Republic of Iraq Ministry of Higher Education & Scientific Research University of Kerbala College of Engineering / Civil Engineering Department

Developing Priority Program for Pavement Maintenance Management System

A Thesis Submitted to the Department of Civil Engineering College of Engineering / University of Kerbala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Infrastructure Engineering

> by **Saja Jasim Mohammed Alasadi** B.Sc., 2014

> > Supervised by

Prof. Dr. Hussein Ali Ewadh

Dr. Ra'id Rahman Almuhanna

2017 / October

بسم الله الرحمن الرحيم

(وَأَنْزَلَ اللَّهُ عَلَيْكَ الْكِتَابَ وَالْحِكْمَةَ وَعَلَّمَكَ مَا لَمْ تَكُنْ تَعْلَمُ وَكَانَ فَضْلُ اللَّهِ عَلَيْكَ عَظِيمًا)

صدق الله العلى العظيم

سورة النساء (١١٣)

SUPERVISOR CERTIFICATE

We certify that this thesis entitled "Developing Priority Program for Pavement Maintenance Management System" which is prepared by "Saja Jasim Mohammed Alasadi" under our supervision at the University of Karbala in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Infrastructure Engineering).

Signature:

Name: Prof. Dr. Hussein Ali Ewadh

(Supervisor)

Date: / 10 / 2017

Signature:

Name: Dr. Ra'id Rahman Almuhanna

(Supervisor)

Date: / 10/2017

LINGUISTIC CERTIFICATE

I certify that the thesis entitled "Developing Priority Program for Pavement Maintenance Management System" which has been submitted by "Saja Jasim Mohammed Alasadi" has prepared under my linguistic supervision. Its language has been amended to meet the English style.

Signature: Name: Dr. Wajde Shober Saheb (Linguistic advisor) Department of Civil Engineering College of Engineering University of Kerbala Date: 12/ 10 / 2017

CERTIFICATE OF THE EXAMINING COMMITTEE

We certify that we have read the thesis entitled "Developing Priority Program for Pavement Maintenance Management System" and as an examining committee, examined the student "Saja Jasim Mohammed Alasadi" in its content and in what is connected with it, and that in our opinion it is adequate as a thesis for degree of the Master of Science in Civil Engineering / Infrastructure Engineering.

Signature:

Name: Prof. Dr. Hussein Ali Ewadh

Date: / 10/2017

Signature:

(Supervisor)

Name: Assist. Prof. Dr. Alaa Hussein Abed Date: / 10 / 2017

(Member)

Signature:

Name: Prof. Dr. Mohammed Abbas Al-Jumaili Date: / 10/2017

(Chairman)

Approval of Civil Engineering

Department

Signature: Waged H.H.

Name: Assist. Prof. Dr. Waqed H. Hassan (Head of Civil Engineering Dept.) Date: 16/10/2017 Approval of Deanery of the College of Engineering / University of Kerbala

Signature:

Name: Assist. Prof. Dr. Basim Khalil Nile (Dean of the College of Engineering) Date: 0/ 10 / 2017

Signature:

Name: Dr. Ra'id Rahman Almuhanna Date: / 10/ 2017

(Supervisor)

Signature:

Iniversit

Name: Assist. Prof. Dr. Shakir Al-Busaltan Date: 7/ 10/2017

Kerba

(Member)

DEDICATION

The deepest words of thanks and appreciation gratitude and dedication go to the great person, if I am where I am today, you are the reason for that and deserves a special mention **my mother**.

My sincere appreciations go to my sister and brother, I feel so lucky to have them in my life.

Dedication go to my family and my friends for their love, support, guidance, and endless patience throughout all my endeavors.

ACKNOWLEDGEMENTS

Praise and glory be to almighty Allah with whose gracious help, it was possible to accomplish this work.

Special thanks and gratitude are extended to my supervisors: **Prof Dr. Hussein Ali Ewadh** for his considerable efforts, interests, follow-up, great helps, valuable suggestions, kind guidance's, and continuous scientific directives along this study to have a best work. His devotion to academic work was always my inspiration to thrive the best. It was a great pleasure for me to have him as my principal supervisor.

Dr. Ra'id Rahman Almuhanna for his valuable help and generous support provided especially his interest during the survey stage and in providing a copy of PAVER 7.5.6 software. I will never forget his valuable suggestions, freely given during the work, and assistance throughout the preparation of this thesis. It was a great pleasure for me to have him as my co-supervisor.

My appreciation is also extended to the University of Karbala for giving me the opportunity to carry out this study. Furthermore, great thanks are also going to all my lecturers in the college of Engineering particularly the Civil Engineering Department for their continual encouragement and support. As well as, for all my colleagues especially **Zahraa Hashim**, **Muna Fadiel**, and **Safa'a Sabry**

I would also like to acknowledge senior M.Sc. Engineer **Mr. jawad Al-Kahfajy** and **Mr. Mohammed Abd-Alameer**, whom I will never forget their support and help. My thanks are also go to engineer **Mrs. Zahraa Suod**, and the team of the directorate mayor of Karbala for their providing all giving the information and that which I needed about the study area.

Acknowledgement is also due to M.Sc. Engineer **Mr. Ali Yahiya** and M.Sc. Engineer **Mr. Ali Hussein** from the directorate of roads and bridges of Karbala for their help in providing the information about study area.

I would also like to thank the experts and decision-makers who spend part of their precious time to fill out the questionnaires.

ABSTRACT

The holy city of Karbala is facing big challenges due to the substantial deterioration in its infrastructure of roads network. Improper management method (if existing) leads to increased depreciation. This study aims at developing an optimized priority system within pavement maintenance management system (PMMS) in the network level.

PAVER 6.5.7 software was used to compute Pavement Condition Index (PCI) values for a selected zone of road network in Karbala City. Visual inspection survey was conducted to investigate the type, severity level, and extent of failure at sections and sample units of selected roads. The area under study has 56.8 km length, and contained functionally almost types of urban roads. The data collection is achieved for a total of 109 road sections in; 20 major arterials, 28 minor arterials, 14 collectors, and 47 local sections. Further, the collected data for each section were inventoried and evaluated using PAVER software. Also, analysis and prediction of the PCI curve for different sections were determined for different design lifes and prediction modeling. PAVER software was linked with GIS to layout the established results and show the priority of maintenance and rehabilitation for the whole network using the critical PCI values.

In addition to the simple ranking method by PCI's resulted from the output of PAVER, the study introduces two other measures for each section of roadways. The first is the maintenance priority index (MPI), which is based on multiple measures investigated through expert knowledge about measures that affect prioritization and their irrespective weights due to a pre-designed questionnaire. MPI is related to multiple measures such as the cost of a proper proposed maintenance, easiness of proposed maintenance, average daily traffic and functional classification of the roadway in addition to PCI. The Second was the Incremental Benefit-Cost Ranking (BCR) analysis which is provide an optimized process due to benefit and cost of maintenance.

The study also introduced efficient display of layout and ranking for the selected zone of roadway system based on MPI index and incremental BCR method. The statistical test shows that there is no significant difference in ranking in all methods of prioritization. The developed method can be used as an extension for pavement condition.

Further more, statistical model of PCI developed showed that 70% of variation in PCI can be explained by multiple regression model in relation with (Age, ADT, SN). The resulted PCI indicated that 35% of roadway sections in the selected study area have good condition (PCI = (85-100)), 26.5% have satisfactory condition (PCI = (70-85)), 12% have fair condition (PCI = (55-70)), 18% have poor condition (PCI = (40-55)), 6.5% have very poor condition (PCI = (25-40)), 2% have serious condition (PCI = (10-25)), and 0% failed condition (PCI = (0-10)).

It can be concluded that the two optimized methods of prioritization developed in the study can be used successfully in addition to the simple ranking of PAVER. Also, developed models for PCI introduce a good correlation with independent variables of; age, ADT and structure number, can be used to estimate the pavement condition of roadways.

TABLE OF CONTENTS

Title	Page	No.
DEDICATION		Ι
ACKNOWLEDGEMENTS		II
ABSTRACT		IV
TABLE OF CONTENTS		VI
LIST OF TABLES		XII
LIST OF FIGURES		XV
LIST OF PLATES		XVI
LIST OF ABBREVIATIONS		XIX
LIST OF SYMBOLS		XXI
CHAPTER ONE: INTRODUCTION		
1.1 General		1
1.2 Roadway System in Iraq		3
1.3 Holy City of Karbala		4
1.4 Importance of the Study		5
1.5 Aim of the Study		5
1.6 Objectives of the Study		6
1.7 Layout of the Study		6

CHAPTER TWO: LITERATURE REVIEW

2.1 General

2.2. Functional System of Urban Roads	7
2.2.1 Urban Principal Arterial System	8
2.2.2 Urban Minor Arterial System	8
2.2.3 Urban Collector Street System	9
2.2.4 Urban Local Street System	9
2.3 Types of Pavement	10
2.4 Typical Cross Section of a Flexible Pavement	11
2.5 Types of Pavement Distress	13
2.6 Pavement Distress Evaluation	13
2.6.1 Types of Flexible Pavement Deterioration	15
2.6.1.1 Cracking	15
2.6.1.2 Surface deformation	15
2.6.1.3 Disintegration	15
2.6.1.4 Surface defects	16
2.6.1.5 Other	16
2.7 Highway Pavement Maintenance	17
2.7.1 Forms of Pavement Maintenance	19
2.7.2 Repair of Flexible Pavement Distress	20
2.8 Pavement Management System (PMS)	22
2.8.1 Function of Pavement Management System (PMS)	23
2.8.2 Activity Levels of Pavement system (PMS)	24

25

2.9 Pavement Condition	27
2.9.1 Factors Affecting Pavement Condition	28
2.9.2 Pavement Condition Index (PCI)	28
2.10 Export System Used in Pavement Management	29
2.11 PAVER and Micro PAVER	32
2.12 Determination of PCI	33
2.13 Geographical Information Systems (GIS)	34
2.14 Maintenance Priority	34
2.15 Relation and Models of PCI	35
CHAPTER THREE: METHODOLOGY AND DATA COLLECTION	ON
3.1 General	42
3.2 Methodology of the Study	42
3.3 Study Area Description	42
3.4 Data Collection	44
3.4.1 Geometric Data	45
3.4.2 Dividing the Network into Manageable Units	45
3.4.3 Data Inspection	47
3.5 PAVER Software Capabilities	48
3.5.1 Inventory and Editing Data Inspected by Using PAVER	50

3.6 Data for Established Priority of Maintenance	53
3.6.1 Traffic Volume Data	54
3.6.2 Pavement Maintenance Costs and Easiness of Performance	56
3.6.3 Incremental Benefit-Cost Analysis	58
3.7 Data for PCI Modelling	60
3.7.1 Estimation of Average Daily Traffic (ADT)	60
3.7.2 Estimation of Structural Number	62
3.7.2.1 Destructive Test	62
3.7.2.2 Laboratory Testing of Samples	63
3.7.2.3 Structural Number of Pavement	65
CHAPTER FOUR: EVALUATION OF PAVEMENT CONDITIO USING PAVER SOFTWARE	Ν
	N 68
USING PAVER SOFTWARE	
USING PAVER SOFTWARE 4.1 General	68
USING PAVER SOFTWARE 4.1 General 4.2 Determining the Number of Sample Units to be Inspected	68 68
USING PAVER SOFTWARE 4.1 General. 4.2 Determining the Number of Sample Units to be Inspected 4.2.1 Selecting Sample Units to be Inspected. 	68 68 70
USING PAVER SOFTWARE 4.1 General. 4.2 Determining the Number of Sample Units to be Inspected 4.2.1 Selecting Sample Units to be Inspected. 4.2.2 Hand Calculation of PCI. 	68 68 70 72
USING PAVER SOFTWARE 4.1 General 4.2 Determining the Number of Sample Units to be Inspected 4.2.1 Selecting Sample Units to be Inspected 4.2.2 Hand Calculation of PCI 4.3 Results of PAVER Software Application	 68 68 70 72 75
USING PAVER SOFTWARE 4.1 General 4.2 Determining the Number of Sample Units to be Inspected 4.2.1 Selecting Sample Units to be Inspected 4.2.2 Hand Calculation of PCI 4.3 Results of PAVER Software Application 4.3.1 Calculation of PCI After Inspection	 68 68 70 72 75 76

4.7 Network Condition Analysis and Prediction	83
4.8 PAVER Software PCI Model	84
4.9 Pavement Condition Models	86
4.9.1 Previous Model by Hoel et al. (2011)	86
4.9.2 Developing a Statistical Model of Pavement Condition	89
4.10 Developed Models Results and Discussion	100
CHAPTER FIVE: MAINTENANCE PRIORITY	
5.1 General	101
5.2 The Proposed Maintenance Prioritization Methods	101
5.3 Application of the Proposed Prioritization Process	102
5.3.1 Simple Ranking by PCI Measure	102
5.3.2 Ranking by Multiple Measures	103
5.3.3 Incremental Benefit-Cost Method	108
5.4 Maintenance Priority Result Analysis	112
CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS	
6.1 Conclusions	115
6.2 Recommendations	116
6.3 Future Works	117
REFERENCES	
References	118

APPENDICES

Title

APPENDIX A	A-1
APPENDIX B	B- 1
APPENDIX C	
APPENDIX D	D-1
APPENDIX E	E-1
APPENDIX F	F-1

LIST OF TABLES

Table Page No.	•
(2-1) Major and Minor Collector Characteristics	9
(2-2) PAVER Software Classification Distress for Flexible Pavement Roads and Parking	16
(2-3) Asphalt Concrete Pavement Distresses Types and Maintenance & Rehabilitation (M&R) Alternatives	20
(2-4) Description for Pavement Condition Level	29
(2-5) Summary of Expert System Application in Pavement Management	29
(2-6) Comparison between Expert Systems	30
(2-7) Literature Review of Previous Researches in Maintenance Priority and Modeling	38
(3-1) The Inspection Data for Section (1-A) of AL-Rabab Roadway	47
(3-2) The Questionnaire Sample for Irrespective Weight of Multiple Factor Method	54
(3-3) Conversion Factors of Different Type of Vehicle to PCU	55
(3-4) Traffic Data Collected for Each Section in the Study Area of Karbala city	55
(3-5) The Maintenance Cost for Flexible Pavement Distress and Work Easiness	57
(3-6) Maintenance Costs for Sample Section (1-A) of AL-Rabab roadway	58
(4-1) Total Number of Sample Units and The Minimum Sample Units Required For the Section of Study Area	71

(4-2) The PCI Hand Calculation Result for Each Unit in Section (1-A) of AL-Rabab roadway	75
(4-3) PAVER Software User Define Reports of the Last Condition for Study Area of Karbala City	77
(4-4) PAVER Software Summary Information of PAVER software Layout Analysis	81
(4-5) Statistical Analysis of PAVER Software Prediction Model	85
(4-6) Pavement Condition Index of Karbala City by Using Garber et al. Model	87
(4-7) Paired Samples Statistics between Pavement Condition Index PAVER and Condition Index of Hoel et al. Model	88
(4-8) Paired Samples Test between Pavement Condition Index of PAVER And Condition Index of Hoel et al. Model	89
(4-9) the Correlation Between Independent Variable of the First Developed Model for the Selected Roadway in Karbala City	90
(4-10) Correlation Between Pavement Condition Index (PCI) and Average Daily Traffic (ADT) of the First Developed Model for the Selected Roadway in Karbala City.	90
(4-11) Correlation between Pavement Condition Index (PCI) and Pavement Age (Age) of the First Developed Model for the Selected Roadway in Karbala City	91
(4-12) Correlation between Pavement Condition Index (PCI) and Structural Number (SN) of the First Developed Model for the Selected Roadway in Karbala City	91
(4-13) Summary of Statistical Characteristics, and ANOVA of the First Developed Model for the Selected Roadway in Karbala City	92
(4-14) the Correlation Between Independent Variable of the Second Developed Model for the Selected Roadway in Karbala City	93

Title	e No.
(4-15) Correlation Between Pavement Condition Index (PCI) and Average Daily Traffic (ADT) of the Second Developed Model for the Selected Roadway in Karbala City	94
(4-16) Correlation between Pavement Condition Index (PCI) and Pavement Age (Age) of the Second Developed Model for the Selected Roadway in Karbala City	94
(4-17) Correlation between Pavement Condition Index (PCI) and Structural Number (SN) of the Second Developed Model for the Selected Roadway in Karbala City	94
(4-18) Summary of Statistical Characteristics, and ANOVA of the Second Developed Model for the Selected Roadway in Karbala City	95
(4-19) The Data Collection to Check the Models	96
(4-20) Condition Index (CI) for Pavement According to Developed Models	98
(4-21) T-Test for First Developing Model	99
(4-22) T-Test for Second Developing Model	99
(5-1) Irrespective Weight Value (out of 30) for Each Factor of Multiple Priority Method.	105
(5-2) Maintenance Priority Depended on Many Variables	106
(5-3) Sections Input Data Arranged and Ranking Results of Incremental BCR Analysis of Roadways Sections in the Study Area in Karbala City	109
(5-4) Input Data Used in Wilcoxon Matched Pairs Test	113
(5-5) Wilcoxon Matched Pairs Test of Ranking Results for Each Methods	113

LIST OF FIGURES

Figure	e No. Title	Page No.
	Schematic Illustration of the Functional Classes for an Urb Network	
(2-2) \$	Structure Components of (a) Flexible Pavement (b) Rigid P	Pavement 10
(2-3) I	Layers of Flexible Pavement	11
(2-4) N	Major Component of A Pavement Management System	22
(2-5) I	nfluence Level of PMS Subsystems on the Total Costs	23
` '	Pavement Maintenance Management System (PMMS) Ver Pavement Management System (PMS)	
(2-7) (General Methodology for PMMS Activities	
(2-8) H	Pavement Condition Index (PCI) Ranges	33
(2-9) H	Predict Model of Future Deterioration of an Existing Paven	nent 36
(2-10)	Typical Performance Curve	38
(3-1) H	Research Methodology	43
	Functional Classification of the Selected Urban Street with Area	-
(3-3)	Types of Distress within Study Area	49
(3-4) I	Daily Traffic Factors	61
(3 - 5) A	Average Daily Traffic Factors	61
` ´	Correlation Charts for Estimating Resilient Modulus of As Concrete to Determine Structural Layer Coefficient	1
(4-1)	The Minimum Number of Sample Units	

(4-2) Edge Crack and Depression Distress Deduct Value Curves	73
(4-3) The Correction Curve for Asphalt Surfaced Road Pavements	74
(4-4) PCI Level Vs. Maintenance and Rehabilitation Type	82
(4-5) The Curve and Curve Fitting for 15-Year Analysis and Prediction Period for Network Sections	84
(4-6) Normal P-P Plot of Regression Standardized Residual Dependent Variable First Model	97
(4-7) Normal P-P Plot of Regression Standardized Residual Dependent Variable Second Model	97

LIST OF PLATES

Plate No.		Title					Page No.	
(1-1)	The Road	l Network in K	Karbala	ı, Iraq				4
(2-1)	Factors,	Sub-Factors	and	Interaction	that	Affecting	Pavement	
	Deteriora	tion			•••••			14
(3-1)]	PAVER so	oftware Screer	n for D	efining Pave	ment I	nventory (N	etwork)	51
(3-2)]	PAVER so	oftware Screen	n for D	efining Pave	ment I	nventory (B	ranch)	51
(3-3)]	PAVER so	oftware Scree	n for E	Defining Pave	ement I	nventory (S	ection)	51
(3-4)]	PAVER so	oftware Screen	n for E	diting Inspec	tion Da	ates	· · · · · · · · · · · · · · · · · · ·	52
(3-5)]	PAVER so	oftware Scree	n for E	Entering Inspe	ection	Dates		52
. ,	Ũ	nspected Data						53
(3-7)	Core Test	for a Section	of Roa	adway in the	Study .	Area		63
(3-8)]	Dry Weig	ht Determinati	on					64
(3-9)]	Marshall S	Stability /Flow	Test A	Apparatus				64
, ,	• 1	st of an Auton						76
		VER Software		-			•	78
		VER Software		-			-	79
		VER Software		-			•	80
		oftware Summ	•					81

Plate No.	Title	Page no.	
	of Maintenance and Rehabilitation for Sections of Karl		83
(4-7) Pavemen	nt Life Prediction Curve for Study Area		85
· / ·	of Maintenance and Rehabilitation for Selected Roadwa Karbala City	•	103
· /	al Maintenance Priority Layouts due to PCI Values for l Roadway Zone in Karbala City		103
•	of Maintenance and Rehabilitation due to Multiple Prior Selected Roadway Zone in Karbala City	•	108
. ,	al Maintenance Priority Layout due to Multiple Measure l Roadway Zone in Karbala City		108
· · ·	of Maintenance and Rehabilitation due to Incremental E or Sections of Karbala City		111
. ,	al Maintenance Priority Layout due to Incremental BCR		111

LIST OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials		
AC	Asphalt Concrete		
ADT	Average Daily Traffic		
APA	Asphalt Pavement Alliance		
APC	Asphalt Concrete over Portland Cement Concrete		
ASTM	American Society for Testing and Materials		
ATR	Airport Transportation Engineering		
BCR	Benefit-Cost Ratio		
CBD	Central Business District		
CDV	Corrected Deduct Value		
DCP	Dynamic Cone Penetrometer		
DOT	Department of Transportation		
FAA	Federal Aviation Administration		
F. C.	Functional Classification		
FHWA	Federal Highway Administration		
GIS	Geographic Information System		
GPS	Global Positioning System		
HMA	Hot Mixed Asphalt		
IBM	International Business Machines		
ICTR	International Center for Technical Research		
IRI	International Roughness Index		
KCC	Karbala City Center		
LR	Laboratory Report		
LOC	Library of Congress		
M&R	Maintenance and Rehabilitation		

LIST OF ABBREVIATIONS

MEPDG	Mechanistic-Empirical Pavement Design Guide	
MP	Maintenance Priority	
MPI	Maintenance Priority Index of Section.	
MPR	Mean Panel Rating	
NCHRP	National Cooperative Highway Research Program	
PCI	Pavement Condition Index	
PCU	Passenger Car Units	
PCR	Pavement Condition Rating	
PDI	Pavement Distress Index	
PI	Profile Index	
PMS	Pavement Management System	
PMMS	Pavement Maintenance Management System	
PSI	Present Serviceability Index	
PSR	Present Serviceability Rating	
RCI	Riding Comfort Index	
RN	Ride Number	
SCRB	State Commission for Roads and Bridges	
SORB	State Organization for Roads and Bridges	
SN	Structural Number	
TDV	Total Deduct Value	
TRB	Transportation Research Board	
UFC	Unified Facilities Criteria	
USD	United States Dollar	
VDOT	Virginia Department of Transportation	
VMA	Voids in Mineral Aggregate	
WSDOT	Watsontown State Department Of Transportation	

LIST OF SYMBOLS

a, b, c, d, and e	Irrespective Weight Value due to Experts Response
a _i	Layer Coefficients
AGE	Number of Years Since Construction
С	Maintenance cost for each section per square meter.
CI	Garber Condition Index
CI ₁	arterial & collector Condition Index developed
CI ₂	arterial Condition Index developed
D _i	Actual Thickness of Layer
e	Allowable Error
E	Easiness of Work through Maintenance Sections
F	Functional Classifications
HDV _i	Highest Individual Deduct Value for Sample Unit
i	The Sampling Interval
m _i	Drainage Coefficient
M _i	The Maximum Allowable Number of Deducts
n	The Minimum Number of Sample Units to Be Surveyed
Ν	Total Number of Sample Units in The Pavement Section
PV _{benefits}	Present Value of Benefits
PV _{cost}	Present Value of Cost
q	Number of deduct with a value > 2 for surfaced roads
\mathbf{R}^2	Coefficient of Determination
S	Standard Deviation
S	Random start

CHAPTER ONE

CHAPTER ONE

INTRODUCTION

<u>1.1 General</u>

Much of the nation's infrastructures were built in the latter half of the 1900's, most notably the interstate highway system. These infrastructures are reached their life spans and are now in need of repair. Cost-competent maintenance and management of civil infrastructures require balanced consideration of both the structure performance and the total cost accrued over the entire life-cycle. Most existing maintenance and management systems are developed on the basis of life-cycle cost minimization only. (Frangopol and Liu, 2007).

Transportation engineering is the application of technology and scientific principles to the planning, functional design, operation, and management of facilities for any mode of transportation in order to provide for the safe, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods (Roess et al., 2011). Highways system contributes to the economic, industrial, social, and cultural development of any country (Gedafa, 2008). The huge network of roadway within the highway system needs extensive maintenance and repair activities. Also, increasing numbers of motor vehicles during the coming decades need a developed nation's highway system. Accordingly, the increase in demand for new construction, as well, as efficient rehabilitation of the existing system has become a major activity for highway and transportation agencies. For some nation's interstate highway system in developed countries as well as for the case of restricted budgets in develop countries, the focus is shifting from new construction to maintaining, preserving, and rehabilitating highway assets.

1

Preserving and managing the nation's highways is still a challenge (Garber and Hoel, 2009).

Highway pavements, after a time of construction, will not last forever and signs of wear will appear. A point will arrive where the wear and tear are at an advanced stage that the standard of service provided has diminished (Rogers, 2003). Therefore, the capacity of the road network is constrained structurally deficient due to lack of timely maintenance, rehabilitation and upgradation. This has adversely affected the traffic movement, resulting in higher operating costs and delays (NIJU, 2006).

According to the World Bank Report (1988, 2005), "The developing countries have lost precious infrastructure worth billions of dollars through the deterioration of roads. The cost of restoring these roads is going to be three to five times greater than the bill would have been for timely and effectively maintenance". Hence, there is a need to manage the roads network more efficiently and by a scientific manner (NIJU, 2006).

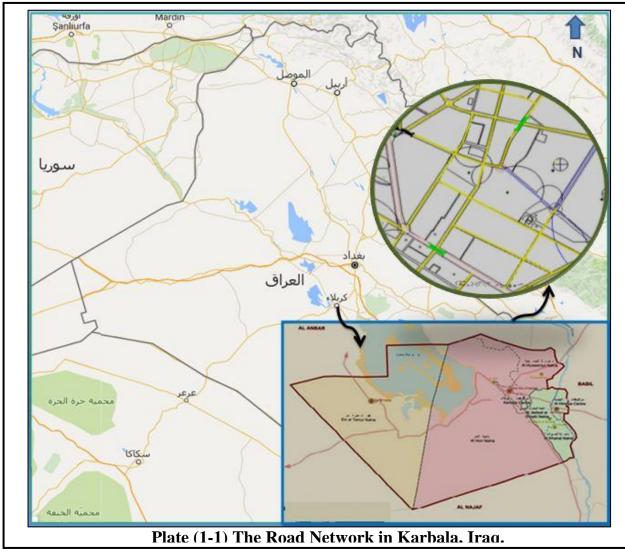
Márquez (2007) defined maintenance as a combination of all technical, administrative and managerial actions during the lifecycle of an item intended to retain it in, or restore it to a state in which it can perform the required function (function or a combination of functions of an item which are considered necessary to provide a given service). The broad objective of road maintenance is to keep the roads in the original condition as much as possible. However, the resources made available for road maintenance are limited in most countries (Thagesen, 2006).

The Pavement Maintenance and Management Systems (PMMS) is a set of tools or methods that can assist decision makers in finding cost-effective strategies for providing, evaluating, and maintaining pavements in a serviceable condition (Haas et al., 1994). The PMMS consists of two basic

2

components; first, a comprehensive database, which contains current and historical information on pavement condition, pavement structure, and traffic. The second component is a set of tools that allows us to determine existing and future pavement conditions, predict financial needs, and identify and prioritize pavement projects (NIJU, 2006).

The Pavement Management Systems (PMS) is a valuable tool that can save money and maximize benefits for the highway system. It has become increasingly popular among local highway agencies, since many countries have the realized benefits of having a decision-support system that helps them find cost-effective strategies for keeping their pavements in good condition (Fitch et al., 2001; Zhou, 2011), and maintain a highway system at an acceptable level of service that continues to support economic growth with a small amount of resources (Tsai et al., 2004; Kulkarni and Miller, 2003; Kulkarni, 1984; Zhou, 2011).


1.2 Roadway System in Iraq

In Iraq, elements of a high-grade transportation infrastructure were provided by a sustained campaign for economic development in the 1970s. Further, in eastern Iraq, development of roads and railroads supported the war effort against Iran (1980–1988). The United States, in 2004, dedicated 500 USD million in aid for the upgrading of transportation in Iraq (LOC, 2006).

In 2005, the paved roads in Iraq had about 39,000 kilometers, many of which were broad highways constructed for military and commercial use in the 1970s and 1980s. Most damages to roads and bridges were repaired after the Arabic Gulf War in 1991 that targeted transportation infrastructure. The damaged bridges by coalition forces in 2003 were the focus of major repair operations in 2004 (LOC, 2006).

1.3 Holy City of Karbala

Karbala is located in the central region of Iraq on the edge of the eastern plateau bank, west of the Euphrates river, and specifically between longitudes 43, 33 north. It is limited from the north and west by Anbar province and from the east by province of Babylon and from the south by Najaf province. Karbala is one of the main cities of the islamic holy shrines characterized by its standing historical, cultural and specificity urban in Iraq position. Two major city center shrines of Imam Hussein and Imam Abbas peace be upon them exist in the middle center of the city. Karbala city is located within the most densely populated geographical regions in Iraq (ICTR, 2011). Plate (1-1) shown the holy Karbala city in Iraq and the roadway network selection for study area.

The importance of the city of Karbala is not only because of the tourist attractions, but also it is the land route leading to the pilgrimage back and forth (ICTR, 2011).

In 2016, Karbala city has 1,741.005 km roads length. The directorate mayor team showed that 999.355 km of the city center roads have 59% paved and 41% unpaved, while the directorate roads and bridges team showed that 741.650 km external roads have 90 % paved and 10 % unpaved.

<u>1.4 Importance of the Study</u>

Karbala city, as other Iraq's governorates is facing a big challenge in dealing with the deterioration of roads. Roadway system of Karbala has been constructed in 20 to 50 years ago, and hence the system is near to the end of its economic life. There is a great demand for achieving an effective pavement management maintenance system in the city.

This study demonstrated an application of PAVER software system integrated with GIS to establish a priority of maintenance for a selected zone in Karbala city. Due to the restricted budget for new construction as well as roadway system demand to maintain, the study make use of existing pavement management system by PAVER software to demonstrate the efficient tool of maintenance to develop an optimized priority system that ensures efficient allocation of the financial resource.

<u>1.5 Aim of the Study</u>

The main aim of this work are:

Developing an optimized priority system that ensures efficient allocation of the financial resource of pavement maintenance at the network level of PMMS.

5

<u>1.6 Objective of the Study</u>

The objective of this work are:

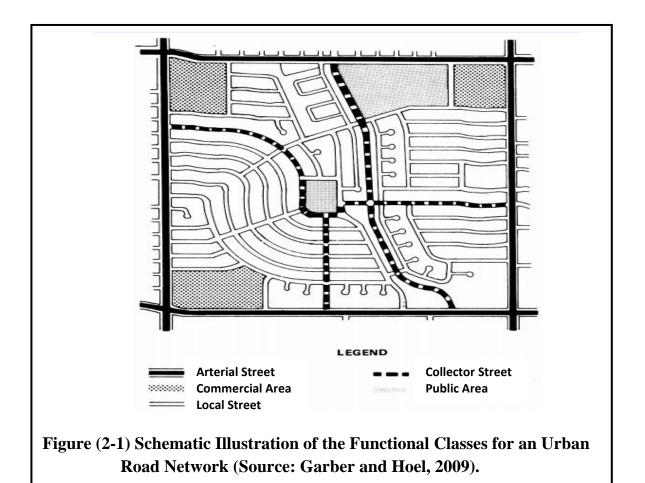
- 1- Evaluating pavement performance for a selected zone by using PAVER software and GIS and check the value of pavement condition index with the result of hand calculation.
- 2- Verification the output of PAVER (PCI) with previously developed models.
- 3- Developing models to relate PCI with geometric and traffic characteristics of roadway system in Karbala.
- 4- Investigation of expert knowledge about measures that affect prioritization of sites for maintenance results that, in addition to PCI determined from PAVER system.

1.7 Layout of the Study

The public domain adopted in this work can be summarized as below:

- 1- Chapter one gives an introduction and a brief idea of the present work.
- 2- Chapter two is devoted to the literature review. It focuses on the highway functional classification, structure of pavement, pavement distresses, and pavement maintenance and management.
- 3- Chapter three describes the area and network of study and the methodology of data collection. I also describes the computer programs used in this study (i.e. PAVER software and GIS).
- 4- Chapter four explains the processes of PAVER application and the analysis of results and developing model.
- 5- Chapter five demonstrates composition priority of pavement maintenance from PAVER output and combined measures rather than PCI measures only.
- 6- Chapter six contains conclusions, and recommendations for future work.

CHAPTER TWO


CHAPTER TWO LITERATURE REVIEW

2.1 General

In this chapter, articles about related topics are introduced. Descriptions of functional system of urban roads, types of pavements, cross section layer of flexible pavement are reviewed. Furthermore, this chapter introduced the types of failure (structural and functional), flexible pavement distresses and repair of pavement deterioration. Also, a brief complementation of: pavement management systems and it is function, pavement maintenance management systems, pavement condition programs used in pavement management, relations and models of pavement condition index (PCI), are also introduced in this chapter.

2.2 Functional System of Urban Roads

In the USA, urban roads comprise highway facilities within urban areas as designated by responsible state and local officials to include communities with a population of at least 5000 people. Some states use other values, for example, the Virginia Department of Transportation uses a population of 3500 to define an urban area. Urban areas are further subdivided into urbanized areas with populations of 50,000 or more and sub urban areas with populations between 5000 and 50,000. Urban roads are functionally classified into principal arterials, minor arterials, collectors, and local roads. A schematic of urban functional classification is illustrated in Fig. (2-1) for an urban environment group (Gerbar and Hoel, 2009).

2.2.1 Urban Principal Arterial System: Characteristics of this system are (Gerbar and Hoel, 2009; FHWA, 2013):

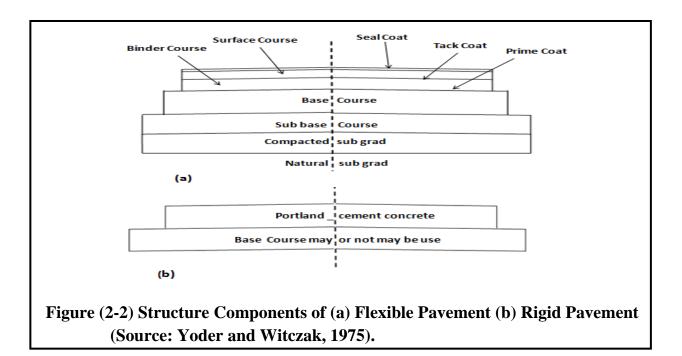
- Serve major activity centers, longest trip demands and highest traffic volume corridors.
- Carry high proportion of total urban travel on minimum of mileage
- link and provide continuity for major rural corridors in order to contain trips entering and leaving urban area and movements through the urban area.
- Serve demand for intra-area travel between outlying residential areas and the central business district.

2.2.2 Urban Minor Arterial System: Streets and highways that interconnect with and augment the urban primary areas are classified as an urban minor arterial. Characteristics of this system are as follow: (Garbar and Hoel, 2009; FHWA, 2013):

- Interconnect and augment the higher-level arterials.
- Serve trips of moderate length at a somewhat lower level of travel mobility than principal arterials.
- Distribute traffic to smaller geographic areas than those served by higher-level arterials.
- Provide more land access than principal arterials without penetrating identifiable neighborhoods.
- Provide urban connections for rural collector.

2.2.3 Urban Collector Street System: The characteristics of an urban collector are classified into a major and minor collector as shown in Table (2-1):

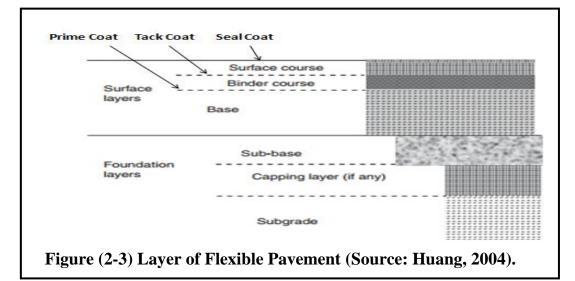
Table (2-1) Major and Minor Collector Characteristics (Source: Gerbar and
Hoel, 2009; FHWA, 2013).


Major Collectors	Minor Collectors		
Serve both land access and traffic circulation in higher density residential, and commercial/industrial areas.	Serve both land access and traffic circulation in lower density residential and commercial/industrial areas.		
Penetrate residential neighborhoods, often for significant distances.	Penetrate residential neighborhoods, often only for a short distance.		
Distribute and channel trips between local roads and arterials, usually over a distance of greater than three- quarters of a mile.	Distribute and channel trips between local roads and arterials, usually over a distance of less than three-quarters of a mile.		
	Operating characteristics include lower speeds and fewer signalized intersections.		

2.2.4 Urban Local Street System: The characteristics of this system (Garbar and Hoel, 2009; FHWA, 2013):

- Provide direct access to adjacent land.
- Provide access to higher systems.
- Carry no through traffic movement.
- Constitute the mileage not classified as part of the Arterial and Collector systems.

2.3 Types of Pavement


Historically, pavements have been divided into two broad categories (see Fig. (2-2)). The flexible pavement has multiple layers consist of a relatively thin wearing surface constructed over a base course and the last one constructed over subbase course. These layers rest upon a compacted subgrade. In contrast, the rigid pavements are made up of Portland cement concrete, the base course between the pavement and subgrade (may/may not) found. The primary difference between the two pavement types (i.e. flexible and rigid) is the method in which they distribute the load over the subgrade layer (Yoder and Witczak, 1975; FHWA, 1995).

Flexible pavement constructs the high percent of roads in Karbala city. Hence, in this study, the focus will be concentrated on flexible pavement roads. The load carrying capacity of a truly flexible pavement is brought about by the load distributing characteristics of the layered system. The flexible pavements consist of a series of layers with the highest-quality materials at or near the surface. Hence, the flexible pavement strength is the result of constructing a stiffer layer which helps to distribute the load over the subgrade rather than by the bending effect of the slab. The pavement thickness design is affected by the strength of the subgrade. If an asphalt pavement has high stiffness, it may be considered essentially as a rigid pavement and fatigue of the pavement component especially surface may become critical (Yoder and Witczak , 1975; Fred and Scott, 2013).

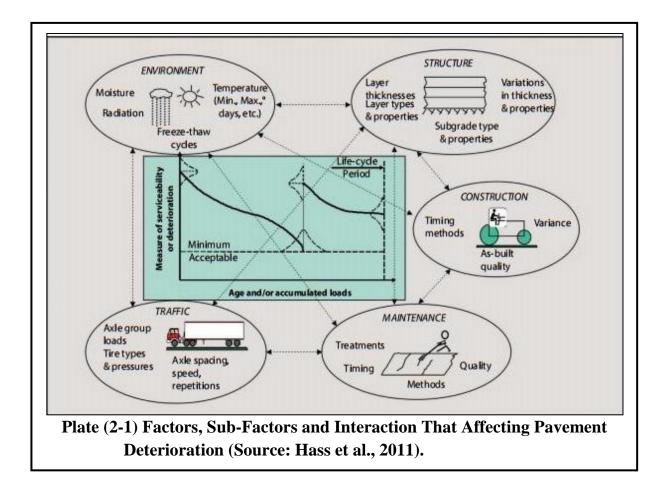
2.4 Typical Cross Section of a Flexible Pavement

Flexible pavements support loads through bearing. They include several layers of materials designed to distribute loads gradually from the surface of pavement to the layers underneath. The design ensures that the load transmitted to each consecutive layer does not skip the layer's load bearing capacity and does not exceeds the strength of the layer itself. Fig. (2-3) illustrates a cross section of a typical flexible pavement, that composed of the following:

- Surface Course: Also called (wearing course) is the upper course of an a flexible pavement, usually built of dense-graded hot mix asphalt (HMA). This course must be of top causality material to resist deformation and provide skid-resistance and smoothness. Also, it must prevent water from penetration to the underlying layers to protect the subgrade from the weakening effect of water. The use of a seal coat is recommended if the above requirements cannot be met (Huang, 2004).
- **Binder Course:** The binder course is the asphalt layer under the surface course. The binder course is used in addition to the first layer (surface course) for two causes. First, if the HMA is too thick to be compacted in one layer, so it must be put in two layers. Second, if the binder course mostly consists of less asphalt with larger aggregates and does not need high quality as the same of surface course, so substitute a part of the surface course by the binder course results to get a more economical design. Generally, the binder course is placed in two layers if it is more than 3 in (76 mm) (Huang, 2004).
- Base Course & Subbase Course: The base course is the layer of material immediately under the surface or binder course. It can consist of crushed stone, crushed slag, or other untreated or stabilized materials. The subbase course is the layer of material beneath the base course. The cause of using two different granular materials is for the economy. The base course material is more expensive for the entire layer, which leads to use the subbase course instead of this. The subbase course has local and cheaper materials and can be used on the top of the subgrade. The subbase course with more fines can serve as a filter between the subgrade and the base course if the base course is open-graded (Huang, 2004).
- **Subgrade:** The top 6 in (152 mm) of the subgrade layer should be compacted to the desired density near the optimum moisture content.

The compacted subgrade may be the in situ soil or a layer of selected material (Huang, 2004).

2.5 Types of Pavement Distress


There are two different types of failures as follows (Yoder and Witczak, 1975; D6433, 2011):

- **1- Structural distress:** the structural distress includes a collapse or breakdown of the pavement structure components to one or more layer, and become not able to carry the load upon its surface.
- **2- Functional distress:** the functional distress may (or may not) be accompanied by structural distress. This distress caused discomfort for vehicle drivers in the driving task.

Structural failure is associated with the ability of the pavement to carry the design load, whereas functional failure is related to ride quality and safety. When structural failure increases in severity, it always results in functional failure as well due to the roughness. Obviously, the degree of distress for both categories is gradational, and the severity of distress of any pavement is largely a matter of opinion of the person observing the distress. However, the difference between the two types of failures is important. Also, engineers should be able to distinguish between them (Yoder and Witczak, 1975). Plate (2-1) shows the factors, sub factors and interaction which can affect pavement deterioration (Hass et al., 2011).

2.6 Pavement Distress Evaluation

Pavement distress is an important component in defining the status of a pavement and can be useful in selecting appropriate preservation treatments. While deflection, roughness, and safety are also components of a pavement's condition, historically the term condition survey identified the process of evaluating surface distresses.

Distress evaluation, generally, considers three factors: the type, severity, and extent of damage (FHWA, 2003; Miller, 2003). The particular distress evaluation methods vary among agencies. Both ASTM and AASHTO have published standards for distress evaluation. The relevant AASHTO standards are (Hass et al., 2015):

- AASHTO R 48, Standard Practice for Determining Rut Depth in Pavements.
- AASHTO R 55, Quantifying Cracks in Asphalt Pavement Surface.
- AASHTO PP 67, Quantifying Cracks in Asphalt Pavement Surfaces from Collected Images Utilizing Automated Methods.
- AASHTO PP 68, Collecting Images of Pavement Surfaces for Distress Detection.
- AASHTO PP 69, Determining Pavement Deformation Parameters and Cross Slope from Collected Transverse Profile.

• AASHTO PP 70, Collecting the Transverse Pavement Profile.

2.6.1 Types of Flexible Pavement Deterioration

Pavement distress is caused by various factors or a combination of factors including lack of structural capacity, poor design, inferior material quality (Kaloush et al., 2006), poor construction techniques and/or lack of preventive maintenance (Al-Mansour and Al-Mubaraky, 2007). The five major categories of conventional asphalt pavement surface distresses are (Miller, 2003; Adlinge and Gupta, 2015):

2.6.1.1 Cracking:

The most common types of cracking are: (1)Alligator cracking (Fatigue cracking), (2) Longitudinal and transverse cracking, (3) Block cracking, (4) Slippage cracking, (5) Joint reflective cracking, and (6) Edge cracking (Adlinge and Gupta, 2015).

2.6.1.2 Surface Deformation:

Pavement deformation is the result of weakness in one or more layers of the pavement that has experienced movement after construction. The deformation may be accompanied by cracking. Surface distortions can be a traffic hazard. The basic types of surface deformation are: (1) Rutting (2) Corrugations (3) Shoving (4) Depressions (5) Swell (6) Bumps and Sags (Adlinge and Gupta, 2015).

2.6.1.3 Disintegration:

The progressive breaking up of the pavement into small, and loose pieces is called disintegration. If the disintegration is not repaired in its early stages, complete reconstruction of the pavement may be needed. The two most common types of disintegration are: (1) Potholes, (2) Patching and utility cut patching (Adlinge and Gupta, 2015).

2.6.1.4 Surface Defects:

Surface defects are related to problems in the surface layer. The most common types of surface distress are: (1) Weathering and raveling (2) Bleeding, and (3) Polishing (Adlinge and Gupta, 2015).

2.6.1.5 Other:

1. Lane /shoulder drop off.

2. Railroad crossing (Adlinge and Gupta, 2015).

The way of survey for each type of distress is presented in Appendix (A). Table (2-2) lists all possible types of distress or failure in flexible pavements and indicates whether they are structural or functional failures and cause (load, climate, or other).

