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Summary

Summary

This work includes synthesis of new perfluoro triazole starting from D-
galactose. Firstly, 1,2:3,4-di-O-isopropylidene-a-D-galactose (66) was
synthesized by the reaction of D- gaactose, acetone and sulfuric acid in

presence ZnCl. then the work was been divided into two lines.

The first line describes: Williamson etherfication of compound (66) with
propargyl bromide in basic media gave the terminal alkyne derivative 6-O-

prop-2-ynyl-1,2:3,4-di-O-isopropylidene-a-D-gal actose (67).

While the second one describes the synthesis of 1,2:3,4-di-O-isopropylidene-
a-D-galactose-6-O-triflate  (68) with good leaving group from the
esterfication of compound (66) by trifluoromethanesulfonic anhydride in
dry pyridine. The treatment of derivative (68) with sodium azide afforded 6-
azido-6-deoxy-1,2:3,4-di-O-isopropylidene-a-D-galactose (69) in good yield.

The derivatives (67) and (69) have been utilized to synthesize of the targeted
perfluoro triazoles via Cu (l) catalyst 1,3-dipolarcycloaddition: the reaction
of derivative (67) with azides as active group and ethyl spacer with different

perfluoro chain, afforded triazole derivatives (74-76).

While the reaction of compound (69) with perfluoroethyl propargyl ethers
(71-73) using the same Cu (I) catalyst conditions yielded the
perfluorotriazoles (77-79).




Summary

All the synthesized compounds have been characterized by spectroscopic
methods [FT-IR; *H and *C NMR], while the targeted compounds (74-79)
have been characterized by [FT-IR; *H, 3C NMR, HSQC, COSY and Mass]
gpectroscopic methods. The thermodynamic functions (AH, AG and AS) of
compounds (74-79) have been studied using DSC instrument,
thermodynamics calculations showed increasing the enthalpy values
corresponding with increasing the perfluoro chain which caused by the

rigidity of perfluoro chain reason the helical shape.
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HOMO HighestOccupiedMolecularOrbital
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HSQC HeteronucleaSingle QuantumCoherenc
HR-MS | High resolution mass spectr
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CHAPTER ONE INTRODUCTION

| ntroduction

The chemistry of heterocyclic compounds cordusito be an explore field in
the organic chemistry, heterocycles can be syrgbd=ither by ring synthesis or
by transformation of an existing ring, the relatimgortance of ring synthesis to
preparation by substitution increases as the nurobdreteroatoms in the ring
increases, an importance of triazoles derivaties in the field that these have
occupied an unique position in heterocyclic cheryfi8t Nitrogen heterocyclic
compounds are broadly distributed in medical chegni® and in nature include
amino acids, purines, and many other natural ptsdudhe chemistry of triazoles
has received much attention because of their usedpharmaceuticafy,
biologically active agenf8, and used as fungicid®s 1,2,3-Triazoles have been
widely used in synthetic intermediate and indubtx@plications such as dyes and

anticorrosive agerfta
(1.1) 1,3-Dipolar cycloaddition:

The dipolar compounds have a sequence of threesaddorc, of which (a) has a
sextet electrons in the outer shell and (c) antoaté at least one unshared pair an
atom with six electrons in the outer shell whiclussially instable and compounds
will delocalize the change to alleviate this elentc arrangemefit. The 1,3-
dipolar is a spaces which can be represented biyerionic resonance structures,
these zwitterions undergo 1,3-dipolar cycloaddition multiple bond systems,

referred to “dipolarophile$”.




CHAPTER ONE INTRODUCTION

Cycloaddition reactions are one of the most impurtdass of reactions in
synthetic chemistry, the class 1,3-dipolar cyclo@old reaction has found
extensive use as a high yield and stereocontrafietthod for the synthesis of

many different heterocyclic five-membered ring campds$'.

The 1,3-dipolar cycloaddition process has emergedha method of choice to
effect the requirements of connecting two molecuies general, fast, and efficient
process. 1,Bipolar cycloaddition have been used to make a elarg
number of heterocyclic compounds the reactionagesispecific and the geometry

of the olefin is maintained in the cyclic prod&i€tScheme (1-1)

a/b\c a/b\c

H\} (/H _ H\ L //H
C C C C\

/ \H / H

H H
CeHs
L Q
CeHs C_(Ij) o: _
CeHs
@ @ ©)
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SN

CsHy N:%:% + / \ —_— > : :

(4) ©)

Scheme (1-1) 1,3-Dipolar cycloaddition

Azides add to carbon-carbon double and triplendso with 1,3-dipolar

cycloaddition to give triazolinand triazoled? respectively. Scheme (1-2).

(7 (8 ©

N R1 N R1
\ /
/’\ Z \N/ N/ N

o 3 © ® N
R“—=C=C—R°> + N=N=N-R! ———» j i + : f
R? RS R3 R?

Scheme (1-2) Formation of traizoline (9) and triazole by 1,3-dipolar cycloaddition

The reaction between azides and nitries 1,3-dipolar cycloaddition gives
tetrazole8®. Scheme (1-3).
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Scheme (1-3) For mation tetrazoles by 1,3-dipolar cycloaddition

The difficulty in trying to forecast which wagund a 1,3-dipolar cycloaddition
will go is well illustrated when a substituted aziddds to an alkyne in the
synthesis of 1,2,3-triazoles. Reaction of an al&ylde with an asymmetrical
alkyne, having an electron-withdrawing group at end and an alkyl group at the
other, gives mostly a single triazole. It looksfatie more nucleophilic end of the
azide has attacked the wrong end of the alkynerdaember that: (1) it is very
difficult to predict which is the more nucleophilend of a 1,3-dipole and (2) it
may be either HOMO (dipole) and LUMO (alkyne) or MO (dipole) and HOMO
(alkyne) that dominate the reaction, the reasordéong the reaction was to make
analogues of natural nucleosi®sScheme (1-4).

'”‘e/\, CHO,Me N CO,Me

7
N® ‘ ‘ N l
BzO | 1,3-dipolar BzO \ OH
N OH  cycloaddition N
S At

OBz OBz OBz OBz

(10) (112)

Scheme (1-4) Effect of electron withdrawing group on 1,3-dipolar cycloaddition
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(1.2)Triazoles:

Triazoles are five-membered heterocycle contduree nitrogen atoms, there are

two types of triazoles 1,2,3-triazoles and 1,2idzoles™. Scheme (1-5).

Scheme (1-5) 1,2,3- and 1,2,4-Triazoles structures

Each triazole has one pyrrole-like nitrogen amad pyridine-like nitrogens, both

triazoles haveéautomerized'® shown in scheme (1-6).

NH
N
[\ A
N D z
7 N
ml 1,2,3-triazole
R Y
LY < )
N ) N
H 1,2,4-triazole

Scheme (1-6) Triazolestautomeric forms
Many 1,2,3-triazoles have been prepared bydip8lar cycloadditions of
acetylenes with azides. Generally, the more elpetrithdawing the substituents
on the acetylene, the easier the cycloaddition ti@e electron-withdawing
substituents on azides have the opposite effedky bsubstituents hinder the
reaction rate, but lead to better selecti¥ihscheme (1-7).

B
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N
N/ \N/R2
o\ /o
/C—CEC—C + RZ—/™N; —>
Rl
~o \ —R! R10 ORL
. O o
No. R1 R2 Yield%
12 Me P-MeO 94
H
13 Me —_—:—CZ- 97
14 Me - CeHs 73
15 Me K\AC' 62
H»

Scheme (1-7) Effect of substituents on triazole formation

(1.2.1) 1,2,3-Triazoles:

Five-membered heterocycle contain three N-atomthén1,2,3 positions,it was
known asV-triazole § meanings Vicinaly*®. All ring atoms in 1,2,3-triazoles are
sp-hybridized, the six available electrons are inodalization, in the other hand
its aromati€?, azides have been add to acetylenic compoundsv® Iy2,3-
triazoles.1,2,3-Triazoles were prepared in good to modestiyiey cycloaddition
of alkyl azides onto enol ethers under solvent fteaditions. The reaction can
access ring-fused triazoles that are unavailablazige-alkyne cycloadditions and
Is easily scalable. The 1,2,3-triazole products l@actionality that may be readily
derivatize®® scheme (1-8).

COMe / N
neat r—N COMe | COMe
R=N; + / H —_— N /
2000C 6h e
MeO R

Scheme (1-8) Triazole for mation
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Q. Yan&?V et. al synthesized the 1-monosubstituted aryl 1,2,3dt&zin good
yields using calcium carbide (18) as a source dftydene to produce N-

monosubstituted 1,2,3-triazole (19cheme (1-9).

Ar

(17)

N3 4+

Ca Cz

(18)

Na ascorbate

MeCN /H50 (2:1)

N
AT\N/ \N

\—/

(19)

Scheme (1-9) Formation of compound®? (19)

4-Aryl-1,2,3-triazoles, C-monosubstituted triazolegre synthesized from anti-
3-aryl-2,3-dibromopropanoic acid and sodium azigeabone-pot method using
N,N-dimethyl formamide as a solvent in presencePdi{dba) and xantphd$®

scheme (1-10).

r

i

0

Br
(20)

Ar/\/

CO,H

NaN3

(1)

Pb,(dba),
Xantphos

DMF , 110°C, 36h

Ar N\N
> \ / *+CO
NH

(22)

Scheme (1-10) Formation of compound (22)

The coupling of an azide with an alkenyl halideder palladium catalysis

conditions led to the formation of 1,2,3-triaz&l&sScheme (1-11).
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Pd,(dba), H

N
Xantphos VN
\/\B i NaN, > N

N
r dioxane \ /
0 °C

@3 (24) (25) ph

ph

Scheme (1-11) Formation of compound (25)

(1.3) Click Chemistry:
(1.3.1) Discovery of Click:

The click chemistry concept was introduced by KSRarples&® et al. in 2001
to describe reaction that are high yieldtflg, stereospecifié”, and used under
mild conditions, moreover, the copper-catalyzedl@zalkyne cycloaddition click
reaction can be performed in various solvents gholy water and in the presence
of numerous other functional groug®.

Click reaction involves a copper-catalyzed#ale formation from additional an

azide to an terminal alkyf® scheme (1-11).

N
cu(l) '\ R
C) . 1 N N N
R N N=—7/N + R C—=CH >
® \—/
RL
azide alkyne 1,2,3-triazole

Scheme (1-12) Formation of triazolevia click chemistry
The azide/alkyne click reaction which is an egdmg concept proposed by
Sharpless and co-workers is not a scientific dis@pbut rather a synthetic
philosophy inspired by the simplicity and efficignof the chemistry that takes

place in naturfé”. The general strategy for click chemistry was i as an
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approach which is essentially modular, and empkmysall molecules that can be
quickly stitched together to form complex functibneampounds, such as in nature
proteins and complex carbohydrates are formed ioyng smaller modular units.
Click chemistry presented as a set of reactions ¢aa be envisioned for single
trajectory, as these reactions are driven by a thghmodynamic driving force,
usually greater than 20 kcal/mol, and so complei@diy and selectively to
produce a single product. Three classes of reactwere singled out as ideal
candidates for click chemistry, that include:
1) nucleophilic opening of electrophiles, like eft®s, and aziridines.
2) mild condensation reactions of carbonyl compeufad example hydrazones
and oximes from aldehydes.
3) cycloaddition reactiof®).

Microwave irradiation significantly enhancesethate of formation of 1,4-
derived from an efficient one-pot azidation of amk with the reagent
combination t-Bu and TMS§$?. Scheme (1-13).

HC==c—R, CuSO, Ar N
t-Bu/TMSN; Na ascorbte \N/ \N

Ar——NH, > AN >
CHZCN CH3CN/H,0(2:1) —
rt..2min-2h MW (<125 W),80C°

R
(26) (27 2-10 min.

