 13.420كيلوجول لكل مول الى 42.35 كيلوجول لكل مول. علاوة على ذلك فقد حسبت الدوال الثرموديناميكية مثل ,#ΔΗ و #Δα و ش**ΔG** لجميع العينات المدروسة، ووجد ان التفاعلات الضوئية باستخدام كبريتيد الخارصين التجاري وكبريتيد الخارصين المحضر الممعدن بالكروم هو باعث للحرارة، بينما يكون ماص للحرارة بحالة استخدام كبريتيد الخارصين المعدن بمزيج من المنغنيز والكروم.

تعد عملية استخدام العامل المؤكسد مثل بيرسلفات البوتاسيوم مهم جدا في عملية زيادة سرعة التفاعل الضوئي وتقليل زمن التشعيع، لذا وجد ان افضل تركيز مستخدم من بيرسلفات البوتاسيوم يقع ضمن مدى من (7-8) ملي مول /لتر لكل النماذج المدروسة.

سورة النور آية (35)

جمهورية العراق وزارة التعليم العالي والبحث العلمي جامعة كربلاء - كلية العلوم قسم الكيمياء

تحضير وتشخيص الدقائق النانوية لكبريتيد الزنك/كبريتيد الزنك المشوب للتفكك الضوئي للأصباغ

رسالة مقدمة الى

مجلس كلية العلوم / جامعة كربلاء وهي جزء من متطلبات نيل درجة

الماجستير في الكيمياء

تقدمت بها

بدور علي محمد السماوي

بكالوريوس علوم كيمياء جامعة كربلاء/2005

بأشراف

أ. م. د. لمي مجيد أحمد

2018 م

1439 ه