Code	Distress	Measure Unit	Defined Severity Levels?	Type of Distress	Cause
1	Alligator Cracking	m ²	Yes	Structural	Load
2	Bleeding	m ²	Yes	Functional	Other
3	Block Cracking	m ²	Yes	Structural	Climate
4	Bumps and Sags	m	Yes	Structural & Functional	Other
5	Corrugation	m ²	Yes	Functional	Other
6	Depression	m ²	Yes	Functional	Other
7	Edge Cracking	m	Yes	Functional	Load
8	Joint Reflection	m	Yes	Structural	Climate
9	Lane/Shoulder Drop-Off	m	Yes	Functional	Other
10	Longitudinal and Transverse Cracking	m	Yes	Structural	Climate
11	Patching and Utility Cut Patching	m ²	Yes	Structural & Functional	Other
12	Polished Aggregate	m ²	No	Functional	Other
13	Potholes	Number	Yes	Structural & Functional	Load
14	Railroad Crossings	m ²	Yes	Functional	Other
15	Rutting	m ²	Yes	Functional	Load
16	Shoving	m ²	Yes	Functional	Load
17	Slippage Cracking	m ²	Yes	Structural	Other
18	Swell	m ²	Yes	Structural & Functional	Other
19	Weathering and Raveling	m ²	Yes	Functional	Climate

Table (2-2) PAVER Software Classification Distress for Flexible Pavement Roads and Parking (Source: Shahin, 2005; Yoder and Witczak, 1975).

2.7 Highway Pavement Maintenance

Highway pavement maintenance consists of those activities, which preserving the network of roads and footpaths, retaining or enhancing the performance of each part by comparison with identified minimum service standards and ensuring that they provide a positive contribution to the environmental and transport needs of the area (World Bank, 1988).

Maintenance reduces the rate of pavement deterioration. It lowers the cost of operating vehicles on the road by improving the running surface, and it keeps the road open on a continuous basis. Factors affecting the need for maintenance include increases in road mileage, the growing number and weight of commercial vehicles, demands for higher standards of maintenance and performance, together with the impact of public utility works and the variability of weather conditions including the impact of climate change (Walsh et al., 2011). Current maintenance needs can be identified using the maintenance unit system. In the case of deferring the M&R activities, the identification of future maintenance needs is crucial in the planning and cost allocation of Maintenance and Rehabilitation (M&R) activities. The performance prediction is a critical requirement for the identification of future pavement preservation needs. Pavement performance depends on many local factors and is not easily transferable from a location (agency) to another. Therefore, identifying the future maintenance needs is considered a key challenge in the management cycle (Beauvais et al., 2003; Hajek et al., 2004; VDOT, 2006; Cuelho et al., 2006).

Maintenance activities may be classified in terms of their operating frequencies into:

A. **Routine maintenance:** Routine maintenance covers activities that must be carried out frequently, i.e. once or more per year. They are typically small scale, or simple, and often widely dispersed. Some of

them can be estimated and planned in advance, e.g. vegetation control on shoulders and slopes. Other activities are harder to plan in advance, e.g. roadway pothole patching (Rijn, 2006).

- B. Periodic maintenance & Reconstructions: Periodic maintenance is considered all repairs that hold out less frequent. This type of maintenance includes all types of repairs including resurfacing, overlays, and pavement construction (base and even subbase course). The intervals of periodic maintenance vary according to the needs and may be irregular, and it depends on the quality of the construction. To obtain the most cost-effective one, planners should play with various scenarios of periodic maintenance. They can choose for more repeated but less efficient and cheap repairs, i.e. five year periods or to work with bigger periods selecting techniques of rehabilitation that are very effective but also expensive. The interval sets performance requirements to the routine maintenance budget activities. Ideally planners would choose the scenario that has the most cost-effective (Rijn, 2006).
- C. Emergency maintenance: repairs are all activities of maintenance that have to carried out instantly to save lifes or prevent the disastrous effect of deteriorated infrastructure. Structural damages to flyovers due to accidents are one of typical examples of such emergencies. Departments of maintenance requirement to unrestricted access to budgets of emergency maintenance that allow them to carry out repairs that relieve immediate risks. Some senior management may wish to control access to emergency maintenance for work with more long-term focus (Rijn, 2006).

2.7.1 Forms of Pavement Maintenance

Maintenance can be either minor or major for a flexible roads (Rogers, 2003).

A. Minor maintenance takes the form of patching. It permits defective materials, especially those in the pavement surface courses, to be changed. If it is done exactly, it can return the stability and riding quality of the surface of the pavement, arresting its deterioration and widening its serviceable life. It is an integral part of highway maintenance and produces sound economic significance (Rogers, 2003).

Patching can repair the following troubles (Rogers, 2003):

- Substandard drainage or some other problem with regards to the subgrade that will cause the failure in the foundation of the pavements
- The asphalt surface ageing, causing its breakup with the consequent formation of potholes and crack areas
- Decreased load bearing capacity of the pavement due to the water entry and deterioration due to frost.

Patching includes the repair of random areas of substandard pavement, not continuous dimension (widths/lengths).

B. Major maintenance of asphalt pavements may include removing all or part of the surface using a planer and resurfacing the road, or laying a course of the asphalt over the present one. The process of overlaying is transacted with in detail within this text as asphalt pavements are designed under LR1132 on the basis that, at the end of their design life, their structural safety is such that the implementation of an overlay will significantly provide their serviceable life (Powell et al., 1984). Both overlaying and resurfacing are carried out for the following common reasons (HD 31/94) (DoT, 1994):

- To strengthen the highway pavement
- To replace defective materials
- To restore skidding resistance
- To improve riding quality.

The design of an overlay (minimum 50 mm thick) involves estimating the thickness required to deliver the required additional life to the pavement slab (Rogers, 2003).

2.7.2 Repair of Flexible Pavement Distress

Each type of distress needs a different type of repair based on distress severity as shown in Table (2-3) (Shahin, 2005; UFC, 2004).

Distress	Severity	Maintenance and Rehabilitation (M&R)				
Туре	Levels	Density				
		$\leq 10\%$	between 11%50%	> 50%		
Alligator/	Low	Do Nothing	Slurry seal	Slurry seal		
Fatigue	Medium	Deep Patching	Deep Patching	Deep Patching		
Cracking	High	Deep Patching	Deep Patching	Reconstruction		
D1 1	Low	Do Nothing	Do Nothing	Do Nothing		
Block Cracking	Medium	Crack Sealing	Crack Sealing	Slurry seal		
Cracking	High	Slurry seal	Slurry seal	Thin Overlay		
Long	Low	Do Nothing	Do Nothing	Do Nothing		
/Transverse	Medium	Crack Sealing	Crack Sealing	Crack Sealing		
Cracks *	High	Slurry seal	Slurry seal	Thin Overlay		
	Low	Do Nothing	Do Nothing	Do Nothing		
Patching	Medium	Surface Patching	Surface Patching	Surface Patching		
	High	Deep Patching	Deep Patching	Deep Patching		
	Low	Surface Patching	Surface Patching	Surface Patching		
Potholes **	Medium	Surface Patching	Surface Patching	Surface Patching		
	High	Deep Patching	Deep Patching	Deep Patching		

Table (2-3) Asphalt Concrete Pavement Distress Types and Maintenance& Rehabilitation (M&R) Alternatives (Source: Shahin,2005; UFC, 2004).

(*)Measured amount deformation by Linear meter

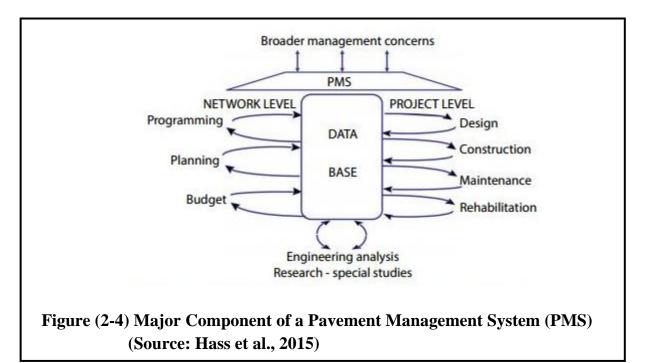
(**)Measured amount deformation by Number of drilling

Other Measured by Square meter.

Table (2-3) Asphalt Concrete Pavement Distress Types and Maintenance and
Rehabilitation (M&R) Alternatives (Source: Shahin,
2005; UFC, 2004) (continued).

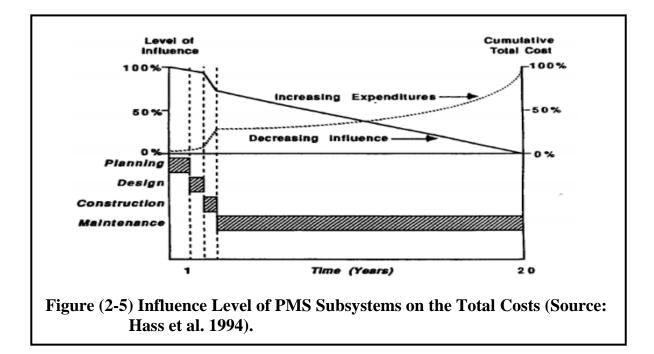
D	a	Mainte	enance and Rehabilitation	(M&R)
Distress	Severity			
Туре	Levels	. 100/	Density	
		$\leq 10\%$	between 11%50%	> 50%
Depression	Low	Do Nothing	Do Nothing	Do Nothing
	Medium	Surface Patching	Surface Patching	Surface Patching
	high	Deep Patching	Base Repair & Repave	Base Repair & Repave
	Low	Do Nothing	Do Nothing	Do Nothing
Shoving	Medium	Deep Patching	Deep Patching	Deep Patching
	High	Deep Patching	Deep Patching	Deep Patching
	Low	Do Nothing	Do Nothing	Do Nothing
Rutting	Medium	Milling & Repave	Milling & Repave	Milling & Repave
	High	Deep Patching	Deep Patching	Reconstruction
Asphalt	Low	Do Nothing	Do Nothing	Do Nothing
Bleeding	Medium	Do Nothing	Hot Sand Blotting	Milling & Repave
	High	Milling & Repave	Milling & Repave	Milling & Repave
Reflection	Low	Do Nothing	Crack Sealing	Crack Sealing
Cracks *	Medium	Crack Sealing	Crack Sealing	Crack Sealing
Clacks	High	Surface Patching	Surface Patching	Surface Patching
Lane/	Low	Refill Shoulder	Refill Shoulder	Refill Shoulder
Shoulder	Medium	Refill Shoulder	Refill Shoulder	Refill Shoulder
Drop *	High	Refill Shoulder	Refill Shoulder	Refill Shoulder
Slippogo	Low	Do Nothing	Do Nothing	Do Nothing
Slippage Cracks	Medium	Surface Patching	Surface Patching	Surface Patching
Clacks	High	Deep Patching	Deep Patching	Deep Patching
	Low	Do Nothing	Do Nothing	Do Nothing
Swell	Medium	Deep Patching	Deep Patching	Deep Patching
	High	Deep Patching	Deep Patching	Deep Patching
Deilmod	Low	Do Nothing	Do Nothing	Do Nothing
Railroad	Medium	Surface Patching	Surface Patching	Surface Patching
Crossing	High	Surface Patching	Surface Patching	Surface Patching
Weathering	Low	Do Nothing	Do Nothing	Do Nothing
Weathering /	Medium	Slurry Seal	Slurry Seal	Slurry Seal
Raveling	High	Thin Overlay	Thin Overlay	Thin Overlay
Polished Aggregates		Do Nothing	Slurry Seal	Slurry Seal
D û	Low	Do Nothing	Do Nothing	Do Nothing
Bumps&	Medium	Surface Patching	Surface Patching	Surface Patching
Sags *	High	Deep patching	Deep patching	Deep patching
	Low	Do Nothing	Do Nothing	Do Nothing
Corrugations	Medium	Surface Patching	Surface Patching	Surface Patching
Collagations	High	Base Repair & Repave	Base Repair & Repave	Deep patching
	Low	Do Nothing	Do Nothing	Do Nothing
	Medium	Surface Patching	Surface Patching	Surface Patching
Edge Cracks		Repair Shoulder/Deep	Repair Shoulder/Deep	Repair Shoulder/Deep
*	High	Patch	Patch	Patch

(*)Measured amount deformation by Linear meter


(**)Measured amount deformation by Number of drilling

Other Measured by Square meter

2.8 Pavement Management System (PMS)


Pavement management is a systematic process for maintaining, upgrading, and operating physical pavement assets in a cost effective manner. The process combines applications of established engineering principles with sound business practices and economic theory, thus assuring an organized and scientific approach to decision making (Garbar and Hoel, 2009).

A pavement management system must serve different management needs or levels, and it must interface with the broader highway, airport, and /or transportation management system involved. Fig. (2-4) shows a PMS consists of alternately reacting components such as programming, planning, design, construction, maintenance, and rehabilitation.

Further, PMS prepares a logical and profitable approach to operations of pavement maintenance. PMS that evaluates several alternatives use the expected maintenance and rehabilitation treatments impact on the performance of the future pavements. To support fund requests and justify maintenance and rehabilitation programs, PMS also extend all the information needed (Huang, 2004). However, the PMS components have significant but changing effects in terms of an influence level (Barrie and Paulson, 1992).

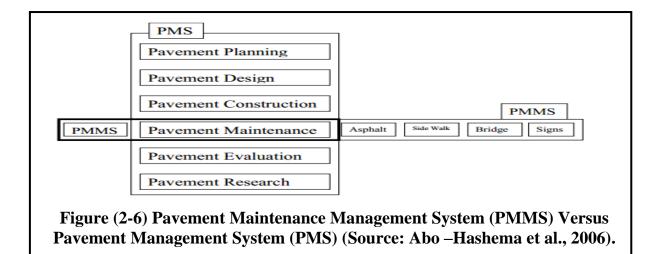
The PMS concept shows that the impact on the total life cycle cost of a project reduces as the project reduces, as shown in Fig. (2-5). The bottom division of the Figure appears the time length of each major component acts on the life pavement. The upper division shows rising costs and decreasing influence on the life of a pavement. Cost through the planning step is small compared with the total cost. Similarly, the principal costs for construction are a portion of the operating and maintenance costs related to the life cycle of the pavement. However, the decisions made through the early phases of a project have far major proportional effect on subsequently required expenditures than several of the following activities.

2.8.1 Function of Pavement Management System (PMS)

The goal of most PMS is to maximize the effectiveness of pavement maintenance and rehabilitation by using maximum benefits of the available fund (Shahin, 2005). The function of a PMS is to improve the efficiency of decision making, expand the scope, provide feedback on the consequences of decisions, facilitate the coordination of activities within the agency, and ensure the consistency of decisions made at different management levels within the same organization. PMS can provide several benefits for highway, airport, and other facilities at both the network and project levels. At the network level, agency-wide programs of new construction, maintenance, or rehabilitation are developed to have the least total cost, or greatest benefit, over the selected analysis period. At the project level, detailed construction is given to alternative design, construction, maintenance, or rehabilitation activities for a particular section or project within the overall program (Haas et al., 1994).

In order to realize the full benefits of such a management system, the following steps must be taken into consideration: (1) Proper information for each management level must be collected and periodically updated, (2) Decision criteria and constraints must be established and quantified, (3) Alternative strategies must be identified, (4) Predictions of the performance and costs of alternative strategies must be made, and (5) Optimization procedures that consider the entire pavement life cycle must be developed (Haas et al., 1994).

2.8.2 Activity Levels of Pavement Management System (PMS)

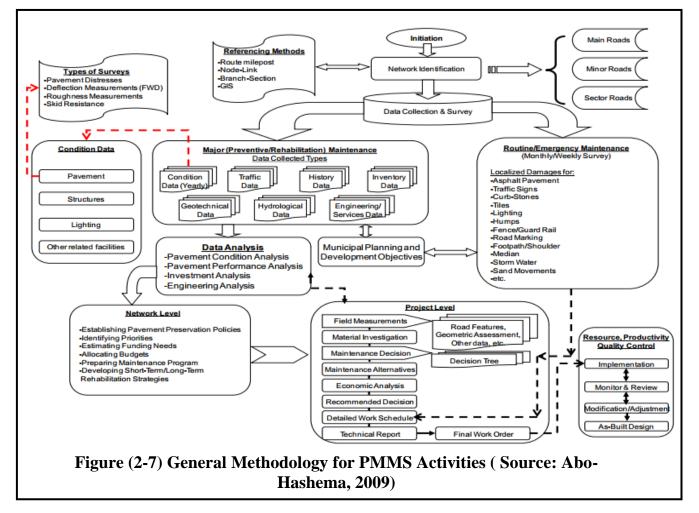

Activities of pavement management are conducted at two special levels: network level, and project level (Haas et al. 1994). First, the network level is "a global view of the pavement infrastructure and addresses the overall budget and planning issues". Second, the project level has a local focus on a bounded component of the larger network. The project level is where specific decisions on strategies of maintenance and funding divisions are made (Huang, 2004).

Before any data is collected, it is important to understand the differences between network and project level pavement management. A network level pavement management system is related to program and policy issues for the entire network; therefore, a network level analysis will be of the most use and interest to the manager, budget director, etc. A project level Pavement Management System analysis is a series of steps to determine the cause and extent of pavement deterioration in local agencies (WSDOT, 1994; shahin, 2005).

The purpose of the network level management process is normally related to the budget process. At the project level, the purpose is to provide the best original design, maintenance, or rehabilitation strategy possible for a selected section of pavement for the funds available. The primary results of the project level analysis include an assessment of the cause of deterioration, identification of the possible design, maintenance and rehabilitation strategies, and selection of the "best" strategy within imposed constraints. This requires a considerable quantity of detailed data. In this study, the project level pavement management system is used.

2.8.3 Pavement Maintenance Management System (PMMS)

Pavement Maintenance Management System (PMMS) should not be confused with Pavement Management System (PMS). PMMS is a part of the PMS program, i.e. they overlay rather than replace one to another. Fig. (2-6) shows PMMS versus the PMS and the concept of the overlay between them (Abo –Hashema et al., 2006; Kotb, 1996). A PMMS provides the framework for decision making in pavement maintenance based upon an objective approach.



The complexity of highway maintenance cannot be reduced to a series of mathematical expressions, as it should be subjected to a rigorous systems approach to ensure that policies are developed on the basis of need, that performance is monitored and proper financial control is exercised (Sharaf et al., 2003). There is a logical sequence of steps in the preparation of a pavement maintenance program. PMMS follows the sequence (Sharaf et al., 2003): (1) Establish objectives, (2) Define standards, (3) Assess needs, (4) Determine resources and programs, (5) Implement, (6) Monitor and review performance.

The goal of PMMS system is to produce activities through the available resources, information and the performed evaluations in order to increase the maintenance effectiveness. The improved system consists of some components including recognizing the road sections, recording and collecting the data about the pavement, pavement evaluation method, selecting the activities of the maintenance, choosing the maintenance needs, identifying the priorities and the future programs of the maintenance. PMMS starts with network classification and moves through data collection, data analysis, maintenance decisions and finally the supervision and directions. Fig. (2-7) shows a general methodology for roads maintenance and rehabilitation works (Abo-Hashema et al., 2006; Abo-Hashema and Sharaf., 2009).

2.9 Pavement Condition

Pavement condition is "a generic phrase to describe the ability of a pavement to sustain a certain level of serviceability under given traffic loadings". It is usually represented by various types of condition indices such as Present Serviceability Index (PSI), Present Serviceability Rating (PSR), Mean Panel Rating (MPR), Pavement Condition Index (PCI), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), and International Roughness Index (IRI).

These indices can be classified into two groups. First, roughness is defined as the difference in elevation of the surface that results in vibrations in traversing vehicles in ASTM E867 (ASTM E867, 2012). Several measures of roughness are generally used: IRI, RN, and PI. Second, distress-based

condition ratings, such as PCI and PCR, estimate the overall condition of a road by classifying the surface distresses of the pavement by type, frequency, and dimension. A PCI or PCR pavement condition is elevated by deducting the total of all distresses from 100 (Shahin, 2005). Thus, both PCI and PCR are numerical ratings of the pavement condition that range from 0 to 100; with 0 being the worst possible condition and 100 being the best possible condition (Shahin, 2005). In this study, PCI is used to describe the pavement condition.

2.9.1 Factors Affecting Pavement Condition

The most affecting factors on pavement procedures of pavement design considers performance as an important factor to predict it accurately. The designer should consider the same factors in the models of condition prediction (Lytton, 1987). These factors could be summarized as materials, types of treatment, traffic loading, pavement condition before treatment, pavement structure and climates. For practical reasons, choosing factors is depending on data availability. Available data determines the development of prediction models. In the following sections, those factors will be discussed.

2.9.2 Pavement Condition Index (PCI)

The PCI is an evaluation process that is determined in accordance with procedures contained in ASTM D 6433 (ASTM D6433, 2011), standard test method for Pavement Condition Index Survey. This procedure is used worldwide to provide a measurement of the condition of pavements taking into account the functional performance with implications of structural performance. Periodic PCI determinations on the same pavement will show the change in performance level with time. Because the PCI procedure is designed to be objective and repeatable, it can also be used to predict condition. The condition ranges from a PCI of 0 "Failed" to 100 "Good", with an "Good" condition corresponding to the pavement at the beginning of its life cycle, and a "Failed" condition representing a badly deteriorated pavement with virtually no remaining life. Table (2-4) shows the general description for each pavement condition (ASTM D 6433, 2011).

20	11).	
Condition	PCI Range	Description
Good	86 - 100	No significant distress.
Satisfactory	71 - 85	Little distress, with the exception of utility patches in good condition, or slight hairline cracks; may be slightly weathered.
Fair	56 - 70	Slight to moderately weathered, slight distress, possibly patching.
Poor	41 - 55	Severely weathered or slight to moderate levels of distress generally limited to patches and non-load-related cracking.
Very Poor	26 - 40	Moderate to severe distresses including load-related types, such as alligator cracking.
Serious	11 - 25	Severely distressed or large quantities of distortion or alligator cracking.
Failed	0 - 10	Failure of the pavement, distress has surpassed tolerable rehabilitation limits.

Table (2-4) Description for Pavement Condition Level (Source: ASTM D6433, 2011).

2.10 Expert System Used in Pavement Management

Pertinent research publications obtainable in the implementation of expert system techniques to solve problems in the pavement management area have been consulted and offered hereafter. Tables (2-5) and (2-6) provide a list of the developed existing expert systems that have been used in pavement management and rehabilitation.

Table (2-5) Summary of Expert Systems Applied in Pavement Management(Source: Norlela Ismail et al., 2009a).

Expert System	Reference	Facility Use	Pavement Type	Development Tools	Hardware	Number of Rules
ROSE	Hajek et al. 1987	Highway	Flexible	EXSYS	IBM-PC	360
SCEPTRE	Ritchie et al. 1987	Highway	Flexible	EXSYS	IBM-PC	140
PERSERVER	Haas et al. 1989	Highway	Flexible	OPSS	Mainframe	Not available

Table (2-5) Summary of Expert Systems Applied in Pavement Management
(Source: Norlela Ismail et al., 2009a) (continued).

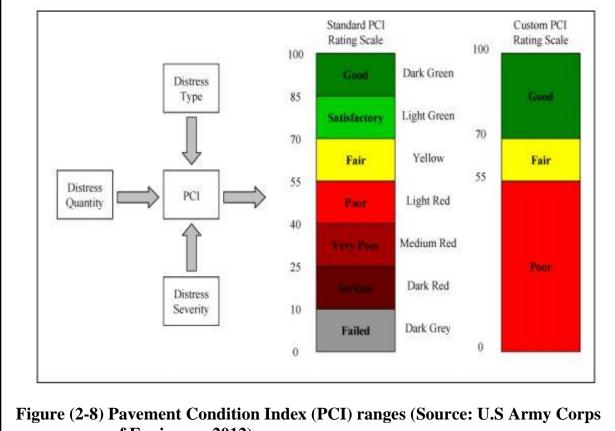
(Source: Norieia Isman et al., 2009a) (continued).						
Expert System	Reference	Facility Use	Pavement Type	Development Tools	Hardware	Number of Rules
ERASME	Allez et al. 1988	Highway	Flexible	French Shell Insight2+ Expert System Shell	IBM-PC	210
EXPEAR	Hall et al. 1989	Highway	Rigid	SAVOIR	IBM-PC	Not available
PAVEMENT EXPERT	Al-Shawi et al. 1989	Highway	Rigid	Not available	IBM-PC	Not available
PARES	Ross et al. 1990	Highway	Flexible	Not available	Not available	278
PMAS	Hanna 1994	Highway	Flexible Rigid	EXSYS Professional Instant Expert Plus	IBM-PC Macintosh	170 (EXSYS) 225 (Instant Expert)
PMDSS	De Cabooter et al. 1994	Highway	Flexible	Not available	IBM-PC	1200
PAVER	Shahin and Walther 1990	Highway Airfield	Flexible Rigid	Mainframe	IBM-PC	Not available
AIRPACS	Seiler 1990 Seiler et al .1991	Airfield	Rigid	Not available	Not available	Not available

Table (2-6) Comparison between Expert Systems (Source: Norlela Ismail et al., 2009b).

Expert System	Surface Distress Consideration	Independent Variable	M&R Strategies
ROSE	All cracks except alligator cracking	 Type and severity of crack Pavement serviceability Pavement structure Presence of pavement distress Availability of maintenance treatment 	Maintenance • Routing and sealing
SCEPTRE	Alligator cracking, Longitudinal cracking, transverse cracking and rutting	 Type, amount and severity of surface distress. Existing pavement Performance. Traffic levels Climate 	Rehabilitation • Do nothing • Fill cracks • Fog seal • Friction course • Chip seal • Double chip seal • AC overlay (thin, medium or thick) • Mill and replace

(Source: Norlela Ismail et al., 2009a) (continued).							
Expert System	Surface Distress Consideration	Independent Variable	M&R Strategies				
PERSERVER	Alligator cracking, Progressive edge cracking, and Distortion	Type, severity and density of surface distressSection size cost	Not available				
ERASME	Not available	 Pavement structure Deflection Nature and data of pavement repair Surface condition 	Rehabilitation				
EXPEAR	 Rutting Reflection cracking • Structural overlay Faulting Transverse cracking Joint deterioration Longitudinal cracking Wheel path cracking Corner break Transverse break 	 structural adequacy roughness drainage joint deterioration foundation movement joint sealant condition skid resistance joint construction concrete Durability load transfer loss of support shoulders 	Major Rehabilitation • Structural overlay • Restoration • Reconstruction				
PAVEMENT EXPERT	12 distress in 4 categoriesSurface deteriorationPatchingPumping joint spallingCracking	Surface deterioration PatchingIncidence, severity, and the extent of distress					
PARES	Not available	 Overall pavement rating value (PMV) Individual distress type, severity and extension ADT PARES Not available Roughness 	Rehabilitation				
PAVER	 19 distresses for AC-surfaced road 19 distress for PCC-surfaced road airfield 	 Type, severity and extent of surface distress History of pavement condition 	Routine Maintenance • Do nothing				
	 16 distresses for AC-surfaced 15 distresses for PCC- surfaced airfield 	• Pavement age	Cracks sealingJoint sealing				
PMAS	(RCI) • Traffi • Clima • Cost c		 Do nothing Cracks sealing Pothole patching Rout and seal Surface replacement Hot mix recycled patching Hot mix patching Cold mix patching Reconstruction 				
ESPRESSO	 Distresses in 4 categories Surface deterioration Pavement support Cracking Joints 	 Type, severity and extent of surface distress Pavement condition rating (PCR) and structural deduction 	 Maintenance Minor Rehabilitation Major Rehabilitation 				

Table (2-6) Comparison between Expert Systems of Pavement Management(Source: Norlela Ismail et al., 2009a) (continued).


Table (2-6) Comparison between Expert Systems of Pavement Management (Source: Norlela Ismail et al., 2009b) (continued).

Expert System	Surface Distress Consideration	Independent Variable	M&R Strategies
PMDSS	 Alligator cracking Block cracking Longitudinal and Transverse cracking Patching Faulting Joint crack Rutting Flushing Transverse distortion Longitudinal joint distortion Edge and surface raveling Slab breakup Longitudinal distortion PMDSS Pavement deterioration 	 Type, severity and extent of distress Pavement distress index (PDI) Pavement serviceability index (PSI) Emphasis of pavement Pavement type Pavement age 	 12 treatment categories for flexible pavement 12 treatment categories for rigid pavement

2.11 PAVER and Micro PAVER

PAVER and Micro PAVER (Shahin and Walther, 1990) are export systems developed to extend engineers with a systematic process in order to determine maintenance and rehabilitation (M&R) needs and priorities for pavement management. While Micro PAVER executes on a microcomputer; PAVER is the mainframe version. The PAVER is developed to optimize the use of funds allocated for pavement M&R. Micro PAVER is utilized to manage all types of the driveway (roads, streets), parking lots, and airfield pavement. The PAVER system is depended on the PCI survey and evaluation procedure. Also, needs to create a database in the network inventory to perform network and project analysis. The last one expand the users with detailed of current PCI survey information, possible alternatives for M&R. It is used for a current year or near term needs. Network analysis, which is used for forecasting long-term M&R needs supply the users with the future PCI, budget planning and project priorities. The PAVER system is written in FORTRAN and C languages, and design resides in IBM or compatible with the personal computer.

PAVER provides users with the ability to customize the PCI condition rating categories as show in Fig. (2-8).

of Engineers, 2012).

2.12 Determination of PCI

The PCI is calculated for each inspected sample unit. The PCI for the entire pavement section cannot be calculated before calculating the PCI of sample units. Deduct values determine the PCI calculation and factors should be weighted from 0 to 100 to indicate the impact on pavement conditions by each distress. For example, deducting value of (100) means that there is extremely serious distress affecting the structural integrity of pavement and/or surface operational conditions while deducting value of (0) means that there is no effect of distress. The PCI can then be calculated using either a software program (Using PAVER System) or by hand based on well-established formulas in Shahin (2005).

2.13 Geographical Information Systems (GIS)

A GIS is a computerized data base management system for accumulating, storage, retrieval, analysis and display of spatial (i.e. locationally defined) data. A GIS contains two broad classifications of information, geocoded spatial data and attribute data. A GIS can expand the decision making on repair strategies and project scheduling by incorporating such diverse data as accident histories, economic needs hazardous materials shipment and vehicle volumes (NIJU, 2006).

GIS has been used to enhance pavement management information with its typical features, such as graphical display of highway network and current and future pavement condition of the selected pavement sections. GIS also provides an excellent spatial query and analysis capability to select the candidate pavement sections in need of immediate maintenance (NIJU, 2006).

2.14 Maintenance Priority

The mean priority is a comportment of PMMS in the network level. After application of PAVER, a list of pavement condition for the network sections is prepared. In most cases, limited financial resources make it is impossible to perform all sections of low pavement condition indices. In this circumstance prioritizing and optimizing will be needed in order to prepare a maintenance and rehabilitation program. The following is a list of methods for establishing priorities. However, alternate methods can be developed based on an agency's policies and managerial decisions (WSDOT, 1994).

• The matrix method can be depended on many factors such as traffic and condition; i.e., the pavements in the worst condition and has the heaviest traffic is given the highest priority.

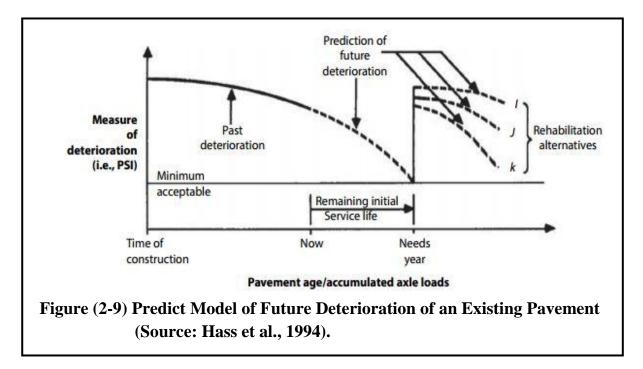
• The condition index method can be depended on comparative scores, which ranked from 0 (for worst) to 100 (for better). In order to develop a final list of

projects, priorities can integrate condition score with many factors such as traffic or functional class.

• In the benefit-cost ratio process, the sections would have the highest priority when it has the highest benefit-to-cost ratio. Whereas the previous methods are likely to favor a "worst-first" policy, the benefit-cost rationale can prepare high priorities for pavements in fair-to-poor condition rather than always beginning with the pavements in the worst condition.

• The cost-effectiveness procedure is the same to benefit-cost except that the function is to maximize the performance of the sections while considering cost. Performance, in this case, is a measure of the effectiveness of a particular strategy on a segment over time. Each segment in the agency's network can then be ranked against each other to arrive at a list of maintenance and rehabilitation options. This method does not require a "worst first" approach.

• The maximum benefits procedure is inherent in most optimization methods. This method is useful in the field of lifecycle costs and prioritization. Hence, if there is a project, which between many candidates could present the maximum amount of benefit-cost ratio or effectiveness upon cost for some budget, it would be selected for M&R treatments.

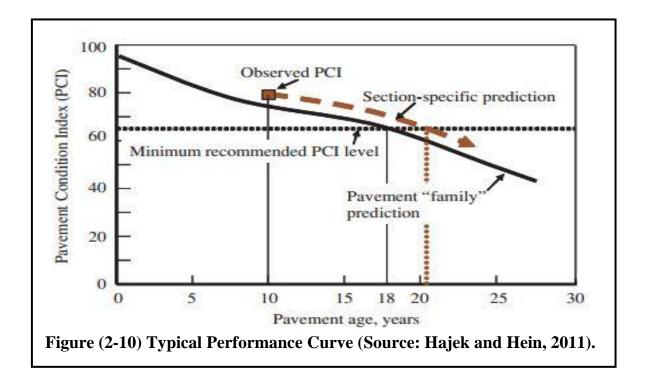

In this study, a set of maintenance prioritization methods is proposed to achieve efficient alternatives to maximize cost effectiveness for a limited financial resource.

2.15 Relation and Models of PCI

Predictions model for maintenance and rehabilitation treatment alternatives are essential for priority programming (Hass et al., 2015). Fig. (2-9) illustrates how deterioration prediction would be applied to an existing pavement section to estimate the rate of future deterioration and rehabilitation

35

alternatives (Hass et al., 1994). The basic requirements for any prediction model are represented in the figure.


The concept of modeling the deterioration of long life pavements for flexible pavements requires that the surface distresses to be monitored periodically (Newcomb, 2010). It is most likely for the wearing course to have deterioration than the deeper courses in the pavement structure, as well as any failure in the deep courses would reflect to the surface. As a result, when design criteria are satisfied, for example reaching limiting cumulative strain, performance, or deterioration modeling can show need for scheduled maintenance and rehabilitation interventions to yield the required design life. While design methods such as the Mechanistic-Empirical Pavement Design Guide (MEPDG) software (AASHTO, 2008) can be used in prediction of deterioration, although it's not so accurate due to its lack of accuracy over the longer term. Four basic types of prediction models presented: (1) purely mechanistic, (2) mechanistic-empirical, (3) regression based, and (4) subjective. The most common method to develop deterministic empirical models is the regression models. Analysis of that method is used to establish a relationship between two or more variables. Usually pavement condition is considered as the independent variable and the other factors act as dependent variables, and mostly the fit of the model is described by coefficient of determinant (R^2). This coefficient ranges between 0 and 100. Whenever it is high, it indicates better fitting for the model and the data. But R^2 not always the right indicator especially in non linear regression (Peter et al. 1995).

The general process of developing pavement condition indices consists of assigning deduct points to specific types, severity and extent (density) of distress. These deduct points are summed up and subtracted from a constant number (usually 100). This process results in a single value index, which describes the pavement condition. This pavement condition indices are the professional judgment of the agency, which assigns what is important to them from the distress types and weighted pavement condition factors.

PMMS typically employs a pavement rating system known as pavement condition index (PCI) as the basis for evaluation of current and future pavement conditions. Fig. (2-10) shows the family curve represents the pavement's anticipated performance over time. This curve can then be used to predict future performance. According to the predicted future pavement condition, multiple budgets and maintenance strategies can be run to determine the most cost effective maintenance treatment for the pavement (TRB, 2005).

Table (2-7) shows the literature review of other studied using PAVER, maintenance priority, predicting modeling to determine PCI of flexible pavement.

37

Table (2-7) Literature Review of Previous Researches in Maintenance Priority and Modeling.

unu mouching.						
Author(s)	Year	Topic Addressed	Methodology	Key Finding		
Al-Suleiman et al.	1991	Effects of Pavement age and traffic on Maintenance effectiveness	An evaluation of the effects of pavement age and traffic loading on Routine maintenance effectiveness was presented	Maintenance effectiveness for a relatively high traffic loading level was found higher than that for a low level. The Effectiveness of maintenance category was also examined		
Madanat and Mishalani	1998	Selectivity bias in Modeling highway pavement Maintenance effectiveness	Presents a structured econometric approach for estimating the effectiveness of pavement M&R activities.	develop a model system that includes a discrete choice model of M&R activity selection by the highway agency and separate continuous response models for the different activities. The effect of the activity in retarding deterioration or improving condition would still be a more important factor in the decision making process		
Al-Hallaq	2004	Development of a Pavement Maintenance Management System for Gaza City	integration between Micro PAVER pavement software and GeoMedia GIS software in order to fully exploit the capabilities of each individual package.	PMMS which is based on the direct integration between Micro PAVER and Geo Media Professional can be used to facilitate the decision making process for managing Gaza city pavements.		

& Modeling (continued).								
Author(s)	Year	Topic Addressed	Methodology	Key Finding				
Niju.	2006	GIS Based Pavement Maintenance & Management System (Gpmms)	a GIS based system that provides information for use in implementing cost –effective reconstruction, rehabilitation, and preventive maintenance programs and results in pavement design to accommodate current & forecasted traffic and pavement deteriorations, in a safe durable, and a cost-effective manner	PMMS which is based on the direct integration between GeoMedia Professional can be used to facilitate the decision making process for managing pavements.				
Garg and Deshmukh	2006	Maintenance management: Literature review and directions	systematically categorizes the published literature and then analyzes and reviews it methodically.	finds that important issues in maintenance management range from various optimization models, maintenance techniques, scheduling, and information systems etc. A new shift in maintenance paradigm is also highlighted.				
Ahmed et al.	2008	Development of Pavement Condition Index Model For Flexible Pavement in Baghdad City	develop the prediction model for pavement condition index (PCI) for flexible pavement.	the developed models shows that, this model is adequate to be used for the prediction of pavement condition for flexible pavements within the range of data.				
Kirbas and Gursoy	2010	Developing the Basics of Pavement Management System in Besiktas District and Evaluation of the Selected Sections	A pavement management system (PMS) arranges tools and methods to be used for determining the best maintenance schedule for the decision makers in a given period	at the end of all evaluations, in 12 sections of total 20, the pavement condition can be accepted as good, in 7 sections the pavement needs some maintenance and rehabilitation, and finally, only in 1 section the pavement needs total renewal.				
Mubaraki	2010	Predicting Deterioration for the Saudi Arabia Urban Road Network	Pavement distress prediction and pavement condition prediction models can greatly enhance the capabilities of a pavement management system.	Pavement age is most significant in the predicting pavement deterioration. Age can be a surrogate for the effect of traffic and drainage in prediction model. Maintenance Priority (MP) can be found through some factors for traffic level, road classification (RF), maintenance record (MF), and cost effectiveness (CEF) 4 and PCI.				
Kmetz	2011	GIS Based pavement Maintenance: A Systematic Approach	using a Geographic Information Systems (GIS) can help cities better manage their roads by graphically representing the MIP.	implement the maintenance plan and use a GIS to track the plan are examined.				

Table (2-7) Literature Review of Previous Researches in Maintenance Priority& Modeling (continued).

& Modeling (continued).								
Author(s)	Year	Topic Addressed	Methodology	Key Finding				
Ferreira et al.	2012	Cracking Models for Use in Pavement Maintenance Management	The cracking area evolution for a set of representative Portuguese pavements structures and traffic conditions	provide a good solution to the pavement maintenance management problem. The Indian and HDM-4 models were considered to produce acceptable results.				
Jagadeesh, and Harikeerthan	2012	Development of pavement deterioration models for urban roads	fifth cycle of data is collected for use in Pavement Management system for urban roads.	Prioritize the rehabilitation and reconstruction works and develop a framework for the pavement management system for urban roads.				
Shah et al.	2012	Evaluation of Prioritization Methods for Effective Pavement Maintenance of Urban Roads	Determines the best ranking list of candidate sections for maintenance based on several factors	out of 21 road sections, 10 sections were in good pavement condition with RCI value 1–5, 7 sections were in good condition with few isolated problems having road condition index (RCI) value 5–8 and 4 sections were in deteriorated condition and require urgent attention with RCI value 10-12. The sections were then prioritized for maintenance in the order of higher maintenance priority index (MPI) values				
Obead	2012	Development of Pavement Maintenance Alternatives Based on Multi-Criteria System	Evaluating pavement maintenance alternatives and finding the optimum maintenance strategy for defective pavement segments	"Fair" pavement condition and critical PCI for the selected case study. Comparison between the results obtained by the experts through designed questionnaire and the results obtained by applying AHP approach has been conducted. Statistical analyses show a good agreement between these two different results.				
Obaidat and Al - Mestarehi	2012	Integration of Geographic Information Systems and PAVER System to A ward Efficient Pavement Maintenance Management System(Pmms) –Case Study-Irbid City-Jordan	Information System (GIS) and PAVER System for the purpose of flexible pavement distresses classifications and maintenance priorities.	Statistical models were developed to quantify PCI values. These models utilized influencing variables including ADT, climate condition, socio-economical characteristic and pavement age. It was found that ADT and Pavement age variables played the most significant factors in the distresses quantification.				

Table (2-7) Literature Review of Previous Researches in Maintenance Priority& Modeling (continued).

& Modeling (continued).								
Author(s)	Year	Topic Addressed	Methodology	Key Finding				
Mapikitla	2012	Development of Pavement Management System For Road Network Maintenance	developing and testing pavement management system for road network maintenance	contributory factors to the deterioration of the route understudy are environmental and traffic loading oriented. PMS developed addresses the timing effect of M&R requirements and provide key performance indicators to assist with decision support system. PMS developed is suitable for road network applications ranging from national roads, provincial roads, regional or district arterial and collector / distributor networks in South Africa (S.A.).				
Ali et al	2012	Use of Micro PAVER Program for Pavement Maintenance Management System (PMMS) of Roads in Central and Eastern Sudan	PMMS incorporates a systematic procedure for pavement evaluation using PCI. And the effective and economic management of maintenance expenditures	the current status is in urgent need of an emergency program for pavement maintenance, rehabilitation and reconstruction				
Wu et al.	2013	Evaluation of MEPDG Flexible Pavement Design Using Pavement Management System Data: Louisiana Experience	evaluate the performance of typical Louisiana flexible pavement structures and compared it to the existing pavement performance data available in the pavement management system	fatigue cracking and IRI models in the MEPDG seemed to be adequate for most projects selected. Finally, a special optimization approach was introduced to determine a set of preliminary local calibration factors for the MEPDG rutting models for two types of flexible pavements in Louisiana in USA.				
Amin and Amador- Jiménez	2014	A Performance Based Pavement Management System for the Road Network of Montreal City – a Conceptual Framework	presents a conceptual framework of a dynamic PMS for the road network of Montreal City	Study proposes a PMS for different categories of road groups with different pavement performance curves for each group.				

Table (2-7) Literature Review of Previous Researches in Maintenance Priority& Modeling (continued).

CHAPTER THREE

CHAPTER THREE METHODOLOGY AND DATA COLLECTION

3.1 General

This chapter presents the description of methodology of the study, the study area, the methods used for data collection, dividing the network into manageable units. All other data necessary to determine PCI for units and sections. Further, data for establishing priority of maintenance, and incremental benefit-cost analysis. Other data for PCI modeling is also investigated and collected.

3.2 Methodology of the Study

The research methodology is presented in Fig. (3-1). Which show the steps of: the road network selection, pavement network division in to Brunch and section, data collection for each of PAVER software (type of distress, diminution and severity) by using measurement tool and GPS. And data collection for developing model and establish priority (average daily traffic (ADT), structural number (SN)). Compare the result of developing model and priority with PAVER PCI result.

3.3 Study Area Description

The study area represents a selected zone of urban streets for seven neighborhoods in Karbala city as previously shown in Fig. (3-2). These streets are classified depended on Karbala directorate mayor team information into: major arterial, minor arterial, collector, and local as shown in Fig. (3-2). The study area includes many active centers such as (schools, governmental buildings, and religious places), excessive traffic volume, structure failure of pavement, and climatic conditions.

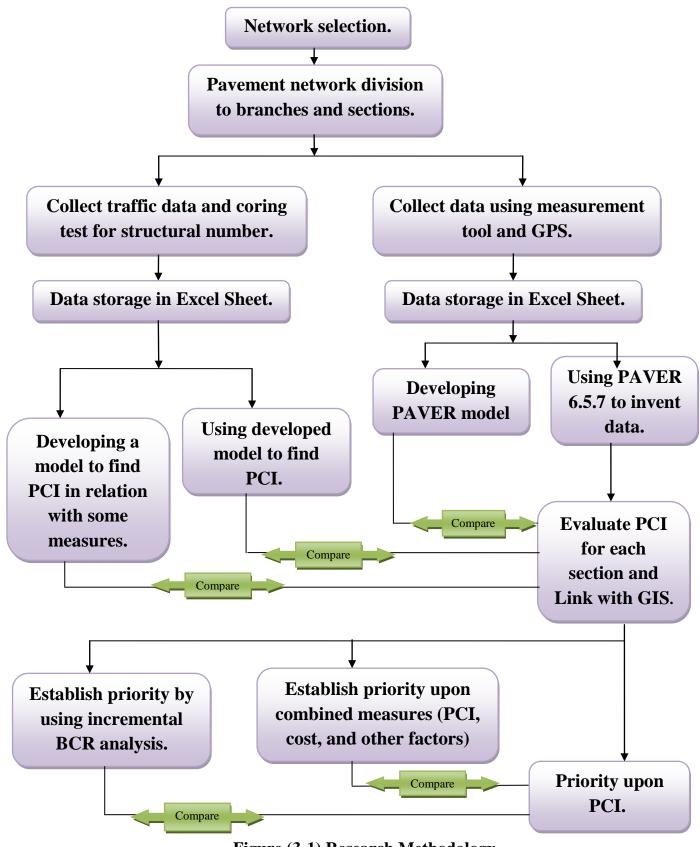


Figure (3-1) Research Methodology.