Scheme (1-13) Microwave formation of 1,2,3-triazole

The [3+2] cycloaddition reaction between azided alkynes was described by
Zhand® and co-workers they are used ruthenium complenstead of copper(l)
for the cycloaddition reaction, which led exclusyw& the formation of the 1,5-
disubstituted triazole§Scheme(1-14).
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Scheme (1-14) Description 1,4- and 1,5-triazoles®

The objective of click chemistry is to estableéhideal set of straightforward and
highly selective reactions. Click reaction of azadleyne is a recent re-discovery of
a reaction fulfilling many requirements which indkuoften quantitative yields, a
high tolerance of functional groups, an insenditivf the reaction to solvents,
irrespective of their polar/non-polar characterd asactions at various types of
interfaces, such as solid/liquid, liquid/liquid, @ren solid/solid interfac&9.

Based on the discovery of copper-catalyzed adkigra 1,3-dipolar
cycloaddition, that the 4,5-disubstituted triazodelld be obtained through trapping

cupper-triazole intermediate by electophiles duthmgreactior$®®. Scheme (1-15).

10
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SN = “@ ¢
S P - >

Cul, DIPEA \\$

S
N
N

N

AcO

3
(0) OA

Ac

(28) electrophlllc addition wolyss
N=—N
N
Aco / \2;

S
Q Z

S Z
\\\ \\ ///
\\ OA

///
AcO DAC

Scheme (1-15) Electrophilic addition vs protolysis of Cu(l)-Catalyzed

(1.3.2) Classification of click reactions:

Click chemistry encompasses a group of powdrfiking reactions that are
simple to perform, have high yields, require nonanimal purification, and are
versatile in joining diverse structures without fhrerequisite of protection steps.
There are four major classes of click reactiopgloadditions these primarily refer
to 1,3-dipolar cycloadditions, but also includednetDiels-Alder cycloadditions &
nucleophilic ring-openings these refer to the opegsiof strained heterocyclic
electrophiles, such as aziridines, epoxides, cyslitfates, aziridinium ions,
episulfonium ions, etc& carbonyl chemistry of the non-aldol type examples
include the formations of ureas, thioureas, hydnazp oxime, ethers, amides,
aromatic heterocycles, etc. carbonyl reactiondhefaldol type generally have low
thermodynamic driving forces, hence they have lomgaction times and give side

products, and therefore cannot be considered adia&tions & additions to carbon-

11
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carbon multiple bonds examples include epoxidationsziridinations,
dihydroxylations, sulfenyl halide additions, nityp$alide additions, and certain
Michael additions. Among the four major classeslagdditions, particularly the
Cul-catalyzed Huisgen 1,3-dipolar cycloadditionaafdes and terminal alkynes to
form 1,2,3-triazoles, are the most widely U&ad

(1.3.3) Metal strategiesin click chemistry:

Cycloaddition reactions, the metal catalyzedealkyne click reaction which is
a variation of the Huisgen 1,3-dipolar cycloadditiceaction between terminal
acetylenes and azides were shown to be the mesitigd and versatile and thus
became the prime example of click chemistry. Howewesome particular cases,
the presence of transition metal catalysts may peoblem. Additionally, the use
of copper(l) catalyzed azide—alkyne cycloaddition for wwvo applications is
limited by the fact that, if present in more thaace quantities, copper ions are
potentially toxic for living organisms, the devetopnt of metal free click
strategies is particularly relevant. In recent geanetal free [3+2] cycloaddition
reactions, Diels—Alder reactions, and thiakene radical addition reactions have
come to the fore as click reactions because of firgiple synthetic procedures and
high yields, alternative clickreactions to expand the range of opportunities for
new application&”,

(1.3.4) Mechanism of Click reaction:

The 1,3-dipolar addition reaction of alkyne amide under thermal condition
affords both 1,4- and 1,5- regioisomers becauseattization energies for the
concerted process leading to both isomers are vkrge. Two groups have
independently discovered that a catalytic amoun€ofl) not only significantly
accelerates the reaction rate, but also gives sxelul,4-disubstituted 1,2,3-

12
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triazole in a regiospeciff®®). Click reaction catalyzed with Cu(l) as the follogin

mechanisii® shows in scheme(1-16).

—H
1
A, =

R2

+
[LnCu _— [LnCul]

2

Cu catalyst
A
. R{N/N\\N LnCuz_(zRZ)
/ [
B-H R2
L.Cu, == R2)2
[R1 N ] Cu acetylide
N N\
N 3N
5 4
R1-Ng
LnCu, R?

Scheme (1-16) M echanism of click reaction using Cu(l)
Click chemistry is widely recognized with cuppetatgzed, Huisgen 1,3-dipolar
cycloaddition of azides and terminal alkynes, tieigction is usually quite slow in
the absence of an appropriate catalyst for alkgnegoor 1,3-dipole acceptors but
in the presence of cupper(l), which can bind tonteal alkynes, cycloaddition
reactions are quite accelerated and regioselecIive.incorporation of copper to

acetylide to form copper acetylide complex, azid#ivated copper acetylide

13
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complex to generate a copper acetylide-azide comples toward nucleophilic
attack of acetylide carbon C(4) at N(3) of the azijgnerating metallocy¢e.

This metallocycle positions the bound azide prbp for subsequent ring
contraction by a transnnular association of the) Ngthie pair of electron with the
C(5)-Cun*orbital®Y,

The difference in ring size for dimeric complexeay change the kinetic
slightly, but most likely the transformation frometallocycle into triazole-copper
derivative, protonation of triazole-copper derivatfollowed by dissociation of the

product ends the reaction and regenerates theyséfal

The unhindered terminal coordination of the twactants to the catalytic Cu(l)
cluster as a starting point for the reaction presidor catalysis of triazole
formation almost independently of the substitutiohlse most significant are the
electronic effects that influence the formationthé Cu(l) acetylides and the

establishment of the transition state of the reacd.

(1.3.5) Applications of click chemistry:

Application of click chemistry based reactideads to the formation of carbon-
heteroatom bonds by using molecules possessingitighsic reactivity. Click
chemistry has wide spread applications, some ahtlaee preparative organic
synthesis of 1,4-substituted triazét®s modification of peptide function with
triazole$®™), modification of natural products and pharmaceldt®), modification
of DNA and nucleotidé¥’, carbohydrate clusters and carbohydrate conjugatio
by Cu(l) catalyzed® and nanotechnoloy.

Click chemistry is not a strategy only for orgarsgnthesis, today it has an
enormous potential in materials science, polymerendhtry, biological
applications comprising and drug discovery, theettgyment of the copper (I)-

14
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catalyzed cycloaddition reaction between azides tanainal alkynes has led to
many interesting applications of click reactionsluling the synthesis of natural
product derivative®®. Although azides and alkynes display high muteakttivity,
individually these functional groups are two of thleast reactive in organic
synthesis, a new approach in organic synthesis alith chemistry that involves
the successful achievement of a polymerization ggeaepresents an important
task in macromolecular science. That have beenetinoorthogonal because of
their stability and inertness towards the functlogeoups typically found in
biologymolecule$Y. This bioorthogonality has allowed the use ofdaile-alkyne
[3+2] cycloaddition in various biological applicatis including target guided
synthesi$? and activity-based protein profiliftg.

Also click chemistry has widespread applicatiomsorganic synthesis of 1,4-
substituted triazol€®), modification of peptide function with trizol€3,

pharmacenticals as a drugs modificafiin

Click reaction can be utilized to constructilding blocks for the rapid
synthesis of molecules with diverse structure aundction. The synthesis of
macrocycles is the most striking example of thettsgtic application of this click
process the synthesis of cyclodextrin analeigsregioselective Cu(l)-catalyzed

cyclodimerization of an alkynyl —azido trisacchatl. Scheme (1-17).

15
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%
OH

OH
OH
0
G&‘-o N Hc&
|W\HO OH % 4 |
OH Cul/50°C
o) 0
HO

oH THF/H,0 (1:1) ﬁoi B
o) &‘ 0
HO (

(29)

Scheme (1-17) Synthesis of cyclodextrin (30) via click reaction
Click chemistry strategy was successfully appliedrtacromolecular chemistry,
affording polymeric materials varying from block pgdymer to complex
macromolecular structures, O. ALtint&& et al. applied a click chemistry strategy
to the formation of star polymers (nonlinear polyjngere recovered in yields as
high as 87% because of the highly efficient clie&ation. Scheme (1-18).

—Q

\—\O
e

\ //
; o) ,/(7
\ O/\/ \/\N3 N\N//
CuBr / DMF g
rt./ 24h

—

N

NQ/

o
(31) / (22)

Scheme (1-18) Synthesis polymer (32) viaclick reaction
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K. B. Sharples®® and Co-workers demonstrated the power of nucldiophi
ring opening and 1,3-dipolar cycloaddition clickacgons in the construction of
steroid-like skeletons from diepoxides.

(1.4) Fluorinated Compounds:

Fluorinated compounds are synthetic organarithe chemical compounds that
have multiple fluorine atoms they can be polyflnated or fluoro carbon-based
(perfluorinated$® , perfluoro- / perfluorinated describes specifical substance
where all hydrogen atoms attached to carbon atamseplaced with fluorine
atoms. This compounds have a wide range of funchod can serve as
refrigerant&?), pharmaceuticaf®)®®), and surfactants).

The carbon-fluorine bond is referred to the strahge organic chemistry because
of stability added by its partial ionic charactér ionic character is a result from
the electronegativity of fluorine, it induces palticharges on the carbon and
fluorine atoms,leading to electrostatic attractmaking the bond short and strong
64, Perfluorinated organic compounds are used in nousecommercial products

like fire protection agents, textile protectiGi.

Z. kaleta®” attempted the synthesis of fluorous cinchonida®,a potentially

reusable cinchona alkaloid. Scheme(1-19).
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N
SN
CFe \_—N NN
HC
A\ N
\\C
N N
HO, HO.
Cu(OAC), Ascorbic acid
X I X
CH3OH / C,Fg-Ng
/
N =
N
(33 (39

Scheme (1-19) Synthesis fluor ous cinchonidine (34)

X.-Y. Zhu®® et al. synthesized 1,4-disubstituted 1,2,3-triazofies1,3-dipolar
cycloaddition of fluoroalkylated azide (35) withri@nal alkyne (36) in presence

of Cu(l) as catalyst at room temperature. Scher0j1

N MeCN, H,0, Et;N
3 —_—
CF3(CF2)5/\/ + cul, rt. /\/

N

(CF,)sCF4

— NN 7
- N

(35) (36) @7

Scheme (1-20) Synthesis 1,4-disubstituted perfluoro triazole

S.M. Park? et al. synthesized perfluoroalkyl azides (35) for useyioloaddition

reaction under the conditions of the Sharples& ceaction. Scheme (1-21).
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AcO.
Cu(OAc),0

. N N (CF)CF3

CH,CI/H,0

OAc

(38) (35)

Na ascorbat / rt.

(cFi)SCFS

/N
NG
N

AcO

OAC(39)

Scheme (1-21) Formation of compound (33)

Furthermore the O- and N-propargylated (40) and) (Aspectively, were
independently reacted with perfluoroalkyl azide)(4dsing copper (I) iodide as

catalyst and resulted in exclusively 1,4-disubstidul,?2,

and (44), respectiveR according to Schemes (1-22).

3-triazole derivatives (42)

o/\%
X Cul
a | N + N/ TG
3 817 DM SO
S N)\ph /
S
(40) (41
Y | v NF o cul
)\ N, 8r17 DM SO
S N

(43) (41)

0]
|

nee

/___(\N/\ﬁslzl
N =N

N

(44)

Scheme (1-22) Reaction of perfluoroazide with O- and N-proper gyl
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(1.4.1) physical and chemical properties of florous compounds:

Fluorous compounds have lower the surfacsidarnof water down to a value
half /) the fluorinated or hydrogenated chains and sugaa aolar heads have
potential pharmaceutical (biocompatible formulasipand biological (extraction

of membrane proteins) applicatiéiis

The fluorous groups are usually attached torgamlecules through a(CHR)
segment to insulate the reaction site from thetelrcwithdrawing fluorines. A
florous alkyl chain @F+1 CynHom There are two broad classes of fluorous
molecules in fluorous synthesis, the first classflobrous molecules including
reagents, scavengers, and catalysts is employetthdasingle reaction steps. The
scond class of fluorous molecules including reastaprotecting groups, and

related tags are used to attach to the substrdtasau for multistep reactidh®

(1.5) Sugar triazoles:

The incorporation of an azide and/or an alkymeety on a carbohydrate scaffold
unleashes the potential to access a new dimendiostractural diversity to
complement the vast structural diversity alreadyenent to carbohydrates and so it
IS anticipate that interest in the 1,3-dipolar owcldition reaction with
carbohydrate substrate will gro®. Triazole substituted sugars have been

explored as potential monoralent and multivaleatth ligand§®.