Also, the study area is affected by the millions of visitors who visit the shrines of Imam Hussein and Imam Abbas (peace be upon them).

3.4 Data Collection

The pavement condition index (PCI) is a simple, convenient and inexpensive measure to monitor the condition of the surface of roads, identify maintenance and rehabilitation needs, and ensure that road maintenance budgets are spent wisely. In order to perform an efficient estimation of PCI, the road network needs to be divided into manageable segments.

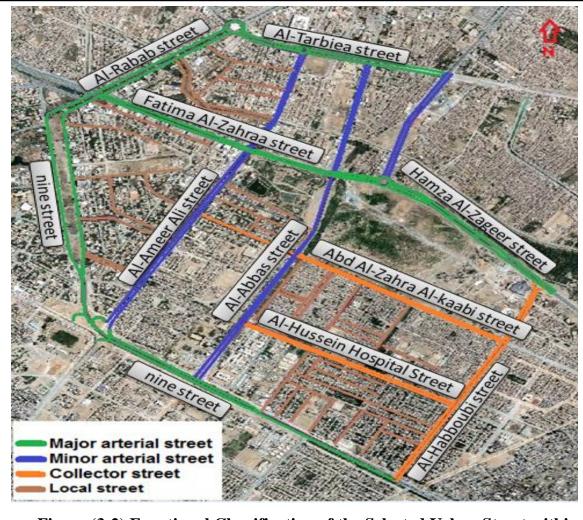


Figure (3-2) Functional Classification of the Selected Urban Street within the Study Area.

Data required for the estimation of PCI are listed and explained as follows:

- Geometric Data.
- Dividing the network into manageable units.
- Inspection data used in PAVER software.

3.4.1 Geometric Data

Geometric data have been collected by using GIS tools in map measurement depending on the available satellite images with an accuracy of 0.6m, updated to 2013 and available at Karbala municipal directorate. Right of way, lane length, lane width, and coordination of each unit in a section (start and end locations) were obtained using these tools.

3.4.2 Dividing the Network into Manageable Units

For a roadway system to be manageable, it needs to be divided down into branches that may be taken as city streets. Because a street does not always have consistent characteristics and thereby does not require the same maintenance and rehabilitation treatment at the same time throughout its entire length. Therefore, it is divided into smaller manageable segments (sections). This will also help efficiently in data collection and in making analysis(Shahin, 2005). Pavement section area having uniform construction, maintenance, usage history, and condition (ASTM D6433, 2011). Segments are defined so that the pavement within their boundaries is consistent in terms of physical and functional characteristics (Shahin, 2005).

Each road section should have a basic history attached to it:

- Class local residential, collector, or arterial.
- Length, width, and geometry.
- Type and volume of traffic.
- Pavement type flexible, rigid, or composite.
- Original construction date.
- Maintenance and rehabilitation history.

Pavement Management System Guidebook Review Team (1994) pointed out that one of the following factors could define the boundary between two segments:

- A change in the number of traffic lanes.
- A change in pavement type.
- An abrupt change in traffic patterns or volume.
- A change in drainage characteristics (such as curb and gutter to ditch segment).
- A change in pavement structure (thickness, material, etc.).
- A change in natural subgrade characteristics.
- Previous construction projects (different projects reflect different designs, materials, ages, and other factors).

In addition, geographic or manmade boundaries may offer or force segment boundaries, such as roadway intersections, rivers or streams, bridges, city or township limits, county lines, railroad crossings and current condition based on the last PCI.

The section of pavement should be divided into sample units. The sample unit of asphalt surfaced roads is defined as an area $2500 \pm 1000 ft^2$ ($225 \pm 90 m^2$), and the units to be inspected chosen as describe in (Shahin, 2005; ASTM D6433, 2011). A sampling plan for PAVER software is used so as a rationally accurate PCI could be estimated depended on inspecting of a limited number of the sample units in the pavement section.

3.4.3 Data Inspection

Surface distresses of road pavements are typically evaluated using the PCI. The PCI evaluation methodology was developed by ASTM D6433

(ASTM D6433, 2011). It is noteworthy that ASTM adopted the PCI as a pavement condition rating standard for road pavements.

For each manageable unit in a section of a road, the inspected data includes; type of distresses, dimension and severity for each unit in the section roads. Appendix (A) shows the details related to survey for each type of flexible pavement distress, how taken the dimensions and severity. Table (3-1) shows section sample of the distresses inspection data in the manageable pavement sample unit of section (1-A) of branch (1). Fig. (3-3) shows a sample of failure in different sections in the study area. The inspection data of all section at the study area are show in Appendix (B).

Pavement sample Unit 2				
Distress	Description	Severity	Quantity	Units
7	EDGE CRACKING	М	6	m
6	DEPRESSION	L	2	Sqm
Pavement sample Unit 4				
13	POTHOLE	L	4	Count
7	EDGE CRACKING	М	30	m
Pavement sample Unit 6				
7	EDGE CRACKING	Н	25	m
Pavement sample Unit 8				
7	EDGE CRACKING	М	33	m
Pavement sample Unit 10				
7	EDGE CRACKING	Н	32	m
Pavement sample 12	GOOD			
Pavement sample Unit 14				
6	DEPRESSION	Н	1.5	Sqm
Pavement sample Unit 16				
6	DEPRESSION	М	1.5	Sqm
Pavement sample Unit 18	GOOD			
Pavement sample Unit 20	GOOD			
T 1 1 1 1 C 11				

 Table (3-1) The Inspection Data for Section (1-A) of AL-Rabab Street.

 Payament completing 2

L: low level, M: medium level, H: high level

Data collection tools can simplify the inspection task. Coordinates of each unit (start and end locations) of a spitted started were picked for GIS. GPS units are used to pinpoint locations of each unit, but paper and pencil still work. The steps of inspection used to find PCI are as follows:

- 1- Surface distresses boundary in the pavement sample units were measured as area or just length or width and are evaluated based on type, frequency and severity.
- 2- Using GPS to pinpoint the location of distresses in the units.
- 3- A digital photograph of each section of roadway provides a permanent record of the pavement condition.

3.5 PAVER Software Capabilities

PAVER software for Windows is an automated PMS. It is a tool for making a decision for the development of cost-effective maintenance and repair alternatives for roads and streets, parking lots, and airfields. PAVER software tool up many important capabilities (U.S Army Corps of Engineers, 2014), including:

- 1. Pavement network inventory.
- 2. Pavement condition rating.
- 3. Development of pavement condition deterioration models (Family Curves).
- 4. Determination of present and future pavement condition (Condition Analysis).
- 5. Determination of maintenance and repair (M&R) needs and analyzing the consequence of different budget scenarios (Work Planning).
- 6. Project formulation.

3.5.1 Inventory and Editing Data Inspected by Using PAVER

PAVER software was utilized for selecting maintenance and repair (M&R) needs and priorities and determining the optimal time of repair by predicting future pavement condition (Al-Mestarehi, 2009).

Manual calculation of a PCI is not a tedious operation for a few number of sample units. However, when the volume of data generated from a survey is generally quite large, the calculations will be time-consuming. The calculations will be therefore, done automatically after distress information been entered into PAVER software and the overall PCI will be calculated for each section, as well as extrapolated quantities of distress (Shahin, 2005).

The following steps are used to compute PCI and pavement condition rating:

A. The pavement inventory is defined in terms of network, branch, and section. A pavement section is the smallest management unit for considering a major maintenance and repair (M&R) project. Key features to be considered in section definition are pavement type, structure, construction history, functional classification (or traffic), and existing condition (Shahin, 2005). Defining the pavement inventory (network, branches, and sections) is shown in Plates (3-1) to (3-3).

Network:Karbala -1-1			
1. Network	2. Branch	3. Section	
Network ID: Karbala N	letwork Name: Karbala city network		
Comment:			
1	Network User		
User Defined Fields			
,			

Plate (3-1) PAVER Screen for Defining Pavement Inventory (Network).

Network: Branch:	Karbala 1	-		ity network			-	
Section:	A	- From	1		→ To: 2		-	
Branch:K	arbala -1-A		-					
	1. Network			2. Branch	•	- 1 -	3. Sec	ation
в	Iranch ID: 1	10	Branch	n Name:				
Bran	ich Use: DRIV	EWAY -	Number of S	ections 3.00 Branch:		7)		
	Sections):	21.32	Widtł	n (Avg. of 10.33 Sections):		M		
Calc. Ar	ea (Sum of 14, Sections):	782.41	Area Ac	ljustment: 0.00		True Are	a: 14,782.41	SqM
	Comment:							
Use	I er Defined	1						
	Fields:	Branch User	=1					
'ou are editir	ng							
		Historical Val	ues					
Images (0	00 I Nausi		1 Delate	1		Close		
			Delete		_	. =		<i>(</i> -)
Plate					g Pave	ment Inv	ventory	(Branch)
	(3-2) PA				g Pave			(Branch)
List Sele Network: Branch: Section:	(3-2) PA		karbala c		g Paver	ment Inv		
List Sele Network: Branch: Section:	(3-2) PA	VER Sc	karbala c	r Definin	-			
List Sele Network: Branch: Section:	(3-2) PA	VER Sc	karbala c	r Definin	-			
List Sele Network: Branch: Section: Branch: Properties	(3-2) PA	VER Sc	Karbala c	r Definin	-			
List Sele Network: Branch: Section: Branch: Properties Sec	(3-2) PA	VER Sc	Karbala c Rarbala c From: Bank:	r Definin	▼ To: 2	To Last Constr. Date) c c c c c c c c c c c c c c c c c c c
List Sele Network: Branch: Section: Branch: Properties Sec Surface	(3-2) PA	VER Sc	Karbala c Rarbala c T From: Rank: Width:	r Definin	τ Τα: 2 τ	To Last Constr. Date		tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surface	(3-2) PA	VER Sc	Karbala c Rarbala c From: Bank:	r Definin	▼ To: 2	To Last Constr. Date) co co s
List Sele Network: Branch: Section: Branch: Properties Sec Surface	(3-2) PA	VER Sc	From: Ranka Ranka Ranka Width:	r Definin	τ Τα: 2 τ	Tous Are.		tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surfac	(3-2) PA	VER Sc	Rarbala c Rarbala c T Rarba Rarba Rarba Width: rea Adjustment: Calculate	r Definin	τ Τα: 2 τ	To Last Constr. Date True Are. C Calcula	3. Sec	tion -calculated
List Sele Network: Branch: Section: Branch:1 Properties Sec Surfac	(3-2) PA	VER Sc	Rarbala c Rarbala c T From: Rank: Width: Vidth: Calculate	r Definin	• To: 2 • M SqM	To Last Constr. Date True Are. C Calcula Lanes/ Space	22 3. Sec 5.068.00 3. Sec 4. Sec 5.068.00 4. Sec 5.068.00	tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surface C	(3-2) PA	VER Sc	Rarbala c Rarbala c T From: Bank: Width: rea Adjustment: Calculate	r Definin	To: 2	To Last Constr. Date True Are. C Calcula	22 3. Sec 5.068.00 3. Sec 4. Sec 5.068.00 4. Sec 5.068.00	tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surfac	(3-2) PA	VER Sc	Rarbala c Rarbala c T From: Rank: Width: Vidth: Calculate	r Definin	• To: 2 • M SqM	To Last Constr. Date True Are. C Calcula Lanes/ Space	22 3. Sec 5.068.00 3. Sec 4. Sec 5.068.00 4. Sec 5.068.00	tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surfac	(3-2) PA	VER Sc	Rarbala c Rarbala c T From: Rank: Width: Vidth: Calculate	r Definin	• To: 2 • M SqM	To Last Constr. Date True Are. C Calcula Lanes/ Space	22 3. Sec 5.068.00 3. Sec 4. Sec 5.068.00 4. Sec 5.068.00	tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surfac	(3-2) PA	VER Sc	Rarbala c Rarbala c T From: Rank: Width: Vidth: Calculate	r Definin	• To: 2 • M SqM	To Last Constr. Date True Are. C Calcula Lanes/ Space	22 3. Sec 5.068.00 3. Sec 4. Sec 5.068.00 4. Sec 5.068.00	tion -calculated
List Sele Network: Branch: Section: Branch: Properties Sec Surfac C. Use You are edit	(3-2) PA	VER Sc	Rarbala c Rarbala c 1 From: Rank: Width: Calculate Zone: Street Type:	r Definin	• To: 2 • M SqM	To Last Constr. Date True Are. C Calcula Lanes/ Space	22 1 2 2 3. Sec 3 2 3 2 2 3 2 3 5.068.00 *: [0	tion -calculated
List Sele Network: Branch: Section: Properties Sec Surface C. Use You are edit Current	(3-2) PA	VER Sc	Rarbala c Rarbala c 1 From: Rank: Width: Width: Calculate Street Type:	r Definin	• To: 2 • M SqM	To Last Constr. Date True Are. C Calcula Lanes/ Space	22 1 2 2 3. Sec 3 2 3 2 2 3 2 3 5.068.00 *: [0	tion -calculated

B. Entering the inspect dates and information of samples.

The inspection component of PAVER software can be launched from the PAVER software button bar via PCI, using the subsequent steps:

- Enter inspection dates via a click on the (edit inspection) as shown in Plate (3-4).
- 2- Enter the survey information via a click on the (edit sample unit) as shown in Plate (3-5).
- 3- Enter information on distress (Type, Severity, or Quantity) as shown in Plate (3-6).

Branch Use: DRIVEWAY	spection Section Surface Typ Section Length:	ре: АС 724 М	Section Section	True Area: Width:	5,068. 7	SqM M		
Inspection Date: 17/04/2016	✓ Edit Ins	pections Detailed	Inspection Comr	nen <u>t</u> s	<u>C</u> alculate (Conditions		
Sample Unit: 2	Inspection	ons						
Sample Unit Size: 231.00 Distress Type C 01 ALLIGATOR CR		Date	Total Sur Samples Typ	face Com	ments		Samples Surveyea	PC.
C 02 BLEEDING C 03 BLOCK CR	C 07	17/04/2016 03/03/2008	10.0 AC 0.0 AC		struction		10	86.0 100.0
C 04 BUMPS/SAGS	C 09 C 10			1				
Distress Severity								
	<u>H</u> igh							
Distress D	escription							
	DGE							
6 0				non PCI				
6 D	Nev	New creates inspections	both PLI and	non-rui				

Plate (3-4) PAVER software Screen for Editing Inspection Dates.

ummary data Branch Use: DR		n Surface T Length:	уре: АС 724 М	í.	Section T Section V		5,068. 7	S	iqM 1		
nspection Date:	17/04/2016 -	<u>E</u> dit I	nspections	etailed Inspec	tion Comme	en <u>t</u> s	<u>C</u> alcul	ate Cond	litions		
ample Unit:	2	Edits	ample Units								
					5	Compining Co					
ample Unit Size:	231.00 Sqt s	elect Sam	ples								
Distress Type			Love be of								_
C 01 ALLIGA	TOR CR	-									
C 02 BLEEDI		Samp	e Units For 17/0				Samp		rom Other		
C 03 BLOCK			Sample Number		ole Type 🔺	<		Sample		Sample Size	Units
C 04 BUMPS			2	Rand				Number	Type	Size	
C 05 CORRU	GATION		4	Rand				_	1	1 1	-
Distress Se <u>v</u> er	rity		6	Rand							
C Low .		-	10	Rano		I.,					
		-	12	Band							
			14	Rand		1					
	Distress Descri	•	1	1	•						2
	6 DEPF					N (
	ODEFT		li		- 1						
			Add New	Remove	£					Close	
4					_				- 100 million		_
Previous Samp		ample Unit	Smp Ima								

	Section Surface Section Length:	Туре: АС 724		ion True Area: ion Width:	5,068. SqM 7 M
nspection Date: 17/04/2	2016 💌 <u>E</u> dit	Inspections	Detailed Inspection Co	ommen <u>t</u> s	Calculate Conditions
ample Unit: 2	✓ Edit :	Sample <u>U</u> nits			
ample Unit Size: 231.		g distresses foun	d during inspection.	Re <u>m</u> aining Sa Have No Dia	
	C 06 DEPRE		C 11 PATCH/UT C		
C 02 BLEEDING	06 DEPRE		C 12 POLISHED A	7.1	16 SHOVING 17 SLIPPAGE CR
C 03 BLOCK CR	C 08 JT REI		C 13 POTHOLE		18 SWELL
C 04 BUMPS/SAGS	C 09 LANE	SH DROP	C 14 RR CROSSI	NG C	19 RAVELING
C 05 CORRUGATION	C 10 L_TC	R	C 15 RUTTING	C	20 WEATHERING
C Low ← Medium			6.00	M	
	ss Description	Severity	Qu	antity Units	Add Distress
	7 EDGE 6 DEPRESSION	M L		6. M 2. SqM	Delete Distress
	0 DEI HESSION	15	1.	2. J J UM	<u>Replace Distress</u>
•				•	
Previous Sample Unit	<u>N</u> ext Sample Uni	t Smp	Images (0)		
				Close	

3.6 Data for Establishing Priority of Maintenance

The priority of maintenance was studied according to a set of selected variables that may affect priority. The priority of maintenance (as dependent variables) is related to other independent variables in addition to PCI determined from PAVER software. The independent variables include; cost, easy, and average daily traffic (ADT).

The weights of the independent variable in the equation are found during the inspection test. Experts (with at least 10 years of experience in roadway maintenance) are asked to give the suitable irrespective weight as a semantic score in relative to the questions listed in Table (3-2). The impact of cost is negative while that of PCI, easiness, and average daily traffic have positive weights.

Table (3-2) The Questionnaire Sample for Irrespective Weight of MultipleFactor Method.

No.	Definition	Irrespective Weights*	Scale reference
1	How costly would it be to implement maintenance to address a good pavement condition?	-	 Not Costly Very Costly
2	What impact has PCI measure on pavement condition?	+	 Not Impact Highly Impact
3	How easy would it be to implement the maintenance?	+	1. Not Easy 5. Very Easy
4	What impact has the functional classification of the section on priority of maintenance?	+	 Not Impact Highly Impact
5	What impact has the average daily traffic (ADT) on priority of maintenance?	+	 Not Impact Highly Impact

*Weights (from 0 to 10), Experts were asked to give the irrespective weight for each item.

3.6.1 Traffic Volume Data

The traffic flow data were recorded by using a video camera. Data recorded by video camera tapes and later copied into solid disk. The traffic data were collected and classified depending on the type of vehicles such as passenger car, light truck, heavy truck, and bus. Vehicles of different types require a different amount of road space because of variations in size and performance. To allow for this in capacity measurement for roads, traffic volumes are expressed in passenger car units (PCU) and the weighting for each class of vehicle has to be varied to suit the purpose for which they are to be used. For traffic count and design purposes, conversion factors similar to those of "Road Transport Study, Iraq, 2005" are used by SORB. These factors are shown in Table (3-3).

In this research, the conversion factors of the flat case have been used. The traffic volumes data abstracted from video recording for each section of arterial and collector roads. Table (3-4) shows the traffic data that has been collected in April, 2016.

Table (3-3) Conversion Factors of Different Type of Vehicle to PCU (Source: SORB, 2005).

SCI	SCRB- Conversion factors to PCU								
	Type of Terrain								
Vehicle Type	Flat	Hilly	Mount						
Passenger cars	1.00	1.00	1.00						
Buses up to 24 passengers	1.25	1.75	3.00						
Buses above 24 passengers	2.00	3.00	6.00						
Truck, and trailer combination	3.00	5.00	10.00						

Table (3-4) Traffic Data Collected for Each Section in the Study Area ofKarbala city in 2016.

		11y 111 2010	•			
Street	Passenger	Light truck	Heavy truck	Bus	Time	Day
1-1	1878	172	23	276	3:59-4:59 PM	Saturday
1-A	1389	86	10	173	3:59-4:59 PM	Saturday
1-B	1433	118	7	198	3:59-4:59 PM	Saturday
2-A	963	74	22	41	3:59-4:59 PM	Saturday
2-B	1207	93	37	73	4:05-5:05 PM	Tuesday
3-A	917	145	51	40	9:0-10:0 AM	Saturday
3-B	1083	87	62	76	9:0-10:0 AM	Saturday
3-1-A	807	133	27	152	9:0-10:0 AM	Saturday
3-1-B	615	183	29	67	9:0-10:0 AM	Saturday
4-A	1512	192	69	185	9:0-10:0 AM	Saturday
4-B	1629	195	70	190	9:0-10:0 AM	Saturday
5-A	507	74	13	18	10:0-11:0 AM	Saturday
5-B	652	62	14	29	10:0-11:0 AM	Saturday
6-A	620	52	11	28	10:0-11:0 AM	Saturday
6-B	639	59	13	33	10:0-11:0 AM	Saturday
7-A	642	50	9	21	9:35-10:35 AM	Tuesday
7-B	681	61	11	27	9:35-10:35 AM	Tuesday
8-A	1498	147	31	128	11:0-12:0 AM	Saturday
8-B	1523	140	38	252	11:0-12:0 AM	Saturday
9-A	1492	151	32	126	11:0-12:0 AM	Saturday
9-B	1581	113	26	179	11:0-12:0 AM	Saturday
9-C	1335	89	11	175	11:0-12:0 AM	Saturday
10-A	998	53	8	62	11:0-12:0 AM	Saturday
10-B	1012	62	13	79	11:0-12:0 AM	Saturday
11-A	1033	86	10	77	3:30-4:30 PM	Saturday
11-B	1128	100	14	89	3:30-4:30 PM	Saturday

	Karbala c	<u>ny m 2010</u>		cu).		
Street	Passenger	Light truck	Heavy truck	Bus	Time	Day
12-A	968	141	17	46	3:30-4:30 PM	Saturday
12-B	821	182	21	49	3:30-4:30 PM	Saturday
12-1-A	787	91	15	51	3:30-4:30 PM	Saturday
12-1-B	724	88	17	43	3:30-4:30 PM	Saturday
13-A	997	40	9	51	10:45-11:45 AM	Tuesday
13-B	1104	53	11	43	10:45-11:45 AM	Tuesday
15-A	1214	45	8	107	11:0-12:0 AM	Saturday
15-B	1088	32	6	81	11:0-12:0 AM	Saturday
17-A	789	29	4	17	10:0-11:0 AM	Saturday
17-B	688	25	6	23	10:0-11:0 AM	Saturday
18-A	680	28	5	26	10:35-11:35 AM	Tuesday
18-B	786	25	4	20	10:35-11:35 AM	Tuesday
19-A	1023	49	5	25	5:40-6:40 PM	Saturday
19-B	1098	37	4	32	5:40-6:40 PM	Saturday
20-A	1121	32	5	31	5:40-6:40 PM	Saturday
20-B	1153	39	4	38	5:40-6:40 PM	Saturday
21-A	1138	49	6	32	5:40-6:40 PM	Saturday
21-B	1233	40	4	41	5:40-6:40 PM	Saturday
22-A	1004	31	11	88	5:20-6:20 PM	Saturday
22-B	809	43	9	84	5:20-6:20 PM	Saturday
23-A	654	86	12	67	12:0-1:0 PM	Tuesday
23-B	677	85	9	38	12:0-1:0 PM	Tuesday
23-1-A	605	32	2	58	12:0-1:0 PM	Tuesday
23-1-B	652	55	4	66	12:0-1:0 PM	Tuesday
24-A	1246	60	9	71	12:0-1:0 PM	Tuesday
24-B	1207	59	8	73	12:0-1:0 PM	Tuesday
25-A	1936	161	20	365	6:15-7:15 PM	Tuesday
25-B	1679	157	21	207	6:15-7:15 PM	Tuesday
26-A	2184	187	22	241	5:10-6:10 PM	Tuesday
26-B	1797	198	26	219	5:10-6:10 PM	Tuesday

Table (3-4) Traffic Data Collected for Each Section in the Study Area of Karbala city in 2016 (continued).

3.6.2 Pavement Maintenance Costs and Easiness of Performance

Maintenance costs vary with road conditions, traffic volume, geographic location, climate conditions, work methods, technical equipment, and other factors (Birmingham and Stankevich, 2005). Table (3-5) shows the maintenance cost and work easiness for each distress type in the flexible

pavement from experts response. This cost includes future overlays and/or upgrading that are necessary made when the riding quality of pavement decreases to a certain minimum level of acceptability (AASHTO, 1993).

Work Ea	5111655.			
Distress Type	Severity Levels	Description	Financial Unit Cost (ID)*	Easiness
Alligator, Block	Low	Surface Patching	15,000	4
Cracking, Patching,	Medium	Deep Patching	30,000	3
Potholes, Depression.	High	Deep Patching	40,000	2
Lana	Low	Do Nothing	0	5
Long.,	Medium	Crack Sealing	3,000	4
Transverse, Edge Cracking.	High	Slurry seal, Thin Overlay	15,000	3
Dutting Showing	Low	Do Nothing	0	5
Rutting, Shoving, Swelling.	Medium	Milling & Repave	25,000	3
Swenning.	High	Deep Patching	40,000	2
Aanhalt	Low	Do Nothing	Nothing 0	
Asphalt Bleeding	Medium	Do Nothing	0	5
Dieeunig	High	Milling & Repave	25,000	3
Weathering /	Low	Do Nothing 0		5
Raveling	Medium	Slurry Seal	15,000	4
Kavening	High	Thin Overlay	20,000	3
Bumps& Sags,	Low	Do Nothing	0	5
Corrugations, Slippage	Medium	Surface Patching	15,000	4
Cracks	High	Deep Patching	40,000	2
Reflection Cracks	Low	Do Nothing	0	5
Reflection Clacks	Medium	Refill	8,000	4
	High	Refill	10,000	4
	Low	Do Nothing	0	5
Railroad Crossing	Medium	Surface Patching	15,000	4
	High	Deep Patching	30,000	3
Lane/	Low	Do Nothing	0	5
Shoulder	Medium	Surface Patching	3,000	4
Drop	High	Deep Patching	4,000	4

 Table (3-5) The Maintenance Cost for Flexible Pavement Distress and Work Easiness.

(*): Construction Cost Provided by Iraqi Contractors Union – Karbala , 2017.

Cost of maintenance (ID/M^2) determined by divided the total cost of units (ID) per the total area of inspected units. Maintenance cost for sample section (1-A) is shown in Table (3-6), and other sections are presented in Appendix (B).

Section 1-A	Pavement sample sect	ion area (50	68 Sqm)			
Unit 2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
7	EDGE CRACKING	М	6	М	18000	1257000
6	DEPRESSION	L	2	SqM	30000	
Unit 4						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	544.155844
13	POTHOLE	L	4	Count	60000	
7	EDGE CRACKING	М	30	М	90000	
Unit 6						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	Н	25	М	375000	
Unit 8						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	М	33	М	99000	
Unit 10						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	Н	32	М	480000	
Unit 12	GOOD					
Unit 14						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	Н	1.5	SqM	60000	
Unit 16						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	М	1.5	SqM	45000]
Unit 18	GOOD]
Unit 20	GOOD					
L. Low Low 1 M. a	adjum laval II. hajaht	11				

Table (3-6) Maintenance Costs for Sample Section (1-A) of AL-Rabab roadway.

L: low level, M: medium level, H: height level

3.6.3 Incremental Benefit-Cost Analysis

The purpose of carrying out benefit-cost analysis is primarily to ensure that an adequate return in terms of benefits results from committing expenditure.

Any commitment of expenditure can be considered as making an investment, whether it be a capital project or an investment in maintenance. An additional purpose is to ensure that the investment option adopted gives the highest return in relation to the standards adopted, and the timing of the investment (Robinson and Wride, 1998). The incremental benefit-cost analysis is an extension of the benefit-cost ratio (BCR) method. In this study the benefit gained from pavement maintenance is assumed to equal decrease of PCI out of hundred (100 - PCI) and this compared with the cost of

maintenance represent. The following steps describe the method in its simplest form (AASHTO, 2010):

- 1. Arrange sections with a BCR greater than 1.0 in increasing order based on their estimated cost. The section with the smallest cost is listed first.
- 2. Beginning at the top of the list, calculate the difference between the first and second project's benefits. Similarly, calculate the difference between the costs of the first and second sections. The differences between the benefits of the two sections and the costs of the two sections are used to compute the BCR for the incremental investment.

Incremental BCR =
$$\frac{(PV_{benefits 2} - PV_{benefits 1})}{(PV_{cost 2} - PV_{cost 1})} \qquad ...(3-1)$$

where:

PV_{benefits 1} = Present value of benefits for lower-cost project (100-PCI).

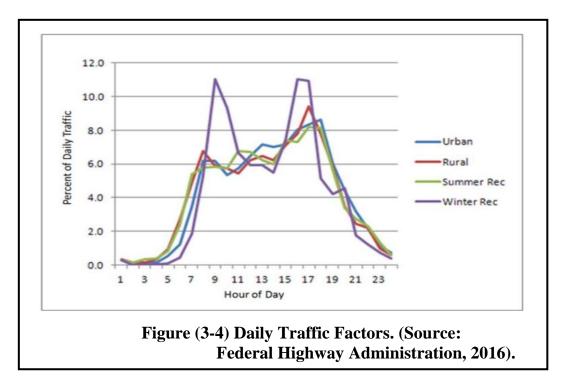
PV_{benefits 2}= Present value of benefits for higher-cost project (100-PCI).

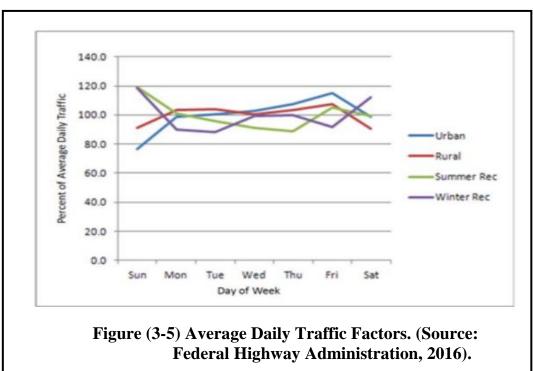
 $PV_{cost 1}$ = Present value of cost for lower-cost project.

 $PV_{cost 2}$ = Present value of cost for higher-cost project.

- 3. For the incremental investment, if the BCR is greater than 1.0, the section with the higher cost is compared to the next section in the list. if the incremental investment for the BCR is less than 1.0, the section with the lower cost is compared to the next section in the list.
- 4. Repeat this process. The section selected in the last pairing is considered the best economic investment.

To produce a ranking for sections, the entire evaluation is repeated excluding the sections previously determined to be the best economic investment until the ranking of every section is determined. In this research, a large number of trails had to be done. So, the use of a spreadsheet or special purpose software to automate the calculations is the most efficient and this purpose.


Other instances, where the resulting of an incremental difference between the cost of the two sections equal to zero. This case leads to a zero in the denominator for the BCR. If such an instance arises, the section with the greater benefit will be selected. Additional complexity is added, where appropriate, to choose one and only one section alternative for a given site. The incremental benefit-cost analysis does not explicitly impose a budget constraint.


<u>3.7 Data for PCI Modeling</u>

In this research, a model developed by Garber and Hoel (2009) and Hoel et al. (2011) as well as another model during this study to determine the future condition of pavement sections, depending on the same independent variables in the model developed by Garber and Hoel (2009) and Hoel et al. (2011). The information used in each model related to pavement condition including PCI, ADT, pavement age, and structural number were used as independent, while PCI expressed as dependent variable.

3.7.1 Estimation of Average Daily Traffic (ADT)

The Average Daily Traffic (ADT) value for the sections shown in Appendix (C), can be determined depending on traffic data collections, convert the data of each type vehicles to a PCU by using converting factors. In this research, the conversion factors for the flat type of terrain were used as shown in Table (3-4). By Using a Federal Highway Administration charts as shown in Fig. (3-3) to convert the traffic value from one hour to daily traffic value, and Fig. (3-5) to convert the daily traffic value to average daily traffic value.

3.7.2 Estimation of Structural Number

Structural evaluation of pavement depended on nondestructive or destructive test. The data required is essential in assessing the structural capacity of pavement sections and networks (Hass et al., 2015).

3.7.2.1 Destructive Test

Destructive testing techniques include coring in bound layers, boring in soft layers, and dynamic cone penetrometer (DCP) testing in subgrade soils (Uddin, 2002). During destructive tests, each core was numbered and transferred safely to the Laboratory. However, cores serve one or more of the three general purposes in forensic investigations (i.e., for thickness, for the cause of distress, and for laboratory testing). One core can serve all of the three purposes if required, but care will need to be taken to obtain all required measurements and photographs before testing (NCHRP Report 747, 2013). The coring is conducted by using a smooth bore bit, generally 4 to 6 inches in diameter, to be drilled into the pavement. This test is usually conducted to gather information about the pavement from the pavement surface down to the subgrade. The coring provides a very detailed picture of how the roadway structure exists at the cored point (WSDOT,1994). The core samples were taken for surface and base layer for each arterial and collector section in the studied area (fifty sections). Plate (3-7) shows core test for a specific section in the study area.

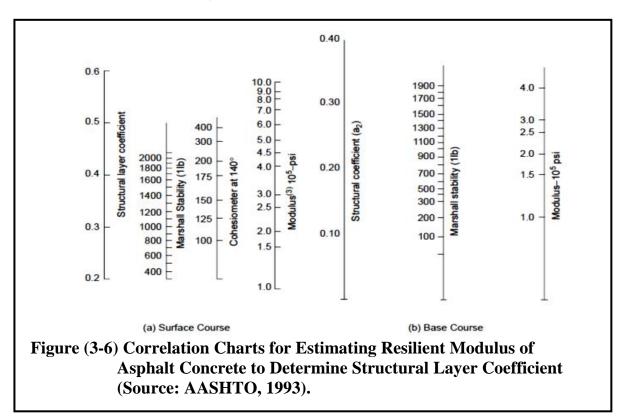
The steps that are followed throughout current study:

- 1- Choose a places of core samples for each section, and take the coordinates of them.
- 2- Use core device to cut samples.
- 3- Cut cores at an angle of 90° to the surface in order to ensure the recovery of straight.
- 4- Numbering and mark the core and record number and location on the core log.
- 5- Photograph the core and record the photograph number on the core log.

3.7.2.2 Laboratory Testing of Samples

The Marshall Stability test procedure was used to prepare test specimens using ASTM D 6927 (2015). To determine layer coefficient and structural number for each layer (surface, binder, and base), follow these steps:

- 1- Separate each pavement layer (binder, surface, base)
- 2- Take the average height for each core. The dry weight also should be taken to determine bulk density as shown in Plate (3-8).
- 3- Before testing the core samples, leave them in a water bath having a temperature of 60°C for half an hour and test it after that as shown in Plate. (3-9).



A. Water BathB. Marshal Stability Apparatus.Plate (3-9) Marshall Stability/Flow Test Apparatus.

3.7.2.3 Structural Number of Pavement

The structural number was determined depending on data collected from Marshall test results, which shown in Appendix (C). The average thickness of core samples was used to determine stability correlation factors to correct the stability values by using ASTM D6927- 15 for Marshal Stability to correct the stability values

The corrected stability values were used to find structural layer coefficient (a) for each surface and base layer by using correlation charts. These correlation charts are used for estimating resilient modulus of asphalt concrete as shown in Fig. (3-6).

To determine the structural number for both the surface and base courses in each section, Equation (3-2) was used. Table (3-7) shows SN for 10 sections and other section are present in Appendix (C). The SN is calculated as below (Hoel et al., 2011):

$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 \qquad \dots (3-2)$$

where

SN: Structural number of the layer.

D₁, D₂, D₃: Actual thickness in inches of layer 1, 2, and 3, respectively.

 m_2 , m_3 : Drainage coefficient for layer (2 & 3). In this study, it is supposed that the percent of time pavement structure exposed to moisture levels approaching saturation is greater than 25% with quality of drainage good (water remove within 1 day) for all selected roads network. So m_i equal to (1) Adapted from AASHTO guide for design of pavement Structures,(1993).

	Bluuy.							
Sample	Layer Name	Average Thickness of Layer (inches)	Stability (Ib)	Correction Factor of Thickness	Stability (Ib)	Layer Coff. (a)	SN	
1	Base (1-1)	4.630	3938.645	0.659	2595.567	0.378	2.943	
2	Binder (1-1)	3.976	1212.101	0.862	1044.831	0.3	2.7 13	
3	Base (1A)	4.429	4372.140	0.685	2994.916	0.398	2 2925	
4	Binder (1A)	4.331	1656.333	0.91	1507.263	0.374	3.3825	
5	Base (1B)	4.724	4409.244	0.647	2852.781	0.381	3.201	
6	Binder (1B)	3.858	991.639	1.4366	1424.589	0.363		
7	Binder (2A)	1.850	1527.979	1.87125	2859.231	0.517	2.104	
8	Base (2A)	3.465	3724.334	0.685	2551.169	0.371	2.104	
9	Binder (2B)	2.165	1800.294	1.4	2520.412	0.487	2 242	
10	Base (2B)	3.622	4365.152	0.647	2824.253	0.386	2.243	
11	Binder(3-1A)	2.827	3187.002	0.938	2989.407	0.531	2.493	
12	Base (3-1A)	2.661	2150.829	1.06	2279.879	0.359	2.493	
13	Binder(3-1B)	2.697	1688.740	1.4366	2426.045	0.475	2.694	
14	Base (3-1B)	3.268	2892.464	0.775	2241.660	0.352	2.094	

Table (3-7) Structural Number of the Different Sections in the Area Under Study.

 a_1 , a_2 , a_3 : Layer coefficients representative of layer 1, 2, and 3, respectively.

	Study (contin						
Sample	Layer Name	Average Thickness of Layer (inches)	Stability (Ib)	Correction Factor of Thickness	Stability (Ib)	Layer Coff. (a)	SN
15	Binder (4A)	2.559	3010.632	0.9875	2972.999	0.524	2.2091
16	Base (4A)	2.480	2003.120	1.0375	2078.237	0.35	2.2091
17	Binder (4B)	1.929	1688.740	1.6425	2773.756	0.503	2.0727
18	Base (4B)	3.150	2892.464	0.736	2128.854	0.35	2.0727
19	Binder (5-A)	3.008	2223.582	0.95	2112.403	0.438	2 15162
20	Base (5-A)	3.083	2234.759	0.858	1917.423	0.325	2.15163

Table (3-7) Structural Number of the Different Sections in the Area Under Study (continuo).

CHAPTER FOUR

CHAPTER FOUR

EVALUATION OF PAVEMENT CONDITION USING PAVER SOFTWARE

4.1 General

A thorough explanation of PAVER software and its capabilities through identifying asphalt pavement distresses, field data collection to estimate pavement condition index, a summary of pavement inventory and condition at last inspection were presented throughout this chapter. Integrating PAVER software and GIS, critical PCI & work priorities, network condition analysis and prediction, and developing a model for PCI, all are essential factors in a successful Pavement Management System (PMS). Also, estimations of pavement condition index depending on developed models are of great importance in any PMS.

<u>4.2 Determining the Number of Pavement Sample Units to be</u></u> <u>Inspected</u>

The project level management needs more accurate data for the preparation of contracts and work plans. Therefore, the inspected sample units are used at the project level need to be more than that for network level management.

The minimum sample units n required for an adequate estimation of PCI value of the sections are determined at a project level by using Fig. (4.1), which shows the curves to determine the number for a project level. Using this number, lead to getting the true mean PCI of the section with an accurate estimation. There is 95% confidence that the estimate is within \pm 5 points of

the true mean PCI (if all the sample units were inspected, the PCI obtained). The curves in Fig.(4-1) were built using Eq. (4.1) (Shahin, 2005):

$$n = \frac{Ns^2}{((e^2/4)(N-1)+s^2)} \qquad \dots (4-1)$$

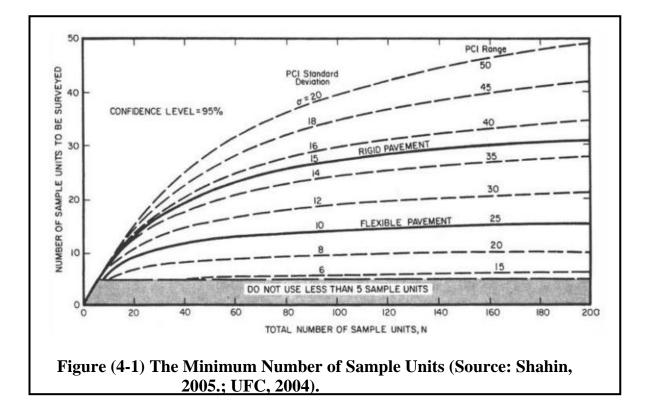
where:

- n = The minimum sample units required for an adequate estimation
- N = Total number of sample units in the pavement section
- e = Allowable error in the estimate of the section PCI (e was set equal to 5

when constructing the curves of Fig. (4.1)).

s = Standard deviation of the PCI between sample units in the section.

The initial inspection when performing the PCI standard deviation for a pavement section is assumed to be 10 for asphalt concrete (AC) (ASTM D6433, 2011).


For section (1-A) in the selected case study area:

Area of section = 7m (width) \times 724 m (length) = 5068 m^2

Sample unit area for a width of 7m (23ft) will be taken equal to 231 m^2 (approximately 2500 ft²).

Length of each unit in the section 231/7 = 33 m (108.7 ft).

 $N = \frac{\text{Area of section}}{\text{Sample unit area}} \longrightarrow N = \frac{5068}{231} = 22$ $n = \frac{22*(10)^2}{((5^2/4)(22-1)+(5)^2)} = 9.51 \longrightarrow n = 10$

Shahin (2005) mentioned that one of the major drawbacks for each level, representative sampling at the network level and systematic random sampling at the project level is that sample units especially in bad condition may not necessarily be inclusive in the survey. Also, sample units that have a one time occurrence of distress type (such as railroad crossings) can be included unsuitably, as a random sample. Table (4-1) show the minimum sample units required for an adequate estimation of each inspected section for 12 section and other section in Appendix D.

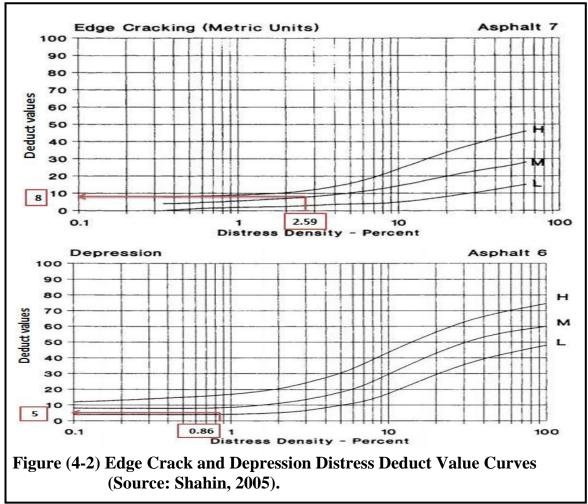
4.2.1 Selecting Sample Units to be Inspected

It is recommended that the units of sample to be inspected be spaced uniformly throughout the section and that the first one be chosen at random. This technique, known as "systematic random," (Shahin, 2005). The determined sampling units to be surveyed are described by the following three steps:

Network ID	Branch ID	Section ID	Actual number of unit (N)	Minimum number of sample unit inspected (n)
		1	20	10
Karbala	1	A 22		10
		В	22	10
Karbala		А	46	12
	2	В	44	12
_		А	2	2
		В	2	2
¥7 1 1		A.1	2	2
Karbala	3	B.1	2	2
		1A	26	11
		1B	26	11
Varbala	4	А	32	11
Karbala	4	В	32	11
IZ11.	5	1A	16	9
Karbala		1B	16	9
IZ11.	6	1A	12	8
Karbala		1B	12	8
Varbala	7	1A	10	7
Karbala		1B	9	7
Varhala	8	1A	33	11
Karbala		1B	33	11
	9	А	9	б
Karbala		В	13	8
		С	13	8
Karbala	10	А	21	9
Karbala	10	В	21	9
Varbala	11	А	23	10
Karbala		В	23	10
		А	2	2
Varbala	12	В	2	2
Karbala		1A	4	4
		1B	4	4

Table (4-1) Total Number of Sample Units and The Minimum Sample UnitsRequired for the Section of Study Area.

- A. The sampling interval (i): is established by (i = N/n), where (N) equals the whole number of obtainable sample units and (n) equals the smaller number of sample units to be surveyed. The sampling interval (i) is rounded off to the minimum total number (e.g., 3.6 is rounded to 3.0).
- B. Random start (S): is/are chosen at random between sample unit 1 and the sampling interval (i). For example, if i = 3, the random starts would be a number from 1 to 3.
- C. The sample units to be surveyed are identified as S, S+i, S+2i, etc. If the selected start is 3, and the sampling interval is 3 then the sample units to be surveyed are 6, 9, 12, etc. For section (1-A) in the selected case study area:


 $i=\frac{22}{10} = 2.2, i = 2, S = 2$, the sample units to be surveyed are 2, 4, 6.. etc.

4.2.2 Hand Calculation of PCI

The PCI is computed for the entire pavement section from the calculated PCI value of each inspected sample unit. Calculation of PCI depends mainly on deducting values weighing factors ranged from 0 to100 that indicate the impact of each distress has on condition of pavement. For section (1-A) in the selected case study area which has 10 sample units to be inspected with random between sample unit (i=2), so the inspecting units in this section units are: (2, 4, 6, 8, 10, 12, 14, 16, 18, and 20). The deducting value is determined based on the inspection data for each unit as shown previously in Table (3-1).

For unit 2 as example:

Density % (for Edge M) = $\frac{total quantity}{unit area} = \frac{6}{231} = 2.597$ %. Density % (for Depression L) = $\frac{2}{231} = 0.865$ %.

Enter this density in the distress deduct value curves for each type of distress to find the deduct value as shown in the Fig. (4-2).

The maximum allowable number of deducts $(M_i) = 1 + \left(\frac{9}{98}\right)(100 - HDV_i)$ (for surfaced road)

where:

m_i : an allowable number of deducts, including fractions for sample unit, i.
 HDV_i: highest individual deduct value for sample unit, i.