The Cu(l)-catalysed azide—alkyne dipolar cydthaon reactions in the
carbohydrate field are many and varied, S. Détfkt al. synthesized cluster of

sugar with triazole-linked. Sheme (1-23).
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AcO

;ACOO
v Ao o\/‘Ns EACOO
e oJ” (EtO),P. Cul @‘&?Ac
r OOAcC

1 OAc
(45) (46)
OAc N3 OAC ;\|4N
cQ0 ACO -0 \)A
AcO 0
Acc& J/[ _ AcO N/
OAc
(0] EtO),P. C I -
( )3 u OOAC OAc
AcO
(45) (47

Scheme (1-23) Triazole linked of sugar cluster
B.K.Singl’” et al. have synthesized suger triazoles starting with ethre

pentofuranoses, D-xylose, D-ribose and D-arabinBskeme (1-24).

HC

N/N
CuS0O4/Na ascorbate o
+ HOC=—=CH > o) Me
t-Bu / H,0(1:1),30C° ><
llll[l/lo Me
HO
(48) (49) (50)
N
Z
Ns N N
0 OMe O o)
CuSO4/N b ¢
u a ascorbate
\_/ 4+ CH3(CH2jsCc=CH » CHs(CH2s \
S z t-Bu / H,0(1:1),30C° F B
o\ AP o o
c
/7 \
Me € Me Me
(51) (52) (53)
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WOMe N
. N/ Sy
CuSO4/Na ascorbate
+ CH3(CH2);C=CH >\ aW\OMe
t-B,OH / H,0(1:1),30C°
OH HzC(H2C)s
(54) (52) (55) OH

Scheme (1-24) Sugar triazole derivatives

Scheme (1-25) shows the formation of a 1,2,3-tleaderivative (58) from ethyl
propiolate as alkyne (56) and 6-azido-6-deoxy-Degée (57) as azido sudé&b.

0
N=N
N3 / /
N/ o
Z5\__ O Q' cuso45H,0/N bat
HC c” N_— + HO uSO4.5H,0 /Na ascorbate o
I HO H,0/ tB,OH(2:1) rt. g
¥ OH Lo
OH OH
(56) (57) (58) OH

Scheme (1-25) Formation of glucosetriazole

In a similar way, 6-azido-6-deoxy-cellobiose (59%ulkd be coupled with the
same alkyne (56) to afford the 1,4-di-substitutéazol€’® as show in scheme (1-
26).
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CuSO4 5H O/Naascorbate
=L o HO/tBOH(Zl)rt
HCZ No N — ~_© //
o)

Scheme (1-26) Formation of compound (60)

B.L Wilkinsort’¥ et al. are used 1.3dipolar cycloaddition reaction to cmbed

propargyl alcohol (58) with tetra-O-acetyl glucogyosyl azide (61) by using click
chemistry in presence of a CuSMNa ascorbate mixture in agueous alcohol .

Scheme (1-27).

OAc
o CuS04/Na asscor bate
AcO ‘k/ AcO
_l’_
AcO N, OH aq. alcohol /2h /rt.  ACO

(62) (62) (63)

Scheme (1-27) Formation of compound (63)

Multivalent carbohydrate interactions play fundatakmoles in many biological
processes, T. Zieglé? et al. describe a flexible and straightforward synthesis
multidentate carbohydrate ligansis Cu(l)- catalyzed, 1,3-dipolar cycloaddition
of glycosyl azide (61) with bivalent 2 propynyl detive (69) was clicked to
obtained 1,2,3-triazole-linked multidentate carlariaye ligand(65). Scheme (1-

28).
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AcO Ny +
OAC (@) 18h, rt. O

AcO N \
N _NH AcO g \ NH
N<=

N

OAc
(61) (64) (65)

Scheme (1-28) Synthesis multivalent carbohydrate via click reaction
(1.6) The Thermodynamics:

Thermodynamics, as the most fundamental subjedhe field of thermal
sciences, is simply defined as the science thds degh matter, energy, and the
laws governing their interactions. The name theynadics stems from the Greek
words therme (heat) and dynamis (power), which @stnadescriptive of the early
efforts to convert heat into power. Today the saiae is broadly interpreted to
include all aspects of energy and energy transfboms including power
production, refrigeration, and relationships amtimgproperties of matté¥.

A change from one equilibrium state of thetsys to another is called a
thermodynamic process. Thermodynamics cannot daterhow much time such
a process will take, and the final state is indejgan of the amount of time it takes
to reach equilibrium. It is convenient to consitleermodynamic processes where
a system is taken from an initial to a final sthAtea continuous succession of

intermediate states. To describe a process in tefitiermodynamic variables, the
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system must be in thermodynamic equilibrium. Howef@ the process to occur,
the system cannot be exactly in thermodynamic sjuim because at least one of
the thermodynamic variables is changing. Howeuethe change is sufficiently
slow, the process is quasistatic, and the systembeaconsidered to be in a
succession of equilibrium states. A quasistaticcgss is an idealized concept.
Although no physical process is quasistéic

In practice, the primary objective of chemit@rmodynamics is to establish a
criterion for determining the feasibility or sponé&ty of a given physical or
chemical transformation on the basis of laws ofrrtteelynamics, which are
expressed in terms of Gibbs’s functions, severdit@amal theoretical concepts and
mathematical functions have been developed thatiggaa powerful approach to
the solution of these questidiis Once the spontaneous direction of a natural
process is determined, we may wish to know howtliar process will proceed
before reaching equilibrium. For example, mighdfithe maximum yield of an
industrial process. Thermodynamic methods provige mathematical relations
required to estimate such quantiffés

Although the main objective of chemical thedywamics is the analysis of
spontaneity and equilibrium, the methods also gpli@able to many other
problem&. Similarly, the energy changes that accompanyyaiphl or chemical
transformation, in the form of either heat or waake of great interest, whether the
transformation is the combustion of a féf&l or the fission of a uranium
nucleu€®. Thermodynamic concepts and methods provide a ifolhapproach to
the understanding of such problems.

Although descriptions of chemical change aeeneated with the terms and
language of molecular theory, the concepts of theymnamics are independent of
molecular theory; thus, these concepts do not requiodification as our

knowledge of molecular structure changes. Thisufeats an advantage in a formal
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sense, but it is also a distinct limitation becawsecannot obtain information at a
molecular level from thermodynami® In contrast to molecular theory,
thermodynamics deals only with measurable propgerntie matter in bulk (for
example, pressure, temperature, volume, cell patemagnetic susceptibility, and
heat capacity). It is an empirical and phenomenoldgcience, and in this sense,
it resembles classic mechanics. The latter alsmmcerned with the behavior of
macroscopic systems, with the position and thecitgl@f a body as a function of
time, without regard to the body’s molecular nafte

The essence of thermodynamics can be summanyzéalir law$” 8):

1- Zeroth law of thermodynamics : If two bodies aretmermal equilibrium
with a third body, they are in thermal equilibrivith each other.

2- The first law of thermodynamics : Energy can begported or converted
from one form to another, but cannot be eitherteck@ar destroyed. It is
simply an expression of the conservation of engngyciple, and it asserts
that energy is a thermodynamic property.

AE=W+Q ... (1-1)

The quantity Q is the change in the system’s endtgyto heating (Q > 0)
or cooling (Q < 0) and W is the work done on thstegn. This equation is
equivalent to saying that there are two macrosco@igs of changing the
internal energy of a system: doing work and heating

3- The second law of thermodynamics: (increase ofoegtrprinciple) is
expressed as the entropy of an isolated systenmgluiprocess always
increases or, in the limiting case of a revergirtecess, remains constant. In
other words, the entropy of an isolated system melezreases. It also
asserts that energy has quality as well as quaatity actual processes occur
in the direction of decreasing quality of energy.
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AS|so|ated systelﬁ 0
4- The third law of thermodynamics: most important seguence of the third
law is that all heat capacities must go to zerthagemperature approaches

Zero.

|~/ Cp - Since S, = 0, 7 Cp

(1.6.1) Thermochemistry:

Thermochemistry is a branch of thermodynamid¢sclv are inhomogeneous
both thermally and chemically, thermochemical asiglgan be used successfully
to define the permissible reactions occurring dyran wide variety of joining
processe®). Thus can use calorimetry to measure the enengplisd or discarded
as heat by a reaction, and can identify g with angle in internal energy (if the
reaction occurs at constant volume) or a changmihalpy (if the reaction occurs
at constant pressure). Conversely, if knowA&k or AH for a reaction, we can
predict the energy (transferred as heat) the @actn produd®).

The internal energfl) is the sum of the kinetic and potential energiéshe
particles that make up a system Internal energysiate function. A state function
depends only on the present state of the systemsatwmpletely determined by
variables such as temperature and pressure. Astensghanges from one state to
another, the internal energy changes from one itefualue to a new definite
value. The change in internal energyJ) equals the difference in internal energy
between the final and initial staf¥s

(1.6.2) Enthalpy
The enthalpy(H) is a property of a substance that can be usedltulate the

heat produced or absorbed in a chemical reactiothalpy is also a state function,
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and calculate the enthalpy change for a chemiealtian by finding the difference
in enthalpy between the starting and ending stat¢halpy is related to internal
energy via its precise definiti6a:
H=U+PV (1-3)
whereP is the pressure andis the volume.
(1.6.3) Entropy

The entropy(S) is a measure of the amount of disorder, or ram#®s, in a
system. Entropy is another state function. Fortreas involving different phases,
we can often predict the sign of the entropy cha@ydids have a more ordered
structure since the constituent units (atoms, nudsg or ions) have definite
location$®®.
(1.6.4) Gibbsfree energy

The Gibbs free enerd(), or Gibbs energy, is the thermodynamic quantity
defined by the equation:
G=H-TS (1-4)
whereT is the temperature. As a chemical reaction procdextaH andS
change. These changes, denoted using tambol, allow the change in the
Gibbs energy to be calculaf&¥
AG=AH-TAS (1-5)
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(1.7) Thermal analysis

SRS, SRR evolved

% fransducer gas analysis
amplifier ~

v

Y
computer
X
- data .
capture carrier
- control furnace <+ gas
=
x
y
programmer

display

Fig. 1.1 : A generalized Thermal analysis instrument amdrésulting Thermal
analysis curve

Thermal analysis, in its various guises, isalycemployed in both scientific and
industrial domains. The ability of these technigtes<haracterize, quantitatively
and qualitatively, a huge variety of materials caeonsiderable temperature range
has been pivotal in their acceptance as analyteainiques(Table 1.1). The
application of thermal analysis to the study of tenials stems from the fact that
they undergo physicochemical changes on heléiing

Table 1.1. Conventional formsof Thermal analysis

Property Thermal analysis method Abbreviation
Mass Thermogravimetry TG
Difference temperature Differential thermal anadysi DTA
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Alternating temperature Alternating current calorimetry, ACC
Enthalpy Differential scanning calorimetry DSC
Length, volume Dilatometry -
Deformation Thermomechanical analysis TMA
Dimemsions or Dynamic mechanical analysis DMA

mechanical Properties

Electric current Thermostimulated current TSC

Luminescence Thermoluminescence TL

The advantages of thermal analysis over o#malytical methods can be
summarized as followf®:
()  The sample can be studied over a wide temperaamgerusing various
temperature programmes.
(i)  Almost any physical form of sample (solid, liquid gel) can be
accommodated using a variety of sample vesseldamhanents.
(i) A small amount of sample (0ry-10 mg) is required.
(iv) The atmosphere in the vicinity of the sample casthadardized.
(v) The time required to complete an experiment ranfyesx several
minutes to several hours.
(vi) Thermal analysis instruments are reasonably priced.
(1.7.1) Differential scanning calorimetry
A differential scanning calorimeter (DSC) maasuthe energy transferred as
heat to or from a sample at constant pressureglarphysical or chemical change.
The term 'differential’ refers to the fact that behavior of the sample is compared
to that of a reference material which does noteugal a physical or chemical
change during the analysis. The term 'scanninig@rgeto the fact that the

temperatures of the sample and reference matar@lincreased, or scanned,
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during the analysis. The exact ICTA definition @SC) is a technique that
records the energy (in the form of heat) requiredyield a zero temperature
difference between a substance and a refereneefusgtion of either temperature
or time at a predetermined heating and/or coolatg,ronce again assuming that
both the sample and the reference material ateeisame environme#t.