 $(M_i) = 1 + \left(\frac{9}{98}\right)(100 - 8) = 9.44$

The q value for this unit is equal to 2 (take all the number of deducts with a value >2).

Total deduct value (TDV) = 8 + 5 = 13.

Determine the CDV from q and total deduct value by looking up the appropriate correction curve. Fig. (4-3) shows the correction curve for asphalt surfaced road pavements. The CDV is equal to 8.7

For surfaced roads, minimize the smallest individual deduct value that is > 2.0 to 2.0. Repeat steps until q is equivalent to1. The maximum CDV is the largest of the CDVs determined.

Total deduct value (TDV) = 8 + 3 = 11.

Determine the CDV from the same fig. when (q=1). The CDV is equal to 11, so PCI equal to:

PCI (for unit 2) = 100 - 11 = 89.

Table (4-2) gives the results of the hand calculation of PCI for other units in section (1-A). Average PCI of units in section (1-A) is equal to: $\{(89+60+75+83+72+100+85+92+100+100)/10\} = 85.6.$

Unit	Distress severity	Quantity	Density %	Deduct value	M _i	q	TDV	CDV	PCI
2	Edge M	6	2.597	8	9.44	2	13.0	8.7	- 89
2	Depression L	2	0.865	5	9.44		15.0	0.7	
2	Edge M	6	2.597	8	9.44	0.44	11	11	
2	Depression L	2	0.865	3	9.44	1	11	11	
4	Pothole L	4	1.731	27	77	2	42.4	31	
4	Edge M	30	13	15.4	7.7	2	42.4		60
4	Pothole L	4	1.731	27	7.7	1	40.4	40	
4	Edge M	30	13	13.4	1.1				
6	Edge H	25	10.822	25.5	7.84	1	25.5	25.5	75
8	Edge M	33	14.285	17.4	8.58	1	17.4	17.3	83
10	Edge H	32	13.852	29	7.52	1	29	28.5	72
12						-			100
14	Depression H	1.5	0.649	15.2	8.78	1	15.2	15.2	85
16	Depression M	1.5	0.649	8	9.44	1	8	8	92
18						-			100
20	20								100
Average PCI of Units									

 Table (4-2) The PCI Hand Calculation Results for each Unit in Section (1-A) of AL-Rabab Roadway.

The standard deviation of the estimated PCI of each section is checked by using equation in ASTM D6433 (ASTM D6433, 2011) as shown below:

$$S = (\sum_{i=1}^{n} (PCI_i - PCI_s)^2 / (n-1))^{1/2}$$

Where:

*PCI*_{*i*}: PCI of surveyed sample units i.

PCI_s: PCI of section (mean PCI of surveyed sample units).

n: total number of sample units surveyed.

For the study area after check, it is found that, the standard deviation ranges between (12 to 14). Hence, for future study, standard deviation of 10 value may be replaced by 12 to 14.

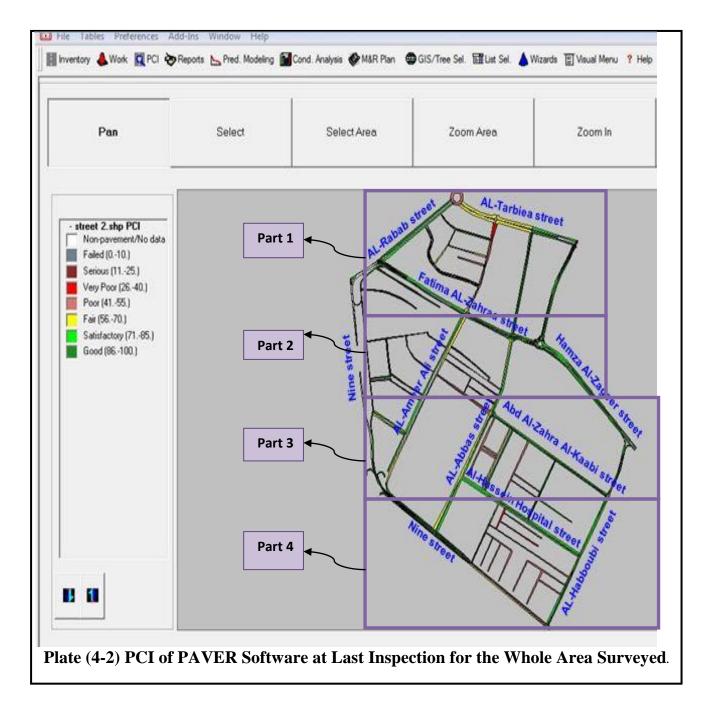
4.3 Results of PAVER Software Application

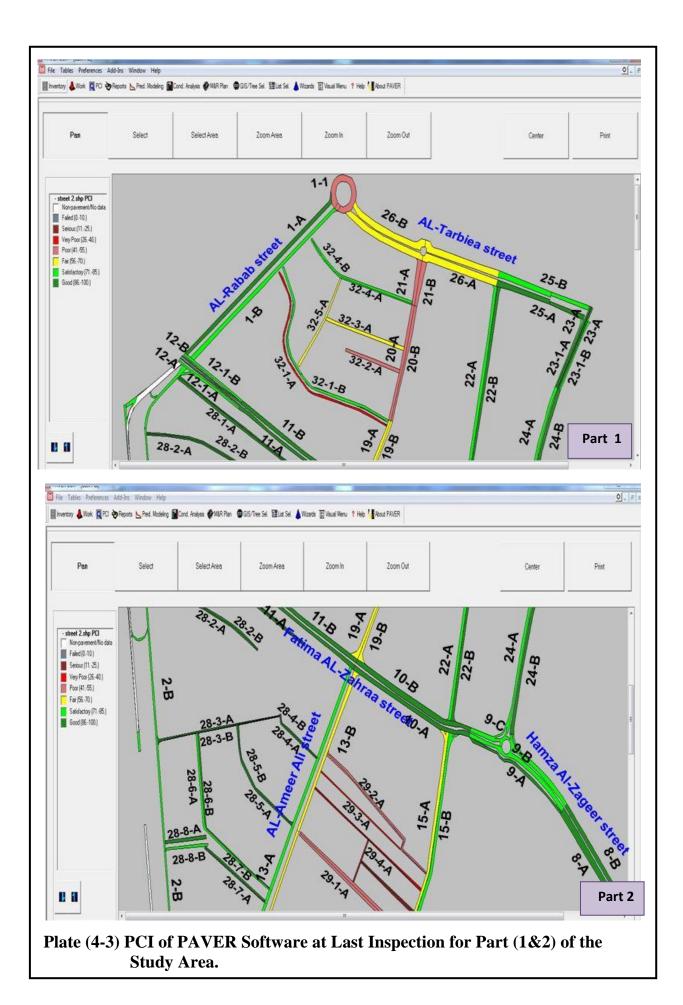
PAVER software calculates the PCI value automatically for each sample unit in the section surveyed, determines an overall PCI for a section, and extrapolates distress quantities. PAVER software can also determine the percentage of deducting values depending on the mechanism of distress (load, climate, and other) for the section. Limiting the primary causes of pavement deterioration is a result of the percentage of deducting values attributed to each distress mechanism (Shahin, 2005).

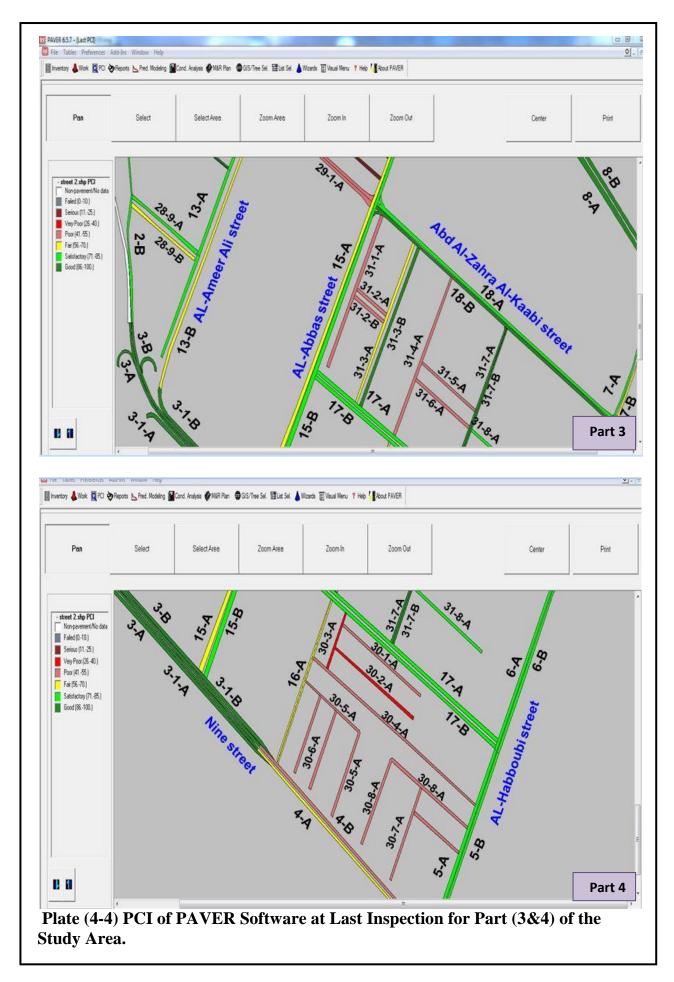
4.3.1 Calculating PCI After Inspection

The calculations will be therefore, done automatically after distress information been entered into PAVER software and the overall PCI will be calculated for each section, as well as extrapolated quantities of distress (Shahin, 2005). Plate (4-1) shows an example of PCI calculation result from the PAVER software. Table (4-3) shows a sample of PAVER user defined reports of the last condition for 35 sections in the study area. The condition values for other sections are presented in Appendix (D).

Network ID: Branch ID: Section ID:		Karbala 1	Branch Name:			Section Area	: 5,068. SqM	
		A.	Section Length	724 M		Section Width	.	
ndex: Cond	PCI		Date: 17/04/2016 le Distresses Sample	Conditi e Conditions			Std Dev.: 11.9	
	Sample	Number	Sample Type	Sam	ple Size	Units	-	
	2		Random		231.0		9	
	4		Random	-	231.0 SgM		6	
	6		Random	231.0 So		1	7	
	8		Random	36	231.0	SaM	8	
	10		Random	8	231.0 SgM		8	
•	112		Random	1	221.0	Salul	10	
Samp Ran		veyed 10	Additional Surv		ecomm	Total Sam ended For Project L	1	
						Pri	nt Close	

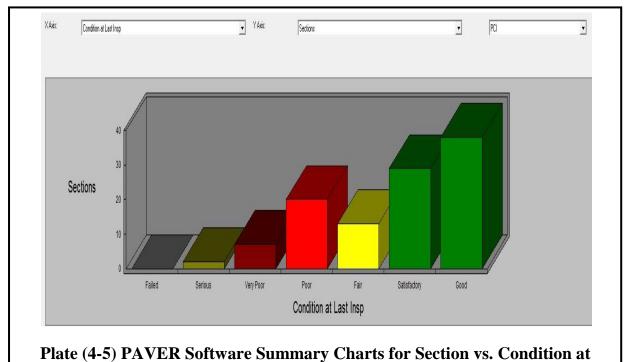

Study Area of Karbala City.											
Network ID	Branch ID	Section ID	SURFACE	PCI	PCI Category	PCI Climate	PCI Load	PCI Other			
Karbala	1	1	AC	55	Poor	36	20	44			
Karbala	1	А	AC	86	Good	0	49	51			
Karbala	1	В	AC	85	Satisfactory	6	76	18			
Karbala	2	1A	APC	51	Poor	18	64	18			
Karbala	2	1B	APC	72	Satisfactory	54	23	23			
Karbala	3	10A	APC	100	Good	0	0	0			
Karbala	3	10B	APC	100	Good	0	0	0			
Karbala	3	1A	APC	98	Good	100	0	0			
Karbala	3	1B	APC	100	Good	0	0	0			
Karbala	3_1	1A	AC	90	Good	39	5	56			
Karbala	3_1	1B	AC	98	Good	71	29	0			
Karbala	4	1A	AC	60	Fair	62	16	22			
Karbala	4	1B	AC	46	Poor	29	71	0			
Karbala	5	1A	AC	80	Satisfactory	41	59	0			
Karbala	5	1B	AC	77	Satisfactory	36	43	21			
Karbala	6	1A	AC	85	Satisfactory	45	13	42			
Karbala	6	1B	AC	82	Satisfactory	50	4	46			
Karbala	7	1A	AC	73	Satisfactory	34	50	16			
Karbala	7	1B	AC	70	Fair	50	17	33			
Karbala	8	1A	APC	86	Good	74	26	0			
Karbala	8	1B	APC	90	Good	100	0	0			
Karbala	9	1A	APC	90	Good	71	0	29			
Karbala	9	1B	APC	85	Satisfactory	97	3	0			
Karbala	9	1C	APC	85	Satisfactory	43	46	11			
Karbala	10	1A	AC	97	Good	0	100	0			
Karbala	10	1B	AC	91	Good	59	27	14			
Karbala	11	1A	AC	93	Good	56	44	0			
Karbala	11	1B	AC	87	Good	52	27	21			
Karbala	12	1A	APC	94	Good	100	0	0			
Karbala	12	1B	APC	95	Good	100	0	0			
Karbala	12_1	1A	AC	80	Satisfactory	70	17	13			
Karbala	12_1	1B	AC	80	Satisfactory	44	56	0			
Karbala	13	1A	AC	76	Satisfactory	41	28	31			
Karbala	13	1B	AC	68	Fair	29	53	18			
Karbala	14	1A	AC	48	Poor	57	14	29			


 Table (4-3) PAVER Software User Defined Reports of the Last Condition for


 Study Area of Karbala City.

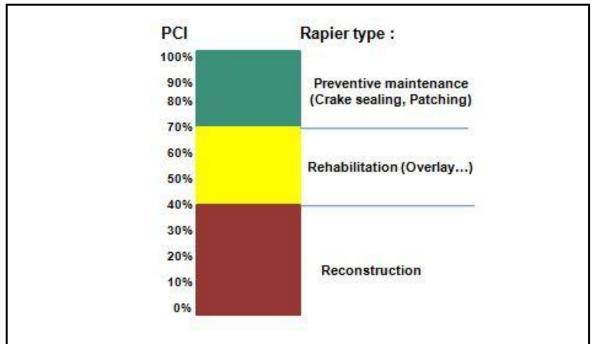
4.4 Integration PAVER Software to GIS

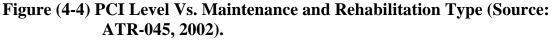
PAVER software has the capability to interact with GIS for displaying the results. After computing PCI through the PAVER software, PAVER output data inserted with GIS as a shape file. After that, the GIS shape file layer was selected and both software was linked, as shown in plate (4-2) for the whole area surveyed and plates (4-3) & (4-4) show zoom for each part of the study area.

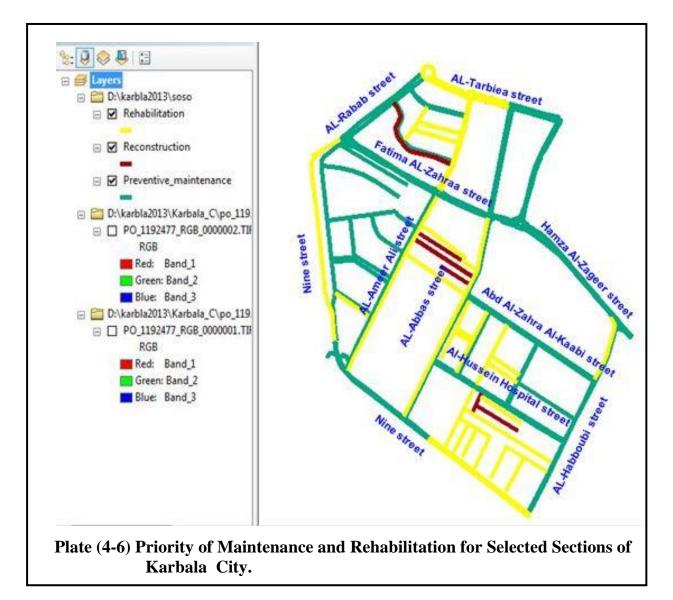


4.5 Summary of Pavement Inventory and Condition at Last Inspection

This type of report is beneficial for quickly becoming familiar with the pavement network(s). The PAVER software "summary charts" report performs this function. In this report, the user is allowed to select a different variable for each of the x and y-axis, and the desired chart along with a summary table is automatically produced. PAVER software summary charts and table for different variables are shown in both Plate (4-5) and Table (4-4).

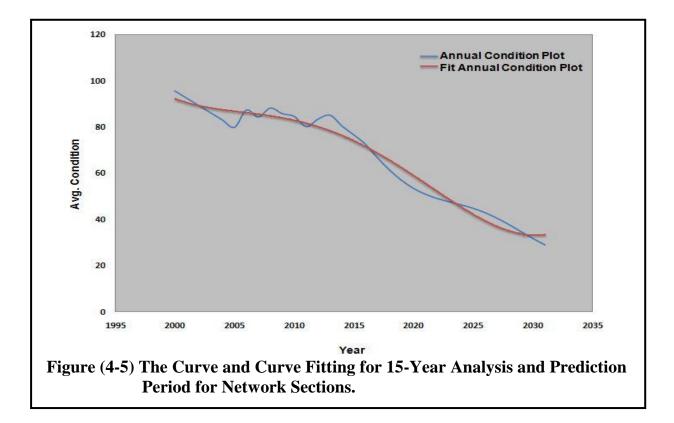

Last Insp.

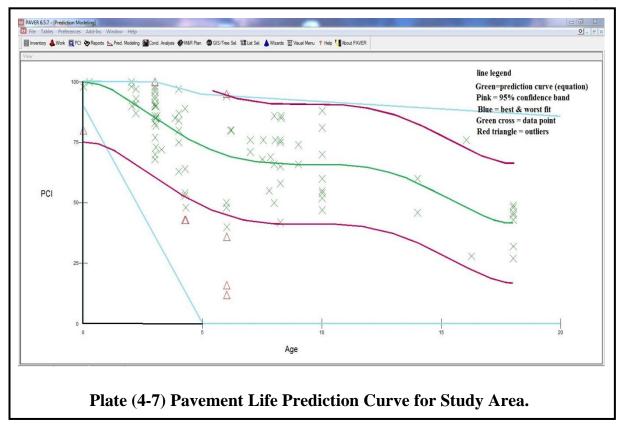

Table (4-4) PAVER software Summary Information of PAVER softwareLayoutAnalysis.


Condition Category	Sections		Avg.	Pavement Area	Unit
	Number	Percent%	Condition	T aveilient / frea	Omt
Failed	0	0			
Serious	2	2	14	1,777.00	m^2
Very Poor	7	6.5	33.14	12,287.30	m^2
Poor	20	18	48.05	56,651.46	m^2
Fair	13	12	65.15	56,701.95	m^2
Satisfactory	29	26.5	79.17	132,272.66	m^2
Good	38	35	93.53	124,344.80	m^2

4.6 Critical PCI and Work Priorities

PAVER software allows the pavement manager to maintain and rehabilitate sections roads from the set of critical PCI value, and to determine work priorities. The development of a priority allows the user to define priorities according to facility use, critical PCI value or pavement type, which is used by the (M&R) module. The priority typical scale of PCI that can be used to manage M&R operations is shown in Fig. (4-4). However, users can adapt the critical value of PCI depending on their own experience to reflect the behavior of different pavement sections. As an example, when a pavement has a high rate of deterioration, preventive maintenance (such as crack sealing) may not be cost effective, and thus the critical value of PCI can be adjusted (ATR-045, 2002). Regarding maintenance action for roads network sections of the study area, 63% need preventive maintenance (crack sealing and patching), 31% require rehabilitation (overlay.. etc.) and 6% needs reconstruction. The priority of M&R for sections of study due to PCI scale is shown in Plate (4-6).




4.7 Network Condition Analysis and Prediction

The PAVER software frequency report introduces the excepted condition for each road sections. The condition analysis views the current condition performance for each road sections in the network; further analysis and prediction of the pavement condition index of sections was done through the limited period. A typical performance curve is illustrated for the latter case in Fig. (4-5) with the curve fitting for 15-year analysis and prediction period for all network sections.

4.8 PAVER Software PCI Model

Depending on PAVER software condition analysis and predicting model options, the predicted pavement condition index model (PCI) was developed. PAVER software prediction model grouped the pavement sections into families. These groups have the same surface type, pavement use, and pavement rank. PCI and age data for each family group were used through fiting model curve. However, many factors such as original construction, maintenance, traffic, weather, etc will greatly affect on the pavement life (ATR-045, 2002). This method of pavement condition prediction is very important in the state with limited historical data available. Depending on the data collected, PAVER PCI model was developed as shown in Plate (4-7). Outliner boundary of 95% (1.960), have eight sections out of bounds state, the review model data is presented in Appendix (D). PAVER model describes the deterioration of the pavement sections as a polynomial equation (5 degree) with age (x) as follows:

 $PCI = 100 - 0.00003X - 2.91331X^{2} + 0.5204X^{3} - 0.03361X^{4} + 0.00073X^{5} \qquad \dots (4-2)$

Statistical analysis output of PAVER software is shown in Table (4-5).

 Table (4-5) Statistical Analysis of PAVER Software Prediction Model.

Coefficient of correlation (R)	Approximate (R ²)	Stander deviation of error	Absolute mean of error	Arithmetic mean of error
0.772	0.596	12.59	9.59	0.341

PAVER statistical test shows that 60% of the variation in the dependent variable (PCI) is explained by the independent variable (Age) in the developed model. The remaining percentage of variation (40%) is not explained due to many factors that can also affect the PCI of pavement such as traffic volume, the structure of pavement, mixing design used in paving, environment effect and human bad use.. etc.

4.9 Pavement Condition Models

First, it is intended to investigate the need for a statistical model to predict pavement condition depending on some independent variable rather than performing site inspection. Accordingly, the study demonstrates the application of developed model introduced by Hoel et al. (2011) to predict PCI in relation with some independent variables. The variables include the number of years since construction or reconstruction, average daily traffic, and the structural number (Hoel et al., 2011; Garber and Hoel, 2009).

4.9.1 Previous Model by Hoel et al. (2011)

Hoel et al. (2011), developed a model depended on a data collected by rating the condition of 20 individual pavement sections. The fitted model describes the deterioration of the pavement sections as follows:

$$CI = 98.87 - 2.18 \times AGE + 0.02 \times ADT + 0.28 \times SN$$
 (4-3)

where:

CI = condition index.

AGE = number of years since construction.

ADT = average daily traffic in 1000 veh/day.

SN = structural number.

The R^2 of this model is equal to (0.973). Typically, R^2 values are within the range between 0 and 1. The developed model explains 96.7% of variation in CI as function of independent variables of AGE, ADT, and SN with 8.56E-13 degree of significance.

Pavement conditions index (CI) was calculated for 34 major and minor arterial sections and 10 collector sections from all network of Karbala city using Hoel et al., model (2011). The results are shown in Table (4-6).

Model. Input data Results PCI of									
C two of	r	ADT*1000	A	SN	CI	PCI of PAVER			
Street	Type Minor ortarial		Age year						
1-A	Minor arterial	23.181	8	3.382	81.91	86			
1-B	Minor arterial	24.728		3.201	81.83	85			
2-B*	Major arterial	19.387	3.3	2.243	91.92	72			
3-1-A	Major arterial	22.042	2	2.493	94.77	90			
3-1-B	Major arterial	17.286	2	2.694	94.92 68.21	98			
4-A	Major arterial	37.802	14	2.209		60			
4-B*	Major arterial	39.977	14	2.073	68.13	46			
5-A	Collector	11.725	4	2.152	90.52	80			
5-B	Collector	14.417	4	2.074	90.44	77			
6-A	Collector	13.445	4.3	2.359	89.89	85			
6-B	Collector	14.209	4.3	2.399	89.88	82			
7-A*	Collector	13.345	4.1	2.326	90.32	73			
7-B*	Collector	14.552	4.1	2.214	90.26	70			
8-A	Major arterial	34.083	3.1	2.618	92.16	86			
8-B	Major arterial	38.866	3	2.682	92.30	90			
9-A	Major arterial	34.049	3	2.547	92.36	90			
9-B	Major arterial	36.214	3.1	2.584	92.11	85			
9-C	Major arterial	30.693	3.12	2.748	92.22	85			
10-A	Minor arterial	20.339	2.21	2.837	94.44	97			
10-B	Minor arterial	21.598	2.21	2.875	94.43	91			
11-A	Minor arterial	17.037	2.21	1.802	94.22	93			
11-B	Minor arterial	18.941	2.21	1.613	94.12	87			
12-1-A	Minor arterial	13.476	6	1.771	86.02	80			
12-1-B	Minor arterial	12.486	6	1.881	86.07	80			
13-A	Minor arterial	20.311	7.5	3.018	82.96	76			
13-B*	Minor arterial	22.263	7.5	2.991	82.91	68			
15-A*	Minor arterial	25.306	9	2.849	79.54	66			
15-B	Minor arterial	21.950	9	2.708	79.57	74			
17-A	Collector	15.129	7	2.293	83.95	71			
17-B	Collector	13.601	7	2.218	83.96	76			
18-A	Collector	13.241	4.2	2.320	90.10	87			
18-B	Collector	15.061	4.2	2.121	90.01	84			
19-A	Minor arterial	13.463	10	2.378	77.47	70			
19-B*	Minor arterial	14.295	10	2.412	77.46	60			
22-A	Minor arterial	14.722	9	3.543	79.95	81			
22-В	Minor arterial	12.441	9	3.413	79.96	88			
23-1-A	Minor arterial	11.746	3	1.883	92.62	85			
23-1-B	Minor arterial	13.247	3	1.957	92.61	80			
23 1 D	initiat arterial	13.277	5	1.757	12:01	00			

Table (4-6) Pavement Condition Index of Karbala City by Using Hoel et al.Model.

*Sections used for checking the developing model, CI: condition index of Hoel et al. model.

		Results	PCI of				
Street	Туре	ADT*1000	Age year	SN	CI	PAVER	
24-A	Minor arterial	22.818	4.13	1.830	89.92	80	
24-B	Minor arterial	22.221	4.1	1.871	90.01	87	
25-A	Major arterial	36.270	3.5	2.036	91.08	76	
25-В	Major arterial	29.145	3.5	1.999	91.22	86	
26-A	Major arterial	35.692	8.5	3.154	80.51	66	
26-B	Major arterial	30.818	8.5	3.019	80.57	69	

Table (4-6) Pavement condition index of Karbala city by using Hoel et al.Model (continued).

*Sections used for checking the developing model, CI: condition index of Hoel et al. model.

Further, CI values obtained from the method were compared with PCI values for these sections, which represent the output of PAVER software application. SPSS tow paired test tool is used to analyze data and compared it as shown in Tables (4-7) and (4-8). The Hoel et al. (2011) model overestimated the value of CI rather than PCI estimated from PAVER software due to statistical test to a 95% degree of confidence, (R = 0.771) for 44 sections (arterial and collector). There is a significant difference between value CI and PCI for each of it (0.000 < 0.05), so the null hypothesis was rejected.

Hence, it can be calculated that there is a need to develop a new model or modeling calibration for model of Hoel et al. (2011). A new model is preformed with the same independent variable to achieve a whole calibration for each variable rather than the whole model.

 Table (4-7) Paired Samples Statistics between Pavement Condition Index of PAVER and Condition Index of Hoel et al. Model.

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Pavement condition index (PCI)	79.5000	44	10.51798	1.58565
	Previous Garber et al. Model (CI)	87.0416	44	6.79316	1.02411

		Paired Differences							
		Mean	Std.	Std. Error	95% Confider of the Dif		t	df	Sig. (2- tailed)
			Deviation	Mean	Lower	Upper			
Pair 1	Pavement condition index (PCI) - Previous Garber et al. Model (CI)	-7.54159	6.82875	1.02947	-9.61772	-5.46546	-7.326	43	0.000

Table (4-8) Paired Samples Test between Pavement Condition Index of
PAVER and Condition Index of Hoel et al. Model.

4.9.2 Developing a Statistical Model of Pavement Condition

The data collections of study area depending on the same variables considered in the previous literature (the number of years since construction or reconstruction in the study rang between (2-14) year, average daily traffic, and the structural number). The study performs a statistical analysis to develop a predicting model of pavement condition. These statistical models were important in predicting the future condition of pavement sections in this region (Karbala city). A software program SPSS provides data analysis tool to perform same statistical analysis procedures, including regression analysis.

The first model is developed by using 37 individual pavement sections (for 29 major and minor arterial sections and 8 collector sections from all network). In order to get reliable results, it is important to check the proper sample size which determined from the equation as shown bellow:

$$N = (S Z / E)^2$$
 (4-4)

Kamaludeen (1987) reported that for high accuracy and practical sample size, the maximum error should not exceed half the class width (class interval). Dependent variable (PCI) is normally distributed with sign. (0.055> 0.05), and the sample size equals to 10 (10 < 37) depended on the equation (4-4),

with error (E= 5), std, deviation (8.288) with 95% degree of confidences. So, it's accept the sample size.

The SPSS statistical analysis is used for input data shown in Table (4-6) to determine the correlation between the independent variable (ADT, Age, and SN) as show in Table (4-9). The result show there is no correlation between of them. And the correlation between the dependent variable (PCI) with each of independent variable (ADT, Age, and SN), which shows respectively in Tables (4-10), (4-11), and (4-12). The correlation between PCI and ADT, Age, SN found to be 0.839, 0.693 and 0.95 respectively. Other test is percent in Appendix (E).

Table (4-9) the Correlation Between Independent Variable of the FirstDeveloped Model for the Selected Roadway in Karbala City.Correlations

Correlations							
		Traffic volume(vpd *10000)	Pavement Age	Structural Number			
	Pearson Correlation	1	.041	.228			
Traffic volume(vpd *10000)	Sig. (2-tailed)		.809	.174			
10000)	Ν	37	37	37			
	Pearson Correlation	.041	1	.386*			
Pavement Age	Sig. (2-tailed)	.809		.018			
	Ν	37	37	37			
	Pearson Correlation	.228	.386*	1			
Structural Number	Sig. (2-tailed)	.174	.018				
	Ν	37	37	37			

*. Correlation is significant at the 0.05 level (2-tailed).

Table (4-10) Correlation Between Pavement Condition Index (PCI) and
Average Daily Traffic (ADT) of the First Developed Model for the
Selected Roadway in Karbala City.A- Model Summarya

 A Woder Summary						
R	R Square	Adjusted R Square	Std. Error of the Estimate			
0.918	0.843	0.839	33.209			

The independent variable is Traffic volume(vpd *1000).^a

a. The equation was estimated without the constant term.

Table (4-10) Correlation Between Pavement Condition Index (PCI) and Average Daily Traffic (ADT) of the First Developed Model for the Selected Roadway in Karbala City(continued). B- Coefficients

U		Unstandardi	zed Coefficients	Standardized Coefficients	т	а.			
		В	Std. Error	Beta	Т	Sig.			
Traffic volu *1000	` .	3.262	0.235	0.918	13.899	0.000			

Table (4-11) Correlation between Pavement Condition Index (PCI) andPavement Age (Age) of the First Developed Model for the SelectedRoadway in Karbala city.

A- Model Summary^a

R	R Square	Adjusted R Square	Std. Error of the Estimate
0.838	0.701	0.693	45.782

The independent variable is Pavement Age.^a

a. The equation was estimated without the constant term.

B- (Coefficients

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		_
Pavement Age	11.710	1. 273	0.838	9.197	0.000

(4-12) Correlation between Pavement Condition Index (PCI) and Structural Number (SN) of the First Developed Model for the Selected Roadway in Karbala City.

A- Model Summary^a

R	R Square	Adjusted R Square	Std. Error of the Estimate
0.975	0.951	0.95	18.524

The independent variable is Structural Number .^a

a. The equation was estimated without the constant term.

B- Coefficients

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		0
Structural Number	32.212	1.271	0.975	26.467	0.000

Table (4-13) shows summary of the statistical characteristics of the developed model. The others statistical analysis layout is presented in Appendix (E). According to that summary, the developed model represents 69.1 % of the variation in PCI in relation with pavement age (AGE), average daily traffic (ADT), structural number (SN) with a degree of confidence of 95%. The model that describes the deterioration of the pavement sections is stated as follows:

 $CI_1 = 82.896 - 2.607 \times AGE - 0.186 \times ADT + 6.885 \times SN$ (4-5)

For ADT from (11000-40000), age from (2-14), and SN from (1.5-3.6).

Table (4-13) Summary of Statistical Characteristics, and ANOVA of the FirstDeveloped Model for the Selected Roadway in Karbala City.A- Model Summary^b

		D	D Allingto ID		A limited D Std. Error		Change Statistics				
Model	R	R Square	Adjusted R Square	of the	R Square	F	df1	df2	Sig. F		
		Square	Square	Estimate	Change	Change	an	d12	Change		
1	0.847 ^a	0.717	0.691	4.60372	0.717	27.891	3	33	0.000		

a. Predictors: (Constant), Structural Number , Traffic volume(vpd *10000), Pavement Age b. Dependent Variable: Pavement condition

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	1773.402	3	591.134	27.891	0.000 ^b
1	Residual	699.408	33	21.194		
	Total	2472.811	36			

B- ANOVA^a

a. Dependent Variable: Pavement condition

b. Predictors: (Constant), Structural Number, Traffic volume(vpd *10000), Pavement Age

C-Coefficients

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	82.896	3.902		21.244	0.000
1	Traffic volume(vpd *10000)	-0.186	0.090	-0.184	-2.071	0.046
	Pavement Age	-2.607	0.290	-0.902	-9.000	0.000
	Sutractural Number	6.885	1.671	0.364	4.121	0.001

In order to consider the effect of functional classification of pavement condition another model was developed. The second model developed by using just arterial section (major and minor) input data (29 individual pavement sections), as listed in Table (4-5). The sample size for the dependent variable (PCI) is checked by using the same equation. N value find equal to 12 (12< 29) with error (E= 5), std, deviation (8.9) with 95% degree of confidences.

The SPSS statistical analysis is used for input data shown in Table (4-6) to determine the correlation between the independent variable (ADT, Age, and SN) as show in Table (4-14). The result show there is no correlation between of them. And the correlation between the dependent variable (PCI) with each of independent variable (ADT, Age, and SN), which shows respectively in Tables (4-15), (4-16), and (4-17). The correlation between PCI and ADT, Age, SN found to be 0.852, 0.65 and 0.941 respectively. The others statistical analysis layout is presented in Appendix (E).

Table (4-14) the Correlation Between the Independent Variable of the Second Developed Model for the Selected Roadway in Karbala City. Correlations

Correlations							
		Traffic volume(vpd *10000)	Dovement A co	Structural			
		*10000)	Pavement Age	Number			
Traffic volume(vpd	Pearson Correlation	1	.012	.148			
*10000)	Sig. (2-tailed)		.949	.443			
	Ν	29	29	29			
Pavement Age	Pearson Correlation	.012	1	.391*			
	Sig. (2-tailed)	.949		.036			
	Ν	29	29	29			
Structural Number	Pearson Correlation	.148	.391*	1			
	Sig. (2-tailed)	.443	.036				
	Ν	29	29	29			

*. Correlation is significant at the 0.05 level (2-tailed).

Table (4-15) Correlation Between Pavement Condition Index (PCI) and
Average Daily Traffic (ADT) of the Second Developed Model for
The Selected Roadway in Karbala City.
A- Model Summary^a

R	R Square	Adjusted R Square	Std. Error of the Estimate
0.926	0.857	0.852	32.011

The independent variable is Traffic volume(vpd *1000).^a

a. The equation was estimated without the constant term.

B- (Coefficients

	Unstandardized Coefficients		Standardized Coefficients		с.
	В	Std. Error	Beta	t	Sig.
Traffic volume(vpd *1000)	3.054	0.235	0.926	12.968	0.000

Table (4-16) Correlation between Pavement Condition Index (PCI) and Pavement Age (Age) of the Second Developed Model for the Selected Roadway in Karbala city.

A- Model	Summary ^a
----------	----------------------

R	R Square	Adjusted R Square	Std. Error of the Estimate	
0.814	0.662	0.650	49.268	

The independent variable is Pavement Age.^a

a. The equation was estimated without the constant term.

B-Coefficients

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		
Pavement Age	11.045	1.492	0.814	7.404	0.000

Table (4-17) Correlation between Pavement Condition Index (PCI) and
Structural Number (SN) of the Second Developed Model for the
Selected Roadway in Karbala City.

A- Model	Summary ^a
----------	----------------------

R	R Square	Adjusted R Square	Std. Error of the Estimate
0.971	0.943	0.941	20.267

The independent variable is Structural Number .^a

a. The equation was estimated without the constant term.

Table (4-17) Correlation between Pavement Condition Index (PCI) and
Structural Number (SN) of the Second Developed Model for the
Selected Roadway in Karbala City (continued).
B- Coefficients

	Unstandar	dized Coefficients	Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		
Structural Number	31.470	1.465	0.971	21.480	0.000

Also, SPSS multiple linear regression model was used to predict PCI of sections. Table (4-18) shown summaries the statistical characteristics of the developed model and the others statistical analysis layout is presented in Appendix (E).

Table (4-18) Summary of Statistical Characteristics, and ANOVA of the
Second Developed Model for the Selected Roadway in Karbala
City.

						Change	e Statis	stics	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	0.876 ^a	0.767	0.739	4.56130	0.767	27.439	3	25	0.000

A-	Model	Summary ^b
----	-------	----------------------

a. Predictors: (Constant), Structural Number, Traffic volume(vpd *10000), Pavement Age

b. Dependent Variable: Pavement condition

D- ANOVA								
	Model	Sum of Squares	df	Mean Square	F	Sig.		
	Regression	1712.622	3	570.874	27.439	0.000^{b}		
1	Residual	520.137	25	20.805				
	Total	2232.759	28					

B- ANOVA^a

a. Dependent Variable: Pavement condition

b. Predictors: (Constant), Structural Number, Traffic volume(vpd *10000), Pavement Age

Table (4-18) Summary of Statistical Characteristics, and ANOVA of the
Second Developed Model for the Selected Roadway in Karbala
City (continued).

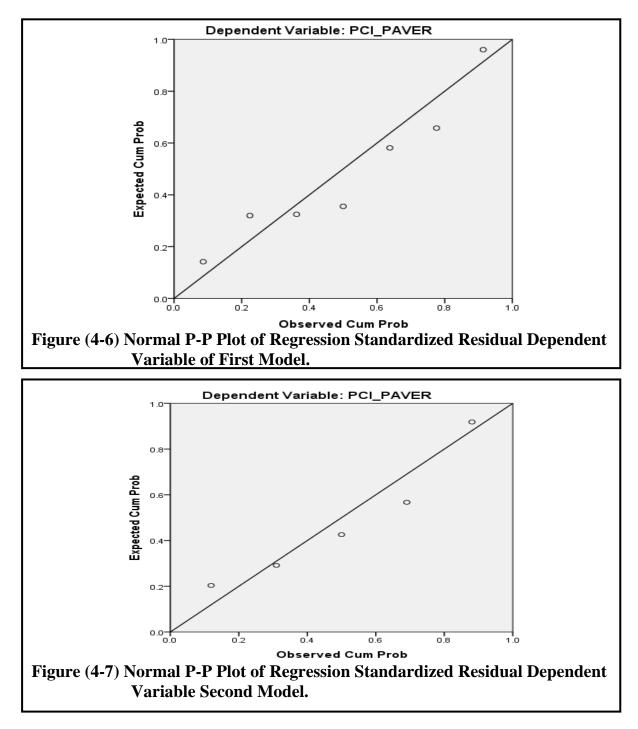
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.		
		В	Std. Error	Beta		U		
	(Constant)	87.291	4.313		20.241	0.000		
1	Traffic volume(vpd *10000)	-0.280	0.099	-0.276	-2.828	0.009		
	Pavement Age	-2.574	0.294	-0.919	-8.751	0.000		
	Structural Number	6.266	1.683	0.395	3.723	0.001		

C-Coefficients

According to that summary, the developed model that represents 73.9% of the variation in PCI in relation with pavement age (AGE), average daily traffic (ADT), structural number (SN) with a degree of confidence of 95%. The model that describes the deterioration of the pavement sections is stated as follows:

$$CI_2 = 88.71 - 2.719 \times AGE + 0.272 \times ADT + 5.671 \times SN$$
 ...(4-6)

For ADT from (11000-40000), age from (2-14), and SN from (1.5-3.6).


In order to test the validity of these developed models, use data collected for other seven sections that are not being used in the developing models, and apply in the two developed models, as shown in Table (4-19).

Tuble (+1)) The Data Concerton to Check the Woulds.							
	Input data Results						
Street	Туре	ADT*1000	Age year	SN	CI1	CI ₂	PCI of PAVER
2-В	Minor arterial	19.387	3.3	2.243	86.128	87.423	72
4-B	Minor arterial	39.977	14	2.073	53.231	53.049	46
7-A	Collector	13.345	4.1	2.326	85.740		73
7-B	Collector	14.552	4.1	2.214	84.741		70
13-B	Minor arterial	22.263	7.5	2.991	79.798	80.497	68
15-A	Minor arterial	25.306	9	2.849	74.340	74.890	66
19-B	Major arterial	22.042	2	2.412	70.772	72.662	60

Table (4-19) The Data Collection to Check the Models.

 (CI_1) condition index for First model (arterial & collector), (CI_2) condition index for second model (arterial), (PCI) pavement condition index from PAVER.

Statistical analysis between PCI with CI_1 and PCI with CI_2 values show that the correlations were (0.975) and (0.964) respectively. Figures (4-6) and (4-7) show the normal P-P plot for these values. The results show that each of the two models has a good relationship and the standard deviation. The error of the estimate has very low values for each of the developed models. So, these models are accepted to be used for determining PCI value for any sections in the study area and each area have the same characteristics.

Application of the data variables presented in Table (4-5) in combination with Eq. (4-4) used to estimate CI_1 resulted in the data and Eq. (4-5) used to estimate the CI_2 as shown in Table (4-20).

First model (arterial & collector)					
Section	PCI of PAVER	CI ₁			
1_A	86	81.02			
 1_B	85	79.47			
3-1_A	90	90.74			
3-1_B	98	93.01			
4_A	60	54.57			
5_A	80	85.09			
5_B	77	84.06			
6_A	85	85.42			
6_B	82	85.55			
8_A	86	86.49			
8_B	90	85.31			
9_A	90	86.27			
9_B	85	85.86			
9_C	85	87.97			
10_A	97	92.88			
10_B	91	92.91			
11_A	93	86.37			
11_B	87	84.71			
12-1_A	80	76.93			
12-1_B	80	77.88			
13_A	76	80.34			
15_B	74	73.99			
17_A	71	77.62			
17_B	76	77.38			
18_A	87	85.45			
18_B	84	83.75			
19_A	70	70.69			
22_A	81	81.08			
 22_B	88	80.61			
 24-A	80	80.48			
24-B	87	80.95			
25-A	76	81.04			
25-B	86	82.1			
26-A	66	75.81			
	••				

Table (4-20) Condition Index (CI)	for Pavement According to Developed
Models.	

Second model (arterial)					
Section	PCI of PAVER	CI_2			
1_A	86	81.40			
1_B	85	79.82			
3-1_A	90	91.59			
3-1_B	98	94.18			
4_A	60	54.51			
8_A	86	86.16			
8_B	90	85.49			
9_A	90	85.99			
9_B	85	85.36			
9_C	85	87.88			
10_A	97	93.68			
10_B	91	93.56			
11_A	93	88.12			
11_B	87	86.40			
12-1_A	80	79.16			
12-1_B	80	80.14			
13_A	76	81.21			
15_B	74	74.94			
19_A	70	72.67			
22_A	81	82.20			
22_B	88	82.02			
23-1_A	85	88.07			
23-1_B	80	88.12			
 24_A	80	81.73			
 24_B	87	82.23			
 25 A	76	80.88			
25_B	86	82.64			
26 A	66	75.18			
 26_B	69	75.70			

* (CI₁) condition index for First model (arterial & collector), (CI₂) condition index for second model (arterial), (PCI) pavement condition index from PAVER.

Comparing each of CI_1 and CI_2 with PCI resulted from PAVER by using SPSS (T-Test) as shown in Tables (4-21) and (4-22). The correlation of PCI with CI_1 and CI_2 with n = 37 and 29 were (0.847) and (0.876) respectively. There is no significance difference between value PCI and CI_1 (0.990 > 0.05), and for PCI with CI_2 (0.994 > 0.05). It accepts the null hypothesis.

Table (4-21) T-Test for First Developing Model a- Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	PCI_PAVER	82.2432	37	8.28789	1.36252
	CI1_MODEL	82.2344	37	7.01865	1.15386

b-Paired Samples Test

	Paired Differences							
	Mean	ean Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference Lower Upper		t	df	Sig. (2- tailed)
Pair 1 PCI_PAVER - CI ₁ _MODEL	0.00887	4.40769	0.72462	-1.46073	1.47847	0.012	36	0.990

Table (4-22) T-Test for Second Developing Model

	a- Paired Samples Statistics									
		Mean	N	Std. Deviation	Std. Error Mean					
Pair 1	PCI_PAVER	82.7931	29	8.92980	1.65822					
	CI2_MODEL	82.7991	29	7.82054	1.45224					
	b-Paired Samples Test									

a-	Paired	Samples	Statistics
----	--------	---------	------------

	b T under Sumples Test											
		Paired Differences										
		Mean	Std.			95% Confidence Interval of the Difference		df	Sig. (2- tailed)			
	Ľ		Deviation	Mean	Lower	Upper						
Pair1	PCI_PAVER - CI ₂ _MODEL	-0.0059	4.30993	0.80033	-1.64539	1.63343	-0.007	28	0.994			

4.10 Developed Models Results and Discussion

The first model (CI_1) covered (69.1%) and the second model (CI_2) covered (73.9%) of variation in the dependent variable (PCI). Both models are explained by the independent variables (Age, ADT, and SN). The remaining percentage of variation approximately (30%) is not explained. The Dispersion in values due to many reasons, such as:

- 1. Deterioration of the pavement due to bad using of human.
- 2. Deterioration of the pavement due to vehicles passing with heavy loads at the first time of maintenance or reconstruction.
- 3. The weakness of pavement layers located at the bottom of surface layer gives deterioration earlier than the normal cause (have a good bottom layers).
- 4. Asphalt mixtures used to implement maintenance or reconstruction of the road is nonconformity with the specification standard for mixing.
- 5. Leveling is not set through the implementation of pavement maintenance.
- 6. The focus on attractive locations that can affect on many of the factors, which accelerate the pavement deterioration.