The main goal of any enthalpic experiment,cihs to determine the enthalpy
of a sample as a function of temperature, is athiny measuring the energy
obtained from a sample heated at a constant rakeaninear temperature or time
programminé®.

The plot obtained from differential scannirggacimetry instrument is known as
a DSC curve and shows the amount of heat appliedfasction of temperature or
time. this technique can be yield the several tloglynamic data such as enthalpy,
entropy, Gibbs’ free energy, and specific heatwadl as kinetic dat&’). The
integration of a DSC curve is directly proportiot@the enthalpy chang®.

Differential scanning calorimetry is used ihet chemical industry to
characterize the materials such as polymers atideirbiochemistry laboratory to
assess the stability of proteins, nucleic acids, membranes. Large molecules,
such as synthetic or biological polymers , attaomplex three dimensional
structures due to intra- and intermolecular inteactions, such as hydrogen
bonding and hydrophobic interactions. At higher penmatures , the protein
undergoes an endothermic conformational changer#dsaits in the loss of its
three-dimensional structure. The same principle® apply to the study of

structural integrity and stability of synthetic poilers, such as plastigd
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Aim of the Work

The target of this study is synthesis, charazgon and measurement of some
thermodynamic functionsA, AG and AS) of two types of novel sugar based
perfluorotriazolesiaCu (I) catalyzed 1,3-dipolarcycloaddition with tardifferent
perfluoro chains (&9, GsFi13 and GF;7) with ethyl spacer, and study the effect of

increasing the perfluoro chain on thel andAS, and comparison the values of the
two types.
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CHAPTER TWO EXPERIMENTAL PART

EXPERIMENTAL PART
(2.1) Materials

Chemical reagents and starting materials wbtaimed from Ajax, Merck and
Sigma-Aldrich Chemical.

(2.2) Instrumentations

Infrared spectra were recorded using AVATAR 3ZDBIR.'H and**C NMR
spectra were recorded using 300 MHz Bruker DPX tspeeters. DSC spectra
were recorded using PERKIN ELMER DSCY. Silica TU&tes were used with an
aluminum backing (0.2 mm, 6047). The reactions were monitored by TLC and
visualized by development of the TLC plates with alkaline potassium
permanganate dip.

(2.3) Synthesis of organic compounds
(2.3.1) Synthesis of 1,2:3,4-di-O-isopr opylidene-a-D-galactose(66)™°1)

-

0 OH \
Acetone/ ZnCl, 9]
D-Gal actose »
H,SO /6h/0-rt o
O
—°
\ ©

Scheme (2-1) Synthesis of compound (66)

Zinc chloride (40 g, 0.29 mol) was partiall\ssiblved in acetone (450 mL) and
conc. BSO, (1.0 mL) was added at room temperature to giviear colution.
a-D-Galactose (33.5 g, 0.18 mol) was added in onmgégroand the resulting white
suspension stirred for 6 h at rt. A suspension&{; (66.5 g, 0.63 mol) in D
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CHAPTER TWO EXPERIMENTAL PART

(100 mL) was added to the yellow reaction mixtur® &C. The suspension was
allowed to stir for 30 min then filtered and théidaliscarded. Volatile solvent was
removedin vacuo below 30°C. The resulting yellow oil and aqueous layer were
separated and aqueous layer further extracted @it (3x100 mL). The
combined organic layers were dried over.8@&, and the solvent removad
vacuo to vyield 1,2:3,4-di-O-isopropylidene-D-galactopyranos€66) as a pale
yellow oil (38.0 g, 81%) R= 0.45 (1:1 EfO/Hexane).

(2.3.2) Synthesis of 6-O-prop-2-ynyl-1,2:3,4-di-O-isopropylidene-
a-D-galactose (67)

o OH o o
X Q Propargyl bromide/ NaOH - Q
© DMF/24h/-15-rt o}
P Ao
\___ ®9 6

Scheme (2-2) Synthesis of compound (67)

Alcohol 1,2:3,4-di-O-isopropylidene-D-galactose(66) (0.52 g, 2 mmol) was
dissolved in DMF (10 mL) in a dry flask and NaOHle#s (0.32 g, 8 mmol) were
added. The flask was cooled in a salt- ice bath%C and the contents stirred for
10 min before propargyl bromide (2.2 mmol) was abdldeopwise. The reaction
mixture was then allowed to stir for 24 h, gradgaillarming to rt. The reaction
mixture was partitioned between,6t (50 mL) and water (100 mL), the layers
separated, and the aqueous layer extracted witle lae© (3 x 50 mL). The
combined extracts were dried over,N@, and evaporated to dryness under

reduced pressure. The residue was flash chromatogga(silica gel, EO/n-
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CHAPTER TWO EXPERIMENTAL PART

Hexane 1:9) to give 6-O-prop-2-ynl-1,2:3,4-di-Opsopylideneea-D-galactose
(67) as a white needles precipitate (1.10 g, 88%7, 41 (1:1 Hexane/ ED).

(2.3.3) Synthesis of 1,2:3,4-di-O-isopropylidene-a-D-galactose-6-
O-triflate (68)1°2

o on I
o o 0OSO0,CF4
Pyridine/DCM (o)
CFS o —>
o +  (CRSO)2 1.5h/stir/@C
O o o

)< Q o
k (66) (68) /

Scheme (2-3) Synthesis of compound (68)
In dry round flask dichloromethane (50mL) and dyyighne (1.35mL) was added,
the flask cooled to OC in ice bath and the trifluoromethanesulfonic airige
(2.7mL, 22mmol) was added dropwise. A thick whiteqgpitate began to form
during addition, the stirring allowed for an addital 10 min. The 1,2:3,4-di-O-
isopropylidenex-D-galactosg66) solution (22 mmol, 5.4g in 30 mL DCM) was
added dropwise and stirring continued for 1.5 he Tdmction mixture was poured
into 100mL ice-water, the layer was separated hagtgueous layer was extracted
with dichloromethane (3x50mL). The combined exsaetre dried over sodium
sulfate and the solvent was removed in vacuo, thsidue was flash
chromatographed (silica gel, Et20/n-hexane 1:3yit@ white solid(68) (4.6q,
63%), R=0.62 (ether).
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CHAPTER TWO EXPERIMENTAL PART

(2.3.4) Synthesis of 6-azido-6-deoxy-1,2:3,4-di-O-isopropylidene
a-D-gaI actose (69)

0SO,CF;
X +  NaNg
refl ux

(68) ’( (69)
\ /

Scheme (2-4) Synthesis of compound (69)
6-O-triflate-6-deoxy-1:2,3:4-di-O-isopropyliden-D-galactose (68) (1mmol)
was dissolved in DMSO (50mL), sodium azide (1.2mmas added and allowed
to the reflux overnight. Water (50mL) was adde@ mhixture was extracted with
ether (3x50mL) and the organic layer dried overnwodsulfate and evaporated in
vacuo, the residue was flash chromatographed gsged, Et20/n-Hexane 3:1) to

give colorless liquid69) (1.3g, 71%), R= 0.64 (1:1 hexane/ether).

(2.3.5) Synthesis of perfluoroalkylethyl azides (35, 41and 70)

! 70°C/24h 3

R'= C,Fy, CsFzand GF,

Scheme (2-5) Synthesis of perfluoroalkylethyl az{8&, 41and 70)
Sodium azide (0.98 g, 15 mmol) was added to theredti solution of
perfluoroalkylethyl iodidg5mmol) in DMSO (30 mL), the mixture was heated to
70°C for (24), the reaction was poured in water (50) mihd extracted with ether
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(3 x 50 mL), the combined organic layers was washigd brine (50 mL), water
(50 mL), dried over N&O, and evaporated under reduced pressure to giveea pa
yellow liquid. The residue was flash chromatographed (silicaliggilt petroleum)
followed by Kugelrohr distillation (describe in Fg-1)) gave perfluoroalkyethyl

azide as a colorless liquid.

oo el

et WESULM
Tamperature gauge ——— * @-‘ === heating control
o o

{a) Bull-to-bulb assembly for shor path distillation; (b) special oven for
short path distillation.

Fig. (2-1) Kugelrohr distillation

(2.3.6) Synthesis of perfluoroalkylethyl propargyl ethers (71-73)

4 N

Rf ~ N on NaOH/Propargyl bromids R’ \/\o/\
-15°C-rt/DMF

Rf= C4Fg, CeF13and GFy7

. /

Scheme (2-6) Synthesis of perfluoroalkylethyl prggyaethers (71-73)

Perfluoroalkylethyl alcohol2 mmol) was dissolved in DMF (10 mL) in a dry
flask and NaOH pellets (0.32 g, 8 mmol) were addée flask was cooled in ice
bath to -15°C and the contents stirred for 10 min. before propabgomide (2.2
mmol) was added dropwise. The reaction mixture thaa allowed to stir for 24 h,

gradually warming to rt. The reaction mixture wastpioned between ED (30

e
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mL) and water (50 mL), the layers separated, thee@ugl layer extracted with
more E3O (30 mLx 3). The combined extracts were washed with 10% RGEI (
mL x 3), water (30 mlx 3), dried over Ng&50O4, and evaporated to dryness under
reduced pressure. The residue was flash chromatogda(silica gel, EO/light
petroleum 1:20) followed by Kulgelrohr distillatiogave perfluorooctylethyl

propargyl ethers as a colorless liquid.

(2.3.7) General procedure for synthesis of perfluoroalkylethyl
triazoles (74-76)

4 )
= \
\ N\/\Rf
O f
0 R 0 o
Sodium ascor bate/CuS0O4 o
+ >
0 DM SO/75°C/48h
0 _o N3 o)
~ _0,<o

K Rf=C,Fg, CgF13and CgF; /

Scheme (2-7) Synthesis of perfluoroalkylethyl toles (74-76)

Propargyl ethef67) (0.274 g, 1.0 mmol) and perfluoroalkylethyl azid®,35
and 40) (1.0 mmol) were added to a suspensiondfispascorbate (0.018 g, 0.09
mmol) and CuS®5H,0 (0.011g, 0.045 mmol) in DMSO (10 mL). The mixture
was heated to 76 with stirring for 48 h. The reaction mixture waiduted with

water (30 mL), extracted with EtOAc (3x30 mL), aheé tombined organic layers
washed with brine (2 x 20 mL), dried over ;S&: and evaporated to dryness
under reduced pressure. The residue was flash ctwgraphed (silica gel,

Et,O/Hexane 1:1) to yield the desired compounds, whiele recrystallized.
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(2.3.8) General procedurefor synthesis of perfluoroalkylethyl triazoles
(77-79)

=N \

4 ] N
N3 / /\/Rf
(] N / O
X Q Sodium ascorbate/CuSO4 XO
* o} > o
o DM SO

A<
N )

Scheme (2-8) Synthesis of perfluoroalkylethyl toles (77-79)
Azide derivative (69) (0.427g, 1.5mmol) and perfluoroalkylethyl propargyl

ethers (71, 72 and 78).0 mmol) were added to a suspension of sodiunrlato
(0.018 g, 0.09 mmol) and Cug®GH,0 (0.011g, 0.045 mmol) in DMSO (10 mL).
The mixture was heated to ‘T5and stirred for 48 h. The reaction mixture was
diluted with water (30 mL), extracted with EtOAc @xmL), and the combined
organic layers washed with brine (2 x 40 mL), droe@r NaSO, and evaporated
to dryness under reduced pressure. The residudlashschromatographed (silica
gel, EtO/hexane 1:1) to yield the desired compounds, wivere recrystallized.