CHAPTER FIVE

CHAPTER FIVE

MAINTENANCE PRIORITY

5.1 General

The present chapter includes the proposed optimized developed priority of maintenance sections by using different methods.

5.2 The Proposed Maintenance Prioritization Methods

Three prioritization methods are proposed in this research as follows:

- Simple ranking by PCI measure.
- Ranking by multiple measures.
- Incremental benefit-cost analysis ranking.

Simple ranking by PCI measure provides a prioritized list of projects depended on a pavement condition index criterion. Other measures in addition to PCI are included in the process of ranking by multiple measures. Investigation of expert knowledge about measures that affect prioritization of sites for maintenance is achieved through a predesigned questionnaire. The irrespective scores of each measure and its importance are also investigated. Ranking by multiple measures is an improved alternative for condition index method and the matrix method developed by Washington State Department of Transportation, WSDOT (1994).

Further, incremental benefit-cost analysis ranking provides an optimized process of ranking by taking PCI measure as a benefit (when maintenance to the roadway section is achieved) and cost of maintenance (according of the suitable maintenance strategy for a specific distress in that section). Hence, this process considers the effect of budget constraints and allocated resources in developing an optimized maintenance project set. Also, this process is related to the benefit-cost ratio process and the cost-effectiveness procedure developed by Washington State Department of Transportation (WSDOT, 1994).

5.3 Application of the Proposed Prioritization Process

Site inspection was achieved for road sections in the selected zone in the study area. According to the output of PAVER and other factors affecting pavement condition, the study demonstrates the application of the prioritization process.

5.3.1 Simple Ranking by PCI Measure

Simple ranking by PCI depends mainly on the output of PAVER. PCI measure for each section of roadway represents the degree of need to maintenance. Consequently, sections of the roadway inspected, which are used in other prioritization processes in this study are ranked from lowest PCI to the highest one. Using the priority typical scale of PCI rank that can be used to manage M&R operations is shown in Plate (5-1). However, users can see the critical PCI to show the behavior of different sections of their pavement depended on their own experience. The priority of M&R for sections of study due to PCI rank scale is shown in Plate (5-1). On the other hand, and depending on PCI values from PAVER output the GIS tools was used to layout the maintenance priority for the selected sections as shown in Plate (5-2).

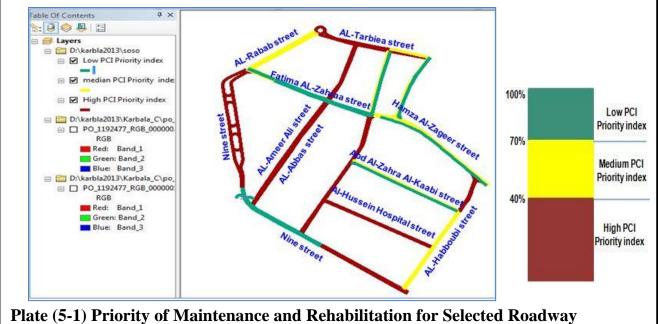
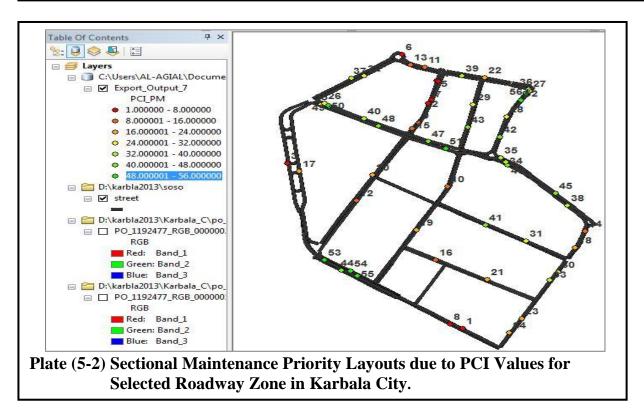



Plate (5-1) Priority of Maintenance and Rehabilitation for Selected Roadwa Zone in Karbala City.

5.3.2 Ranking by Multiple Measures

The maintenance priority index (MPI) (as a dependent variable) is related to other independent variables in addition to PCI determined from PAVER system. The independent variables include; cost, easiness, average daily traffic (ADT), and function classification. Maintenance priority index equation suggested to be is equal to:

MPI = (a * PCI) - (b * C) + (c * E) + (d * ADT) + (e * F.C.) ... (5-1) where:

MPI: Maintenance priority index of the section.

PCI: Pavement condition index of section.

C: Maintenance cost for each section per square meter.

E: easiness of work through maintenance sections.

ADT: Average Daily Traffic for each section.

F.C.: Function Classifications of each section roads.

a,b,c,d,e: Irrespective weight value due to experts response.

The weights of the independent variable in the equation were found during the inspection test. Whereas, statistical analysis was made for 35 questionnaire samples. Assuming normal distribution for the response of the questionnaire output, the sample number is checked to be sufficient for 95% degree of confidences and acceptable error of ± 1 and the standard deviation of the output scores for each items in the questionnaire. Statistical analysis for this irrespective weight and check sample size are shown in Appendix (E). Table (5-1) shows irrespective weight for remains (32 questionnaire samples).

The average factors of these irrespective weight are determined for each variable; whereas cost, PCI, easiness, ADT, and function classification equal to (-6.39), (7.61), (4.97), (8.31), and (6.88) respectively. Determining the maintenance priority of sections in the study area (using data for 46 major and minor arterial sections, and 10 collector sections) is found by using the priority Eq. (5-1).

In this research, application on an arterial and collector sections depended on collected data of ADT as shown above. The maintenance cost per square meter which estimated as shown in Appendix (B).

Questionnaire	Cost	PCI	Easiness	ADT	F.C.
1	-9	8	2	7	7
2	-8	9	4	9	8
3	-8	9	6	9	9
4	-5	6	4	6.5	6
5	-6	7	7	7	5
6	-5	7	5	8	6
7	-8	9	5	8	7
8	-8	9	7.5	7	8
9	-8	8	7	9	9
10	-7	9	6	9	8
11	-7	9	3	8	10
12	-6	8	3	9	9
13	-2	5	6	7	5
14	-2	10	5	10	5
15	-7	8	5	10	5
16	-3	5	4	9	7
17	-5	5	4	7	4
18	-4	6	3	8	5
19	-5	6	4	8	4
20	-7	7	6	8	9
21	-7	6	5	8	8
22	-7	6	7.5	8	7
23	-5	9.5	5	9	8
24	-6	5	5	9	8
25	-2	8	5	10	10
26	-7	7.5	5	9	8
27	-7	8	5	8	8.5
28	-8.5	8.5	6	9	7
29	-8	10	5	10	3
30	-10	10	5	8	2
31	-8	5	5	7.5	7
32	-9	10	5	8	7.5

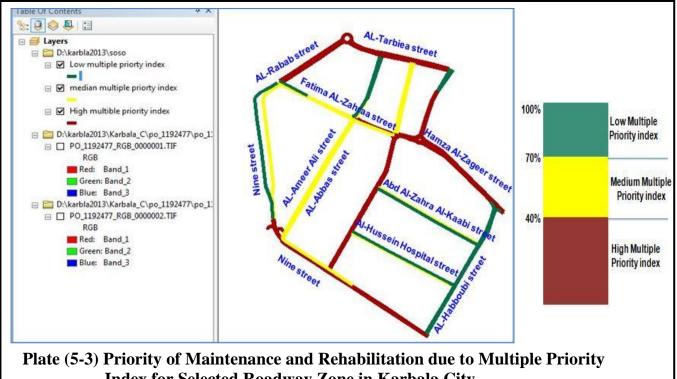
 Table (5-1) Irrespective Weight Value (out of 30) for Each Factor of Multiple Priority Method.

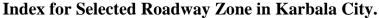
(cost): Maintenance cost for each section per square meter, (PCI): Pavement condition index of the section, (Easy): easiness of work through maintenance sections, (ADT): Average Daily Traffic for each section, (F.C.): Functional Classifications of each section roads.

The functional classification of section roads, which ranking from 1 up to 5 (1: local, 2: local distributor, 3:collector, 4:minor arterial, 5:major

arterial), and the easy work values to maintain sections use dependent in Table (3-5). Table (5-2) shows the input value for each variable and the results of maintenance priority sections from equation (5-1). Plate (5-3) shows a layout of maintenance priority for the selected sections using GIS tools. Multiple priority maintenance (MPI) can be classified into three ranges corresponding to the scale. On the other hand, and depending on MPI values the GIS tools was using to layout the maintenance priority for the selected sections as shown in Plate (5-4).

		Ir	nput Data				Maintenance Pr	riority
Section	Туре	PCI	Cost ID/m2	Easiness	ADT vpd	F. C.	PMI	PM.
1_1	Major arterial	55	10,002	3	33589	5	215679.7	12
1_A	Minor arterial	86	545	3.5	23181	4	189850.9	15
1_B	Minor arterial	85	817	3.9	24728	4	200962.8	14
2_A	Major arterial	50	6,739	3.2	15665	5	87544.74	53
2_B	Major arterial	72	3,187	3.6	19387	5	141341.3	28
3_A	Major arterial	98	8	5	21604	5	180283.2	18
3_B	Major arterial	100	0	5	24834	5	207190.8	13
3-1_A	Major arterial	90	904	3.9	22042	5	178131.1	19
3-1_B	Major arterial	98	30	4.6	17286	5	144258	27
4_A	Major arterial	60	6,124	3.6	37802	5	275511.2	7
4_B	Major arterial	46	6,423	3	39977	5	291565.3	4
5_A	Collector	80	2,215	3.6	11725	3	83928.23	54
5_B	Collector	77	3,132	3.8	14417	3	100417.3	41
6_A	Collector	85	3,544	3.4	13445	3	89766.18	52
6_B	Collector	82	2,952	3.8	14209	3	99877.06	43
7_A	Collector	73	2,671	3.5	13345	3	94422.83	47
7_B	Collector	70	4,082	3.8	14552	3	95415.37	45
8_A	Major arterial	86	78	4.4	34083	5	283442	5
8_B	Major arterial	90	1,134	4.4	38866	5	316471.4	1
9_A	Major arterial	90	670	4.5	34049	5	279407.6	6
9_B	Major arterial	85	870	4.7	36214	5	296083.6	2
9_C	Major arterial	85	1,627	3.9	30693	5	245362.9	9
10_A	Minor arterial	97	29	3	20339	4	169612.4	24
10_B	Minor arterial	91	329	4.2	21598	4	173562.4	20


Table (5-2) Maintenance Priority Depended on Many Variables.


(PCI): Pavement condition index of the section, (cost): Maintenance cost for each section per square meter, (Easy): easiness of work through maintenance section, (ADT): Average Daily Traffic for each section, (F.C.): Functional Classifications of each section roads.

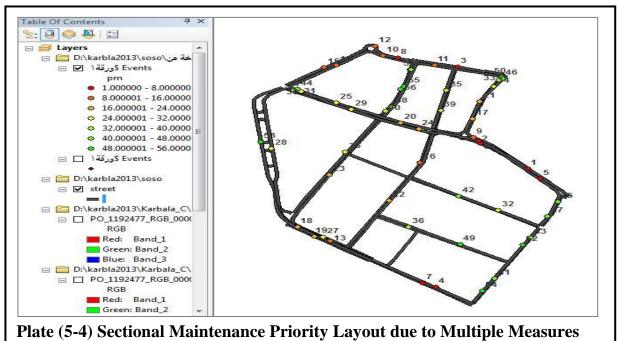

		Ir	put Data				Maintenance Priority	
Section	Туре	PCI	Cost ID/m2	Easiness	ADT vpd	F. C.	PMI	PM.
11_A	Minor arterial	93	294.48	4.9	17037	4	138745.9	29
11_B	Minor arterial	87	516	4.3	18941	4	151530.2	25
12_A	Minor arterial	94	195	4.7	16549	4	137042.4	30
12_B	Minor arterial	95	130	4.7	15559	4	129238.4	31
12-1_A	Minor arterial	80	999	4.3	13476	4	104011.4	37
12-1_B	Minor arterial	80	1,008	4.4	12486	4	95736.83	44
13_A	Minor arterial	76	2,461	4.4	20311	4	153686.4	26
13_B	Minor arterial	68	2,087	3.6	22263	4	172232.5	23
15_A	Minor arterial	66	3,642	4.5	25306	4	187572.6	16
15_B	Minor arterial	74	1,112	4.2	21950	4	175910.4	22
17_A	Collector	71	2,700	3.6	15129	3	109047.8	36
17_B	Collector	76	3,453	4	13601	3	91578.52	49
18_A	Collector	87	1,661	3.6	13241	3	100119.5	42
18_B	Collector	84	814	3.9	15061	3	120634.7	32
19_A	Minor arterial	70	1,647	3.8	13463	4	101932.3	40
19_B	Minor arterial	60	2,316	3.8	14295	4	104495.2	38
20_A	Minor arterial	47	10,730	3.8	14506	4	52384.24	56
20_B	Minor arterial	55	7,427	3.2	15115	4	78609.09	55
21_A	Minor arterial	54	5,251	3.4	14834	4	58338.19	51
21_B	Minor arterial	52	6,404	3.4	15946	4	54286.44	48
22_A	Minor arterial	81	1,531	3.7	14722	4	113219	35
22_B	Minor arterial	88	174	4.2	12441	4	102990.9	39
23_A	Minor arterial	100	0	5	14273	4	119422	33
23_B	Minor arterial	97	22	4.9	13568	4	113399.5	34
23-1_A	Minor arterial	85	1,222	4.3	11746	4	90496.42	50
23-1_B	Minor arterial	80	2,521	4	13247	4	94629.58	46
24_A	Minor arterial	80	2,136	4.3	22818	4	176626.2	21
24_B	Minor arterial	87	118	4.5	22221	4	184614.4	17
25_A	Major arterial	76	1,509	4.1	36270	5	292394.3	3
25_B	Major arterial	86	557	4.6	29145	5	239347.4	11
26_A	Major arterial	66	4,313	4	35692	5	269597	8
26_B	Major arterial	69	2,520	3.9	30818	5	240573.7	10

Table (5-2) Maintenance Priority Depended on Many Variables (continued).

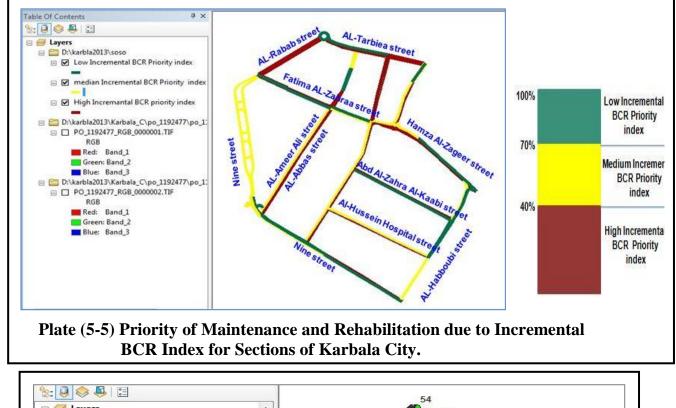
(PCI): Pavement condition index of the section, (cost): Maintenance cost for each section per square meter, (Easy): easiness of work through maintenance section, (ADT): Average Daily Traffic for each section, (F.C.): Functional Classifications of each section roads.

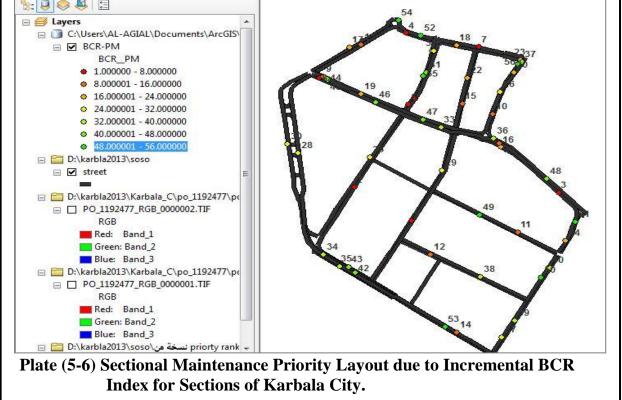
for Selected Roadway Zone in Karbala City.

5.3.3 Incremental Benefit-Cost Method

This method represents an extension of the benefit/cost ratio. The benefit gained from pavement maintenance is assumed to equal decrease of PCI out of hundred (100 - PCI). On the other hand, the ratio of benefit to cost

of pavement maintenance represents (BCR) depends on two variables benefit value (100 - PCI). PCI determined from PAVER system, and maintenance cost of each section per square meter are used depended on Appendix (B).. In this research, input data (benefit and cost) are used for arterial and collector section roads (in the study area). This section data arrangement depended on cost-effectiveness (from low to high cost) and ranking results of incremental BCR analysis as shown in Table (5-3).


Table (5-3) Sections Input Data Arranged and Ranking Results of Incremental BCR Analysis of Roadways Sections in the Study Area in Karbala City.


		<u>ну.</u>								
Section	PCI	Cost	PCI	Cost-Effe	ctiveness	Ranking	Ranking Results of Incremental BCR Analysis			
200400	1 01	ID/m2	Benefit	Section	Cost ID/m2	PCI Benefit	Rank	Section	repeated	
1_1	55	10,002	45	3-B	0	0	1	Sec.(19-B)	15	
1_A	86	545	14	23-A	0	0	2	Sec. (13-B)	14	
1-B	85	817	15	3-A	8	2	3	Sec. (8-A)	12	
2-A	50	6,739	50	23-В	22	3	4	Sec. (26-B)	10	
2-B	72	3,187	28	10-A	29	3	5	Sec. (19-A)	14	
3-A	98	8	2	3-1-B	30	2	6	Sec. (15-B)	12	
3-B	100	0	0	8-A	78	14	7	Sec. (25-A)	9	
3-1-A	90	904	10	24-B	118	13	8	Sec.(12-1-A)	10	
3-1-B	98	30	2	12-B	130	5	9	Sec.(12-1-B)	9	
4-A	60	6,124	40	22-B	174	12	10	Sec.(24-B)	8	
4-B	46	6,423	54	12-A	195	6	11	Sec.(18-B)	7	
5_A	80	2,215	20	11-A	294.48	7	12	Sec. (17-A)	7	
5_B	77	3,132	23	10-B	329	9	13	Sec.(1-B)	6	
6_A	85	3,544	15	11-B	516	13	14	Sec.(4-B)	6	
6_B	82	2,952	18	1-A	545	14	15	Sec. (22-B)	5	
7-A	73	2,671	27	25-B	557	14	16	Sec. (9-B)	5	
7-B	70	4,082	30	9-A	670	10	17	Sec. (1-A)	6	
8-A	86	78	14	18-B	814	16	18	Sec. (25-B)	5	
8-B	90	1,134	10	1-B	817	15	19	Sec. (11-B)	5	
9-A	90	670	10	9-B	870	15	20	Sec.(23-B)	4	
9-B	85	870	15	3-1-A	904	10	21	Sec.(9-A)	4	
9-C	85	1,627	15	12-1-A	999	20	22	Sec. (22-A)	4	
10-A	97	29	3	12-1-B	1,008	20	23	Sec.(23-1-A)	4	
10-B	91	329	9	15-B	1,112	26	24	Sec.(7-A)	4	
11-A	93	294.48	7	8-B	1,134	10	25	Sec. (13-A)	5	
11-B	87	516	13	23-1-A	1,222	15	26	Sec. (24-A)	5	
12-A	94	195	6	25-A	1,509	24	27	Sec. (5-A)	4	
12-B	95	130	5	22-A	1,531	19	28	Sec.(2-B)	4	

Section	PCI	Cost ID/m2	PCI	Cost-Effe	ctiveness	Ranking	Ranking Results of Incremental BCR Analysis		
		ID/m2	Benefit	Section	Cost ID/m2	PCI Benefit	Rank	Section	repeated
12-1-A	80	999	20	9-C	1,627	15	29	Sec.(15-A)	4
12-1-B	80	1,008	20	19-A	1,647	30	30	Sec.(2-A)	4
13-A	76	2,461	24	18-A	1,661	13	31	Sec. (21-B)	4
13-B	68	2,087	32	13-B	2,087	32	32	Sec.(21-A)	5
15-A	66	3,642	34	24-A	2,136	20	33	Sec. (10-A)	3
15-B	74	1,112	26	5-A	2,215	20	34	Sec. (3-A)	3
17-A	71	2,700	29	19-B	2,316	40	35	Sec. (3-1-A)	3
17-B	76	3,453	24	13-A	2,461	24	36	Sec. (9-C)	3
18-A	87	1,661	13	26-B	2,520	31	37	Sec. (23-1-B)	3
18-B	84	814	16	23-1-В	2,521	20	38	Sec. (17-B)	3
19-A	70	1,647	30	7-A	2,671	27	39	Sec.(5_B)	3
19-B	60	2,316	40	17-A	2,700	29	40	Sec.(6-B)	3
20-A	47	10,730	53	6-B	2,952	18	41	Sec. (20-B)	3
20-В	55	7,427	45	5-B	3,132	23	42	Sec. (3-B)	2
21-A	54	5,251	46	2-B	3,187	28	43	Sec. (3-1-B)	2
21-B	52	6,404	48	17-B	3,453	24	44	Sec. (12-B)	2
22-A	81	1,531	19	6-A	3,544	15	45	Sec. (12-A)	2
22-В	88	174	12	15-A	3,642	34	46	Sec. (11-A)	2
23-A	100	0	0	7-B	4,082	30	47	Sec. (10-B)	2
23-В	97	22	3	26-A	4,313	34	48	Sec. (8-B)	2
23-1-A	85	1,222	15	21-A	5,251	46	49	Sec. (18-A)	2
23-1-В	80	2,521	20	4-A	6,124	40	50	Sec. (6-A)	2
24-A	80	2,136	20	21-B	6,404	48	51	Sec. (7-B)	2
24-B	87	118	13	4-B	6,423	54	52	Sec. (26-A)	2
25-A	76	1,509	24	2-A	6,739	50	53	Sec. (4-A)	2
25-В	86	557	14	20-В	7,427	45	54	Sec. (1-1)	2
26-A	66	4,313	34	1-1	10,002	45	55	Sec. (20-A)	1
26-B	69	2,520	31	20-A	10,730	53	56	Sec. (23-A)	1

 Table (5-3) Sections Input Data Arranged and Ranking Results of Incremental BCR Analysis of Roadways Sections in the Study Area in Karbala City(Continued).

Developing a special program to accomplish the calculations, which is the most efficient and effective application for this way. MATLAB R2015a software is developed to determine the priority of section roads as shown in Appendix (F). Furthermore, GIS Geostatic Analyses Tools is used to layout the priority result of this method as shown in Plate (5-5). On the other hand, and depending on ranking values through incremental BCR priority index the GIS tools was used to layout the maintenance priority for the selected sections as shown in Plate (5-6).

5.4 Maintenance Priority Result Analysis

Maintenance priority rank result from simple ranking by PCI measure, ranking by multiple measures, and incremental benefit-cost analysis ranking are analyzed by using Wilcoxon signed-rank test (Matched Pairs Test) in SPSS software.

The testing equality of means of two continuous distributions that are obviously non-normal, and samples are independent (i.e., there is no pairing of observations), the Wilcoxon rank-sum test or Wilcoxon two-sample test is an appropriate alternative to the two-sample. We shall test the null hypothesis (Walpole et al., 2012). Assume the cases are a null hypothesis, which means that the median difference between two pairs of observations is zero. If the significant value is less than (0.05), then reject the null hypothesis. The two developed method listed depended on the section rank of simple ranking by PCI measure as shown in Table (5-4). Each of the three priority methods used is checked as shown in Table (5-5).

From test, the significance of ranks for each method and with each other is more than (0.05) with a 95% degree of confidences, so will agree null hypothesis. As there is no evidence to reject the null hypothesis, it can be concluded that there is no significant difference in the output of these priority methods. This shows the convergence of priority values, and in this study area and other cities, which have a fix funds, it is suggested to use the incremental BCR method.

· · · · · · · · · · · · · · · · · · ·	/ 1						
Section	PCI	MPI	BCR	Section	PCI	MPI	BCR
4_B	1	4	14	22_A	29	35	22
20_A	2	56	55	6_B	30	43	40
2_A	3	53	30	18_B	31	32	11
21_B	4	48	31	1_B	32	14	13
21_A	5	51	32	6_A	33	52	50
1_1	6	12	54	9_B	34	2	16
20_B	7	55	41	9_C	35	9	36
4_A	8	7	53	23-1_A	36	50	23
19_B	9	38	1	1_A	37	15	17
15_A	10	16	29	8_A	38	5	3
26_A	11	8	52	25_B	39	11	18
13_B	12	16	2	11_B	40	25	19
26_B	13	10	4	18_A	41	42	49
7_B	14	45	51	24_B	42	17	10
19_A	15	40	5	22_B	43	39	15
17_A	16	36	12	3-1_A	44	19	35
2_B	17	28	28	8_B	45	1	48
7_A	18	47	24	9_A	46	6	21
15_B	19	22	6	10_B	47	20	47
13_A	20	23	25	11_A	48	29	46
17_B	21	49	38	12_A	49	30	45
25_A	22	3	7	12_B	50	31	44
5_B	23	41	39	10_A	51	24	33
5_A	24	54	27	23_B	52	34	20
12-1_A	25	37	8	3_A	53	18	34
12-1_B	26	44	9	3-1_B	54	27	43
23-1_B	27	46	37	3_B	55	13	42
24_A	28	21	26	23_A	56	33	56

Table (5-5) Wilcoxon Matched Pairs Test of Ranking Results for Each Method.

	A-Descriptive Statistics											
	N	Mean	Std. Deviation	Minimum	Maximum							
Simple-priority	56	28.5000	16.310	1.00	56.00							
Multiple-priority	56	28.5000	16.392	1.00	56.00							
BCR-priority	56	28.5000	16.295	1.00	56.00							

A-Descriptive Statistics

Table (5-5) Wilcoxon Matched Pairs Test of Ranking Results for Each Method (continued).

		N	Mean Rank	Sum of Ranks
Multiple-priority - Simple-	Negative Ranks	27 ^a	30.31	818.50
priority	Positive Ranks	29 ^b	26.81	777.50
	Ties	0 ^c		
	Total	56		
BCR-priority – Simple-priority	Negative Ranks	31 ^d	26.06	808.00
	Positive Ranks	23 ^e	29.43	677.00
	Ties	2 ^f		
	Total	56		
BCR-priority – Multiple-priority	Negative Ranks	29 ^g	27.16	787.50
	Positive Ranks	26 ^h	28.94	752.50
	Ties	1 ⁱ		
	Total	56		

B- Wilcoxon Signed Ranks Test

a. Multiple-priority < Simple-priority b. Multiple-priority > Simple-priority c. Multiple-priority = Simple-priority

d. BCR-priority < Simple-priority

e. BCR-priority > Simple-priority f. BCR-priority = Simple-priority i. BCR-priority = Multiple-priority

g. BCR-priority < Multiple-priority

h. BCR-priority > Multiple-priority

C- Test Statistics^a

	Multiple-priority - Simple- priority	BCR-priority - Simple-priority	BCR-priority - Multiple- priority		
Z	167- ^b	564- ^b	147- ^b		
Asymp. Sig. (2-tailed)	0.867	0.573	0.883		

a. Wilcoxon Signed Ranks Test

b. Based on positive ranks.

CHAPTER SIX

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

On the basis of the research findings, the following conclusions can be drawn:

- 1. Pavement condition evaluation by PAVER software showed that the current status for the selected zone of roads network in Karbala city, in general have a satisfactory condition. Where 63% of the selected roads network need to preventive maintenance, 31% require rehabilitation, and 6% needs reconstruction.
- Priority of maintenance can be estimated according to the layout of integrity PAVER software with GIS. This will give easiness to assign the location of best and worst sections which help decision makers and assure efficient maintenance management.
- 3. According to the developed models in this study, pavement condition represented by PCI, decreases with age of pavement for all studied sections in a trend agree with other studies.
- PAVER model describes the deterioration of the pavement sections as a polynomial. PAVER statistical test shows that 60% of the variation in the dependent variable (PCI) is explained by the independent variable (Age).
- 5. The significant difference between value CI from Hoel et al. developed model and PCI from PAVER for the sections is (0.000 < 0.05), so the null hypothesis was rejected and cannot be used to predict PCI value for the study area.
- 6. Pavement age is the most significant element in PCI developed predicting model, followed by the structural number (SN) and average daily traffic (ADT).

- Statistical developed models for PCI introduce a correlation with independent variables of; ADT, age and structure number as R² (0.73, 0.69), and reasonably can be used to predict the pavement condition of roadways.
- 8. The study introduces efficient display of layout and ranking for the selected zone of roadway system based developed maintenance priority method. From this layout, show that Al-Tarbiea street, Al-Rabab street, Al-Abbas street, and nine street have the first priority in maintenance after that Al-Ameer Ali street, Al-Hussein hospital street, and Al-Habboubi street.
- 9. A statistical test (Wilcoxon Signed Ranks) shows that there is no significant difference between the simple ranking method due to PCI of PAVER and the two developed prioritization of maintenance (multiple ranking and BCR ranking). So, the two developed optimized methods of prioritization developed in the study can be used successfully in addition to the simple ranking of PAVER.
- 10. The convergence between of priority values, and in this study area and other cities, which have a fix funds, it is suggested to use the incremental BCR method.

6.2 Recommendations

The following recommendations could be suggested:

 Extending the work application of software's (PAVER and GIS) over all the network roads system of municipalities to get up accurate data. The comprehensive database of pavement condition given the ability to finding the maintenance needs and assign maintenance priorities activities and the required funding which need.

- 2. Use the modeling of pavement condition of maintenance alternatives in Iraq to predict optimum maintenance. These models may assist decision makers and local engineers of Pavement maintenance management system agencies (SORB, Karbala Mayoralty, and directors of roads and bridges in Karbala) to make the right decision in selecting optimum pavement maintenance.
- 3. Karbala city (KC) staff of maintenance department would be trained and learnt to recognize the best ways of performing the PMMS tasks.

6.3 Future Works

- 1. Applying the methodology in this study for rigid pavement roadways and develop a statistical model to predict pavement condition of rigid and airfield pavement roadways.
- 2. Developing model for the study area by using another variable such as weight of estimation single axel load (ESAL) and environmental measures.

REFERENCE

REFERENCES

AASHTO (1993). "*Guide for Design of Pavement Structures*", American Association of State Highway and Transportation Officials, Washington, D.C.

AASHTO (2008). "*Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice*". American Association of State Highway and Transportation Officials, Washington, D.C.

AASHTO, (2010). "*Highway Safety Manual*". 1st Edition Washington, DC 20001: American Association of State Highway and Transportation Officials, Washington, DC.

Abo-Hashema, M. A., Abdel Samad, A. M., Al-Zaroni, Y. A. and Hawwary, M. M. S., (2006). "Integrating Pavement Maintenance Management Practices and Geographic Information System in Al Ain City, UAE". Third Gulf Conference on Roads (TGCR06), Muscat, March 6-8, pp 279-287, Oman.

Abo-Hashema, M. A. and Sharaf E. A., (2009). "Development of maintenance decision model for flexible pavements". *International Journal of Pavement Engineering*, Vol. 10, No. 3, June, PP.173–187.

Adlinge, S. S. and Gupta, A. K., (2015). "**Pavement Deterioration and its Causes**". *IOSR Journal of Mechanical & Civil Engineering (IOSR-JMCE)*, PP. 09-15.

Ahmed, N. G., Awda, G. J., and Saleh, S. E., (2008). "Development of Pavement Condition Index Model for Flexible Pavement in Baghdad City". *Journal of Engineering, Baghdad University, Volume14*(1), PP. 2120-2135. Al-Hallaq, M. A. F., (2004). "Development of a Pavement Maintenance Management System for Gaza City". M.Sc Thesis. *Civil Engineering, Department Infrastructure Engineering, January, Gaza.*

Ali, G.; Eisa, M. and Suleiman, E., (2012). "Use of Micro PAVER Program for Pavement Maintenance Management System (PMMS) of Roads in Central and Eastern Sudan". Sudan University of Science and Technology, Journal of BRR, Vol.12.

Al-Mansour, A. and Al-Mubaraky, M., (2007). "Development of Flexible Pavement Distress Model for Riyadh City, Saudi Arabia", *Al-Azhar University Engineering, Journal Vol.*2, No.3.

Al-Mestarehi, B. W., (2009). "Integration of GIS, and PAVER Systems to award Pavement Maintenance Management System (PMMS)". M.Sc Thesis. Department of Civil Engineering, Jordan University of Science and Technology : Irbid, Jordan.

Al-Suleiman, T. I., Sinha, K. C. Fellow, ASCE, and Riverson, J. D. Associate Member, ASCE, (1991). "Effects of Pavement Age and Traffic on Maintenance Effectiveness". Reviewed by the Highway Division, *Journal of transportation engineering*, 117(6), pp. 644-659

ASTM (2011). "standard practices for roads and parking lots pavement condition index surveys". D6433, American Society for Testing and Materials, west Conshohocken. PA, United States.

ASTM (2012). "Standard Terminology Relating to Vehicle-Pavement Systems". E867 Book of ASTM Standards, American Society for Testing and Materials Standard Practice, vol. 04.03, Philadelphia, PA, United States.

ASTM (2015). "Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures". D6927, American Society for Testing and Materials, west Conshohocken. PA, United States. Amin M. S. R. and Amador-Jiménez, L. E. (2014). "A Performance-Based Pavement Management System for the Road Network of Montreal City – A Conceptual Framework". *Taylor & Francis Group, London*, pp. 233-244.

Newcomb, David E., (2010). "*Perpetual Asphalt Pavements: A Synthesis*". Asphalt Pavement Alliance, National Center for Asphalt Technology (U.S.), National Asphalt Pavement Association, IM-40, Lanham, Maryland.

ATR (2002). "A Best Practice For The Implementation of A Pavement Management System for Small and Medium Airport". Real Property Services Branch Architectural & Engineering Services, Civil Engineering Directorate, Airport Engineering, public work and Government Services, Canada, ATR-045.

Barrie, S. and Paulson, B., (1992). "Professional Construction Management: Including CM, Design-Construct and General Contracting". Third Edition, McGraw-Hill Book Company.

Beauvais, J. C.; Lam, J. C.; Lee, M. J.; Reis, V. C.; Haimes, Y. Y. and Lambert, J. H., (2003). "*Asset Management for Virginia Highways and Roads*". Proceedings of the 2003 Systems and Information Engineering Design Symposium, PP. 269-274.

Burningham, S. and Stankevich, N., (2005). "*Why road maintenance is important and how to get it done*". World Bank, Transport Note 4., Washington, DC.

Cuelho, E.; Mokwa, R. and Akin, M., (2006)."*Preventive Maintenance Treatments of Flexible Pavements: A Synthesis of Highway Practice*". Report FHWA/MT-06-009/8117-26, Montana Department of Transportation, Helena.

DoT (1994). "*Maintenance of bituminous roads*", HD 31/94. Design Manual for Roads and Bridges, Volume 7: Pavement Design and Maintenance. The Stationery Office, London, UK.

Ferreira, A.; RuiMicaelo, and Souza, R. (2012). "Cracking Models for
Use in Pavement Maintenance Management". International
Conference on Cracking in Pavements, pp. 429–439.

FHWA (1995). "*Quality Assurance Procedures for Construction*". Federal Highway Administration FAPG-23 CFR 637B.

FHWA (2003). "*Distress Identification Manual for the LTPP (Fourth Revised Edition*)". Federal Highway Administration, Appendix B, Manual for Faultmeter Measurements, Publication Number: FHWA-RD-03-031, Washington.

FHWA (2013). "*Highway Functional Classification: Concepts, Criteria and Procedures*". Federal Highway Administration, U.S. Department of Transportation, PP. 14-18.

FHWA (2016). "*Policy and Governmental Affairs Office of Highway Policy Information*". U.S. Department of Transportation, 1200 New Jersey A Venue, SE, Washington, DC 20590, 202-366-4000.

Fitch, G. Michael and Anderson, John E., (2001). "Use of digital multispectral videography to capture environmental data sets". Virginia Department of Transportation, *Transportation Research Record, Journal of the Transportation Research Board*, Vol. 1756, pp. 87-93.

Frangopol, D. M., & Liu, M., (2007). "Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost". *Structure and infrastructure engineering, maintenance, management, life-cycle design and performance,* Vol. 3, No. 1, USA.

Fred L. M. and Scott S. W., (2013). "*Principles of Highway Engineering and Traffic Analysis*", Fifth Edition. WILEY, John Wiley & Sons, Inc, 111 River Street, Hoboken, NJ 07030-5774. Gadefa, D. B., (2008). "Estimation of Remaining Service Life of Flexible Pavements From Surface Deflections", Ph.D. Dissertation, Kansas State University, Manhattan, Kansas.

Garber, N. J. and Hoel, L .A., (2009). "*Traffic and Highway Engineering*", Fourth Edition, Cengage Learning Publishing Company, Library of Congress Control Number: 2008926026, Toronto, Canada.

Hoel, L. A.; Garber, N. J. and Sadek, A. W., (2011). "*Transportation Infrastructure Engineering*". A Multimodal Integration SI Edition, Cengage Learning Publishing Company, Library of Congress Control Number: 2006908593, Toronto, Canada.

Garg, A. and Deshmukh, S. G., (2006). "Maintenance management: literature review and directions". *Journal of Quality in Maintenance Engineering*, Vol. 12 Iss: 3 pp. 205 – 238.

Haas, R.; Hudson, Q. R. and Zaniewski, J., (1994). "*Modern Pavement Management*". Krieger Publishing Company, Malabar, Florida.

Haas, R., (2011). "*Life Cycle Management of Road Assets*". Notes Prepared for Master class/workshops, Sydney, Melbourne and Brisbane, October.

Haas, R,; Hudson, Q. R. and Falls, L. C., (2015). "*Pavement Asset Management*". New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously, Canada.

Hajek, J.; Hein, D. and Chris, O., (2004). "*Decision Making for Maintenance and Rehabilitation of Municipal Pavements*". The 2004 Annual Conference of the Transportation Association of Canada, Québec City, Québec.

Hajek, H. and Hein, K., (2011). "Common Airport Pavement Maintenance Practices", A Synthesis of Airport Practice, Washington, 2011. Huang Y. H., (2004). "*Pavement Analysis and Design*". Second Edition University of Kentucky, Prentice Hall, Englewood Cliffs, New Jersey.

Jagadeesh, H. S. and Harikeerthan, M. K., (2012). "**Development of pavement deterioration models for urban roads**". National Conference on "URBAN MOBILITY CHALLENGES, SOLUTIONS, AND PROSPECTS", IIT Madras, July 14, 2012.

Kamaludden, N., (1987). "Damaging Effect of Triple Axle Loads on Flexible Pavements". M.Sc. Thesis, *College of Engineering, University* of Baghdad, Baghdad, Iraq.

Kaloush, K.; Sousa, J., Way, G and Ali, G., (2006)."**Observations on the Development and Use of SHRP rmance Design Guide Perfo tests and models for hot mix asphalt mixes**", 3rd Gulf Conference on Roads, Muscat, Oman, pp. 116-126.

Kirbas, U. and Gursoy, M., (2010). "Developing the basics of pavement management system in Besiktas district and evaluation of the selected sections". *Academic Journals, Scientific Research and Essays*, Vol. 5(8), pp. 806-812, 18 April.

Kmetz, R., (2011). "GIS Based Pavement Maintenance: A Systematic Approach". Purdue Polytechnic Directed Projects, Purdue University, West Lafayette, Indiana.

Kotb, A. S. M., (1996). "Application of AI and Expert systems to Highway Pavement Maintenance Management". Ph.D. Thesis, *School* of Engineering, The University of Wales, Cardiff, UK.

Kulkarni, R. B. and Miller, R. W. (2003). "Pavement Management Systems: Past, Present, and Future". *Journal of the Transportation Research Board*, no. 1853, National Research Council, Washington, D.C., pp. 65–71.

Kulkarni, R. B. (1984); "*Dynamic decision model for a pavement management system*", Transportation Research Board (TRB), no. 997, National Research Council, Washington, D.C.

LOC (2006). "**Country Profile: Iraq**". Library of Congress – Federal Research Division, Iraq.

Lytton, R. L., (1987). "Concepts of pavement performance prediction and modeling" Proceedings of Second North American Conference on Managing Pavements, Ontario, Canada, Vol. 2, pp. 4-19.

Madanat, S., & Mishalani, R. (1998). "Selectivity bias in modeling highway pavement maintenance effectiveness". *Journal of infrastructure systems*, 4(3), PP. 134-137.

Mapikitla, D., (2012). "Development of Pavement Management System for Road Network Maintenance". M.Sc Thesis. Faculty of Engineering And Technology, Department of Civil Engineering.

Márquez, A.C. (2007). "*The Maintenance Management Framework*", Models and Methods for Complex Systems Maintenance. complex systems maintenance. Springer Series in Reliability Engineering series ISSN1614-7839, USA.

Miller, J. S., (2003). "Distress Identification Manual for the Long-Term Pavement Performance Program", U.S. Department of Transportation, Federal Highway Administration,, Virginia.

Mubaraki, M. A. (2010). "*Predicting Deterioration for the Saudi Arabia Urban Road Network*". M.Sc Thesis., *Department of Civil Engineering, Nottingham Transportation Engineering Centre.*

NIJU, A. (2006). "GIS Based Pavement Maintenance & Management System (GPMMS)". M.Sc Thesis., Department of Civil Engineering, National Institute of Technology Calicut, Calicut, Kerala 673 601. Norlela I.; Amiruddin I. and Riza A. (2009a) "**Development of Expert System for Airport Pavement Maintenance and Rehabilitation** ", *European Journal of Scientific Research*, Vol.35 No.1, pp.121-129.

Norlela I.; Amiruddin I., and Riza A. (2009b). " **An Overview of Expert Systems in Pavement Management**", *European Journal of Scientific Research*, Vol.30 No.1, pp.99-111.

Obaidat, M. T. and Al –Mestarehi, B. W. (2012). "Integration of Geographic Information Systems and Paver System to A ward Efficient Pavement Maintenance Management System (PMMS) – Case Study-Irbid City-Jordan". *journal of Advanced Science and Engineering Research* Vol 2, No 4 December, 279-296.

Obead, F. Y., (2012). "Development of Pavement Maintenance Alternatives Based on Multi-Criteria System". M.Sc. Thesis, Highway & Transportation Department, University of Mustansiriyah Iraq.

Peter, E.; Stephan, L., and Adam, H (1995). "Performance Models for *Flexible Pavement Maintenance Treatments*", Transportation Research Board, 74Th Annual Meeting, Washington, D.C, USA.

Powell, W. D.; Potter, J. F.; Mayhew, H. C. and Nunn, M. E. (1984). "*The structural design of bituminous roads*". Department of the Environment, Department of Transport, TRRL Laboratory Report LR1132. Transport and Road Research Laboratory, Crowthorne, UK.

Rada, G. R.; Jones, D. J.; Harvey, J. T.; Senn, K. A. and Thomas, M. (2013)."*Guide for Conducting Forensic Investigations of Highway Pavements*". NCHRP Report 747, Washington, D.C.

Richardson, D. N.; Ph. D.; P. E. and F.ACI, (1994); "*Determination of AASHTO Layer Coefficients*", Vol. I: Bituminous Materials, MCHRP Final Report, Study 90-5.

Rijn, J. V., (2006). "*Road Maintenance Planning*", In development https://ar.scribd.com/document/332116171/RoadMaintenance-pdf.

Robertson, P. K. and Wride, C. E., (1998). "Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test". *Canadian Geotechnical Journal*, Vol. 35, No. 3, pp.442–459.

Rogers, M., (2003). "*Highway Engineering*". Department of Civil and Structural Engineering, Dublin Institute of Technology, Ireland, ISBN 0-632-05993-1.

Roess, R. P., Prassas, E. S. and McShane, W. R., (2011). "*Traffic engineering*". Forth edition, Polytechnic Institute of New York University, U.S.

Shahin, M. Y. and Walther, J. A. (1990). "*Pavement Maintenance Management for Roads and Streets Using the PAVER System*". Technical Report M-90/05, US Army Corps of Engineers, Civil Engeering Research Laboratory, Champaign, IL.

Shahin, M. Y. (2005). "Pavement Management for Airports. Roads, and *Parking Lots*". Second edition. Springer Science Business Media, Inc., New York. NY. U.S.A.

Sharaf, E. A.; Fahmy, M. M. and Abo-Hashema, M. A., (2003). "*Pavement Maintenance Priorities Using Ranking and Optimization Models*", The 2nd International Operation & Maintenance Conference in the Arab Countries (OMAINTEC), 30 June – 3 July, Phoenicia Inter-Continental, Beirut, Lebanon.

Shah, Y. U.; Jain, S. S. and Parida, M. (2012) "*Evaluation of prioritization methods for effective pavement maintenance of urban roads*". Civil Engineering Department, Indian Institute of Technology Roorkee, IIT, Roorkee, 247667, India.

SORB (2005). "*Highway Design Manual*" State Organization for Roads and Bridges, Design & Studies Department Road & Traffic Division, Baghdad, Iraq.

Thagesen, B., (2005)."*Highway and Traffic Engineering in Developing Countries*". Technical University of Denmark, contact the Promotions Department, E & FN Spon, 2–6 Boundary Row, London SE1 8HN, UK. Tel: International +44 71–865 0066, ISBN 0-203-22367-5.

TRB (2005). "*Pavement Management System Based on Financial Consequence*", Transportation Research Board, in Pavement Management, Transportation Research Record, Journal of the TRB, Washington, DC, USA, Issue No. 1940, 196 pp.

Tsai, Y.; Gao, B. and Lai, James S. (2004). "Multiyear pavementrehabilitation planning enabled by geographic information system: Network analyses linked to projects", *Transportation Research Record*, no. 1889, pp. 21-30.

Uddin, W. (2002). "In Situ Evaluation of Seasonal Variability of Subgrade Modulus using DCP and FWD Tests", Proceedings, *International Conference on the Bearing Capacity of Roads and Airfields, Lisbon, Portugal*, Vol. 1, June, pp. 741–750.

UFC (2004) "*Pavement Maintenance Management*". Unified Facilities Criteria, This UFC supersedes TM 5-623, 3-270-08, 16 January.

U.S. Army Corps of Engineers-USACE, (2012). "*New Dimensions in Pavement Maintenance Management*". Engineer Research and Development Center Construction Engineering Research Laboratory USA.

U.S. Army Corps of Engineering-USACE, (2014). "*Micro PAVER 6.5.7 User Manual*". Engineer Research and Development Center Construction Engineering Research Laboratory, USA. VDOT, Central Office, Asset Management Staff, (2006). "*State of the Pavement: Interstate and Primary Flexible Pavements*", Asset Management Division: Virginia Department of Transportation.

Walpole, R. E.; Myers, R. H.; Myers, S. L. and Ye., k. (2012). "*Probability & Statistics for Engineers & Scientists*". Ninth Edition, University of Texas at San Antonio.

Walsh, I. D., Hunter, R. N., Darrall, L., Jameson, P. and Thorp, J., (2011). "*ICE manual of highway design and management*". Published by ICE Publishing, 40 Marsh Wall, London E14 9TP, ISBN: 978-0-7277-4111-0, UK.

WSDOT (1994)."A Guide for Local Agency Pavement Managers" Washington State Department of Transportation–Northwest Technology Transfer Center, Olympia, WA.

World Bank (1988). "Road deterioration in developing countries: causes and remedies". A World Bank Policy Study. Washington, DC.

Wu, Z., Yang, X., & Zhang, Z., (2013). "Evaluation of MEPDG
flexible pavement design using pavement management system data:
Louisiana experience". International Journal of Pavement Engineering, 14(7), pp. 674-685.

Yoder E. J. and Witczak M. W. (1975). "Principles of Pavement Design", 2nd ed., John Willy & Sons, ISBN O-471-97780-2, Canada.

Zhou, G. (2011). "Co-Location Decision Tree for Enhancing Decision-Making of Pavement Maintenance and Rehabilitation", Ph.D., Faculty of the Virginia Polytechnic Institute and State University.

المركز العالمي للأبحاث الفنية ICTR، (٢٠١١). "التجديد الحضري لمركز مدينه كربلاء ألمقدسه (المدينة القديمة)، تقرير المرحلة الأولى (المعدل)". وزاره البلديات والأشغال العامة، المديرية العامة للتخطيط العمراني، العراق.

APPENDIX

APPENDIX A

Inspected Data Method for Each Distress Type

A. Ride Quality Assessment

Ride quality must be assessed in order to establish a severity level for the following distress types:

- •Bumps
- •Shoving
- •Corrugation
- •Swells
- •Railroad Crossings

To assess ride quality for these distresses, the inspector should use the

following severity level definitions:

Low (L): Vehicle vibrations (e.g., from corrugation) are noticeable, but no reduction in speed is necessary for comfort or safety; and/ or individual bumps or settlements cause the vehicle to bounce slightly, but create little discomfort.

Medium (M): Vehicle vibrations are significant and some reduction in speed is necessary for safety and comfort; and/ or individual bumps or settlements cause the vehicle to bounce significantly, creating some discomfort.

High (H): Vehicle vibrations are so excessive that speed must be reduced considerably for safety and comfort; and/ or individual bumps or settlements cause the vehicle to bounce excessively, creating substantial discomfort, safety hazard, or high potential vehicle damage.

The inspector should drive at the posted speed in a sedan that is representative of cars typically seen in local traffic. Pavement sections near stop signs should be rated at a deceleration speed appropriate for the intersection.

B. The distress definitions and measurement methods for asphalt surfaced roads

The five major categories of common asphalt pavement surface distresses are:

- A. Cracking
- **B.** Surface deformation

C. Disintegration

D. Surface defects

E. Others

A. Cracking:

The most common types of cracking are:

- 1. Alligator Cracking (Fatigue cracking)
- 2. Longitudinal and Transverse Cracking
- 3. Block cracking
- 4. Slippage cracking
- 5. Joint Reflective cracking
- 6. Edge cracking

1. Alligator Cracking (Fatigue cracking)

Description

Alligator or fatigue cracking is a series of interconnecting cracks caused by fatigue failure of the asphalt concrete surface under repeated traffic loading. Cracking begins at the bottom of the asphalt surface (or stabilized base) where tensile stress and strain are highest under a wheel load .The cracks propagate to the surface initially as a series of parallel longitudinal cracks .After repeated traffic loading, the cracks connect, forming many sided, sharp-angled pieces that develop a pattern resembling chicken wire or the skin of an alligator .The pieces are generally less than 2ft (0.6m) on the longest side.

Severity Levels:

a Low Severity

L-Fine, longitudinal hairline cracks running parallel to each other with no, or only a few interconnecting cracks. The cracks are not spoiled.

M— Further development of light alligator cracks into a pattern or network of cracks that may be lightly speckled.

H—Network or pattern cracking has progressed so that the pieces are well defined and spelled at the edges. Some of the pieces may rock under traffic.

b. Medium Severity Figure (A-1) Alligator Cracking

c. High severity

2. Longitudinal and Transverse Cracking

Description

Longitudinal cracks are parallel to the pavement's center line or lay down direction .They may be caused by:

1. A poorly constructed paving lane joint.

2. Shrinkage of the AC surface due to low temperatures or hardening of the asphalt and/or daily temperature cycling.

3. A reflective crack caused by cracking beneath the surface course , including Cracks in PCC slabs(but not PCC joints).

Transverse cracks extend a cross the pavement at approximately right angles to the pavement centerline or direction of lay down .These types of cracks are not usually load-associated.

Severity Levels

L— One of the following conditions exists:

1 .Non-filled crack width is less than 3/8 in. (10mm).

2. Filled crack of any width (filler in satisfactory condition).

M— One of the following conditions exists:

1 .Non-filled crack width is 3/8 to 3in. (10 to 76mm).

2 .Non-filled crack is up to 3in. (76mm) surrounded by light and random cracking.

3 .Filled crack is of any width surrounded by light random cracking.

H— One of the following conditions exists:

1 .Any crack filled or non-filled surrounded by medium or high severity random cracking.

2. Non-filled crack over 3in. (76mm).

3. A crack of any width where a few inches of pavement around the crack is Severely broken.

a. Low severity

h. Medium severity c. High severity Figure (A-2) Longitudinal and Transverse

3. Block cracking

Description

Block cracks are interconnected cracks that divide the pavement in to approximately rectangular pieces .The blocks may range in size from approximately 1 by 1ft(0.3 by 0.3m) to 10 by10 ft (3by3m) .Block cracking is caused mainly by shrinkage of the asphalt Concrete and daily temperature cycling (which results in daily stress/strain cycling).It is not load associated. Block cracking usually indicates that the asphalt has hardened significantly. Block cracking normally occurs over a large portion of the pavement area, but sometimes will occur only in non traffic areas.

Severity Levels

- L—Blocks are defined by low severity 4 cracks.
- M—Blocks are defined by medium severity 3cracks.
- H—Blocks are defined by high severity cracks.

a. Low severity

b. Medium severity Figure (A-3) Block cracking

c. High severity

4. Slippage cracking

Description

Slippage cracks are crescent or half moon shaped cracks. They are produced when Braking or turning wheels cause the pavement surface to slide or deform. This distress usually occurs when there is a low-strength surface mix or poor bond between the surface and then explainer of the pavement structure.

Severity Level

- L—Average crack width is <3/8 in.(10mm).
- **M** One of the following conditions exists:
- 1 .Average crack width between 3/8 in. and 1-1/2in.(10mm and 38mm).
- 2. The area around the crack is broken in to tight-fitting pieces.
- **H** One of the following conditions exists:
- 1 . The average crack width is greater than 1-1/2in.(38mm).
- 2. The area around the crack is broken in to easily removed pieces.

a. Low severity

b. Medium severity

c. High severity

Figure (A-4) Slippage cracking

5. Joint Reflective cracking

Description

This distress occurs only on asphalt surfaced pavements that have been laid over a PCC slab. It does not include deflection cracks from any other type of base (i.e., cement or lime stabilized); these cracks are caused mainly by thermal or moisture induced movement of the PCC slab beneath the AC surface .This distress is not load related; however, Traffic loading may cause a breakdown of the AC surface near the crack .If the pavement is fragmented along a crack, the crack is said to be spelled. A knowledge of slab dimension beneath the AC surface will help to identify these distresses.

Severity Levels

L— One of the following conditions exists:

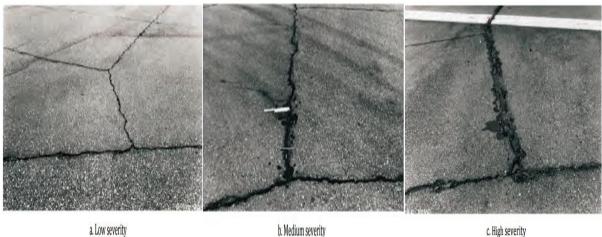
1 .Non-filled crack width is less than 3/8in.(10mm).

2. Filled crack of any width (filler in satisfactory condition).

M— One of the following conditions exists:

1 .Non-filled crack width is 3/8 to 3in.(10to76mm).

2. Non-filled crack of any width up to 3in. (76mm) Surrounded by light random cracking.


3. Filled crack of any width surrounded by light random cracking.

H— One of the following conditions exists:

1 .Any crack filled or non Filled surrounded by medium or high severity random cracking;

2. Non-filled cracks over3in. (76mm).

3. A crack of any width where a few inches of pavement around the crack are Severely broken (Crack is severely broken)

b. Medium severity Figure (A-5) Joint Reflective cracking

6. Edge cracking Description

Edge cracks are parallel to and usually within 1 to 2ft (0.3to 0.6m) of the outer edge of the pavement .This distress is accelerated by traffic loading and can be caused by frost weakened base or subgrade near the edge of the pavement. The area between the crack and pavement edge is classified as raveled if it is broken up (sometimes to the extent that pieces are removed).

Severity Levels

- L— Low or medium cracking with no break up or raveling.
- M—Medium cracks with some break up and raveling.
- **H**—Considerable break up or raveling along the edge medium.
 - Low, medium, high

Figure (A-6) Edge cracking

B. Surface deformation:

Pavement deformation is the result of weakness in one or more layers of the pavement that has experienced movement after construction. The deformation may be accompanied by cracking. Surface distortions can be a traffic hazard.

The basic types of surface deformation are:

- 1. Rutting
- 2. Corrugations
- 3. Shoving
- 4. Depressions
- 5. Swell
- 6. Bumps and Sags

1. Rutting

Description A rut is a surface depression in the wheel paths .Pavement up lift may occur along the sides of the rut, but, in many instances, ruts are notice able only after a rainfall when the Paths are filled with water .Rutting stems from a permanent deformation in any of the Pavement layers or subgrades, usually caused by consolidated or lateral movement of the materials due to traffic load. Significant rutting can lead to major structural failure of the pavement.

Severity Levels

Mean Rut Depth

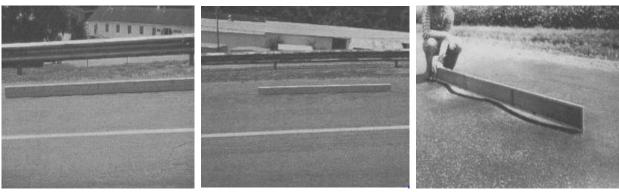
- L— 1/4to1/ 2in.
- M— Greater than1/2in. upto1in.
- H— Greater than 1in.

a. Low severity

b. Medium severity Figure (A-7) Rutting

c. High severity

2. Corrugations Description


Corrugation (also known as "wash boarding") is a series of closely spaced ridges and valleys (ripples) occurring at fairly regular intervals, usually < 10 ft (3m) Pavement. The ridges are perpendicular to the traffic direction. This type of distress is Usually caused by traffic action combined with an unstable pavement surface or base. If Bumps occur in a series of < 10 ft (3m), due to any cause, the distress is considered corrugation.

Severity Levels

L—Corrugation produces low severity ride quality.

M—Corrugation produces medium-severity ride quality.

H—Corrugation produces high-severity ride quality

Low,

Figure (A-8) Rutting

medium, high

3. Shoving Description

Shoving is a permanent, longitudinal displacement of a localized area of the pavement surface caused by traffic loading .When traffic pushes against the pavement, it produces a short, abrupt wave in the pavement surface. This distress normally occurs only in unstable liquid asphalt mix (cut back or emulsion) pavements. Shoves also occur where asphalt pavements abut PCC pavement; the PCC pavements increase in length and push the asphalt pavement, causing the shoving.

Severity Levels

- L—Shove causes low severity ride quality.
- M—Shove causes medium severity ride quality.
- **H**—Shove causes high severity ride quality.

Low, medium, high Figure (A-9) Shoving

4. Depressions **Description**

Depressions are localized pavement surface areas with elevations slightly lower than those of the surrounding pavement. In many instances, light depressions are not Notice able until after a rain, when pounding water creates a "bird bath" area; on dry pavement, depressions can be spotted by looking for stains caused by pounding water. Depressions are created by settlement of the foundation soil or are a result of improper Construction. Depressions cause some roughness, and when deep enough or filled with water, can cause hydroplaning. Sags, unlike depressions, are abrupt drops in elevation.

Severity Levels

Maximum Depth of Depression

L—13 to 25 mm (1/2 to1in.).

M—25 to 50mm (1to 2in.).

H— more than 50 mm (2in.)

Low, medium, high

Figure (A-10) Depressions

5. Swell

Description

Swell is characterized by an upward bulge in the pavement's surface along, gradual wave greater than 10ft (3m) long. Swelling can be accompanied by surface cracking. This distress is usually caused by frost action in the subgrade or by swelling soils.

Severity Level

L—Swell causes low severity ride quality .Low-severity swells are not always easy to see, but can be detected by driving at the speed limit over the pavement section .An upward motion will occur at the swell if it is present.

M—Swell causes medium severity ride quality.

H—Swell causes high severity ride quality.

Figure (A-11) Swell

6. Bumps and Sags

Description

Bumps are small ,localized ,upward displacements of the pavement surface. They are different from shoves in that shoves are caused by unstable pavement .Bumps, on the other hand, can be caused by several factors, including:

1 .Buckling or bulging of underlying PCC slabs in an AC overlay over PCC pavement.

2. Frost heaves (ice, lens growth).

3. Infiltration and build up of material in a crack in combination with traffic loading (sometimes called "tenting"). Sags are small, abrupt, downward displacements of the pavement surface .Distortion and displacement that occur over large areas of the pavement surface, causing large and/or long dips in the pavement should be recorded as "swelling."

Severity Levels

L—Bump or sag causes low severity ride quality.

M—Bump or sag causes medium severity ride quality.

H—Bump or sag causes high severity ride quality.

Low, medium, high Figure (A-12) Bump or sag

C. Disintegration

The progressive breaking up of the pavement into small, loose pieces is called disintegration. If the integration is not repaired in its early stages, complete reconstruction of the pavement may be needed.

The two most common types of disintegration are:

- 1. Potholes
- 2. Patching and Utility Cut Patching
- 1. Potholes

Description

Potholes are small usually less than 3ft (0.9m) in diameter bowl shaped depressions in the pavement surface. They generally have sharp edge sand vertical sides near the top of the hole. Their growth is accelerated by free moisture collection inside the hole. Potholes are produced when traffic abrades small pieces of the pavement surface .The Pavement continues to

disintegrate because of poor surface mixtures, weak spots in the Base or subgrade, or because it has reached a condition of high severity alligator cracking. Potholes most often are structurally related distresses and should not be confused with raveling and weathering. When holes are created by high severity alligator cracking, they should be identified as potholes, not as weathering.

Severity Levels

The levels of severity for potholes less than 30in. (762mm) in diameter are based on both the diameter and the depth of the pothole, according to Table (1).

If the pothole is more than 30 in. (76mm) in diameter, the area should be determined in Square feet and divided by 5 sqft $(0.47m^2)$ to find the equivalent number of holes. If the Dept his 1in .(25mm) or less, the holes are considered medium severity .If the depth is more than 1in. (25mm) ,they are considered high severity.

Average Diameter, in. (mm)							
Maximum Depth to Pothole	4 to 8 in. (102 to 203 mm)	8 to 18 in. (203 to 457 mm)	18 to 30 in. (457 to 762 mm) M				
1/2 to 1 in. (12.7 to 25.4 mm)	L	L					
>1 to 2 in. (25.4 to 50.8 mm)	L	М	н				
>2 in. (50.8 mm)	М	М	Н				

Figure (A-13) pothole

2. Patching and Utility Cut Patching

Description

A patch is an area of pavement that has been replaced with new material to repair the Existing pavement .A patch is considered a defect no matter how it

is performing (a patched area or adjacent are a usually does not perform as well as an original pavement section). Generally, some roughness is associated with this distress.

Severity Levels

L—Patch is in good condition and satisfactory .Ride quality is rated as low severity or better.

M—Patch is moderately deteriorated and/or ride quality is rated as medium severity.

H—Patch is badly deteriorated and/or ride quality is rated as high severity. Need replacement soon.

a. Low severity

b. Medium severity

c. High severity

Figure (A-14) patching and Utility Cut Patching

D. Surface defects:

Surface defects are related to problems in the surface layer. The most common types of surface distress are:

- 1. Weathering and Raveling
- 2. Bleeding
- 3. Polishing

1. Weathering and Raveling

Description

Weathering and raveling are the wearing away of the pavement surface due to a loss of Asphalt or tar binder and dislodged aggregate particles. These distresses indicate that either the asphalt binder has hardened appreciably or that a poor quality mixture is present. In addition, raveling may be caused by certain types of traffic, for example, tracked vehicles. Softening of the surface and dislodging of the aggregates due to oil spillage are also included under raveling.

Severity Levels

L—Aggregate or binder has started to wear away .In some areas, the surface is starting top it. In the case of oil spillage, the oil stain can be seen, but the surface is hard and cannot be penetrated with a coin.

M_Aggregate or binder has worn away. The surface texture is moderately rough and pitted .In the case of oil spillage, the surface is soft and can be penetrated with a coin.

H_Aggregate or binder has been worn away considerably .The surface texture is very rough and severely pitted. The pitted areas are less than 4in. (10mm) in diameter and less than 1/2in .(13mm) deep; pitted areas larger than this are counted as potholes .In The case of oil spillage, the asphalt binder has lost its binding effect and the aggregate has become loose.

low, medium , high Figure (A-15) Weathering and raveling

2. Bleeding

Description

Bleeding is a film of bituminous material on the pavement surface that creates a shiny, Glass like, reflecting surface that usually becomes quite sticky. Bleeding is caused by excessive amounts of asphaltic cement or tars in the mix, excess application of a bituminous sealant, and/or low air void content .It occurs when asphalt fills the voids of the Mix during hot weather and then expands onto the pavement surface .Since the bleeding Process in not reversible during cold weather, asphalt or tar will accumulate on the surface. **Severity Levels**

L—Bleeding has only occurred to a very slight degree and is noticeable only during a few days of the year. Asphalt does not stick to shoes or vehicles.

M—Bleeding has occurred to the extent that asphalt sticks to shoes and vehicles during only a few weeks of the year.

H—Bleeding has occurred extensively and considerable asphalt sticks to shoes and vehicles during at least several weeks of the yea

a Low severity

b. Medium severity

c. High severity

3. Polished Aggregate Description

This distress is caused by repeated traffic applications. When the aggregate in the Surface becomes smooth to the touch, adhesion with vehicle tires is considerably reduced. When the portion of aggregate extending ,the pavement texture does not significantly contribute to reducing vehicle speed .Polished Aggregate should be counted when close examination reveals that the aggregate extending above the asphalt is negligible, and the surface aggregate is smooth to the touch. This type of distress is indicated when the number on a skid resistance test is Low or has dropped significantly from a previous rating.

Severity Levels

No degrees of severity are defined. However, the degree of polishing should be clearly evident in the sample unit in that the aggregate surface should be smooth to the touch.

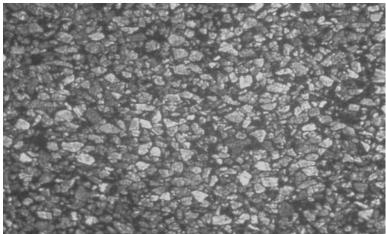


Figure (A-17) Polished Aggregate

E. other

- 1. Lane /Shoulder Drop Off
- 2. Railroad Crossing

1. Lane /Shoulder Drop Off

Description

Lane /shoulder drop off is a difference in elevation between the pavement edge and the shoulder. This distress is caused by shoulder erosion ,shoulder settlement, or by building up the road way without adjusting the shoulder level.

Severity Levels

L— The difference in elevation between the pavement edge and shoulder is 1to2in. (25 To 51mm).

M—The difference in elevation is > 2 to4in.(51to102mm).

H—The difference in elevation is > 4in.(102mm).

low, medium , high Figure (A-18) Lane /shoulder drop

2 .Railroad Crossing

Description


Railroad crossing defects are depressions or bumps around and/ or between tracks.

Severity Levels

L—Rail road crossing causes low severity ride quality.

M— Rail road crossing cause's medium severity ride quality.

H—Rail road crossing causes high severity ride quality.

low, medium , high Figure (A-19) Railroad crossing

APPENDIX B

Data Collection for Study Area

Table (B.1) The inspection data of all section at the study area and Maintenance costs.

						1
sec(1-1)						ł
1						
Distress	Description	Severity	Quantity	Units	cost	total ID
11	PATCH/UTILITY CUT	H	25	SqM	1000000	
19	RAVELING	M	231	SqM	3465000	23104000
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
3	Description	Cit	Organities	I Inside	+	cost ID/M
Distress	Description	Severity	Quantity	Units	cost	10001.731
10	LONGITUDINAL/TRANSVERSE CRACKING	М	6	М	18000	
19	RAVELING	Н	9	SqM	180000	
18	SWELL	Н	6	SqM	240000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	8	М	24000	
19	RAVELING	М	231	SqM	3465000	
5						
Distress	Description	Severity	Quantity	Units	cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	6	М	18000	
6	DEPRESSION	Н	1.5	SqM	60000	1
11	PATCH/UTILITY CUT	L	5	SqM	75000	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	17	M	51000	
-						
7	EDGE CRACKING	M	12	М	36000	
7						
Distress	Description	Severity	Quantity	Units	cost	
11	PATCH/UTILITY CUT	М	4.5	SqM	135000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
13	POTHOLE	Н	1	Count	40000	
9						
Distress	Description	Severity	Quantity	Units	cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	15	M	45000	
10	RAVELING	M	231	SqM	3465000	1
11			231	- Squi	5105000	1
	Description	Soverity	Quantity	Unite	cost	1
Distress 10	Description LONGITUDINAL/TRANSVERSE CRACKING	M	Quantity 6	M	cost 18000	-
10	PATCH/UTILITY CUT	H	1	SqM	40000	1
11	PATCH/UTILITY CUT	M	1.5	SqM	45000	
19	RAVELING	M	231	SqM	3465000	1
13					2.00000	1
Distress	Description	Severity	Quantity	Units	cost	1
10	LONGITUDINAL/TRANSVERSE CRACKING	M	8	М	24000	1
10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000]
19	RAVELING	М	231	SqM	3465000	
13	POTHOLE	Н	1	Count	40000	
7	EDGE CRACKING	L	11	М	0	

*Note: L: low level, M: medium level, H: height level

		ce costs. (continue)	-		-		
sec(1-1) cc							
	15						
Distress		Description	Severity	Quantity	Units	cost	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
	13	POTHOLE	М	1	Count	30000	
	17						
Distress		Description	Severity	Quantity	Units	cost	
	7	EDGE CRACKING	М	10	М	30000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	12	М	36000	
	19						
Distress		Description	Severity	Quantity	Units	cost	
	19	RAVELING	М	231	SqM	3465000	
	7	EDGE CRACKING	М	11	М	33000	
sec(1-B)							
	2						
Distress		Description	Severity	Quantity	Units	Cost	total ID
	7	EDGE CRACKING	Н	25	М	375000	1888000
	4	good					
	7						cost ID/M2
Distress		Description	Severity	Quantity	Units	Cost	817.316
	7	EDGE CRACKING	Н	8	М	120000	
	9						
Distress		Description	Severity	Quantity	Units	Cost	
Distress	7			· ·		120000	
	6	EDGE CRACKING DEPRESSION	H M	8	M SqM	120000	
	11	DEPRESSION	IVI	0.4	SqM	12000	
D' /	11		а ·,		TT '4	0.1	
Distress	10	Description	Severity	Quantity	Units	Cost	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	4	М	12000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
	7	EDGE CRACKING	L	24	М	0	
	6	DEPRESSION	L	1	SqM	15000	
	13						
Distress	10	Description	Severity	Quantity	Units	Cost	
Distress	10	•		· ·			
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	0	
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
	15						
Distress		Description	Severity	Quantity	Units	Cost	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	6	М	18000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	2	М	6000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
	7	EDGE CRACKING	М	8	М	24000	
D	17			- ·			
Distress		Description	Severity	Quantity	Units	Cost	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	21000	
	15	RUTTING	М	12	SqM	300000	
	15	RUTTING	М	10	SqM	250000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	4	M	12000	
	1	ALLIGATOR CRACKING	М	18	SqM	540000	
	20	good					
	22	good					
sec(2	2-A)						
	3	good					
	-						
	7						
Dist	/ tress	Description	Severity	Quantity	Units	Cost	total ID
Dist		Description EDGE CRACKING	Severity M	Quantity 8	Units M	Cost 24000	total ID 18255000

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (continue)

	nance costs. (Continue)					1
sec(2-A)	EDGE CRACKING	M	4	М	12000	cost ID/M2
11		141		101	12000	6738.649
11						0,001012
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	19	М	57000	
7	EDGE CRACKING	Н	13	M	195000	
1	ALLIGATOR CRACKING	H	56	SqM	2240000	
15				- 1		
Distress	Description	Severity	Quantity	Units	Cost	
1	ALLIGATOR CRACKING	Н	45	SqM	1800000	
3	BLOCK CRACKING	М	5	SqM	150000	
7	EDGE CRACKING	М	24	M	72000	
10	LONGITUDINAL/TRANSVERSE CRACKING	Н	4	М	60000	
19	RAVELING	М	66	SqM	990000	
19						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	65		975000	1
1	ALLIGATOR CRACKING	M	77	SqM	2310000	1
10	LONGITUDINAL/TRANSVERSE CRACKING	Н	5	M	75000	1
22						1
Distress	Description	Severity	Quantity	Units	Cost	1
13	POTHOLE	Н	2	Count	80000	1
11	PATCH/UTILITY CUT	Н	5	SqM	200000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3.5	M	0	
26			0.0	1.1	0	
Distress	Description	Severity	Quantity	Units	Cost	
1	ALLIGATOR CRACKING	М	77	SqM	2310000	
19	RAVELING	М	76	SqM	1140000	
7	EDGE CRACKING	М	23	M	69000	
11	PATCH/UTILITY CUT	Н	6	SqM	240000	
30						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	25	М	75000	
7	EDGE CRACKING	Н	8	М	120000	
13	POTHOLE	Н	1	Count	40000	-
7	EDGE CRACKING	Н	23	М	345000	
34						
Distress	Description	Severity	Quantity	Units	Cost	-
	RAVELING	M		SqM	1005000	-
10	LONGITUDINAL/TRANSVERSE CRACKING	H	12	M	180000	-
6	DEPRESSION	H	2	SqM	80000	-
6	DEPRESSION	M	3	SqM	90000	
38 Distress	Description	Corrowiter	Quantity	Unita	Cost	4
Distress 19	Description RAVELING	Severity M	Quantity 87	Units SqM	Cost 1305000	1
19	RUTTING	L	21	SqM	1303000	4
13	POTHOLE	H	1	Count	40000	-
42		11	1	Count	+0000	1
Distress	Description	Severity	Quantity	Units	Cost	1
19	RAVELING	M	108	SqM	1620000	1
10	LONGITUDINAL/TRANSVERSE CRACKING	M	6	M	18000	1
46						1
Distress	Description	Severity	Quantity	Units	Cost	1
10	LONGITUDINAL/TRANSVERSE CRACKING	М	6	М	18000	1
sec(2-B)						1
3	good					1
<u>3</u> 7						1
/						1

 Table (B.1) The inspection data of all section at the study area and

 Maintenance costs. (Continue)

	ance costs. (Continue)					
/ Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	H	Quantity 98	SqM	1960000	892300
19	LONGITUDINAL/TRANSVERSE CRACKING	L	5	M	0	892300
10	LONOITUDINAL/IKANSVERSE CRACKING		5	IVI	0	cost
11						ID/M2
Distress	Description	Severity	Quantity	Units	Cost	3186.78
sec(2-B)						
11						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	87	SqM	1305000	
7	EDGE CRACKING	L	4	M	0	
17		L	0.7		0	
1/	SLIPPAGE CRACKING ALLIGATOR CRACKING	H	0.7	SqM SqM	80000	
13	POTHOLE	L	1	Count	15000	
15			~ .		-	
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	5	SqM	150000	
19	RAVELING	М	76	SqM	1140000	
19						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	64	SqM	960000	
11	PATCH/UTILITY CUT	L	7	SqM	105000	
22			,	Squi	102000	
Distress	Description	Conomitry	Ouentity	Unite	Cost	
	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	4	SqM	60000	
11	PATCH/UTILITY CUT	L	7	SqM	105000	
11	PATCH/UTILITY CUT	М	5	SqM	150000	
26						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	М	16	SqM	480000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	6	М	18000	
11	PATCH/UTILITY CUT	L	1	SqM	15000	
30				^		
Distress	Description	Severity	Quantity	Units	Cost	
	PATCH/UTILITY CUT	M		SqM	210000	
34				1.1		
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	18	SqM	270000	
38						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	
15	RUTTING	М	4	SqM	100000	
13	POTHOLE	L	1	Count	15000	
19	RAVELING	М	80	SqM	1200000	
42 Distance	Description	S '	Our i'i	TT'	Cent	
Distress	Description	Severity	Quantity	Units	Cost	
<u> </u>	DEPRESSION PATCH/UTILITY CUT	M M	1 2	SqM	30000 60000	
3	BLOCK CRACKING		20	SqM SqM	300000	
44	DLOUK UKAUNINU	L	20	SqM	50000	
Distress	Description	Severity	Quantity	Units	Comments	
<u>19</u>	RAVELING	M	Quantity 12	SqM	180000	
sec(3-A)		111	12	BqW	100000	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintena	ance costs. (Continue)		<u> </u>			
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	L	1	М	0	3750
10	LONGITUDINAL/TRANSVERSE CRACKING	L	0.6	М	0	cost ID/M2
6						8.116883
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	0.25	SqM	3750	J
sec(3-B)						
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
7	EDGE CRACKING	L	0.55	М	0	0
4			0.000			cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	0
10	LONGITUDINAL/TRANSVERSE CRACKING	L	<u>Quantity</u> 1	M	0	0
sec(3-0A)			1	NI	0	total ID
2						0
Distress	Description	Soucrity	Quantity	Units	Cost	cost ID/M2
	LONGITUDINAL/TRANSVERSE CRACKING	Severity	0.8		0	0
10	LONGITUDINAL/TRANSVERSE CRACKING	L	0.8	М	0	total ID
sec(3-0B)						0
1		a	0	T T */	C i	
Distress	Description	Severity	Quantity	Units	Cost	cost ID/M2
10	LONGITUDINAL/TRANSVERSE CRACKING	L	0.8	М	0	0
sec(3-1-A)		-				
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
6	DEPRESSION	Н	1.5	SqM	60000	2298000
6	DEPRESSION	М	0.7	SqM	21000	
4	good					cost ID/M2
6	good					904.3684
9	good					
11	good					
13	good					
15						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	L	6.8	SqM	102000	
19	RAVELING	М	23	SqM	345000	
17						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	45	SqM	675000	
20						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	31	SqM	465000	
13	POTHOLE	L	1	Count	15000	
22		_		20000	20000	
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	Quantity 8	M	0	
10	RAVELING	M	41	SqM	615000	
25		141	+1	Sqivi	015000	
	Description	Soucity	Quantity	Units	Cost	
Distress		Severity	Quantity		Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	8	М	0	
sec(3-1-B)						
2	good					
4	good					
6						<u> </u>

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

7 10	Description EDGE CRACKING	Severity	Quantity	Units	Cost	total ID
7 10					COSt	totul ID
10	ED GE Chu leith to	L	5.6	М	0	75000
13	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	
	POTHOLE	L	1	Count	15000	cost ID/M2
9	good					29.51594
	good					
13						
sec(3-1-B)						
	Description	Severity	Quantity	Units	Cost	
	RAVELING	M	4	SqM	60000	
	LONGITUDINAL/TRANSVERSE CRACKING	L	7	M	0	
	good					
	good					
	good					
	good					
sec(4-A)	5000					
2						
	Description	Severity	Quantity	Units	Cost	total ID
	LONGITUDINAL/TRANSVERSE CRACKING	M	Quantity 7	M	21000	15562000
5	LONGITUDIINAL/ IKAINS VEKSE UKAUKING	IVI	/	IVI	21000	15562000
	Description	Coursite	Quantita	I Imit-	Cost	
	Description	Severity	Quantity	Units	Cost	cost ID/M2
	PATCH/UTILITY CUT	H	8	SqM	320000	6124.3605
	SWELL	М	2	SqM	50000	
	RAVELING	М	128	SqM	1920000	
8						
	Description	Severity	Quantity	Units	Cost	
	RAVELING	М	86	SqM	1290000	
	LONGITUDINAL/TRANSVERSE CRACKING	М	8	М	24000	
	POTHOLE	М	2	Count	60000	
11						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	192	SqM	2880000	
14						
Distress	Description	Severity	Quantity	Units	Cost	
	LONGITUDINAL/TRANSVERSE CRACKING	М	23	М	69000	
	RAVELING	Н	35	SqM	700000	
17						
	Description	Severity	Quantity	Units	Cost	
	RAVELING	M	67	SqM	1005000	
20		1,1	0,	Squi	1002000	
	Description	Severity	Quantity	Units	Cost	
	RAVELING	M	165	SqM	2475000	
23	MAY ELINO	141	105	Sqivi	2475000	
	Description	Savanita	Quantity	Units	Cost	
	EDGE CRACKING	Severity	Quantity 22			
	EDUE UNAUNINU	Н	23	М	345000	
26	Description	G - ··		TT *	Cart	
	Description	Severity	Quantity	Units	Cost	
	RAVELING	Н	70	SqM	1400000	
29					~	
	Description	Severity	Quantity	Units	Cost	
	POTHOLE	М	2	Count	60000	
	RAVELING	М	87	SqM	1305000	Į
sec(3-1-B)						
con.]
22						ļ
32	Description	Severity	Quantity	Units	Cost	ļ
				a 14	1 470000	
Distress	RAVELING	М	98	SqM	1470000	
Distress 19 10	RAVELING LONGITUDINAL/TRANSVERSE CRACKING	M M	8	SqM M	24000	
Distress 19 10	RAVELING					

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

sec(4-B)		nce costs. (Continue)					1
sec(4-D)	2						1
Distress	2	Description	Conomitry	Ouentity	Linita	Cost	total ID
Distress	1.0	Description	Severity	Quantity	Units	Cost	
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	25	М	75000	16319500
	5						
Distress		Description	Severity	Quantity	Units	Cost	cost ID/M2
1		ALLIGATOR CRACKING	L	12	SqM	180000	6422.471
13		POTHOLE	М	1	Count	30000	
	8						
Distress		Description	Severity	Quantity	Units	Cost	
	1	ALLIGATOR CRACKING	М	44	SqM	1320000	
	7	EDGE CRACKING	М	21	М	63000	
	11	good					
	14						
Distress		Description	Severity	Quantity	Units	Cost	4
	1	ALLIGATOR CRACKING	Н	12.6	SqM	504000	
	19	RAVELING	М	89	SqM	1335000	
	13	POTHOLE	М	1	Count	30000	4
D	17		a ti		TT 1		
Distress	10	Description	Severity	Quantity	Units	Cost	
	19	RAVELING	M	107	SqM	1605000	
	1	ALLIGATOR CRACKING	L	64	SqM	960000	
Distance	20	Description	C	Oursetites	T In the	Cast	
Distress	1	Description ALLIGATOR CRACKING	Severity H	Quantity 55	Units SqM	Cost 2200000	
	23	ALLIGATOR CRACKING	п	55	SqM	2200000	
Distress	23	Description	Severity	Quantity	Units	Cost	
Disticss	1	ALLIGATOR CRACKING	H	55	SqM	2200000	
	19	RAVELING	M	85	SqM	1275000	
	26		111	0.5	bqm	1275000	
Distress	20	Description	Severity	Quantity	Units	Cost	•
Distress	1	ALLIGATOR CRACKING	Н	20	SqM	800000	•
	19	RAVELING	Н	23	SqM	460000	
	13	POTHOLE	M	2	Count	60000	
	29						
Distress		Description	Severity	Quantity	Units	Cost	1
	8	JOINT REFLECTION CRACKING	М	23	М	184000	
	19	RAVELING	М	88	SqM	1320000	1
	10	LONGITUDINAL/TRANSVERSE CRACKING	Н	7	М	105000]
	1	ALLIGATOR CRACKING	Н	20	SqM	800000]
	32						
Distress		Description	Severity	Quantity	Units	Cost	
	19	RAVELING	Н	16	SqM	320000	ļ
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	ļ
	10	LONGITUDINAL/TRANSVERSE CRACKING	М	4.5	М	13500	ļ
	1	ALLIGATOR CRACKING	Н	12	SqM	480000	ļ
sec(4							ļ
	1						
Dist	ress	Description	Severity	Quantity	Units	Cost	total ID
	19	RAVELING	М	67	SqM	1005000	4605000

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintena	ince costs. (Continue)		-			
2						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	2215.007
19	RAVELING	М	67	SqM	1005000	
4				1		
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	56	SqM	840000	
13	POTHOLE	Н	1	Count		
6						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	31	SqM	465000	
8	good					
sec(5-A) 1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	М	67	SqM	1005000	4605000
2				•		cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	2215.007
19	RAVELING	M	67	SqM	1005000	2213.007
19	KAVELING	IVI	07	SqM	1005000	
			-			
sec(5-A)						
8	good					
10	good					
12	good					
13	good					
15						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	78	SqM	1170000	
13	POTHOLE	M	4	Count	120000	
sec(5-B)		IVI	4	Count	120000	
1				TT 1 .	a i	
Distress	Description	Severity	Quantity	Units	Cost	total ID
16	SHOVING	L	4	SqM	0	6510500
6		М		SqM	135000	cost ID/M2
5	CORRUGATION	М	2.5	SqM	37500	3131.554
3	good					
4	good					
6	good					
8						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	56	SqM	840000	
10				1.		
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	16	M	48000	
			95	1		
19	RAVELING	М	95	SqM	285000	
12						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	
19	RAVELING	М	22	SqM	330000	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

14						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	195	SqM	2925000	
16						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	104	SqM	1560000	
5	CORRUGATION	L	8	SqM	120000	
13	POTHOLE	Н	1	Count	40000	
15	RUTTING	М	7	SqM	175000	
sec(6-A)						
1	good					
3	good					
6	good					
7	good					
9	good					
10						
Distress	Description	Severity	Quantity	Units	Cost	total ID
6	DEPRESSION	M	0.24	SqM	7200	6549400
19	RAVELING	M	102	SqM	1530000	cost ID/M
11		111	102	bqivi	1550000	3544.048
Distress	Description	Severity	Quantity	Units	Cost	3311.010
19	RAVELING	M	124	SqM	1860000	
13		111	124	BqWI	1000000	
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	M	Quantity	SqM	30000	
19	RAVELING	M	188	SqM	2820000	
19	PATCH/UTILITY CUT	M	3.24	SqM	97200	
7	EDGE CRACKING	Н		M	105000	
	SWELL	M	7		103000	
18	SWELL	IVI	4	SqM	100000	
$\frac{\sec(6-B)}{1}$						
Distress	Description	Severity	Quantity	Units	Cost	total ID
6	DEPRESSION	L	1	SqM	15000	5455500
3						cost ID/M
Distress	Description	Severity	Quantity	Units	Cost	2952.11
19	RAVELING	М	79	SqM	1185000	
5	good					
6	good					
7						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	L	0.7	SqM	10500	
9						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	88	SqM	1320000	

 Table (B.1) The inspection data of all section at the study area and

 Maintenance costs. (Continue)

	ance costs. (Continue)					
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	
19	RAVELING	Μ	76	SqM	1140000	
13						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	98	SqM	1470000	
16	SHOVING	М	4	SqM	100000	
6	DEPRESSION	Н	5	SqM	200000	
sec(7-A)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
16	SHOVING	M	5	SqM	125000	4319000
						cost
7	EDGE CRACKING	М	11	М	33000	ID/M2
19	RAVELING	М	14	SqM	210000	2670.996
10	LONGITUDINAL/TRANSVERSE CRACKING	М	3	М	9000	
13	POTHOLE	М	2	Count	60000	
13	POTHOLE	L	1	Count	15000	
11	PATCH/UTILITY CUT	L	5	SqM	75000	
3				1.2		
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	99	SqM	1485000	
4		1/1		Squi	1105000	
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	5	SqM	150000	
19	RAVELING	M	96	SqM	1440000	
6	KAVELING	101	90	SqM	1440000	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	29	SqM	435000	
19		M	4	M	12000	
7	LONGITUDINAL/TRANSVERSE CRACKING	IVI	4	IVI	12000	
	Description	Cit	Orrentiter	T In it -	Cast	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	17	SqM	255000	
9	good	_	_			
10						
Distress	Description	Severity	Quantity	Units	Comments	
13	POTHOLE	Н	1	Count	15000	
sec(7-B)						
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
13	POTHOLE	М	3	Count	90000	6600000
	D. WEI DIG				100000	cost
19	RAVELING	М	92	SqM	1380000	ID/M2
3						4081.633
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	86	SqM	1290000	
4						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	100	SqM	1500000	
6						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	89	SqM	1335000	
6	DEPRESSION	М	1	SqM	30000	
7						
Distress	Description	Severity	Quantity	Units	Cost	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

wiannena	ance costs. (Continue)	_		1		1
19	RAVELING	М	54	SqM	810000	
9						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	М	1.5	SqM	45000	
5	CORRUGATION	М	6	SqM	90000	
10						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	М	1	SqM	30000	
sec(8-A)						
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	М	9	М	27000	198000
5						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	77.92208
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
13	POTHOLE	М	3	Count	90000	
8						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	9	М	27000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	9	М	27000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
11	good					
14						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
17						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	9	М	27000	
20						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	M	0	
23					5	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
10	RAVELING	M	18	SqM	270000	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	11	M	33000	
29			11		22000	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	26	SqM	390000	
sec(8-A)		111	20	bqivi	570000	
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	M	0	
26						

 Table (B.1) The inspection data of all section at the study area and

 Maintenance costs. (Continue)

Distress	Description	Severity	Quantity	Units	Cost	
32						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	23	SqM	345000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	8	М	0	
sec(8-B)	1					
25	good					
	Description	C	Orrentitu	TT	Cast	4-4-1 ID
Distress 10	Description LONGITUDINAL/TRANSVERSE CRACKING	Severity M	Quantity 8	Units M	Cost 24000	total ID 2880000
10	good	IVI	0	IVI	24000	2880000 cost ID/M2
11	good					1133.412
sec(8-B)						1155.412
con.						
17						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	8	М	0	
20						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	8	М	24000	
19	RAVELING	М	88	SqM	1320000	ļ
23						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	12	М	0	
26						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	9	М	27000	
29						
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	20	М	0	
32	D				<u> </u>	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	99	SqM	1485000	
sec(8-B)						
sec(9-A)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	966000
3						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	696.9697
10	LONGITUDINAL/TRANSVERSE CRACKING	M	4	M	12000	-0, 0, 0, 0, 1
<u> </u>		IVI	4	IVI	12000	1
	good					1
6						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	М	2	SqM	60000	
8				1		1
Distress	Description	Soverite	Quantity	Unita	Cost	1
		Severity	Quantity	Units		1
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	17	М	51000	
19	RAVELING	М	53	SqM	795000	
19	KAVELINO	111	55	Squi	175000	

	ince costs. (Continue)					I
sec(9-A)						
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
9						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	8	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	16	М	48000	
sec(9-B)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	0	1522000
2						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	869.7143
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	0	
4						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	36	SqM	540000	
6						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	21	SqM	315000	
8						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	23	SqM	345000	
10						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	Н	14	SqM	280000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	0	
11						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	1.2	SqM	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
13						
Distress	Description	Severity	Quantity	Units	Comments	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2	М	0	
sec(9-C)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
16	SHOVING	L	3	SqM	0	2847400
19	RAVELING	М	4	SqM	60000	cost ID/M2
3						1627.086
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	109	SqM	1635000	
13	POTHOLE	Н	1	Count	40000	
6	DEPRESSION	L	0.76	SqM	11400	
4						

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

	ance costs. (Continue).					
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	36	SqM	540000	
6	good					
sec(9-C)						
8	good					
10					-	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	12	SqM	180000	
11	good					
13						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	24	SqM	360000	
			7			
10	LONGITUDINAL/TRANSVERSE CRACKING	М	/	М	21000	
sec(10-A)	1					
2	good					
4	good					
6		G	0	TT '	0	(() 175
Distress	Description	Severity	Quantity	Units	Cost	total ID
13	POTHOLE	M	2	Count	60000	60000
8	good					cost ID/M2
10	good					28.86003
12	good					
14	good					
16	good					
18	good					
sec(10-B)						
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
13	POTHOLE	L	1	Count	0	685000
19	RAVELING	М	10	SqM	150000	cost ID/M2
15	RUTTING	L	7	SqM	0	329.4853
4						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	L	3	SqM	45000	
19	RAVELING	Н	2	SqM	40000	
15	RUTTING	L	3	SqM	0	
6						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	5	М	0	
19	RAVELING	М	28	SqM	420000	
13	POTHOLE	L	1	Count	15000	
8	good					
10						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	
	good					
12		1				
<u>12</u> 14	good					
12 14 16	good good					
14 16	good					
14 16 18						
14 16 18 sec(11-A)	good					
14 16 18 sec(11-A) 2	good good	Severity	Quantity	Units	Cost	total ID
14 16 18 sec(11-A) 2 Distress	good good Description	Severity	Quantity 2 5	Units	Cost	total ID 680250
14 16 18 sec(11-A) 2 Distress 10	good good Description LONGITUDINAL/TRANSVERSE CRACKING	L	2.5	М	0	680250
14 16 18 sec(11-A) 2 Distress 10 10	good good Description LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	L L	2.5 3	M M	0 0	680250 cost ID/M2
14 16 18 sec(11-A) 2 Distress 10 10 10	good good Description LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	L L L	2.5 3 3	M M M	0 0 0	680250
14 16 18 sec(11-A) 2 Distress 10 10 10 10	good good Description LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	L L L M	2.5 3 3 2	M M M M	0 0 0 6000	680250 cost ID/M2
14 16 18 sec(11-A) 2 Distress 10 10 10 10 10 19	good good Description LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	L L L	2.5 3 3	M M M	0 0 0	680250 cost ID/M2
14 16 18 sec(11-A) 2 Distress 10 10 10 10	good good Description LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	L L L M	2.5 3 3 2	M M M M	0 0 0 6000	680250 cost ID/M2

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue).