(2.4) Preparation of DSC samples

Samples (74-79) derivatives were weighted (5 gl placed in the pan,
covered with lid than pressed, the sample runninghen DSC instrument with
another empty pan as a blank, heating graduallyYQClih) for three cycle heating
and cooling respectivelyAH, Tiusion and onset using software supplied by
"PERKIN-ELMER THERMAL ANALYSIS".
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(2.5) Calculation of thermodynamic functions.

Thermodynamics functionfAH, AG and AS) were calculated for synthesized
compounds (74-79) using (Differential Scanning Galeter) (DSC) and gave the
following curve Fig.(2-2§°

heat flow——————— =

I
IR
I
%| baseline
L | \
T T
: ! i : zeroline
Tin Teo Tm Tec Tfi

Temperature

Fig. (2-2) Describe of DSC curve
Where:

Tin: initial peak temperature.

Teo extrapolated peak onset.

Tm: peak maximum temperature.

Tec extrapolated peak completion temperature.
Tyq: final peak temperature.

Once a satisfactory baseline has been definedatba of the endotherm or
exotherm is determined by numerical integratione Tineasured area, A, is
assumed to be proportional to the enthalpy changk, for the thermal event
represented.
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Enthalpy (AH) calculation enthalpy of transition, this is done ibtegrating the
peak corresponding to a given transition. It canshewn that the enthalpy of
transition can be expressed using the following tonia

AH =KA

Where:

AH is the enthalpy of transition
K is the calorimetric constant
A is the area under the curve

Gibbsfree energy (AG) equal to zero resulting from the equilibrium betwselid

phase to liquid phase.

Entropy (AS) was calculated from celebrated equation as showavizell
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Results and Discussion

Generdly, overall synthesized compounds described in the scheme (3-1):

D-Galactose
Acetone H,S0,
ZnCly | 6h/o-rt
0 OH
>( .
(0]
(6]
o ©) X
+
NaN3
\\ DM SO
NaOH
DMF| -
Y DM SO reflux Click condition
NaN; | 24n/70°C

Rf

)<o Rf:C4Fg, CgFB and CSF17

Click condition = CuS04'5H,0/Na ascorbate/ 70°C / 48h

Scheme (3-1) Synthetic method of perfluoro triazoles
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(3.1) Synthesis of target compounds:
(3.1.1) 1,2:3,4-di-O-isopropylidenax-D-galactose(66)

D-Galactose contains five free hydroxyl grodipscyclic form) as active
groups, in work its only one free hydroxyl groupgegjuired, that means it is
necessary to protect four groups, so 1,2:3,4-dsdpriopylidenar-D-
galactose has been synthesized according to lllogviimg scheme from the
reaction of D-Galactose with acetone in presenc&€nil, as a catalysis
acidic media (HSQy) to produced 81% yield of compound (66):

N CONN

Scheme (3-2) Structure of compound (66)

FT-IR spectrum Fig. (3-1) of compound (66) showfee following bands ab
cmt (NUjOl): 3483 ()O—H), 2987 ()C—H, CH?), 2936 ()C_H,CHQ), 1382 6C—H, CHQ, 1070

(Dc_o) .

'H NMR spectrum Fig. (3-2) showed the following sitgatd (ppm) (CDC}):
1.36, 1.45, 1.5 (S, 12H, 4GHopropyigen), 2.37 (br s1H, OH), 3.74 (dd} 10.7, 7.3
Hz, 1H, H6), 3.83 (dd, 10.7, 4.7 Hz, 1H, k6), 3.86 (dddJ 7.3, 4.7, 2.0 Hz, H5),
4.26 (dd,J 7.9, 1.6 H, 1H, H4), 4.32 (ddJ 5.0, 2.4 H, 1H, H2), 4.60 (ddJ 8.0,
2.4 Hy, 1H, H3), 5.56 (dJ 5.0 H,1H, H1).
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The 13C NMR spectrum Fig. (3-3) showed the following signatd (CDCk)
(ppm) 243, 249, 259, 260, (4C, Q!‘,ﬂpropy”den}, 623 (C6), 686 (C5), 705 (CZ),
707 (CB), 715 (C4), 963 (Cl), 1086, 1094 (253 isopropyliden},

'H and*C NMR spectra indicated that only four hydroxyl gps are protected it
is showed form the shifting signals (3.74 and 3#3)he high value o which
referred to two protons that shielded by hydroxgiugp.

* The signals around 7.35 ppm and 77.00 ppmin *H & *C NMR spectra
respectively are attributed to CDCl 5 (103),

HSQC spectrum Fig. (3-4) of compound (66) showet dignals summarized in
table (3-1).

Table (3-1) HSQC values of compound (66)
13C NMR HSQC

24.3, 24.9, 25.9, 26.0, (4C1.32,1.44,1.52
CHs isopropyliden}

62.3 (C6) 3.74, 3.85
68.4 (C5) 3.85
70.5 (C2) 4.33
70.7 (C3) 4.59
71.5 (C4) 4.27
96.3 (C1) 5.56

108.6, 109.4 (2C, CH -

isopropylidenw)
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Fig. (3-3)1*C NMR spectrum of compound (66)
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Fig. (3-4) HSQC spectrum of compound (66)
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(3.1.2) 6-O-prop-2-ynyl-1,2:3,4-di-O-isopropylideneau-D-
galactose(67)
Williamson etherfication of compour{i6) with propargyl bromide in presence

of basic media (NaOH pellets) produced the termalyne compound67) in

very good yield (88%) as showen bellow:

. N

ey

Scheme (3-3) Structure of compound (67)

FT-IR spectra Fig. (3-5) of compouirid7) showed the following bands ab
(cm®) (Nujol): 32530 c-+ alkynd, 29230 c-n, chd, 21100 c=c), 1459 6 c_1), 13776
c-hcha), 1101 ¢ c-o).

FT-IR spectrum illustrate good evidence that thectien happened successfully
through conceal broad band for (-OH) group at (3488), and showed sharp

bands at (3253 and 2110 émwhich indicated that the terminal alkyne was
formed.

H NMR spectrum Fig. (3-6) of compoui(é7) appeared the following signals at
5 (ppm) (CDCY): 1.32, 1.34, 1.45, 1.54 (s, 12H, 4Gbbropyiideny, 2.42 (t,J 2.4 Hz,
1H, H1), 3.66 (ddJ 10.1, 7.1 Hz , H, '), 3.77 (ddJ 10.1, 6.2 Hz, 1H, k6",
3.99 (dddJ 7.1, 6.2, 2.0 Hz, 1H, H5"), 4.19 (d#i15.9, 2.4 Hz, 1H, KB), 4.24
(dd,J 15.9, 2.4 Hz, 1H, KB), 4.26 (dd, 7.9, 2.0 Hz, 1H, H4"), 4.31 (dd 5.0, 2.4
Hz, 1H, H2'), 4.60 (dd] 7.9, 2.4 Hz, 1H, H3"), 5.54 (d,5.0 Hz, 1H, H1)).
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The *H NMR spectrum showed triplet signal at (2.42 pgiar) the acetylenic
proton which caused by the long range coupling.

While *C NMR spectrum Fig. (3-7) of compourf{fi7) showed the following
signals ab (ppm) (CDC}): 24.4, 24.9, 25.9, 26.0 (4C, Glbpropyiideny, 58.4 (C3),
66.7 (C5"), 68.7 (C6'), 70.4 (C2), 70.6 (C3"),27{1C4"), 74.6 (C1), 79.6 (C2),
96.3(C1"), 108.6, 109.3 (2C,ifprpylideny-

Table (3-2) summarized values of HSQC Fig. (3-8 @0OSY Fig. (3-9) spectra.

Table (3-2) Summarized HSQC and COSY values of camg (67)

H NMR (ppm) COSY 13C NMR (ppm) HSQC
1.32, 1.34, 1.45, 1.54 (51.32, 1.34, 1.45, 24.4, 24,9, 25.9, 26.01.32, 1.34, 1.45, 1.54
12H, 1.54 (4C, CHsisopropyliden}
4CH3isopropylident
242 (t, J 2.4 Hz, 1H,5.54 58.4 (C3) 4,22
H1)

3.66 (dd, J 10.1, 7.1 HZz 3.77, 399 66.7 (C5") 3.99
H, Ha6")

3.77 (dd, J 10.1, 6.2 Hz3.66, 3.99 68.7 (C6") 3.77
1H, Hb6"

3.99 (ddd, J 7.1, 6.2, 2|03.66, 3.77 70.4 (C2) 4.31
Hz, 1H, H5'

4.19 (dd, J 15.9, 2.4 HzA.24, 4.26 70.6 (C3) 4.60
1H, Ha3

4.24 (dd, J 15.9, 2.4 HzA.19, 4.26 71.2 (C4) 4.26
1H, Hb3

4.26 (dd, J 7.9, 2.0 Hz,4.19, 4.24, 4.60 74.6 (C1) 2.42
1H, H4"

4.31 (dd, J 5.0, 2.4 Hz5.54 79.6 (C2)

1H, H2"

4.60 (dd, J 7.9, 2.4 Hz,4.26 96.3(C1) 5.54
1H, H3"

554 (d, J 5.0 Hz, 1H,4.31 108.6, 109.3 (2C,

Hl') isoprpylidenn)
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Fig. (3-9) COSY spectrum of compound (67)
(3.1.3)1,2:3,4-di-O-isopropylideneea-D-galactose-6-O-triflate (68)
The substitution reaction cannot occur whenQhkgroup at (C6) converted to

-OMs and —OTs due to the axial group at (C4) ohgalpyranose ring . the only
way is converting the OH group into an excellertviag group like triflate ester
(104) - Esterfication of compound (66) with trifluoro rhahe sulfonic anhydride
produced the triflate ester (68) yielded (63%).

(\ o _osopn )
A
N @ Y,

Scheme (3-4) Structure of compound (68)
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FT-IR spectrum Fig. (3-10) of compou(@B) showed the following bands at
(cmY) (Nujol): 2991 © c.H, cHy), 1417 6 c-hH, cH2), 13856c.H), 1248 and 1148u(
s:o), 1212 () C-o-c,), 1072 () C-O)-

While 'H NMR spectrum Fig. (3-11) of compourfé8) showed the following
signals at (ppm) (CDC}): 1.33, 1.34, 1.44, 1.53 (s, 12H, 4€Kropyiideny, 4.11
(ddd,J 7.3, 4.7, 2.0 Hz, 1H, H5), 4.24 (d#17.8, 2.0 Hz, 1H, H4), 4.36 (dd,5.0,
2.6 Hz, 1H, H2), 4.58 (dd] 10.7, 7.3 Hz, 1H, k), 4.64 (ddJ10.7, 4.7 Hz, 1H,
Hy6), 4.65 (dd,) 7.8, 2.6 Hz, 1H, H3), 5.54 (d,5.0 Hz, 1H, H1).

13 NMR spectrum Fig. (3-12) of compou(®B) showed the following signals at
o (ppm) (CDC}): 24.4, 24.8, 25.8, 25.9 (4C, Ghhpropyliden}, 66.0 (C5), 70.2 (C2),

The FT-IR spectrum signified that the compo(é8d) was formed by means of that
band at (3483 crif) concealed antH NMR spectrum gave shifting two protons at
(4.58 and 4.64 ppm) for higher valuesogcale.

The HSQC values summarized in table (3-3):

Table (3-3) HSQC values of compound (68)

13C NMR HSQC

24.4, 24.8, 25.8, 25.9 (4C1.33, 1.34, 1.44, 1.52
CHB isopropyliden)

66.0 (C5) 4.11
70.2 (C2) 4.36
70.4 (C4) 4.24
70.6 (C3) 4.65
74.6 (C6) 4.64
96.1 (C1) 5.54

109.1, 110.1 (2C, CH -
isopropyliden)

e
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(3.1.4) 6-azido-6-deoxy-1,2:3,4-di-O-isopropylidene-D-
galactose (69)

The {2 reaction of compound (68) with sodium azide in M afforded the
sugar azidg69) in good yield (71%). An azide is a functional goowhich is

important to starting click reaction, synthesiscompound(69) described in the

o

(69)

following scheme:

Scheme (3-5) Structure of compound (69)

Characterization of compound69) according to the following figures:
FT-IR spectrum Fig. (3-14) showed the following 8srato (cnTt) (Nujol): 2989
(v et cnd, 2103 0 N=N=N, of azidds 14576 cn), 1212 0 c.o-0), 10700 c.0). The FT-IR
spectrum of which showed the highly characterigticle group absorption at 2103

cnrtis an excellent evidence for the formation of coonmd (69)

H NMR spectrum Fig. (3-15) showed the followingrsits ats (ppm) (CDC}):
1.33, 1.34, 1.45, 1.54 (12H, 4GHpropyiden), 3.36 (dd,J 12.7, 5.4 Hz, 1H, ),
3.51 (ddJ 12.7, 7.8 Hz, 1H, k6), 3.90 (ddd) 7.8, 5.4, 2.0 Hz, 1H, H5), 4.19 (dd,
J7.9, 2.0 Hz, 1H, H4), 4.33 (dd,5.0 , 2.5 Hz, 1H, H2), 4.63 (dd,7.9, 2.5, Hz,
1H, H3), 5.54 (dJ 5.0 Hz, 1H, H1).
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13C NMR spectrum Fig. (3-16) showed the followingreits ats (CDChk) (ppm):
244, 249, 259, 260 (4C, @Iidopropyliden}, 506 (CG), 670 (C5), 704 (CZ), 708
(C3), 71.1 (C4), 96.3(C1), 108.8, 109.6 (2Csoopyiden)-

HSQC and COSY spectra Fig. (3-17) and (3-18peetively, gave signals
clarified in the table (3-4):
Table (3-4) Summarized HSQC and COSY values of cung(69)

1H NMR COSY 13C NMR HSQC
1.33, 1.34, 1.45, 1.54 (12KH1.33, 1.34, 1.45,24.4, 24.9, 25.9, 26.01.33, 1.34, 1.45, 1.54
4CH3isopropyIiden) 1.54 (4C, Chs isopropyliden)
3.36 (dd,J 12.7, 5.4 Hz| 3.51, 3.90 50.6 (C6) 3.51
1H, Ha6),
3.51 (ddJ12.7, 7.8 Hz, |3.36,3.90 67.0 (C5) 3.90
1H, Hy6)
3.90 (ddd,J 7.8, 5.4, 2.0 3.36, 3.51 70.4 (C2) 4.33
Hz, 1H, H5
4.19 (ddJ 7.9, 2.0 Hz, 1H,| 4.63 70.8 (C3) 4.63
H4)
4.33(ddJ5.0, 2.5 Hz, 1H| 5.54 71.1 (C4) 4.19
H2)
4.63 (ddJ 7.9, 2.5, Hz, 1H| 4.19 96.3(C1) 5.54
H3)
5.54 (d,J5.0 Hz, 1H, H1) | 4.33 108.8, 109.6 (2C, |C

isopropyliden)
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(3.1.5) Perfluoroalkylethyl azides (70, 35 and 41)

Perfluoro chain which used in this study candbssified in to two lines:
perfluoroalkylethyl azides and perfluoroalkylethgltopargyl ethers each line
contains three different perfluoro chains £ -CsF13 and -GF17) with (-CH.CHz-

) as a spacer.

R~ NaNyDMSO R _~_

| 70°C/24h Na

Scheme (3-6) Synthesis of perfluoroalkylethyl agide
FT-IR, '"H NMR, 3C NMR data and percentage yield of perfluoroalkgttyl

azide summarized in table (3-5):
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Table (3-5) Summarized FT-IR{ NMR, ¥*C NMR and percentage yield of
compound35, 41, 70)

Compound Rf Yield FT-IR IH NMR 13C NMR
No. (cm)(neat) | 3(ppm)(CDCE) | §(ppm)(CDCh)
2955 { cH, 2.38 (m, 2H, H2),| 30.8 (C2), 43.3
cH2), 2109 ¢ 3.61 (t,J7.2Hz, | (C1)
35 CeF13 77% | N=N=N), 1393 6 | 2H, H1)
C-H, cHo), 1318,
123¢€ (v cF).
2955 0 c-H, 2.38 (m, 2H, H2), 30.8 (C2), 43.3
CcH2), 2108 ¢ 3.61 (t,J7.2Hz, | (C1)
41 CsF17 75% | N=N=N), 1242 6 | 2H, H1)
c-H, cH), 1206
(v cF).
2955 0 c-H, 2.38 (m, 2H, H2),| 30.7 (C2), 43.3
cH2), 2108 ¢ 3.61 (t,J7.2Hz, | (C1)
70 CsFo 71% | n=n=N), 1393 § | 2H, H1)
C-H, CHD),
12270 c-p).
oty canis
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Fig. (3-19) FT-IR spectrum of compou(itD)
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FT-IR spectrum showed strong band at (2108cas a specify that the compound
with azide group was produced, and there are nal lfan (-OH) group was
appeared. While théH NMR spectrum showed signal at (tt, 3.61ppm) which
referred to the effect of fluorine atoms spin infludro chain overlapping with

protons spin of ethylene group.

(3.1.6) Perfluoroalkylethyl propargyl ethers (71-73

The second category of perfluoro compounds in ghisly that contains terminal
Carbon-Carbon triple bond as an active group, igison etherfication of
perfluoroalkyl ethyl alcohol with propargyl ether basic media and DMF gave the

perfluoroalkylethyl propargyl ethers as shown ihesoe (3-6).

NaOH/Propargyl bromide
-15°C-rt/DMF

Scheme (3-7) Synthesis of perfluoroalkylethyl prggyaethers

FT-IR, 'H NMR, 3C NMR data and percentage yield of Perfluoroallyikt

propargyl ethers summarized in table (3-6).

Table (3-6) Summarized FT-IR{ NMR, 3*C NMR and percentage yield of compouid-73)

Compound Rf Yield FT-IR 1H NMR 13C
No. (neat)(cmt) 5(CDCI3) NMR
(ppm) d(CDCI3)
(ppm;
3315 § c-H, alkynd, | 2.43 (M, 2H, 31.4 (C2),
2896 O cH,cH), | H2), 2.45 (tJ 58.3 (C1),
2122 { c=c), 2.4Hz, 1H, H3), | 61.6 (C1)),
71 71% | 1357 §c.ncHd), | 3.82 (1J6.9Hz, | 74.9 (C3),
CaFo 1234 { c-p), 1134 | 2H, H2), 4.18 (d,| 78.8 (C2)
(v c-00). J2.4Hz, 2H, H1
3316 § c-H, alkynd, | 2.43 (M, 2H, 31.4 (C2),
289/ (v cH.ch), | H2),2.46 (tJ | 58.3 (C1),

e
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2122 { o), 2.4Hz, 1H, H3), | 61.7 (C1),
72 77% | 13616 chond, | 3.82 (t,J6.9Hz, |74.9 (C3),
CoFis 1239 { c.f), 1145 | 2H, H2"), 4.19 (d,| 78.9 (C2)
(v c-00). J2.4Hz, 2H, H1
3317 6 o akynd, | 2.43 (M, 2H, 31.4 (C2),
2897 b ch.ond, | H2), 245 (t) | 58.3 (CL),
2122 § c=c), 2.4Hz, 1H, H3), | 61.7 (C1)),
73 75% | 1361 6 ch.cr), | 3.82 (1,16.9Hz, | 74.9 (C3),
CoF7 1203  c.9), 1147 | 2H, H2Y), 4.18 (d,| 78.9 (C2)
(v c-o0). J2.4Hz, 2H, H1
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Fig. (3-28) FT-IR spectrum of compoufitil)
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The characterization spectra was showed good esedéor the formation of
compoundg71-73) FT-IR spectrum gave bands at (3315 and 2122) dor the

terminal acetylene vibrations, whilél NMR and®3C NMR spectra gave triplet
signals which referred to the effect of fluorineoras spin in perfluoro chain

overlapping with protons spin of ethylene group.

(3.1.7) 4-(6-galactosyloxy)methyl-1-(2-perfluorobuyt)ethyl-1H-
1,2,3-triazole-1,2:3,4-diacetonide (74)
Click chemistry was used in this study to get ligldstitutes 1,2,3-triazoles
with terminal perfluoro chain and carbohydrate vitives as another substituent,
so it is important to click of the terminal alkynéh perfluoroazides to produce N-

substituted ethyl perfluoro chain

Cu(l) catalyzed 1,3-dipolar cycloaddition obpected acetylenic sugés7) with
perfluoroalkyl ethyl azide to afforded 1,4-disubsied triazole scheme (3-7)

4 e N

1 2°
1> N
AN \(\C4Fg

5

= Y,

Scheme (3-8) Structure of compouiid)

FT-IR spectrum Fig. (3-37) of compou(®) showed the following bands at
(NU]O') (le): 2923@ C-H, CH3)5 14566 C-H, CH3)5 1377() c-N), 1217() c-|:), 1168() C-

O-C) .

WhileH NMR Fig. (3-38) for the same compound showedf@tiewing signals
atd (CDCh) (ppm): 1.23, 1.33, 1.43, 1.53 (s, 12H, 4sddopyiidend, 2.82 (tt,J 18.0,
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7.6 Hz, 2H, H2"), 3.68 (dd} 10.3, 7.1 Hz, 1H, K “a), 3.74 (dd,) 10.3, 5.6 Hz,
1H, H6™), 4.00 (M, 1H, H5™), 4.24 (dd,7.9, 1.9 Hz, 1H, H4™™), 4.31 (dd,
5.0, 2.4 Hz, 1H, H2™), 4.60 (dd,7.9, 2.4 Hz, 1H,H3™), 4.67(8 7.5 Hz, 2H,
H1)), 4.73 (s, 2H, H1™), 5.54 (d,5.0 Hz, 1H, H1™), 7.66 (s, 1H, H5).

13C NMR spectrum Fig. (3-39) of compouii@d4) gives the following signals at
(CDCls) & (ppm): 24.4, 24.8, 25.9, 26.0 (4C, €kbhpropyliden}, 31.7 (C27), 42.3
(C1), 646 (C1), 66.8 (C5 ), 69.5 (C6 ), Z0(C2 ), 70.6 (C3 ), 711
(C4777), 96.3 (C1), 108.5. 109.3 (2C,ifpropylideng, 123.2 (C5), 145.6 (C4Ms
(ESI)m/z 610 ([M+Na]").

HSQC Fig. (3-40) and COSY Fig. (3-41) of compbyid4) showed signals

summarized in table (3-7):

Table (3-7) Summarized HSQC and COSY values of cung(74)

'H NMR COSY 13C NMR HSQC
1.23,1.32,1.43,1.52| 1.23, 1.32,1.43, 1.52| 24.4, 24.8, 25.9, 26113, 1.32, 1.43, 1.52
(s, 12H, (4C, CHisopropyliden}
4C|‘bisopropyliden)

2.82 (t,J18.0, 7.5 4.67 31.7 (C2) 2.82
Hz, 2H, H2")

3.68 (dd,J10.3, 7.1 |3.74,4.00 42.3 (C1) 4.67
Hz, 1H, H6 )

3.74 (dd,J10.3,5.6 | 3.68, 4.00 64.6 (C1") 4.73
Hz, 1H, H6 )

4.00 (m, 1H, H5™) 3.68, 3.74 66.8 (C5 ) 4.00
4.24 (ddJ7.9,1.9 4.60 69.5 (C6 ) 3.74
Hz, 1H, H4 )

431 (ddJ5.1,2.4 5.54 70.4 (C2™) 4.31
Hz, 1H, H2™ )

4.60(ddJ7.9,2.4 4.24 70.6 (C3™) 4.60
Hz, 1H,H3 )

4.67(tJ7.5Hz, 2H, |2.82 71.1(C4 ) 4.24
H1Y)
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Fig. (3-42) LC-MS spectrum of compou(icd)
(3.1.8) 4-(6-galactosyloxy)methyl-1-(2-perfluorohept)ethyl-1H-
1,2,3-triazole-1,2:3,4-diacetonide (75)
Compound(75) synthesized in the presence Cu(l) catalysis tayme 1,4-

disubstituted triazole with terminal perfluoro ahan good yield (76%) scheme

(3-8).