Maintenance	e costs. (Continue)					
10	LONGITUDINAL/TRANSVERSE CRACKING	М	3	М	9000	
6	good					
8						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	М	8	М	24000	
13	POTHOLE	L	1	Count	15000	
13	POTHOLE	L	1	Count	15000	
11, 15,17	good					
sec(11-A) con.						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	3	М	0	
19	RAVELING	М	6	SqM	90000	
20	good			1		
22						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	8	M	0	
13	POTHOLE	L	0.35	Count	5250	
13	POTHOLE	L	0.35	Count	6000	
sec(11-B)		L	0.4	Count	0000	
2						
-	Description	Serverite	Quantity	Units	Cost	total ID
Distress	Description	Severity				
13	POTHOLE	L	2	Count	30000	1191000
		G		TT '4	C (cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	515.584416
19	RAVELING	М	7.5	SqM	112500	
13	POTHOLE	L	1	Count	15000	
4	BUMPS/SAGS	L	4.5	М	0	
6						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	6	SqM	90000	
13	POTHOLE	L	1	Count	15000	
8						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	
19	RAVELING	М	13.5	SqM	202500	
11						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	17	SqM	255000	
13			1,	Squi	233000	
Distress	Description	Severity	Quantity	Unite	Cost	
19	RAVELING	M	11.6	1	174000	
	KAVELING	IVI	11.0	SqM	174000	
15 Distance	Description	G	0	TT '	Cart	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	7.8	SqM	117000	
17						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	10	SqM	150000	
7	EDGE CRACKING	L	8	М	0	
20						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	L	1	SqM	15000	1
22	good					1
sec(12-B)	6					1
3						1
_	Description	Sourceiter	Quantity	Unita	Cost	total ID
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2.3	M	0	60000
10	LONGITUDINAL/TRANSVERSE CRACKING	L	1	М	0	cost ID/M2
6						129.87013
Distress	Description	Severity	Quantity	Units	Cost	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

laintenar	nce costs. (Continue)					
19	RAVELING	М	4	SqM	60000	
sec(12-A)						
3						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	M	6	SqM	90000	90000
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2	M	0	cost ID/M2
5	LONGITUDINAL/TRANSVERSE CRACKING	L	2	191	0	194.80519
-	Description	C	Ownerstites	T In the	Cast	194.00319
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2.3	М	0	
sec(12-1-A)						
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	M	12	SqM	180000	982500
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	M	0	cost ID/M2
10	LONGITUDINAL/TRANSVERSE CRACKING	M	8	M	24000	998.4756098
	DEPRESSION	L				998.4730098
6	DELVESSION	L	1.5	SqM	22500	
3			0		~	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	21	SqM	315000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	Μ	5	М	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	2	М	6000	
4						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	5	M	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	M	0	
-		-			~	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2	M	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	
19	RAVELING	М	15	SqM	225000	
5						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	2	Count	30000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
19	RAVELING	М	9	SqM	135000	
sec(12-1-B)				1		
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
	LONGITUDINAL/TRANSVERSE CRACKING	M	Quantity 5	M	15000	496500
10						
10	LONGITUDINAL/TRANSVERSE CRACKING	M	5	M	15000	cost ID/M2
1	ALLIGATOR CRACKING	L	1.5	SqM	22500	1007.450216
2						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	6	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	13	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
					20000	
13		L	2	Count	30000	
13	POTHOLE		2	Count M		
		L L	25	Count M	0	
13 10	POTHOLE					
13 10 3	POTHOLE LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
13 10	POTHOLE					
13 10 3 Distress	POTHOLE LONGITUDINAL/TRANSVERSE CRACKING Description	L Severity	5 Quantity	M Units	0 Cost	
13 10 3 Distress 10	POTHOLE LONGITUDINAL/TRANSVERSE CRACKING Description LONGITUDINAL/TRANSVERSE CRACKING	L Severity L	5 Quantity 5	M Units M	0 Cost	
13 10 3 Distress	POTHOLE LONGITUDINAL/TRANSVERSE CRACKING Description	L Severity	5 Quantity 5 5	M Units M M	0 Cost	
13 10 3 Distress 10	POTHOLE LONGITUDINAL/TRANSVERSE CRACKING Description LONGITUDINAL/TRANSVERSE CRACKING	L Severity L	5 Quantity 5	M Units M	0 Cost	
13 10 3 Distress 10 10	POTHOLE LONGITUDINAL/TRANSVERSE CRACKING Description LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	L Severity L L	5 Quantity 5 5	M Units M M	0 Cost 0 0	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenai	nce costs. (Continue)					
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
13	POTHOLE	L	2	Count		
4						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5		0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	M	0	
					÷	
19	RAVELING	M	17	SqM	255000	
13	POTHOLE	L	1	Count	15000	
7	EDGE CRACKING	М	3	М	9000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
sec(13-A)						
3						
Distress	Description	Severity	Quantity	Units	Cost	total ID
7	EDGECRACKING	L	13	М	0	7389000
7	EDGE CRACKING	L	8	M	0	cost ID/M2
19	RAVELING	M	6	SqM	90000	2460.53946
19	RAVELING	M	34		510000	2400.33940
	KAVELING	IVI	54	SqM	510000	
sec(13-A)						
7						
Distress	Description	Severity	Quantity		Cost	
11	PATCH/UTILITY CUT	L	12		180000	
11	PATCH/UTILITY CUT	L	6	SqM	90000	
19	RAVELING	М	26		390000	
19	RAVELING	М	7	SqM	105000	
11				Squi	100000	
Distress	Description	Severity	Quantity	Units	Cost	
4	BUMPS/SAGS	L	Quality 9	M	0	
					-	
7	EDGE CRACKING	М	9	М	27000	
7	EDGE CRACKING	М	10	М	30000	
19	RAVELING	М	31	SqM	465000	
11	PATCH/UTILITY CUT	L	12	SqM	180000	
15						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	42	SqM	630000	
19	RAVELING	М	27	SqM	405000	
7	EDGE CRACKING	L	16	M	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	M	0	
	LONGITUDINAL/TRANSVERSE CRACKING				÷	
10		M	10	M	30000	
8	JOINT REFLECTION CRACKING	L	25	М	0	
19						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	Μ	18	М	54000	
9	LANE/SHOULDER DROP	L	6	М	0	
19	RAVELING	М	12	SqM	180000	
11	PATCH/UTILITY CUT	L	9		135000	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	14	M	42000	
		L		M	42000	
8	JOINT REFLECTION CRACKING		24		÷	
11	PATCH/UTILITY CUT	L	12	SqM	180000	
23			-			
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	25	М	0	
19	RAVELING	М	48	SqM	144000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
7	EDGE CRACKING	M	5	M	15000	
	LANE/SHOULDER DROP	L	20	M	0	
	LANE/SHOULDER DROF	L	20	IVI	0	
9						1
27		a	0	TT *-	<u> </u>	
27 Distress	Description	Severity	Quantity	Units	Cost	
27 Distress 13	POTHOLE	L	1	Count	15000	
27 Distress		,				

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Mainte	nan	ce costs. (Continue)					
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
	6	DEPRESSION	L	2.5	SqM	37500	
	31						
Distress		Description	Severity	Quantity	Units	Cost	
8		JOINT REFLECTION CRACKING	L	25	М	0	
19		RAVELING	М	80	SqM	1200000	
11		PATCH/UTILITY CUT	L	1.5	SqM	22500	
7		EDGE CRACKING	М	4	М	12000	
6		DEPRESSION	L	4	SqM	60000	
35							
Distress		Description	Severity	Quantity	Units	Cost	
11		PATCH/UTILITY CUT	М	13	SqM	390000	
19		RAVELING	М	24	SqM	360000	
8		JOINT REFLECTION CRACKING	L	11	M	0	
4		BUMPS/SAGS	L	12	М	0	
19		RAVELING	М	12	SqM	180000	
39					~ 1		
Distress		Description	Severity	Quantity	Units	Cost	
7		EDGE CRACKING	L	17.5	M	0	
11		PATCH/UTILITY CUT	L	17.5	SqM	255000	
19		RAVELING	M	30	SqM	450000	
9		LANE/SHOULDER DROP	L	6	M	0	1
sec(13-A)			-	Ŭ		Ť	
con.							
43		good					
47		good					
51		good					
sec(13-B)		5000					
300(13 D)	2						
Distress	2	Description	Severity	Quantity	Units	Cost	total ID
Distress	7	EDGE CRACKING	M	7	M	21000	6266600
	19	RAVELING	M	18	SqM	270000	cost ID/M2
	7	EDGE CRACKING	L	8.5	M	0	2086.779887
	6		L	0.5	101	0	2000.777007
Distress	0	Description	Severity	Quantity	Units	Cost	
Distress	7	EDGE CRACKING	M	6.7	M	20100	
	19	RAVELING	M	21	SqM	315000	
	19	KAVELINO	IVI	21	SqM	515000	
Distance	14	Description	C	Owentites	T In ite	Cast	
Distress	10	Description	Severity	Quantity	Units	Cost	
	19	RAVELING	M	43		645000	
		EDGE CRACKING	L	23	М	0	
Dist	18	Description	G		TT. '	C. t	
Distress	7	Description	Severity	Quantity	Units	Cost	
	7	EDGE CRACKING	M	20	M	60000	
	7	EDGE CRACKING	M	15	M	45000	
	19	RAVELING	М	54	SqM	810000	
D	22				TT 1.		
Distress	1.5	Description	Severity	Quantity	Units	Cost	
	13	POTHOLE	M	2	Count	60000	
	10	LONGITUDINAL/TRANSVERSE CRACKING	M	4	M	12000	
	6	DEPRESSION	М	1.5	1	45000	
	19	RAVELING	М	26.9	SqM	403500	
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	24	М	0	
	3	BLOCK CRACKING	L	17	SqM	255000	
	26						
Distress		Description	Severity	Quantity	Units	Cost	
	19	RAVELING	М	27	SqM	405000	
	7	EDGE CRACKING	L	18	М	0	
	10	LONGITUDINAL/TRANSVERSE CRACKING	L	25	М	0	
	1	ALLIGATOR CRACKING	М	7	SqM	210000	
							1
	30						

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

	nce costs. (Continue)					
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	11	М	0	
19	RAVELING	М	23.7	SqM	355500	
7	EDGE CRACKING	М	7	М	21000	
7	EDGE CRACKING	М	5	М	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2	М	0	
34						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	12	SqM	180000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	14	M	42000	
9	LANE/SHOULDER DROP	L	25	М	0	
7	EDGE CRACKING	L	3	М	0	
15	RUTTING	Н	3	SqM	120000	
1	ALLIGATOR CRACKING	L	18	SqM	270000	
38				~ 1		
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	71	SqM	1065000	
7	EDGE CRACKING	L	8	M	0	
13	POTHOLE	L	2	Count	30000	
15	RUTTING	L	20		0	
43	KUTTINU	L	20	SqM	0	
	Description	G '		T In: 4	<u> </u>	
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	Н	3	М	45000	
15	RUTTING	L	15	SqM	0	
6	DEPRESSION	L	2	SqM	30000	
6	DEPRESSION	L	1.5	SqM	22500	
19	RAVELING	М	6	SqM	90000	
sec(13-B)						
con.						
46						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	25	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	4	М	12000	
13	POTHOLE	М	2	Count	60000	
15	RUTTING	L	5	SqM	0	
48				~ 1		
Distress	Description	Constitut	Quantity	Units	Cost	
19						
		Severity H				
	RAVELING	Н	12	SqM	240000	
11	RAVELING PATCH/UTILITY CUT	H H	12 2	SqM SqM	240000 80000	
11 10	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING	H H M	12 2 4	SqM SqM M	240000 80000 12000	
11 10 10	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	H H M L	12 2	SqM SqM M M	240000 80000 12000 0	
11 10 10 10	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	H H M	12 2 4	SqM SqM M	240000 80000 12000	
11 10 10 10 50	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	H H M L	12 2 4	SqM SqM M M	240000 80000 12000 0	
11 10 10 50 sec(14-A)	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING	H H M L	12 2 4	SqM SqM M M	240000 80000 12000 0	
11 10 10 50 sec(14-A) 1	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good	H H M L L	12 2 4 2.5 1	SqM SqM M M M	240000 80000 12000 0 0	
11 10 10 50 sec(14-A) 1 Distress	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description	H H L L Severity	12 2 4 2.5 1 Quantity	SqM SqM M M M Units	240000 80000 12000 0 0 Cost	total ID
11 10 10 50 sec(14-A) 1 Distress 13	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE	H H L L Severity M	12 2 4 2.5 1 Quantity 1	SqM SqM M M M Units Count	240000 80000 12000 0 0 Cost 30000	20021000
11 10 10 50 sec(14-A) 1 Distress 13 6	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION	H H L L Severity M L	12 2 4 2.5 1 Quantity 1 3	SqM SqM M M M Units Count SqM	240000 80000 12000 0 0 Cost 30000 45000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING	H H L L Severity M L H	12 2 4 2.5 1 Quantity 1 3 4	SqM SqM M M M Units Count SqM M	240000 80000 12000 0 0 Cost 30000 45000 60000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION	H H L L Severity M L H L	12 2 4 2.5 1 Quantity 1 3 4 2.5	SqM SqM M M M Units Count SqM M SqM	240000 80000 12000 0 0 Cost Cost 30000 45000 60000 37500	20021000 cost ID/M2
$ \begin{array}{r} 11 \\ 10 \\ 10 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 10 \\ 50 \\ 50 \\ 50 \\ 13 \\ 6 \\ 7 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 6 \\ 13 \\ 7 \\ 6 \\ 13 \\ 7 \\ 6 \\ 13 \\ 7 \\ 6 \\ 13 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 6 \\ 13 \\ 7 \\ 7 \\ 7 \\ $	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING	H H L L Severity M L H	12 2 4 2.5 1 Quantity 1 3 4	SqM SqM M M M Units Count SqM M	240000 80000 12000 0 0 Cost 30000 45000 60000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION	H H L L Severity M L H L	12 2 4 2.5 1 Quantity 1 3 4 2.5	SqM SqM M M M Units Count SqM M SqM	240000 80000 12000 0 0 Cost Cost 30000 45000 60000 37500	20021000 cost ID/M2
$ \begin{array}{r} 11 \\ 10 \\ 10 \\ 50 \\ 50 \\ sec(14-A) \\ 1 \\ Distress \\ 13 \\ 6 \\ 7 \\ 6 \\ 13 \\ 3 \\ 3 \end{array} $	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION	H H L L Severity M L H L	12 2 4 2.5 1 Quantity 1 3 4 2.5	SqM SqM M M M Units Count SqM M SqM	240000 80000 12000 0 0 Cost Cost 30000 45000 60000 37500	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6 13 3	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION POTHOLE	H H H L L Severity M L H L L L	12 2 4 2.5 1 Quantity 4 2.5 1 2.5 1	SqM SqM M M M Units Count SqM M SqM Count	240000 80000 12000 0 0 Cost 30000 45000 60000 37500 15000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6 13 3 Distress	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION POTHOLE DEPRESSION POTHOLE	H H H L L Severity M L L H L L L L Severity M	12 2 4 2.5 1 Quantity 4 2.5 1 4 2.5 1 U Quantity	SqM SqM M M M Units Count SqM SqM Count Units SqM	240000 80000 12000 0 0 Cost 60000 37500 15000 Cost	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6 13 3 Distress 19	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION POTHOLE DEPRESSION POTHOLE DEPRESSION POTHOLE DESCRIPTION POTHOLE	H H H L L Severity M L L L L L Severity M L L	12 2 4 2.5 1 Quantity 1 3 4 2.5 1 U Quantity 220	SqM SqM M M M Units Count SqM SqM Count Units SqM SqM SqM	240000 80000 12000 0 0 Cost 30000 45000 60000 37500 15000 Cost 3300000 15000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6 13 3 Distress 19 6	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION POTHOLE DEPRESSION POTHOLE DESCRIPTION POTHOLE	H H H L L Severity M L L H L L L L Severity M	12 2 4 2.5 1 Quantity 1 3 4 2.5 1 Quantity 1 2 1 2 1 2 1 2.5 1 Quantity 220 1	SqM SqM M M M Units Count SqM SqM Count Units SqM	240000 80000 12000 0 0 Cost 30000 45000 60000 37500 15000 Cost 3300000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6 13 3 Distress 19 6 4	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION POTHOLE DEPRESSION POTHOLE DESCRIPTION POTHOLE	H H H L L Severity M L L L L Severity M L L L L L	12 2 4 2.5 1 Quantity 1 3 4 2.5 1 1 Quantity 220 1 2 2	SqM SqM M M M Units Count SqM SqM Count Units SqM SqM SqM SqM	240000 80000 12000 0 0 Cost 30000 45000 60000 37500 15000 Cost 3300000 15000 30000	20021000 cost ID/M2
11 10 10 50 sec(14-A) 1 Distress 13 6 7 6 13 3 Distress 19 6 6 6	RAVELING PATCH/UTILITY CUT LONGITUDINAL/TRANSVERSE CRACKING LONGITUDINAL/TRANSVERSE CRACKING good Description POTHOLE DEPRESSION EDGE CRACKING DEPRESSION POTHOLE DEPRESSION POTHOLE DEPRESSION POTHOLE DESCRIPTION POTHOLE	H H H L L Severity M L L L L L Severity M L L	12 2 4 2.5 1 Quantity 1 3 4 2.5 1 Quantity 1 2 1 2 1 2 1 2.5 1 Quantity 220 1	SqM SqM M M M Units Count SqM SqM Count Units SqM SqM SqM	240000 80000 12000 0 0 Cost 30000 45000 60000 37500 15000 Cost 3300000 15000	20021000

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenan	ce costs. (Continue)					
6	DEPRESSION	Н	2	SqM	80000	
6	DEPRESSION	М	1	SqM	30000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	М	0	
7	EDGE CRACKING	L	6	М	0	
6						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	Н	6	SqM	120000	
19	RAVELING	Н	12	SqM	240000	
19	RAVELING	М	110	SqM	1650000	
8						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	Н	200	SqM	4000000	
6	DEPRESSION	М	1.5	SqM	45000	
10	LONGITUDINAL/TRANSVERSE CRACKING	Н	4	M	60000	
10	LONGITUDINAL/TRANSVERSE CRACKING	Н	3	М	45000	
11	PATCH/UTILITY CUT	Н	18	SqM	720000	
13	POTHOLE	М	1	Count	30000	
7	EDGE CRACKING	M	8	M	24000	
10			Ű		2.000	
Distress	Description	Severity	Ouantity	Units	Cost	
19	RAVELING	H	12	SqM	240000	
6	DEPRESSION	L	0.5	SqM	7500	
19	RAVELING	M	200	SqM	3000000	
7	EDGE CRACKING	M	11	M	33000	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	8	M	24000	
10	LONOITUDINAL/TRANSVERSE CRACKING	IVI	0	IVI	24000	
	Description	Consulta	Overtity	Unita	Cost	
Distress 19	Description RAVELING	Severity M	Quantity 230	Units	Cost 3450000	
		H		SqM S-M		
<u>6</u> 10	DEPRESSION		0.75	SqM	30000	
-	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	
sec(15-A) 3						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	M	Quantity 36	SqM	540000	10936000
19	KAVELING	IVI		SqM	540000	cost
13	POTHOLE	н	1	Count	40000	ID/M2
15	SHOVING	L	7		40000	3641.6916
7	SHOVING	L	/	SqM	0	3041.0910
· · · ·	Description	C	Orenetites	T Lucita	Cast	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	12	- 1	180000	
16	SHOVING	L	3	SqM	0	
12		G		TT	C i	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	80	SqM	1200000	
2	BLEEDING	Н	75	SqM	1875000	
17				TT 1		
					Cost	
Distress	Description	Severity	Quantity	Units		
19	Description RAVELING	Severity M	Quantity 120	SqM	1800000	
19 22	RAVELING	М	120	SqM	1800000	
19 22 Distress	RAVELING Description	M Severity	120 Quantity	SqM Units	1800000 Cost	
19 22 Distress 13	RAVELING Description POTHOLE	M Severity L	120 Quantity 2	SqM Units Count	1800000 Cost 30000	
19 22 Distress 13 15	RAVELING Description POTHOLE RUTTING	M Severity L L	120 Quantity 2 4	SqM Units Count SqM	1800000 Cost 30000 0	
19 22 Distress 13 15 19	RAVELING Description POTHOLE	M Severity L	120 Quantity 2	SqM Units Count	1800000 Cost 30000	
19 22 Distress 13 15 19 27	RAVELING Description POTHOLE RUTTING RAVELING	M Severity L L M	120 Quantity 2 4 28	SqM Units Count SqM SqM	1800000 Cost 30000 0 420000	
19 22 Distress 13 15 19 27 Distress	RAVELING Description POTHOLE RUTTING RAVELING Description	M Severity L L M Severity	Quantity 2 4 28 Quantity	SqM Units Count SqM SqM Units	1800000 Cost 30000 0 420000 Cost	
19 22 Distress 13 15 19 27 Distress 10	RAVELING Description POTHOLE RUTTING RAVELING Description LONGITUDINAL/TRANSVERSE CRACKING	M Severity L L M Severity L	Quantity Quantity 2 4 28 Quantity 21.2	SqM Units Count SqM SqM Units M	1800000 Cost 30000 0 420000 Cost Cost 0	
19 22 Distress 13 15 19 27 Distress 10 19	RAVELING Description POTHOLE RUTTING RAVELING Description LONGITUDINAL/TRANSVERSE CRACKING RAVELING	M Severity L L M Severity L M	120Quantity2428Quantity21.223	SqM Units Count SqM SqM Units M SqM	1800000 Cost 30000 0 420000 Cost Cost 345000	
19 22 Distress 13 15 19 27 Distress 10 19 11	RAVELING Description POTHOLE RUTTING RAVELING Description LONGITUDINAL/TRANSVERSE CRACKING RAVELING PATCH/UTILITY CUT	M Severity L L M Severity L M L	Quantity Quantity 2 4 28 Quantity 21.2	SqM Units Count SqM SqM Units M SqM SqM	1800000 Cost 30000 0 420000 Cost Cost 345000 75000	
19 22 Distress 13 15 19 27 Distress 10 19 11 13	RAVELING Description POTHOLE RUTTING RAVELING Description LONGITUDINAL/TRANSVERSE CRACKING RAVELING	M Severity L L M Severity L M	120Quantity2428Quantity21.223	SqM Units Count SqM SqM Units M SqM	1800000 Cost 30000 0 420000 Cost Cost 345000	
19 22 Distress 13 15 19 27 Distress 10 19 11 13 31	RAVELING Description POTHOLE RUTTING RAVELING Description LONGITUDINAL/TRANSVERSE CRACKING RAVELING PATCH/UTILITY CUT POTHOLE	M Severity L L M Severity L M L	120Quantity2428Quantity21.2235	SqM Units Count SqM SqM Units M SqM SqM Count	1800000 Cost 30000 0 420000 Cost 0 345000 75000 40000	
19 22 Distress 13 15 19 27 Distress 10 19 11 13	RAVELING Description POTHOLE RUTTING RAVELING Description LONGITUDINAL/TRANSVERSE CRACKING RAVELING PATCH/UTILITY CUT	M Severity L L M Severity L M L	120Quantity2428Quantity21.2235	SqM Units Count SqM SqM Units M SqM SqM	1800000 Cost 30000 0 420000 Cost Cost 345000 75000	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenan	ice costs. (Continue)					
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	9	М	0	
19	RAVELING	М	44	SqM	660000	
36						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	12	SqM	0	
15	RUTTING	L	12	SqM	0	
19	RAVELING	М	55	SqM	825000	
13	POTHOLE	Н	1	Count	40000	
41						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	24	М	72000	
19	RAVELING	М	65	SqM	975000	
46						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3	M	0	
51						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	12	M	36000	
56		111	12	171	50000	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	H	32	SqM	640000	
19	LONGITUDINAL/TRANSVERSE CRACKING	M	8	M	24000	
61	LONOITUDINAL/IRANSVERSE CRACKING	IVI	0	IVI	24000	
Distress	Description	Severity	Quantity	Units	Cost	
	LONGITUDINAL/TRANSVERSE CRACKING	M	Quantity 8	M	24000	
10		L	3		24000	
13	RUTTING RAVELING	-		SqM S-M		
	KAVELING	М	72	SqM	1080000	
sec(15-B) 3						
						((1 D
Distress	Description	Severity	Quantity	Units	Cost	total ID
5	CORRUGATION	М	5	SqM	75000	3338500
						cost
18	SWELL	L	4	SqM	0	ID/M2
						1111.7216
18	SWELL	М	1.5	SqM	37500	1111.7210
sec(15-B) 7						
	Description	C	Owerstites	I.I:4-	Cast	
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	25.7	SqM	0	
13	POTHOLE	Н	1	Count	40000	
12						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	26	SqM	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	Н	9	М	135000	
17						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	11	SqM	0	
16	SHOVING	L	12	SqM	0	
22						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	1
18	SWELL	М	12	SqM	300000	1
16	SHOVING	L	10.5	SqM	0	1
15	RUTTING	L	11	SqM	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	9	M	27000	
27						
Distress	Description	Severity	Quantity	Units	Cost	
2104 000		Second	Zuminy	0	0050	J

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

	ice costs. (Continue)					
9	LANE/SHOULDER DROP	М	20	М	60000	
19	RAVELING	М	67	SqM	1005000	
31						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	12.5	SqM	0	
13	POTHOLE	М	1	Count	30000	
41						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	51	SqM	765000	
19	RAVELING	M	33	SqM	495000	
36	MITLEING	IVI	55	Bqivi	475000	
46						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	M	23	M	69000	
15	RUTTING	L	9		-	
	KUTTING	L	9	SqM	0	
51		a ti		TT 1.	a i	
Distress	Description	Severity	Quantity	Units	Cost	
18	SWELL	М	6	SqM	150000	
56						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	М	4	SqM	120000	
61						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	3	М	9000	
sec(16-A)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
7	EDGE CRACKING	Н	8	М	120000	6605500
16	SHOVING	L	3	SqM	0	cost ID/M2
15	RUTTING	L	4	SqM	0	3443.95203
3	BLOCK CRACKING	М	15	SqM	450000	
3				~		
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	M	12	SqM	300000	
19	RAVELING	M	23.7	SqM	355500	
11	PATCH/UTILITY CUT	M	16	SqM	240000	
5		101	10	bqm	240000	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	45	SqM	675000	
19	RUTTING	L	43	SqM	073000	
	PATCH/UTILITY CUT	M		SqM SqM	90000	
11					90000	
1	ALLIGATOR CRACKING	M	10	SqM		l
(1()						
sec(16-A)						
6		G	0	TT •	0.1	
Distress	Description	Severity	Quantity	Units	Cost	
15		M	2	SqM	50000	
1		М	19	SqM	570000	
8						
Distress	Description	Severity	Quantity	Units	Cost	
3		L	78	SqM	1170000	
19		М	33	SqM	495000	
10						
Distress	Description	Severity	Quantity	Units	Cost	
18	3 SWELL	М	2	SqM	50000	
11	PATCH/UTILITY CUT	L	11	SqM	165000	
15		L	2	SqM	0	
19		М	34	SqM	510000	
19		M	13	SqM	195000	
		L	7	M	0	
sec(16-A) con.			· · · ·		<u> </u>	
Sec(10-A) coll.						

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenanc	ce costs. (Continue)					
12						
Distress	Description	Severity	Quantity	Units	Cost	
1	ALLIGATOR CRACKING	М	4.5	SqM	135000	
11	PATCH/UTILITY CUT	Н	4.5	SqM	180000	
19	RAVELING	М	12	SqM	180000	
14				1		
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	45	SqM	675000	
19	SWELL	L	16		0/5000	
sec(17-A)	SWEEL		10	SqM	0	
3				-	-	
÷	D	G		TT	<u> </u>	1 ID
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	М	56.8	SqM	852000	6861000
6						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	2700.11806
19	RAVELING	М	77	SqM	1155000	
9						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	67	SqM	1005000	
5	CORRUGATION	M	4	SqM	60000	1
12				~	50000	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	H	Quantity 22	SqM	440000	
19	KAVELING	п	22	SqM	440000	
	Description	Cit	Orrentiter	Units	Cast	
Distress	Description	Severity	Quantity 23		Cost 345000	
19	RAVELING	М	23	SqM	345000	
18	D			TT 1.	9	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	46	SqM	690000	
13	POTHOLE	L	3	Count	45000	
21	good					
24	good					
27						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	87	SqM	1305000	
30						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	61.6	SqM	924000	
13	POTHOLE	Н	1	Count	40000	
33						1
Distress	Description	Severity	Quantity	Units	Cost	1
13	POTHOLE	H	Quantity	Count	40000	1
19	RAVELING	M	90	SqM	1350000	
sec(17-B)		191	90	Squi	1550000	
<u>sec(17-В)</u> 3						
3 Distress	Description	Severity	Quantity	Units	Cost	total ID
	Description	, , , , , , , , , , , , , , , , , , ,				
19	RAVELING	М	32	SqM	480000	8774500
6 Distances	Description	G	0	I.I., '	C	cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	3453.16804
19	RAVELING	М	89	SqM	1335000	
9						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	97	SqM	1455000	
12						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	1
19	RAVELING	M	67	SqM	1005000	
		141	07	SqM	1005000	
18						
Distress	Description	Severity	Quantity	Units	Cost]

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

waintena	ince costs. (Continue)					
19	RAVELING	М	79	SqM	1185000	
18	SWELL	L	2.5	SqM	62500	
21						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	54	SqM	810000	
24						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	36.8	SqM	552000	
30				•		
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	23	SqM	345000	
33	good					
sec(18-A)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	M	32	SqM	480000	4220000
4	good		52	bqivi	100000	cost ID/M2
7	5000					1660.76348
Distress	Description	Severity	Quantity	Units	Cost	1000.70340
19	RAVELING	M	Quantity 25	SqM	375000	
19		111	23	зчи	575000	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	Quantity 75	SqM	1125000	
		IVI	73	SqM	1123000	
13	good					
16	good					
19				TT		
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	H	9.5	SqM	380000	
19	RAVELING	M	98	SqM	1470000	
13	POTHOLE	М	1	Count	30000	
22	good					
25	good					
27						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	М	12	SqM	360000	
31	good					
sec(18-B)						
3						
Distress	Description	Severity	Quantity	Units	Cost	total ID
11	PATCH/UTILITY CUT	М	1.5	SqM	45000	2067000
6						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	813.45927
19	RAVELING	Н	12	SqM	240000	
sec(18-B)						
con.						
9						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	4	M	0	
12	good	L	7		0	
12	5000					
-	D	0 1	0	TT '4	0	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	32	SqM	480000	
18						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	23.8	SqM	357000	
21						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	18	SqM	270000	
24		111	10	Squi	270000	
	Description	g '	On th	T In:	Cart	
Distress	Description	Severity	Quantity	Units	Cost	l

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

viaintena	ance costs. (Continue)					_
19		М	45	SqM	675000	
10		L	5	М	0	
27	good					
30						
Distress	Description	Severity	Quantity	Units	Comments	
19		М	68	SqM	1020000	
11	PATCH/UTILITY CUT	L	0.75	SqM	11250	
33						
Distress		Severity	Quantity	Units	Comments	
10		L	5.7	M	0	
19	RAVELING	M	38	SqM	570000	
sec(19-A)	KAVELING	IVI	50	SqM	570000	
1						
	Description	Severity	Ouantity	Unita	Cast	total ID
Distress	Description		Quantity	Units	Cost	total ID
19		M	10	SqM	150000	2017500
13		L	1	Count	15000	cost ID/M2
11	PATCH/UTILITY CUT	М	10	SqM	300000	1646.9388
2						
Distress		Severity	Quantity	Units	Cost	
15	RUTTING	L	5	SqM	0	
19	RAVELING	Μ	13	SqM	195000	
11	PATCH/UTILITY CUT	L	10	SqM	150000	
4						1
Distress	Description	Severity	Quantity	Units	Cost	
19		М	13	SqM	di14*d20	
7	EDGE CRACKING	L	11	M	0	
15		L	3	SqM	0	
11	PATCH/UTILITY CUT	L	10	SqM	150000	
5		L	10	SqM	150000	
Distress		Severity	Quantity	Units	Cost	
19		H	10	SqM	200000	
7	EDGE CRACKING	Н	6.5	M	97500	
13	POTHOLE	М	1	Count	30000	
6						
Distress		Severity	Quantity	Units	Cost	
19		М	12	SqM	180000	
7		М	10	М	30000	
11	PATCH/UTILITY CUT	М	12	SqM	360000	
11	PATCH/UTILITY CUT	Н	4	SqM	160000	
sec(19-B)						
1						
sec(19-A)						
con.						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	H			280000	2837500
			14	SqM		
15	RUTTING	L	4.5	SqM	0	cost ID/M2
9	LANE/SHOULDER DROP	М	13	М	39000	2316.327
19	RAVELING	М	8	SqM	120000	
2						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	7	SqM	0	1
			-		1065000	1
19	RAVELING	M	71	SqM		1
13	POTHOLE	L	3	Count	45000	4
3						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	32	SqM	480000	
15	RUTTING	L	8	SqM	0	
5				~	0	1
5						1
Distress	Description	Severity	Quantity	Units	Cost	•

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenance	costs. (Continue)					
15	RUTTING	L	5.7	SqM	0	
9	LANE/SHOULDER DROP	М	11	M	33000	
15		L		SqM	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	M	13.5	M	40500	
13	POTHOLE	M	13.5	Count	30000	
6	TOTHOLE	IVI	1	Count	30000	
		G		TT '4	<u> </u>	
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	11.4	SqM	0	
19	RAVELING	М	22	SqM	330000	
15	RUTTING	М	7	SqM	175000	
16	SHOVING	Н	5	SqM	200000	
sec(20-A)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
11	PATCH/UTILITY CUT	L	55	SqM	825000	13712300
19	RAVELING	М	66	SqM	990000	cost ID/M2
18	SWELL	M	4	SqM	100000	10729.5
8	JOINT REFLECTION CRACKING	L	27	M	0	10725.5
6	DEPRESSION	M	1.5	SqM	45000	
	DEPRESSION					
6	DERKESSION	L	1.5	SqM	22500	
3		a :	0		~	
Distress		Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	L	69	SqM	1035000	
19	RAVELING	Μ	64	SqM	960000	
11	PATCH/UTILITY CUT	L	6	SqM	90000	
15	RUTTING	L	5	SqM	0	
4				1		
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	M	8.6	M	25800	
6	DEPRESSION	L	4.4	SqM	66000	
		L				
11	PATCH/UTILITY CUT		69	SqM	1035000	
8	JOINT REFLECTION CRACKING	М	26	M	208000	
11	PATCH/UTILITY CUT	L	56	SqM	840000	
13	POTHOLE	Н	1	Count	40000	
13	POTHOLE	Н	1	Count	40000	
6						
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	Н	12	М	180000	
11	PATCH/UTILITY CUT	М	3	SqM	90000	
6	DEPRESSION	М	6		180000	
	SWELL	M	17.6		440000	
10	PATCH/UTILITY CUT	L	68	SqM	1020000	
		L	08	SqM	1020000	
sec(20-A) con.						
7		. ·	<u> </u>	TT 1.	~	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	110	SqM	1650000	
16	SHOVING	L	4	SqM	0	
11	PATCH/UTILITY CUT	L	90	SqM	1350000	
8						
Distress	Description	Severity	Quantity	Units	Cost	
18	SWELL	M	8	SqM	200000	
11	PATCH/UTILITY CUT	L	6	SqM	90000	
11	PATCH/UTILITY CUT	L	44	SqM	660000	
11	RAVELING	M	102	SqM	1530000	
		IVI	102	SqM	1550000	
sec(20-B)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
	PATCH/UTILITY CUT	Η	1.5	SqM	60000	9492000
11						
<u> </u>	PATCH/UTILITY CUT	М	88	SqM	2640000	cost ID/M2
		M M	88 5	SqM SqM	2640000 150000	cost ID/M2 7427.23

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

	ce costs. (Continue)					_
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	М	22	SqM	550000	
11	PATCH/UTILITY CUT	L	43	SqM	645000	
11	PATCH/UTILITY CUT	Н	2	SqM	80000	
4						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	М	33	SqM	990000	
19	RAVELING	М	132	SqM	1980000	
11	PATCH/UTILITY CUT	М	12	SqM	360000	
13	POTHOLE	Н	3	Count	120000	
5						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	М	1	SqM	30000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	4	М	12000	
7 Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	2.5	SqM	75000	
11	SHOVING	L	2.3			
10	JOINT REFLECTION CRACKING	L	23	SqM M	0	
8	JUINT REFLECTION CRACKING	L	23	IVI	0	
o Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	56	SqM	1680000	
11	PATCH/UTILITY CUT	H	3	SqM	120000	
sec(21-A)		11	5	Squi	120000	
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
11	PATCH/UTILITY CUT	L	2	SqM	30000	4851500
11	PATCH/UTILITY CUT	M	2	SqM	60000	cost ID/M2
18	SWELL	М	2	SqM	50000	5250.541126
11	PATCH/UTILITY CUT	L	2	SqM	0	
6	DEPRESSION	L	1.2	SqM	0	
11	PATCH/UTILITY CUT	M	2.5	SqM	75000	
2						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	М	23	SqM	690000	
11	PATCH/UTILITY CUT	L	12.5	SqM	187500	
11	PATCH/UTILITY CUT	Μ	3.5	SqM	105000	
7	EDGE CRACKING	М	11	М	162000	
19	RAVELING	М	54	SqM	810000	
15	RUTTING	L	4.5	SqM	0	
11	PATCH/UTILITY CUT	М	6	SqM	180000	
19	RAVELING	Н	5	SqM	100000	
15	RUTTING	L	3	SqM	0	
sec(21-A) con.						
3 Distance	Description	G		I India	Cast	
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	32 2	SqM Count	480000	
13 11	POTHOLE PATCH/UTILITY CUT	M H	2 7	Count	60000 280000	
				SqM SqM	120000	
16 13	SHOVING POTHOLE	H H	3	SqM Count	40000	
4	TOTHOLE	11	1	Count	40000	
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	M	0.9	SqM	27000	
11	PATCH/UTILITY CUT	M	33	SqM	990000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	15	M	0	
19	RAVELING	M	22	SqM	330000	
				SqM	75000	
	PATCH/UTILITY CUT		2	SUN		
11	PATCH/UTILITY CUT	L	5	SqM	75000	
	PATCH/UTILITY CUT	L	5	SqM	75000	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

manne	e costs. (Continue)					
11	PATCH/UTILITY CUT	Н	2.5	SqM	100000	5917000
						cost
11	PATCH/UTILITY CUT	L	20	SqM	300000	ID/M2
11	PATCH/UTILITY CUT	Н	5	SqM	200000	6403.68
19	RAVELING	М	41	SqM	1230000	
2		a 1.		TT 1.		
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	4	SqM	0	
11	PATCH/UTILITY CUT	M	25	SqM	750000	
19	RAVELING	М	32	SqM	480000	
2						
3		G .,		II.'	<u> </u>	
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	33	SqM	990000	
19	RAVELING PATCH/UTILITY CUT	M H	25	SqM	375000	
11			1.5	SqM	60000	
11	PATCH/UTILITY CUT	Н	2	SqM	80000	
13	POTHOLE	Н	2	Count	80000	
4 Distance	Description	Coursite	Quartita	I In: t-	Cost	
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	M M	1 4	SqM M	30000 12000	
10	LONGITUDINAL/TRANSVERSE CRACKING			M	12000	
11 16	PATCH/UTILITY CUT SHOVING	H L	2.5 3	SqM SqM	0	
8	JOINT REFLECTION CRACKING	L	3 17	M	680000	
<u> </u>	PATCH/UTILITY CUT	M	17		450000	
sec(22-A)	PATCH/UTILITY CUT	IVI	15	SqM	430000	
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	M	Quantity 67	SqM	1005000	3535500
17	MAVELING .	141	07	Squi	1005000	cost
4	good					ID/M2
6	good					1530.519
	8004					
X						
8 Distress	Description	Severity	Quantity	Units	Cost	
Distress	Description LONGITUDINAL/TRANSVERSE CRACKING	Severity M	Quantity 5	Units M	Cost 15000	
Distress 10	Description LONGITUDINAL/TRANSVERSE CRACKING			Units M	Cost 15000	
Distress 10 11	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
Distress 10 11 Distress					15000 Cost	
Distress 10 11	LONGITUDINAL/TRANSVERSE CRACKING Description	M Severity	5 Quantity	M Units	15000	
Distress 10 11 11 Distress 13 15 15	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE	M Severity M	5 Quantity 2	M Units Count	15000 Cost 60000	
Distress 10 11 11 Distress 13 15 15	LONGITUDINAL/TRANSVERSE CRACKING Description	M Severity	5 Quantity	M Units Count	15000 Cost	
Distress 10 11 Distress 13 15 Distress	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description	M Severity M Severity	5 Quantity 2 Quantity	M Units Count Units M	15000 Cost 60000 Cost	
Distress 10 11 Distress 13 15 Distress 10	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING	M Severity M Severity L	5 Quantity 2 Quantity 7	M Units Count Units M SqM	15000 Cost 60000 Cost 0	
Distress 10 11 Distress 13 15 Distress 10 16 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION	M Severity M Severity L M	5 Quantity 2 Quantity 7 0.75	M Units Count Units M SqM SqM	15000 Cost 60000 Cost 0 22500	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT	M Severity M Severity L M M	Quantity Quantity Quantity 7 0.75 18	M Units Count Units M SqM SqM SqM	15000 Cost Cost Cost 0 22500 540000	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11 11 11	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT	M Severity M Severity L M M M	5QuantityQuantity70.75185	M Units Count Units M SqM SqM	15000 Cost Cost Cost 22500 540000 150000	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11 11 11 13 15	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL	M Severity M Severity L M M M M M	5 Quantity 2 Quantity 7 0.75 18 5 6	M Units Count Units M SqM SqM SqM SqM	15000 Cost Cost Cost 22500 540000 150000 150000	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11 11 11 11 11 11 11 13 15	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL	M Severity M Severity L M M M M M	5 Quantity 2 Quantity 7 0.75 18 5 6	M Units Count Units M SqM SqM SqM SqM	15000 Cost Cost Cost 22500 540000 150000 150000	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11 11 11 18 8 18 18	LONGITUDINAL/TRANSVERSE CRACKING Description Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING	M Severity M Severity L M M M M L	5 Quantity 2 Quantity 7 0.75 18 5 6 22	M Units Count Units M SqM SqM SqM SqM SqM M	15000 Cost Cost Cost 22500 540000 150000 150000 0	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11 11 11 18 8 Distress 18 Distress 18	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description	M Severity M Severity L M M M M L L Severity	Quantity Quantity Quantity 7 0.75 18 5 6 22 Quantity	M Units Count Units M SqM SqM SqM SqM SqM M Units	15000 Cost Cost Cost 22500 540000 150000 150000 0 Cost	
Distress 10 11 11 Distress 13 15 15 Distress 10 6 11 11 11 18 8 Distress 19	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description	M Severity M Severity L M M M M L L Severity	Quantity Quantity Quantity 7 0.75 18 5 6 22 Quantity	M Units Count Units M SqM SqM SqM SqM SqM M Units	15000 Cost Cost Cost 22500 540000 150000 150000 0 Cost	
Distress 10 11 11 Distress 13 15 15 Distress 10 0 6 11 11 18 8 Distress 18 Distress 19 sec(22-A) con. 10	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description	M Severity M Severity L M M M M L L Severity	Quantity Quantity Quantity 7 0.75 18 5 6 22 Quantity	M Units Count Units M SqM SqM SqM SqM SqM M Units	15000 Cost Cost Cost 22500 540000 150000 150000 0 Cost	
Distress 10 11 11 Distress 13 Distress 15 Distress 10 6 11 11 11 11 11 11 11 11 11 11 11 11 11 11 18 11 18 11 18 11 19 sec(22-A) con. 20	LONGITUDINAL/TRANSVERSE CRACKING Description Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING	M Severity M Severity L M M M L L Severity M	5Quantity2Quantity70.75185622Quantity81	M Units Count Units M SqM SqM SqM SqM SqM M Units SqM	15000 Cost Cost Cost 22500 540000 150000 0 Cost 1215000	
Distress 10 11 11 Distress 13 15 15 Distress 10 0 6 11 11 13 10 14 11 15 10 16 11 17 11 18 18 Distress 19 sec(22-A) con. 20 Distress 20	LONGITUDINAL/TRANSVERSE CRACKING Description Dothole Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description	M Severity M Severity L M M M M L Severity M Severity	5Quantity2Quantity70.75185622Quantity81Quantity	M Units Count Units M SqM SqM SqM SqM M Units SqM Units	15000 Cost Cost Cost 22500 540000 150000 0 Cost Cost Cost	
Distress 10 11 11 Distress 13 Distress 15 Distress 10 0 6 11 11 13 10 14 11 15 10 16 11 17 11 18 18 Distress 19 sec(22-A) con. 20 Distress 7	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description EDGE CRACKING	M Severity M Severity L M M M M L Severity M Severity M	5Quantity2Quantity70.75185622Quantity81Quantity6	M Units Count Units M SqM SqM SqM SqM M SqM M Units SqM Units M	15000 Cost Cost Cost 22500 540000 150000 0 Cost 1215000 Cost 1215000	
Distress 10 11 Distress 13 15 Distress 10 10 15 Distress 10 10 6 11 11 11 11 11 18 18 18 18 Distress 19 sec(22-A) con. 20 Distress 7	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description EDGE CRACKING	M Severity M Severity L M M M M L Severity M Severity M	5Quantity2Quantity70.75185622Quantity81Quantity6	M Units Count Units M SqM SqM SqM SqM M SqM M Units SqM Units M	15000 Cost Cost Cost 22500 540000 150000 0 Cost 1215000 Cost 1215000	
Distress 10 11 Distress 13 15 Distress 10 10 15 Distress 10 10 6 11 11 11 18 18 18 18 Distress 19 sec(22-A) con. 20 Distress 7 6 6 21	LONGITUDINAL/TRANSVERSE CRACKING Description Dote Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description EDGE CRACKING DEPRESSION	M Severity M Severity L M M M M L Severity M Severity M M Severity	5Quantity2Quantity70.75185622Quantity81Quantity66	M Units Count Units M SqM SqM SqM SqM M Units SqM Units M SqM	15000 Cost 60000 Cost 0 22500 540000 150000 0 Cost 1215000 Cost 1215000 Cost 1215000 0 0 0 0 0 0 0 0 0 0 0 0	
Distress 10 11 Distress 13 15 Distress 10 0 0 0 11 10 6 11 11 11 18 8 18 0 18 0 18 0 19 sec(22-A) con. 20 Distress 7 6 21 Distress	LONGITUDINAL/TRANSVERSE CRACKING Description Dote Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description EDGE CRACKING DEPRESSION Description EDGE CRACKING Description EDGE CRACKING	M Severity M Severity L M M M L Severity M Severity M Severity	5Quantity2Quantity70.75185622Quantity81Quantity66Quantity	M Units Count Units M SqM SqM SqM SqM M Units SqM Units M SqM Units SqM	15000 Cost 0 22500 540000 150000 0 Cost 1215000 Cost 18000 180000 Cost	
Distress 10 11 Distress 13 15 Distress 10 10 15 Distress 10 10 10 10 10 10 10 10 10 10 10 10 10	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description EDGE CRACKING DEPRESSION Description RUTTING	M Severity M Severity L M M M M L Severity M Severity M M Severity L	5Quantity2Quantity70.75185622Quantity81Quantity66Quantity666Quantity6666000	M Units Count Units M SqM SqM SqM SqM M Units SqM Units M SqM Units M SqM	15000 Cost 0 22500 540000 150000 150000 0 Cost 1215000 Cost 180000 180000 Cost 0 0	
Distress 10 11 Distress 13 15 Distress 10 10 15 15 Distress 10 10 10 10 10 10 10 10 10 10 10 10 10	LONGITUDINAL/TRANSVERSE CRACKING Description POTHOLE Description LONGITUDINAL/TRANSVERSE CRACKING DEPRESSION PATCH/UTILITY CUT PATCH/UTILITY CUT SWELL JOINT REFLECTION CRACKING Description RAVELING Description EDGE CRACKING DEPRESSION Description RUTTING	M Severity M Severity L M M M M L Severity M Severity M M Severity L	5Quantity2Quantity70.75185622Quantity81Quantity66Quantity666Quantity6666000	M Units Count Units M SqM SqM SqM SqM M Units SqM Units M SqM Units SqM	15000 Cost 0 22500 540000 150000 150000 0 Cost 1215000 Cost 180000 180000 Cost 0 0	