(75) /

Scheme (3-9) Structure of compouiié)
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FT-IR spectrum Fig. (3-43) of compouiids) showed the following bands at
(Cm'l) (Nujol): 2923 ¢ c-H, cHg), 1456 6 ch, cha), 1377 O cn), 1213 ¢ cr), 1142 ¢

C-O-C) .

'H NMR spectrum Fig. (3-44) for the same compounoisdd signals ab (ppm)
(CDCl): 1.32, 1.33, 1.43, 1.52 (s, 12H, 4€Hpropyiigeny, 2.81 (tt,J 17.9, 7.5, Hz,
2H, H2), 3.68 (ddJ 10.3, 7.1 Hz, 1H, ¥ ), 3.73 (dd,J 10.3, 5.2 Hz, 1H,
Hp6™ ), 4.01 (m, 1H,H5 ), 4.25 (dd,7.9, 1.9 Hz, 1H, H4™ ), 4.31 (dd 5.0, 2.4
Hz, 1H, H2), 4.61 (ddJ 7.9, 2.4 Hz, 1H, H3™™), 4.67 (§, 7.5 Hz, 2H, H1),
4.73 (s, 2H, H1™), 5.54 (d,5.0 Hz, 1H, H1™™), 7.65 (s, 1H, H5).

13C NMR spectrum Fig. (3-45) of compour{@5) showed signals ai (ppm)
(CDCly): 24.4, 24.8, 25.9, 26.0 (4C, Gkbpropyideny, 31.8 (C27), 42.3 (C1"), 64.7
(C1), 66.8 (C5), 69.5 (C6™™), 70.4 (C270.B (C3™7), 71.1 (C4™™), 96.3
(C1), 108.5, 109.3 (2C, fopropylidend, 123.1 (C5), 145.7 (C4AMS (ESl)m/z 710
([M+Na] 7).

Table (3-8) summarized values of HSQC spectrum [346) and COSY
spectrum Fig. (3-47) of compouids).

Table (3-8) Summarized HSQC and COSY values of cung(75)

'H NMR COSY *C NMR HSQC
1.32,1.43, 1.52 (s, 1.32,1.43,1.52 24.4,24.8, 25.9, 26/01L.32, 1.43, 1.52
12H, 4CH§ isopropyliden} (4C, CH3 isopropyliden}

2.81 (tt,J17.9,7.5, |4.67 31.8(C2) 2.81
Hz, 2H, H2")

3.68(ddJ10.3,7.1 |3.74,4.01 42.3 (C1) 4.67
Hz, 1H, H6 ™)

3.73(ddJ10.3,5.2 |3.68, 4.01 64.7 (C1") 4.73
Hz, 2F, H6™™)

4.01 (m, 1H,H5™) | 3.68, 3.74 66.8 (C5™) 4.01
4.25(ddJ7.9, 1.9 4.61 69.5 (C6™ ) 3.73
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Fig. (3-48) LC-MS spectrum of compouf(icb)

(3.1.9) 4-(6-galactosyloxy)methyl-1-(2-perfluoroogt)ethyl-1H-
1,2,3-triazole-1,2:3,4-diacetonide (76)

Compound(76) synthesized using click condition to producing Zake with

longer perfluoro chain in good yield (78%) schei®®).

o o J

Scheme (3-10) Structure of compound (76)
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FT-IR spectrum Fig. (3-49) of compou(itb) showed bands at (cnt?) (Nujol):
29230 c-H, cHy), 2853, 14564 c-1, cHa), 1377 O c-N), 1200 ¢ c-r), 1146 § c-0-0).

!H NMR spectrum Fig. (3-50) of compour{@6) showed signals ab (ppm)
(CDClg): 1.33, 1.43, 1.52 (12H, 4Ckbpropyiideny, 2.84 (1t,J 18.0, 7.5 Hz, 2H, H2"),
3.68 (dd,J 10.4, 7.1 Hz, 1H, 6™ ), 3.74 (ddJ 10.4, 5.2 Hz, 2H, 6 ), 4.01
(m, 1H, H5™), 4.25 (ddJ 7.9, 1.9 Hz, 1H, H4™), 4.31 (dd,5.0, 2.4 Hz, 1H,
H2 ™), 4.61 (ddJ 7.9, 2.4 Hz, 1H, H3™™), 4.67 {,7.5 Hz, 2H, H1"), 4.73 (s, 2H,
H1"), 5.54 (dJ 5.0 Hz, 1H, H1™™), 7.66 (s, 1H, H5).

13C NMR spectrum Fig. (3-51) of compour{@6) showed signals ai (ppm)
(CDCL): 24.4, 24.8, 25.9, 26.0 (4C, Gkbpropyiden), 31.8 (C2), 42.3 (C1°), 64.7
(C1%), 66.8 (C5™), 69.5 (C6™), 70.4 (C2°)0.8 (C3™), 71.1 (C4™), 96.3
(C1™), 108.5, 109.3 (2C, Gopropyiiden), 123.1 (C5), 145.7 (CAMS (ESI)m/z 810
([M+Na] ")

Table (3-9) summarized values of HSQC spectrum [552) and COSY
spectrum Fig. (3-53) of compouido).

Table (3-9) Summarized values of HSQC and COSYtspet compound (76)

'H NMR COSY 13C NMR HSQC
1.33,1.43,1.52 (12H} 1.33,1.43, 1.52 24.4, 24.8, 25.9, 26/01.33, 1.43, 1.52
ACHkisopropylideng (4C, CHisopropylideny
284 (1,J18.0,75 |4.67 31.8 (C2) 2.84
Hz, 2H, H2")
3.68(ddJ10.4,7.1 |3.74,4.01 42.3 (C1) 4.67
Hz, 1H, H6™)

3.74 (ddJ10.4, 5.2 |3.68,4.01 64.7 (C1) 4.73
Hz, 2H, H6™)
4.01(m, 1H, H5) | 3.68,3.74 66.8 (C5) 4.01
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4.25(ddJ7.9,1.9 [4.61 69.5 (C6™) 3.71
Hz, 1H, H4™ ™)
4.31(ddJ5.0,2.4 | 554 70.4 (C2™) 4.31
Hz, 1H, H2™™)
461 (ddJ7.9,2.4 |4.25 70.6 (C3™) 4.61
Hz, 1H, H3™)
4.67 (t,J7.5Hz, 2H, | 2.84 71.1 (C4) 4.25
H1Y)
4.73 (s, 2H, H1™) - 96.3 (C1) 5.54
5.54 (d,J5.0 Hz, 1H, | 4.31 108.5, 109.3 (2C, C | -
Hl“‘) isopropyliden;
7.66 (s, 1H, H5) - 123.1 (C5) 7.66
; - 145.7 (C4) -
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Fig. (3-49) FT-IR of compoun(/6)
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Fig. (3-54) LC-MS spectrum of compouf(icb)

(3.1.10) 1-(6-galactosyl)-4-((2-(perfluorobutyl)dtoxy)methyl-1H-
1,2,3-triazole 1,2:3,4-diacetonide (77)
This study included a second series of triagi@gvatives synthesizeda click
reaction contained ethers as a spacer.
Compound77) synthesized by 1,3-dipolar cycloaddition Cu(l)atgsis in good
yield (79%) compatible with scheme (3-10):

Scheme (3-11) Structure of compound (77)
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FT-IR spectrum Fig. (3-54) of compouf(id7) showed bands at (cni?) (Nujol):
29230 c-H, cHg), 1456 ¢ c.c), 12200 c-n), 1137 ¢ c-0).

'H NMR spectrum Fig. (3-55) of compour(@7) showed signals ai (ppm)
(CDCl): 1.27, 1.35, 1.37, 1.48 (s, 12H, 4&bropylideny, 2.43 (tt,J 18.8, 6.7 Hz,
2H, H2™), 3.80 (tJ 6.7 Hz, 2H, H1™), 4.17 (ddd,8.5, 4.2, 1.8 Hz, 1H, H5™™),
4.20 (dd,J 7.7, 1.8 Hz, 1H, H4™™), 4.33 (dd,4.9, 2.6 Hz, 1H, H2™), 4.50 (m,
2H, H6™ ™), 4.64 (ddJ 7.7, 2.6 Hz, 1H, H3" ™), 4.70 (s, 2H, H1), 5.511 4.9 Hz,
1H, H1™™), 7.76 (s, 1H, H5).

13C NMR spectrum Fig. (3-56) of compoulid7) showed signals at (CDgId
(ppm): 24.3, 24.7, 25.8, 25.9 (4C, €kpropyiicend, 31.3 (C27), 50.9 (C6™™), 62.1
(C1M), 64.1 (C1Y), 67.0 (C5™), 70.2 (C2™), 70(C3™™), 71.0 (C4™), 96.1
(C1™), 109.0, 109.9 (2C, Gpropyiiden), 124.2 (C5), 143.7 (C4). MS (EStyz 588
(IM+H] %)

Table (3-10) summarized values of HSQC spectrum Eg57) and COSY
spectrum Fig. (3-58) of compouiid?).

Table (3-10) Describe values of HSQC and COSY afmound (77)

'H NMR COSY 3C NMR HSQC
1.27,1.35,1.37,1.48| 1.27,1.35, 1.37, 1.48| 24.3,24.7, 25.8, 25.9.27, 1.35, 1.37, 1.48
(S, 12H, (4C, CHSisopropyliden)e
4CH3isopropyIiden)

2.43 (tt,J18.8,6.7 |3.80 31.3 (C2") 2.43
Hz, 2H, H2™

3.80 (1,0 6.7 Hz, 2H, |2.43 50.9 (C6™) 450
H1%v)

4.17 (dddJ 8.5, 4.2, |4.20, 4.50 62.1 (C1") 3.80
1.8 Hz, 1H, H5

4.20(ddJ7.7,1.8 4.17 64.1 (C1) 4.70
Hz, 1H, H4™

4.33(ddJ4.9,2.6 |4.64,551 67.0 (C5™) 4.17
Hz, 1H, H2™™
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Fig. (3-60) HR-MS spectrum of compou(xy)

(3.1.11) 1-(6-galactosyl)-4-((2-(perfluorohexyl)etbxy)methyl-1H-

1,2,3-triazole 1,2:3,4-diacetonide (78)
Compound (78) synthesized by

reacting 6-azido-6-deoxy-1:2,3:4-di

isopropylidenes-D-galactose with perfluoroalkylethyl propargyl ethin presence

click condition to produced compour(@8) in good yield (77%) this reaction

describe in scheme (3-11).

(78)

\_

Scheme (3-12) Structure of compouiad)
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FT-IR spectrum Fig. (3-60) of compou(t8) showed the following bands at
(cm‘l) (NUjOl): 2923 () C-H, CH3), 2853.96, 14561)(c-c), 1376 () C-N), 1144 () c-o).

!H NMR spectrum Fig. (3-61) of compour{@8) showed signals ab (ppm)
(CDClg): 1.28,1.36, 1.37, 1.49 (s, 12H, 4GKpropylideny, 2.41 (it,J 18.8, 6.8 Hz,
2H, H2™), 3.79 (tJ 6.7 Hz, 2H, H1™), 4.17 (dd] 7.7, 1.9 Hz, 1H, H5™™), 4.19
(dd,J 7.7, 1.9 Hz, 1H, H4 ), 4.33 (dd,5.0, 2.5 Hz, 1H, H2" ), 4.49 (m, 2H,
H6 ™), 4.64 (ddJ 7.8, 2.6 Hz, 1H, H3™ ™), 4.67 (s, 2H, H1"), 5.81J4.9 Hz, 1H,
H1™), 7.73 (s, 1H, H5).

13C NMR spectrum Fig. (3-62) of compou(iB) gives showed signals &t (ppm)
(CDCL): 24.2, 24.6, 25.7, 25.8 (4C, Ghbpropyiiden), 31.3(C2™), 50.6 (C6™), 64.2
(C1), 67.0 (C5™), 70.1 (C2™), 70.6 (C3™),.0LC4™), 96.1 (C1™), 108.9,
109.8 (2C, Gsopropyliden), 124.0 (C5), 143.8 (C4MS (ES)miz 688 (M+H]"*)

Table (3-11) summarized values of HSQC spectrum E3g63) and COSY
spectrum Fig. (3-64) of compouiids).

Table (3-11) Describe values of HSQC and COSY afmound (78)

1H NMR COSY 13C NMR HSQC
1.28,1.36, 1.37,1.49| 1.28,1.36, 1.37,1.49| 24.2, 24.6, 25.7, 25/81..28,1.36, 1.37, 1.49
(s, 12H, (4C, CHisopropyliden}
4CH3isopropyIiden)
2.41 (1, 18.8, 6.8 3.79 31.3(C2") 241
Hz, 2H, H2™
3.79 (t,J6.7 Hz, 2H, | 2.41 50.6 (C6 ™) 4.49
H1%)
417 (ddJ7.7,1.9 |4.19, 4.49 64.2 (C1)) 4.67
Hz, 1H, H5
4,19 (ddJ7.7,1.9 4.17,4.64 67.0 (C5) 4.17
Hz, 1H, H4™
4.33(ddJ5.0,2.5 551 70.1(C2) 4.33
Hz, 1H, H2™
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Fig. (3-63)1*C NMR spectrum of compour(@8)
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Fig. (3-66) HR-MS spectrum of compou(«B)

(3.1.12) 1-(6-galactosyl)-4-((2-(perfluorooctyl)etbxy)methyl-1H-
1,2,3-triazole 1,2:3,4-diacetonide (79)
Compound(79) synthesized with long perfluoro chain longer thampound
(77) and(78) with ether as a spacer.

Compound79) synthesizedia click reaction in good yield (75%) show in scheme
(3-12).

N Y

Scheme (3-13) Structure of compound (79)
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FT-IR spectrum Fig. (3-66) of compouf(it®) showed bands at (cni?) (Nujol):
2922 0 c-H, cHy), 1456 ¢ c-c), 1376 ¢ c-n), 1200.80, 1149(c-0).

'H NMR spectrum Fig. (3-67) of compour(@9) showed signals ai (ppm)
(CDClg): 1.28,1.35, 1.38, 1.48 (s, 12H, 4GKpropyidend, 2.44 (tt,J 18.7, 6.7Hz,
2H, H2™), 3.81 (tJ 6.7 Hz, 2H, H1"), 4.17 (dd] 8.5, 1.8 Hz, 1H, H5 ), 4.21
(dd,J 7.8, 1.8 Hz, 1H, H4™™), 4.33 (dd,5.0, 2.6 Hz, 1H, H2 ™), 4.52 (m, 2H,
H6 "), 4.65 (ddJ 7.8, 2.6 Hz, 1H, H3™ ), 4.72 (s, 2H, H1"), 5.81J5.0 Hz, 1H,
H1™), 7.78 (s, 1H, H5).

13C NMR spectrum Fig. (3-68) of compoulit) showed signals at (CDgId
(ppm): 24.3, 24.7, 25.8, 25.9 (4C, Chbpropyiden), 31.3(C2"), 51.1 (C6™), 64.0
(C1), 67.0 (C5™), 70.2 (C2™), 70.7 (C3™),.GC4™), 96.2 (C1™), 109.1,
109.9 (2C, Gsopropyliden), 124.1 (C5), 143.8 (C4MS (ES))miz 788 (IM+H]"*)

Table (3-12) summarized values of HSQC spectrum E3g69) and COSY
spectrum Fig. (3-70) of compouido).

Table (3-12) Describe values of HSQC and COSY afmound (79)

1H NMR COSY 13C NMR HSQC
1.28,1.35,1.38,1.48 | 1.28,1.35,1.38, 1.48| 24.3, 24.7, 25.8, 251028,1.35, 1.38, 1.48
(S, 12H, (4C, CHaisopropyIiden}
4CH3isopropyIiden)
2.44 (1t,J 18.7, 6.7Hz,| 3.81 31.3(C2") 2.44
2H, H2™)
3.81 (t,J 6.7 Hz, 2H, | 2.44 51.1 (C6™) 4,52
H1")
417 (ddJ8.5,1.8 |4.21,4.52 64.0 (C1") 4.72
Hz, 1H, H5
4.21 (ddJ 7.8,1.8 417, 4.65 67.0 (C5) 4.17
Hz, 1H, H4™
4.33 (ddJ5.0, 2.6 5.51 70.2 (C2) 4.33
Hz, 1H, H2™
4.52 (m, 2H, H6™™ 417 70.7 (C3 4.€5
4.65(ddJ7.8,2.6 |433, 4.2 71.0 ((4) 4.21

e
97




CHAPTER THREE RESULTS AND DISCUSSION

Hz, 1H, H3

4.72 (s, 2H, HL 96.2 (C1 5.5

5.51 (d,J5.0 Hz, 1H, | 4.33 109.1, 109.9 (2C, C-
Hl“‘) isopropyliden)

7.78 (s, 1H, HE - 124.1 (C5 7.7¢

: : 143.8 (C4 -

b Ayl
unsw chemical science

60| AA-FTE-nu
Tue Qgt 1? 12,21:18 2010 (GMT+10:00),
et SRR e . \

54 1003.48
1074.19
50 | 1149.42

120060
1376.50

1456.97

%Transmitiance
&
3

26 ;| 285366

18 292291

3500 3000 2500 2000 1800 1000
Wavenumbers (cm-1)

Fig. (3-67) FT-IR spectrum of compou(id)
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Relative Abundance

Fig. (3-72) HR-MS spectrum of compou(«®)

Microelemental analysis Table (3-13) showedalipsalues of compounds (74-79).

Table (3-13) Values of Microelemental analysis

Calculated found
comPoune - Formula %C | %H | %N | %C | %H | %N
74 GiH26FoN3Os | 42.94| 4.46 | 7.15| 43.17 4.34 | 6.92
75 GaH26F13N30s | 40.18| 3.81 | 6.11| 40.21 3.50 | 5.92
76 GsH26F17N30s | 38.13| 3.33 | 5.34| 38.29 3.08 | 5.12
77 GiH26FoN3Os | 42.94| 4.46 | 7.15| 43.19 4.45| 7.30
/8 GsHoeF13N3Os | 40.18| 3.81 | 6.11| 40.62 3.62 | 6.24
79 GsHosF17N306 | 38.13| 3.33 | 5.34| 38.44 3.29| 5.34
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Table (3-14) Percentage yield and melting poircdahpounds (74-79)

Compound No. % Yield m.p.PC
74 73 92-94
75 76 97-99
76 78 112-114
77 79 95-97
7 77 106-108
79 75 121-123

(3.2) Thermodynamic Functions:

Phases, which are thermodynamically stablee laafinite number of degrees of
freedom. Each phase is separated by a boundarnewherphase change occurs.
As one crosses the boundary, a new phase appetire ttetriment of the other,
and, since the overall free energy of the procesgero, the thermodynamic
parameters such &S andAH must change in a quantitative manner at the border.
Since different types of phase boundaries are etieced, different types of
enthalpies are obtained, for examm@atropy of fusion; enthalpy of transitiofH;

; etc. The discussion shows that a great deal infoom&an be obtained from a
DSC curve, and that the interpretation of such rxecan yield valuable insight
into the nature of the material being investigatkds important to be able to
identify what type of phase transition is occurringthe substance by looking at
the curve of DSE),

The enthalpy values of fusion for the pure compaeuiid-79) are determined by
the DSC methdél® and have been reported in TalBel4)
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Table (3-15) values of thermodynamic functions

Compound AH AS T
(KJ.mol?) (KJ.molt.K1) (K)

74 27.050 0.072 375.5

75 32.421 0.087 3715

76 38.911 0.100 386.9

77 27.309 0.073 369.4

78 35.547 0.093 380.4

79 41.873 0.105 395.3

Because there is a change in heat capacity, bugt ith@o latent heat involved with
the glass transition, we call the glass transiteorsecond order transition.
Transitions like melting and crystallization, whidb have latent heats, are called

first order transitions
(3.3) The Crystallinity

DSC can also tell us how much of a polymer is effise and how much is
amorphous. If you read the page dealing with, camgde crystallinity many
compounds contain both amorphous and crystallineemah DSC can tell us. If

we know the latent heat of meltingtH .

The first thing we have to do is measure the afdhat big peak we have for the
melting of the compoun@Z4-79).Now our plot is a plot of heat flow per gram of

material, versus temperature. Heat flow is heag¢mioff per second, so the area of
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the peak is given is units of heat x temperatutieng? x mass. We usually would

put this in units such as joules x kelvins x (s&x)yhx (grams):

heat X temperature JK
area - - - —
time X mass sg

Don't worry. It gets simpler. We usually divide theea by the heating rate of our

DSC experiment. The heating rate is in units of. IS8 the expression becomes

simpler:
JK
area sg J
heating rate - K - g
s

Now we have a number of joules per gram. But bexawesknow the mass of the
sample, we can make it simpler. We just multipig thy the mass of the sample:

()

Now we just calculated the total heat given off wtibe polymer melted. Neat,
huh? Now if we do the same calculation for our gt we got on the DSC plot
for the crystallization of the polymer, we can tfet total heat absorbed during the
crystallization. We'll call the heabtal heat given off during meltintlm, s and

we'll call the heat of the crystallizatidt, tota

Now we're going to subtract the two:

Hm, total - Hc, total = H'
Why did we just do that? And what does that nuniianeant' is the heat given
off by that part of the polymer sample which wasatly in the crystalline state

e
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before we heated the polymer above the We want to know how much of the
polymer was crystalline before we induced moret ¢ ibecome crystalline. That's

why we subtract the heat given off at crystallizatils everyone following me?

Now with our magic numbeH' we can figure up the percent crystallinity. We're
going to divide it by the specific heat of meltirty, . The specific heat of melting?
That's the amount of heat given off by a certairoam, usually one gram, of a
polymer.H' is in joules, and the specific heat of meltingissially given in joules

per gram, so we're going to get an answer in grarngh we'll callm.

J
H' —_—
= m J = g
H*m ¢ I
g

This is the total amount of grams of polymer thatrevcrystalline below thé&..
Now if we divide this number by the weight of ouansple, Mg, We get the
fraction of the sample that was crystalline, anéntlof course, the percent
crystallinity:

m

= crystalline fraction
Mtotal

crystalline fraction X 100 = % crystallinity

Table (3-15) showed the percentage of crystalllmesp for the compounds (76-79)
while crystalline phase was disappearance for tmapounds (74 and 75), this
phenomena caused by the arrangement of perflu@m ethereas absorb or lose
the hedt®”,
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Table (3-16) values of the crystallinity percentage

Compound No.

Crystallinity %

74 -
Yo -

va Vo,¥
A% VY, Y
YA YY,o
va AY,Y

i

i

Fa P Ervby U (oS

O] = 1133568 T
Ol Y — 2B SO 13 Al

D = T )
e k= ]

Fig. (3-73) DSC chart of compound (74)
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Conclusions

Sugars 1,2,3-triazoles was synthesized by usingerofl) catalyzed
alkyne-azide cycloaddition 'Click Chemistry' fronalgctose derivatives
containing either sugar-propargyl alkyne groupugas-azide group, these
compounds containing triazole segment was syntbésiz good yield. In
general, the increase length of perfluoro chaidlitega to increasing the
enthalpy values corresponding with increase melteimperature, this

phenomena caused by presence the rigidity of medlahain.
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Prospective studies:

1. Deprotection of synthesized compounds.

=N

\ R N=" ;
(&/ N\/\ (&/\N\/\R

o ° OH o
PSS o
o ﬁ<o HO

® OH on
H
or > or
n=N R N=="" AN
/ o/\/ A\)/\O
N / OH
()
X % :
HO
o 3<0 oH 4,

2. Study the thermodynamic functions for the deprotection compounds and
comparing with protected compounds.

3. Study surface activity of the perfluorotriazole derivatives.

4. Click chemistry it is important to synthesis of heterocycle ring and coupling
termina alkyne with azide producing only one product, so can be used to
synthesis another sugar derivatives.

5. Study the biological activity for the perfluorotriazole derivatives.
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