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenar	nce costs. (Continue)					
Distress	Description	Severity	Quantity	Units	Cost	total ID
4	BUMPS/SAGS	М	7	М	105000	402000
4						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	174.026
15	RUTTING	L	23	SqM	0	
6						
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	3.5	SqM	105000	
8			5.5	Sqivi	105000	
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	Quantity 1.5	SqM	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	7	M	0	
10	EONOTTODINAL/TRANSVERSE CRACKING		/	IVI	0	
Distress	Description	Savanity	Overtity	Unita	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	Severity L	Quantity 7	Units M	Cost 0	
		M		M	21000	
10	LONGITUDINAL/TRANSVERSE CRACKING	IVI	7	M	21000	
13	Good					
15				TT •.	C .	
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	M	3.5	SqM	105000	
6	DEPRESSION	М	1.5	SqM	45000	
18						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
20						
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	33	М	0	
22						
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	33	М	0	
sec(23-A)						
3						
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	L	1.5	М	0	0
5						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	0
10	LONGITUDINAL/TRANSVERSE CRACKING	L	0.76	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	1.2	М	0	
sec(23-B)						1
2						
Distress	Description	Severity	Quantity	Units	Cost	total ID
10	LONGITUDINAL/TRANSVERSE CRACKING	L	1.5	M	0	15000
10	LONGITUDINAL/TRANSVERSE CRACKING	L	1.5	M	0	cost ID/M2
4	LONGITODINAL/ IRANS VERSE CRACKING		1.3	141	0	21.64502
4 Distress	Description	Severity	Quantity	Units	Cost	21.04302
10	LONGITUDINAL/TRANSVERSE CRACKING	L	Quantity 3	M	0	
7	LONOITUDIINAL/ITAINSVERSE CRACKING	L	3	IVI	0	
	Description	Sourceiter	Overstit	I Imit-	Cart	
Distress	Description	Severity	Quantity 1	Units SqM	Cost	
10	DAVELINC			SOM	15000	1
19	RAVELING	M	1	Squi		
sec(23-1-A)	RAVELING	M	1	Sqiii		
sec(23-1-A)					~	
sec(23-1-A) 1 Distress	Description	Severity	Quantity	Units	Cost	total ID
sec(23-1-A) 1 Distress 6					Cost 4500	1518750
sec(23-1-A) 1 Distress 6 2	Description DEPRESSION	Severity L	Quantity 0.3	Units SqM	4500	1518750 cost ID/M2
sec(23-1-A) 1 Distress 6 2 Distress	Description DEPRESSION Description	Severity L Severity	Quantity 0.3 Quantity	Units SqM Units	4500 Cost	1518750
sec(23-1-A) 1 Distress 6 2	Description DEPRESSION Description LONGITUDINAL/TRANSVERSE CRACKING	Severity L Severity M	Quantity 0.3 Quantity 3	Units SqM Units M	4500 Cost 9000	1518750 cost ID/M2
sec(23-1-A) 1 Distress 6 2 Distress	Description DEPRESSION Description	Severity L Severity	Quantity 0.3 Quantity	Units SqM Units	4500 Cost	1518750 cost ID/M2
sec(23-1-A) 1 Distress 6 2 Distress 10	Description DEPRESSION Description LONGITUDINAL/TRANSVERSE CRACKING	Severity L Severity M L	Quantity 0.3 Quantity 3	Units SqM Units M	4500 Cost 9000	1518750 cost ID/M2
sec(23-1-A) 1 Distress 6 2 Distress 10 6	Description DEPRESSION Description LONGITUDINAL/TRANSVERSE CRACKING	Severity L Severity M	Quantity 0.3 Quantity 3	Units SqM Units M	4500 Cost 9000	1518750 cost ID/M2

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenand	ce costs. (Continue)					
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000]
10	LONGITUDINAL/TRANSVERSE CRACKING	L	2	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	3.2	М	0	
11	PATCH/UTILITY CUT	L	0.25	SqM	3750	
6						
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	М	0.25	SqM	7500	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
19	RAVELING	М	18	SqM	270000	
7						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	77	SqM	1155000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	5	М	0	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	7	М	21000	
sec(23-1-B)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	М	79	SqM	1185000	3133500
2						cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	2520.917
19	RAVELING	М	52.9	SqM	793500	-
4						-
Distress	Description	Severity	Quantity	Units	Cost	-
19	RAVELING	М	53	SqM	795000	-
6						-
Distress	Description	Severity	Quantity	Units	Cost	-
19	RAVELING	М	24	SqM	360000	-
7	good				_	-
sec(24-A)	1					-
3	good					
-		G		TT '4	C t	((1 ID
Distress	Description JOINT REFLECTION CRACKING	Severity L	Quantity	Units M	Cost	total ID 3453750
8	POTHOLE		30		45000	
13	RAVELING	L M	3 55	Count	825000	cost ID/M2 2135.9
5	KAVELING	IVI		SqM	823000	2155.9
J Distress	Description	Severity	Quantity	Units	Cost	-
8	JOINT REFLECTION CRACKING	L	33	M	0	
19	RAVELING	M	23	SqM	345000	
6	RAVELING	IVI	23	SqM	343000	
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	26	M	0	
8		L	20	111	0	
Distress	Description	Severity	Ouantity	Units	Cost	
19	RAVELING	M	76	SqM	1140000	
10			70	Sqifi	1140000	
sec(24-A) con.						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	<u>quantity</u> 69	SqM	1035000	
6	DEPRESSION	L	0.75	SqM	11250	1
13	POTHOLE	L	1	Count	15000	
15	RUTTING	M	1.5	SqM	37500	1
8	JOINT REFLECTION CRACKING	L	33	M	0	1
12		_				
Distress	Description	Severity	Quantity	Units	Cost	1
8	JOINT REFLECTION CRACKING	L	28	M	0	1
sec(24-B)						1
1						1
						•

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

3 Description Severity Quanty Units Cost Iotal ID 10 LONGITUDINAL/TRANSVERSE CRACKING M 4 M 12000 Outal ID Distress Description Severity Quanty Units Cost ID1795 Distress Description Severity Quanty Units Cost 112 9654 10 LONGITUDINAL/TRANSVERSE CRACKING H M Count 40000 6 Description Severity Quanty Units Cost 6 DEscription Severity Quanty Units Cost 6 DEPRRESSION L 0.4 SqM 60000 8 JOINT REFLECTION CRACKING L 2. SqM 30000 8 JOINT REFLECTION CRACKING L 2. SqM 30000 8 JOINT REFLECTION CRACKING L 2. SqM 30000 104 DERRESSION L 2. SqM 300	wanten	anc	ce costs. (Continue)					
10 LONGTUDINAL/TRANSVERSE CRACKING M 4 M 12000 100750 5	3							
5 0	Distress		Description	Severity	Quantity	Units	Cost	total ID
Distress Description Severity Quantity Units Cost 117.9554 10 IONGTUDNALTRANSPERST CRACKING M 4 M 12000 1 13 POTHOLE H 1 Count 40000 6 Distress Description Severity Quantity Units Cost 8 JOINT REFLECTION CRACKING L 33 M 0 6 DESTRES Description Severity Quantity Units Cost 8 JOINT REFLECTION CRACKING L 0.45 SqM 600 10 Escription L 7 M 0 6 DEFRESSION L 2 SqM 30000 8 JOINT REFLECTION CRACKING L 2 SqM 30000 12 Description Severity Quantity Units Cost 13 POINT REFLECTION CRACKING L 2 SqM 30000 14	10		LONGITUDINAL/TRANSVERSE CRACKING	М	4	М	12000	190750
10 LONGTUDINAL/TRANSVERSE CRACKING M 4 M 1200 8 JOINT REFLECTION CRACKING L 33 M 0 13 POTHOLE H 1 Coant 4000 6 Perfuence F Perfuence 4000 7 M 0 0 0 8 JOINT REFLECTION CRACKING L 33 M 0 6 DESCRPTION Severity Quantity Units Cost 6 DERESSION L 0.45 SqM 60000 8 JOINT REFLECTION CRACKING L 33 M 0 6 DESCRPTION R 2 SqM 30000 12 Severity Quantity Units Cost 6 DESCRPTION L 2 SqM 30000 12 Severity Quantity Units Cost 6 DESCRPTION L 2 SqM 3	5							cost ID/M2
8 JOINT REFLECTION CRACKING L 33 M 0 13 POTHOLE H 1 Count 40000 6 Description Severity Quantity Units Cost. 8 JOINT REFLECTION CRACKING L 0.43 M 0 6 DEPRESSION L 0.45 SqM 6750 6 DEPRESSION L 7 M 0 6 DEPRESSION L 7 M 0 6 DEPRESSION L 3.3 M 0 10 Distress Description Severity Quantity Units Cost 10 E Sadd 30000 Social Sadd 30000 6 DEPRESSION L 2 SqM 30000 8 JOINT REFLECTION CRACKING L 2 SqM 30000 8 JOINT REFLECTION CRACKING L 2 SqM 30000 <td>Distress</td> <td></td> <td>Description</td> <td>Severity</td> <td>Quantity</td> <td>Units</td> <td>Cost</td> <td>117.9654</td>	Distress		Description	Severity	Quantity	Units	Cost	117.9654
8 JOINT REFLECTION CRACKING L 33 M 0 13 POTHOLE H 1 Count 40000 6 Description Severity Quantity Units Cost. 8 JOINT REFLECTION CRACKING L 0.43 M 0 6 DEPRESSION L 0.45 SqM 6750 6 DEPRESSION L 7 M 0 6 DEPRESSION L 7 M 0 6 DEPRESSION L 3.3 M 0 10 Distress Description Severity Quantity Units Cost 10 E Sadd 30000 Social Sadd 30000 6 DEPRESSION L 2 SqM 30000 8 JOINT REFLECTION CRACKING L 2 SqM 30000 8 JOINT REFLECTION CRACKING L 2 SqM 30000 <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>М</td> <td>12000</td> <td></td>	10					М	12000	
13 POTHOLE H 1 Count 40000 6 Description Severity Quantity Units Cost 8 JOINT REFLECTION CRACKING I. 33 M 0 8 Description Severity Quantity Units Cost 6 DEPRKSMON L 0.45 SqM 6750 4 BUMPS/SAGS L 7 M 0 6 DEPRKSMON L 3.3 M 0 10 Exc(24-B) Description Severity Quantity Units Cost 6 DEPRRSSION L 2 SqM 30000 2 12 Description Severity Quantity Units Cost 1012 10 L 2 SqM 30000 2 1014 10 10 RECE2-A) Severity Quantity Units Cost 104120 10 RAVELORG	8			L	33	М	0	
6 Description Severity Quantity Units Cost 8 JOINT REFLECTION CRACKING L 33 M 0 8 - - - - - - 6 DESCRIPTION L 0.45 SqM 6750 6 DEPRESSION L 7 M 0 6 DEPRESSION L 33 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REFLECTION CRACKING L 3 M 0 6 DESCription Severity Quantity Units Cost 8 JOINT REFLECTION CRACKING L 2 SqM 30000 12 Description Severity Quantity Units Cost 10 DISTESS Description Severity Quantity Units Cost 10 RAVELING M 6 Severity Quantity						Count	40000	
8 JONT REFLECTION CRACKING L 33 M 0 B Control Severity Quantity Units Cost 6 DEPRESSION L 0.45 SqM 6730 6 DEPRESSION L 7 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REFLECTION CRACKING L 33 M 0 10 Exect24-B) Severity Quantity Units Cost 8 JOINT REFLECTION CRACKING L 2 SqM 30000 12 Description Severity Quantity Units Cost 6 DEPRESSION L 2 SqM 30000 12 SqM JOINT REFLECTION CRACKING L 2 SqM 30000 12 Description Severity Quantity Units Cost total ID 12 SqM GOMO L 2								
8 JOINT REFLECTION CRACKING L 33 M 0 B Control Severity Quantity Units Cost 6 DEPRESSION L 0.45 SqM 6750 6 DEPRESSION L 7 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REFLECTION CRACKING L 33 M 0 10 esc(24-B) Ountity Units Cost 8 JOINT REFLECTION CRACKING L 2 SqM 30000 12 Description Severity Quantity Units Cost 6 DEPRESSION L 2 SqM 30000 12 SqM JOINT REFLECTION CRACKING L 2 SqM 30000 12 SqM JOINT REFLECTION CRACKING L 2 SqM 30000 12 SqM JOINT REFLECTION CRACKING L 14 Sq	Distress		Description	Severity	Ouantity	Units	Cost	
8 Description Severity Ounnity Units Cost 6 DEPRESSION 1. 0.45 SqM 6750 4 BUJPRSAGS L 7 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REFLECTION CRACKING L 33 M 0 10				· · ·				
6 DEPRESSION L 0.45 SqM 6750 4 BUMPS-SAGS I. 7 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REHLECTION CRACKING I. 33 M 0 sec(24-B) Description Severity Quantity Units Cost 6 DEPRESSION I. 2 SqM 30000 12 Description Severity Quantity Units Cost 6 DEPRESSION I. 2 SqM 30000 8 JOINT REFLECTION CRACKING L 27 M 0 6 DEPRESSION L 27 M 0 8 JOINT REFLECTION CRACKING L 27 M 0 9 BAVELING L 27 M 0 15 9 RUTTING K 14 SqM 02000 158 1508.838								
6 DEPRESSION L 0.45 SqM 6750 4 BUMPS-SAGS I. 7 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REHLECTION CRACKING I. 33 M 0 sec(24-B) Description Severity Quantity Units Cost 6 DEPRESSION I. 2 SqM 30000 12 Description Severity Quantity Units Cost 6 DEPRESSION I. 2 SqM 30000 8 JOINT REFLECTION CRACKING L 27 M 0 6 DEPRESSION L 27 M 0 8 JOINT REFLECTION CRACKING L 27 M 0 9 BAVELING L 27 M 0 15 9 RUTTING K 14 SqM 02000 158 1508.838	Distress		Description	Severity	Ouantity	Units	Cost	
4 BUMPS'SAGS L 7 M 0 6 DEPRESSION M 2 SqM 60000 8 JOINT REFLECTION CRACKING 1. 33 M 0 10				2		SaM		
6DEPRESSIONM2SqM600008JOINT REFLECTION CRACKINGL33M0sec(24-B) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
8JOINT REFLECTION CRACKINGL33M01010SeverityQuantityUnitsCostDistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL33M06DEPRESSIONL2SqM3000012DistressDescriptionSeverityQuantityUnitsCost6DEPRESSIONL2SqM300008JOINT REFLECTION CRACKINGL2SqM300008SeverityQuantityUnitsCost109RectorRectorQuantityUnitsCost10M2219RAVELINGL14SqM041825001019RAVELINGM67SqMgu5*d20cost IDM221010SeverityQuantityUnitsCost10M2210SeverityQuantityUnitsCost10M211CostSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250016RUTTINGM4.5SqM11250017SeverityQuantityUnitsCost18NOINT REFLECTION CRACKINGL12M019RAVELINGM4.5SqM11250010SeverityQuantityUnitsCost1119RAVELINGM								
10101010sec(24-B)DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL2SqM3000012DEPRESSIONL2SqM3000012DistressDescriptionSeverityQuantityUnitsCost6DEPRESSIONL2SqM300008JOINT REFLECTION CRACKINGL27M09RAVELINGL14SqM041825001015RUTTINGL14SqM0418250019RAVELINGM67SqMgu5*d20cost ID/M21015RUTTINGSeverityQuantityUnitsCost11DescriptionSeverityQuantityUnitsCost13POTHOLEH1Count4000011DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250015RAVELINGM4.5SqM103500019RAVELINGM4.5SqM10000022DescriptionSeverityQuantityUnitsCost13RUTTINGM4.3Count900002614M01114M015RUTTINGM4.5SqM103500019RAVELINGM<								
sec(24-B)DescriptionSeverityQuantityUnitsCostBJOINT REFLECTION CRACKINGL33M06DEPRESSIONL2SqM3000012DistressDescriptionSeverityQuantityUnitsCost6DEPRESSIONL27M08JOINT REFLECTION CRACKINGL27M09Sec(25-A)15RUTTINGL14SqM0418250015RAVELINGM67SqMgu5*d20cost ID*A216RAVELINGM67SqMgu5*d20cost ID*A217POTHOLEH1Count40000018POTHOLEH1Count40000019InstressDescriptionSeverityQuantityUnitsCost15NOINT REFLECTION CRACKINGL11M015InstressDescriptionSeverityQuantityUnitsCost15RAVELINGM4.5SqM1125001316RAVELINGM4.5SqM11250019RAVELINGM4.5SqM11250019RAVELINGM4.5SqM10000019InstressDescriptionSeverityQuantityUnitsCost15RUTTINGM					55		0	
DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL2SqM3000012								
8 JOINT REFLECTION CRACKING L 33 M 0 6 DEPRESSION L 2 SqM 30000 12 Description Severity Quantity Units Cost 6 DEPRESSION L 2 SqM 30000 8 JOINT REFLECTION CRACKING L 27 M 0 sec(25-A) - - - - - 3 Description Severity Quantity Units Cost total ID 15 RUTING L 14 SqM 0 4182500 19 RAVELING M 67 SqM gu5*d20 cost ID/M2 10 11 Severity Quantity Units Cost 1508.838 13 POTHOLE H 1 Count 40000 11 I Cost Inits Cost 1508.838 15 BUTING Severity Quantity			Description	Severity	Quantity	Units	Cost	
6 DEPRESSION L 2 SqM 30000 12				· · · · ·				
12 \sim \sim DistressDescriptionSeverityQuantityUnitsCost6DEPRESSIONL2SqM300008JOINT REFLECTION CRACKINGL27M0sec(25-A) \sim \sim \sim \sim \sim 3DescriptionSeverityQuantityUnitsCosttotal ID15RUTTINGL14SqM04182500 \sim \sim \sim \sim \sim 1508.838DistressDescriptionSeverityQuantityUnitsCost \sim \sim \sim \sim \sim 1508.838DistressDescriptionSeverityQuantityUnitsCost11 \sim \sim \sim \sim \sim 1508.838DistressDescriptionSeverityQuantityUnitsCost15DINT REFLECTION CRACKINGL11M015 \sim \sim \sim \sim \sim DistressDescriptionSeverityQuantityUnitsCost15RUTINGM4.5SqM110500019RAVELINGM69SqM10000020 \sim \sim \sim \sim DistressDescriptionSeverityQuantityUnitsCost15RUTINGM4SqM10000022 \sim \sim \sim \sim DistressDescription <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>							-	
DistressDescriptionSeverityQuantityUnitsCost6DEPRESSIONL2SqM300008JOINT REFLECTION CRACKINGL27M0sec(25-A)3DistressDescriptionSeverityQuantityUnitsCosttotal ID15RUTTINGL14SqM0418250071508.838DistressDescriptionSeverityQuantityUnitsCost13POTHOLEH1Count4000011DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250016DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250019RAVELINGM4SqM10000022DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4SqM10000026DistressDescriptionSeverityQuantityUnitsCost13POTHOLEM32 <td< td=""><td></td><td></td><td></td><td>L</td><td>2</td><td>SqM</td><td>50000</td><td></td></td<>				L	2	SqM	50000	
6DEPRESSIONL2SqM300008IONT REFLECTION CRACKINGL27M093			Description	Sourceiter	Quantity	Unita	Cost	
8 JOINT REFLECTION CRACKING L 27 M 0 sec(25-A)				-				
sec(25-A)Image: constraint of the second secon	-							
3DescriptionSeverityQuantityUnitsCosttotal ID15RUTTINGL14 SqM 0418250019RAVELINGM67 SqM $gu5*d20$ $cost$ ID/M27DistressDescriptionSeverityQuantityUnitsCost13POTHOLEH1Count4000011BescriptionSeverityQuantityUnitsCost15DescriptionSeverityQuantityUnitsCost15BescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250016RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M019RAVELINGM4SqM10000022SeverityQuantityUnitsCost13POTHOLEM4SqM10000022SeverityQuantityUnitsCost13POTHOLEM3Count9000026SeverityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0SeverityQuantityUnitsCost1319RAVELINGM54SqM81000030SeverityQuantityUnitsCost19<			JUINT REFLECTION CRACKING	L	27	IVI	0	
DistressDescriptionSeverityQuantityUnitsCosttotal ID15RUTTINGL14SqM0418250041825001508.83819RAVELINGM67SqMgu5*d20cost ID/M21508.838DistressDescriptionSeverityQuantityUnitsCost1508.83813POTHOLEH1Count400001114000015 </td <td>sec(25-A)</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	sec(25-A)	2						
15RUTTINGL14SqM0418250019RAVELINGM67SqM $gu5^{4}d20$ cost ID/M271508.838DistressDescriptionSeverityQuantityUnitsCost13POTHOLEH1Cont40000114000011 </td <td>D: /</td> <td>3</td> <td>D. 1.1</td> <td>a :</td> <td></td> <td>TT</td> <td><u>a</u></td> <td>1 ID</td>	D: /	3	D. 1.1	a :		TT	<u>a</u>	1 ID
19RAVELINGM67SqMgu5*d20cost ID/M2701508.8381508.8381508.838DistressDescriptionSeverityQuantityUnitsCost1111Count400001111Count400001111010DistressDescriptionSeverityQuantityUnits15111M01515111M01619RAVELINGM4.519RAVELINGM69SqM112500191910100 CRACKINGL12M191910100 Cost111110101910010101019100101000002215RUTTINGM4SqM10100000SeverityQuantityUnitsCost13POTHOLEM3Count900002600010100001019RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M019RAVELINGM54SqM81000034054SqM81000054SqM19RAVELINGM54SqM81000034054SqM81000054 <td>Distress</td> <td>1.5</td> <td></td> <td>~</td> <td>~ ~</td> <td></td> <td></td> <td></td>	Distress	1.5		~	~ ~			
701508.838DistressDescriptionSeverityQuantityUnitsCost13POTHOLEH1Count40000111H1Count40000DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL11M015DescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250019RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M0191010Cost15CostDistressDescriptionSeverityQuantityUnitsCost13POTHOLEM4SqM100000221014M013DistressDescriptionSeverityQuantityUnitsCost13POTHOLEM3Count9000026	-						-	
DistressDescriptionSeverityQuantityUnitsCost11111Count4000011111Count400001111111DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL11M01515RUTTINGM4.5SqM11250019RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M01910101035000101000002215RUTTINGM4SqM1000002215RUTTINGM4SqM1000002215RUTTINGM4SqM100000221614M013POTHOLEM3Cost13POTHOLEM3Count9000013POTHOLEM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con.10SeverityQuantityUnitsCost19RAVELINGM54SqM810000341010LongitudiM54SqM810000341054SeverityQuantityUnitsComments54SqM810000	-		RAVELING	М	67	SqM	gu5*d20	
13POTHOLEH1Count4000011Image: constraint of the system of the syste		1			<u> </u>			1508.838
11DescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL11M015Image: Cost of the severityQuantityUnitsCost15RUTTINGM4.5SqM11250019RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M019Image: Cost of the severityQuantityUnitsCost15RUTTINGM4SqM10000022Image: Cost of the severityQuantityUnitsCost13POTHOLEM4SqM10000026Image: Cost of the severityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M030Image: Cost of the severityQuantityUnitsComments19RAVELINGMSeverityQuantityUnitsCost30Image: Cost of the severityQuantityUnitsComments19RAVELINGMSeverityQuantityUnitsComments19RAVELINGMSeverityQuantityUnitsComments19RAVELINGMSeverityQuantityUnitsComments19RAVELINGMSeverityQuantityUnitsComments19RAVELINGMSeverity <td< td=""><td>Distress</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Distress							
DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL11M015L11M0DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250019RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M019DescriptionSeverityQuantityUnitsCost15RUTTINGM4SqM10000022DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL14M013POTHOLEM3Count9000026DistressDescriptionSeverityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments <td></td> <td></td> <td>POTHOLE</td> <td>Н</td> <td>1</td> <td>Count</td> <td>40000</td> <td></td>			POTHOLE	Н	1	Count	40000	
8JOINT REFLECTION CRACKINGL11M015	-	11						
15DescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250019RAVELINGM69SqM1035008JOINT REFLECTION CRACKINGL12M019DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4SqM10000022 </td <td>Distress</td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	Distress	-		1				
DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4.5SqM11250019RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M019 </td <td></td> <td></td> <td>JOINT REFLECTION CRACKING</td> <td>L</td> <td>11</td> <td>М</td> <td>0</td> <td></td>			JOINT REFLECTION CRACKING	L	11	М	0	
15RUTTINGM4.5SqM11250019RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M019Image: constraint of the second		15						
19RAVELINGM69SqM10350008JOINT REFLECTION CRACKINGL12M019Image: constraint of the second s	Distress				~ /			
8JOINT REFLECTION CRACKINGL12M019IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			RUTTING			SqM		
19SeverityQuantityUnitsCostDistressDescriptionM4SqM10000022M4SqM10000022SeverityQuantityUnitsCostBJOINT REFLECTION CRACKINGL14M013POTHOLEM3Count9000026				М		SqM	1035000	
DistressDescriptionSeverityQuantityUnitsCost15RUTTINGM4SqM10000022DistressDescriptionSeverityQuantityUnitsCost8JOINT REFLECTION CRACKINGL14M013POTHOLEM3Count9000026DistressDescriptionSeverityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments			JOINT REFLECTION CRACKING	L	12	М	0	
15RUTTINGM4SqM10000022		19						
22Image: constraint of the second	Distress			Severity	Quantity	Units		
22Image: constraint of the second			RUTTING	М	4	SqM	100000	
8JOINT REFLECTION CRACKINGL14M013POTHOLEM3Count9000026DistressDescriptionSeverityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments5DescriptionSeverityQuantityUnitsComments34DistressDescriptionSeverityQuantityUnitsComments		22						
8JOINT REFLECTION CRACKINGL14M013POTHOLEM3Count9000026DistressDescriptionSeverityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments5DescriptionSeverityQuantityUnitsComments34DistressDescriptionSeverityQuantityUnitsComments	Distress			Severity	Quantity	Units	Cost	
13POTHOLEM3Count9000026				· · · · · ·				
26Image: constraint of the second	13			М	3	Count	90000	
DistressDescriptionSeverityQuantityUnitsCost19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments54SeptimentSeverityQuantityUnitsComments19RAVELINGSeverityQuantityUnitsComments34DistressDescriptionSeverityQuantityUnitsComments								
19RAVELINGM32SqM48000010LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments			Description	Severity	Quantity	Units	Cost	1
10LONGITUDINAL/TRANSVERSE CRACKINGL9M0sec(25-A) con30DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments				-				1
sec(25-A) con.Image: constant of the sector of						-		1
3030Image: Severity of the s		con.						
DistressDescriptionSeverityQuantityUnitsComments19RAVELINGM54SqM81000034DistressDescriptionSeverityQuantityUnitsComments	()(
19RAVELINGM54SqM81000034 </td <td>Distress</td> <td>50</td> <td>Description</td> <td>Severity</td> <td>Quantity</td> <td>Unite</td> <td>Comments</td> <td></td>	Distress	50	Description	Severity	Quantity	Unite	Comments	
3424DistressDescriptionSeverityQuantityUnitsComments	Distress	10		· · · · · ·				
Distress Description Severity Quantity Units Comments			KAVELINU	IVI	54	SqM	810000	
		34			0			
19 RAVELING M 45 SqM 675000			Description	Sovority	Quantity	Inite	Commonte	1
	Distress			-				

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

Maintenand	ce costs. (Continue)					
10	LONGITUDINAL/TRANSVERSE CRACKING	L	4	М	0	
38						
Distress	Description	Severity	Quantity	Units	Comments	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	16	М	0	
42						
Distress	Description	Severity	Quantity	Units	Comments	
19	RAVELING	M	56	SqM	840000	
46	good	IVI	50	SqM	040000	
sec(25-B)	good					
3 sec(23-B)						
		G		TT '4	0	((1 ID
Distress	Description JOINT REFLECTION CRACKING	Severity	Quantity	Units	Cost	total ID
8	JOINT REFLECTION CRACKING	L	14	Μ	0	1543000
7			<u> </u>		~	cost ID/M2
Distress	Description	Severity	Quantity	Units	Cost	556.6378
8	JOINT REFLECTION CRACKING	L	14	М	0	
15	RUTTING	L	6	SqM	0	
15	RUTTING	L	6	SqM	0	
11						
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	14	М	0	1
10	LONGITUDINAL/TRANSVERSE CRACKING	М	16	М	48000	1
15	RUTTING	L	6	SqM	0	
15			0	Squi	0	
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	M	4.6	SqM	115000	
15		L	2		0	
	RUTTING			SqM	-	
13	POTHOLE	M	1	Count	30000	
7	EDGE CRACKING	L	6	М	0	
19		<i>a</i> .	<u> </u>	·	<i></i>	
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	13	М	0	
7	EDGE CRACKING	Н	3	М	45000	
22						
Distress	Description	Severity	Quantity	Units	Cost	
15	RUTTING	L	12	SqM	0	
8	JOINT REFLECTION CRACKING	L	14	М	0	
26						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	M	87	SqM	1305000	
15	RUTTING	L	12	SqM	0	
30		_		~ 1	•	
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	11	M	0	
34	good		11	111	0	
34	good					
42						
	good					
46		G	0	TT *-	0.1	
Distress	Description	Severity	Quantity	Units	Cost	
7	EDGE CRACKING	L	11	М	0	
sec(26-A)						
1					-	
Distress	Description	Severity	Quantity	Units	Cost	total ID
19	RAVELING	Н	1	SqM	20000	8966250
19	RAVELING	М	33	SqM	495000	cost ID/M2
3						4312.771
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	L	0.75	SqM	11250	
8	JOINT REFLECTION CRACKING	L	14	M	0	1
sec(26-A) con.						
19	RAVELING	М	70	SqM	1050000	
5			,0	~ 111	1000000	
5						J

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

1 = -		1			~	1
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	13	M	0	
19	RAVELING	М	143	SqM	2145000	
7		a i	0	TT 1.	a i	
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	H	1.5	SqM	60000	
-	JOINT REFLECTION CRACKING	L M	11	M	0	
<u> </u>	RAVELING RUTTING	L	11	SqM SqM	165000	
9	KUTIING	L	5	SqM	0	
Distress	Description	Severity	Quantity	Units	Cost	
6	DEPRESSION	M	Quantity 2	SqM	60000	
8	JOINT REFLECTION CRACKING	L	12	M	00000	
11	PATCH/UTILITY CUT	H	1.5	SqM	60000	
11			1.5	Squi	00000	
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	13	M	0	
19	RAVELING	M	74	SqM	1110000	
10	LONGITUDINAL/TRANSVERSE CRACKING	L	6	M	0	
13						
Distress	Description	Severity	Quantity	Units	Cost	
13	POTHOLE	L	1	Count	15000	
19	RAVELING	Н	8	SqM	160000	
8	JOINT REFLECTION CRACKING	L	13	М	0	
19	RAVELING	М	75	SqM	1125000	
15						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	М	56	SqM	840000	
11	PATCH/UTILITY CUT	Н	1.5	SqM	60000	
8	JOINT REFLECTION CRACKING	L	10	М	0	
13	POTHOLE	L	1	Count	15000	
13	POTHOLE	М	2	Count	60000	
17						
Distress	Description	Severity	Quantity	Units	Cost	
8	JOINT REFLECTION CRACKING	L	5	M	0	
19	RAVELING	М	101	SqM	1515000	
sec(26-B)						
1						
Distress	Description	Severity	Quantity	Units	Cost	total ID
8	JOINT REFLECTION CRACKING	L	13.5	М	0	5238500
19	RAVELING	М	14	SqM	210000	cost ID/M2
3						2519.72102
Distress	Description	Severity	Quantity	Units	Cost	
11	PATCH/UTILITY CUT	L	6	SqM	90000	
6	DEPRESSION	М	1.5	SqM	45000	
15	RUTTING	М	6	SqM	150000	
7	EDGE CRACKING	L	13	М	0	
5						
Distress	Description	Severity	Quantity	Units	Cost	
19	RAVELING	H	18	SqM	360000	
13	POTHOLE	M	3	Count	90000	
6	DEPRESSION	M	1.5	SqM	45000	
1	ALLIGATOR CRACKING	L	1.5	-	210000	
				SqM		
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
7						
Distress	Description	Severity	Quantity	Units	Cost	
10	LONGITUDINAL/TRANSVERSE CRACKING	М	5	М	15000	
11	PATCH/UTILITY CUT	М	1.5	SqM	45000	
6	DEPRESSION	М	1.5	SqM	45000	
15	RUTTING	M	4.7	SqM	117500	
15	NOTINO	171	7.7	bym	11/500	l

Mannenal	ce costs. (Continue)				
sec(26-B) con.					
9					
Distress	Description	Severity	Quantity	Units	Cost
6	DEPRESSION	М	2	SqM	60000
10	LONGITUDINAL/TRANSVERSE CRACKING	М	12	М	36000
8	JOINT REFLECTION CRACKING	L	11	М	0
11					
Distress	Description	Severity	Quantity	Units	Cost
8	JOINT REFLECTION CRACKING	L	11	М	0
19	RAVELING	М	78	SqM	1170000
13					
Distress	Description	Severity	Quantity	Units	Cost
19	RAVELING	М	67	SqM	1005000
8	JOINT REFLECTION CRACKING	L	13	М	0
15					
Distress	Description	Severity	Quantity	Units	Cost
8	JOINT REFLECTION CRACKING	L	13	М	0
19	RAVELING	М	46	SqM	690000
17					
Distress	Description	Severity	Quantity	Units	Cost
19	RAVELING	М	56	SqM	840000

Table (B.1) The inspection data of all section at the study area and Maintenance costs. (Continue)

APPENDIX C

Data Collection of Marshal Test and ADT

Table (C-1) the Average Daily Traffic (ADT) Value.

	Hourly Volume (HV)	× /		
Section	veh/h	C(hr)	C(day)	ADT veh/day
1-1	2714	0.08	1.01	33589
1-A	1873	0.08	1.01	23181
1-B	1998	0.08	1.01	24728
2-A	1204	0.0761	1.01	15665
2-B	1580	0.0815	1	19387
3-A	1331	0.061	1.01	21604
3-B	1530	0.061	1.01	24834
3-1-A	1358	0.061	1.01	22042
3-1-B	1065	0.061	1.01	17286
4-A	2329	0.061	1.01	37802
4-B	2463	0.061	1.01	39977
5-A	675	0.057	1.01	11725
5-B	830	0.057	1.01	14417
6-A	774	0.057	1.01	13445
6-B	818	0.057	1.01	14209
7-A	774	0.058	1	13345
7-B	844	0.058	1	14552
8-A	2031	0.059	1.01	34083
8-B	2316	0.059	1.01	38866
9-A	2029	0.059	1.01	34049
9-B	2158	0.059	1.01	36214
9-C	1829	0.059	1.01	30693
10-A	1212	0.059	1.01	20339
10-B	1287	0.059	1.01	21598
11-A	1325	0.077	1.01	17037
11-B	1473	0.077	1.01	18941
12-A	1287	0.077	1.01	16549
12-B	1210	0.077	1.01	15559
12-1-A	1048	0.077	1.01	13476
12-1-B	971	0.077	1.01	12486
13-A	1176	0.0579	1	20311
13-B	1289	0.0579	1	22263
15-A	1508	0.059	1.01	25306
15-B	1308	0.059	1.01	21950
17-A	871	0.057	1.01	15129
17-B	783	0.057	1.01	13601
18-A	764	0.0577	1	13241
18-B	869	0.0577	1	15061
19-A	1149	0.0845	1.01	13463

Section	Hourly Volume (HV) veh/h	C(hr)	C(day)	ADT veh/day
19-B	1220	0.0845	1.01	14295
20-A	1238	0.0845	1.01	14506
20-В	1290	0.0845	1.01	15115
21-A	1281	0.0855	1.01	14834
21-В	1377	0.0855	1.01	15946
22-A	1252	0.0842	1.01	14722
22-В	1058	0.0842	1.01	12441
23-A	932	0.0653	1	14273
23-В	886	0.0653	1	13568
23-1-A	767	0.0653	1	11746
23-1-В	865	0.0653	1	13247
24-A	1490	0.0653	1	22818
24-B	1451	0.0653	1	22221
25-A	2927	0.0807	1	36270
25-В	2352	0.0807	1	29145
26-A	2966	0.0831	1	35692
26-B	2561	0.0831	1	30818

Table (C-1). The Average Daily Traffic (ADT) value (Continued)

Table (C.2) The structural number of sections in study area determined depending on data collection by marshal test.

sample	layer name	Average thickness of layer (inches)	stability Ib	Corr.facter of H	stability Ib	layer coff. A	SN
21	binder (5-B)	2.913	2010.615	0.8768	1762.907	0.403	2.0741
22	Base (5-B)	3.150	2252.550	0.8544	1924.579	0.327	2.0741
23	binder (6-A)	2.953	2044.566	0.871	1780.817	0.406	2 2500
24	Base (6-A)	3.402	3405.678	0.685	2332.889	0.364	2.3588
25	binder (6-B)	2.992	2175.301	0.849	1846.830	0.415	2 2000
26	Base (6-B)	3.287	3713.730	0.7544	2801.638	0.384	2.3988
27	binder (7-A)	2.984	2044.566	0.8768	1792.676	0.409	2 22627
28	Base (7-A)	3.335	3405.678	0.775	2639.400	0.377	2.32627
29	binder (7-B)	2.902	2230.416	0.85	1895.854	0.42	2.2138
30	Base (7-B)	3.228	3713.730	0.673	2499.340	0.373	2.2136
31	binder (8A)	2.638	3327.656	0.938	3121.342	0.53	2.6175
32	Base (8A)	3.465	3141.586	0.685	2151.987	0.352	2.0175
33	binder (8B)	2.165	2214.322	1.36375	3019.782	0.528	2.6822
34	Base (8B)	3.976	5070.631	0.58	2940.966	0.387	2.0822
35	binder (9A)	2.559	2610.890	0.938	2449.015	0.478	2.5467
36	Base (9A)	3.465	4001.830	0.694	2777.270	0.382	2.3407
37	binder (9B)	2.087	1938.833	1.652	3202.952	0.536	2.5839
38	Base (9B)	3.898	3958.002	0.651	2576.659	0.376	2.3639
39	binder (9C)	2.244	2442.942	1.36375	3331.562	0.544	27492
40	Base (9C)	3.819	4793.510	0.647	3101.401	0.4	2.7483

sample	layer name	Average thickness of layer (inches)	stability Ib	Corr.facter of H	stability Ib	layer coff. A	SN	
41	binder (10A)	2.756	3968.320	0.95	3769.904	0.575	0.0070	
42	Base (10A)	3.209	3745.873	0.728	2726.996	0.38	2.8379	
43	binder (10B)	2.677	3758.881	1.148	4315.195	0.592	2.8748	
44	Base (10B)	3.386	4091.338	0.675	2761.653	0.381	2.0740	
45	binder (11A)	2.362	1003.544	1.258	1262.458	0.334	1.80238	
46	Base (11A)	3.189	2154.357	0.785	1691.170	0.29	1.00250	
47	binder (11B)	1.693	818.797	2.0693	1694.336	0.402	1.6125	
48	Base (11B)	2.835	2028.693	0.8544	1733.315	0.308		
49	binder (12-1A)	2.244	1092.831	1.258	1374.782	0.353	1.77	
50	Base (12-1A)	2.795	2331.829	0.91	2121.964	0.35	1.//	
51	binder (12-1B)	2.165	1264.571	1.652	2089.072	0.43	1 0015	
52	Base (12-1B)	2.677	2245.187	0.95	2132.928	0.355	1.8815	
53	binder (13A)	2.795	4645.139	0.862	4004.109	0.577	3.0182	
54	Base (13A)	3.622	4629.706	0.647	2995.420	0.388	5.0162	
55	surface (13B)	2.756	3155.255	0.862	2719.830	0.5		
56	binder (13B)	1.969	1281.326	1.87125	2397.682	0.47	2.9915	
57	Base (13B)	1.850	1427.272	1.79	2554.817	0.372		
58	surface (15A)	1.870	1186.968	1.89	2243.370	0.45		
59	binder (15A)	2.047	1118.405	1.6425	1836.980	0.411	2.8489	
60	Base (15A)	2.937	3190.308	0.95	3030.793	0.397		
61	surface (15B)	1.969	1302.932	1.6	2084.691	0.429		
62	binder (15B)	2.165	901.249	1.6425	1480.302	0.372	2.7077	
63	Base (15B)	2.657	3224.480	0.95	3063.256	0.398	-	
64	binder (17-A)	3.008	2243.093	0.8768	1966.744	0.428	0.0000	
65	Base (17-A)	2.874	2475.791	0.858	2124.228	0.35	2.2933	
66	binder (17-B)	2.795	1857.526	0.892	1656.913	0.397	2 2177	
67	Base (17-B)	3.484	2136.058	0.862	1841.282	0.318	2.2177	
68	binder (18-A)	2.976	2014.010	0.8788	1769.912	0.403	2 2107	
69	Base (18-A)	3.228	2660.979	0.775	2062.259	0.347	2.3197	
70	binder (18-B)	2.717	1759.950	0.8768	1543.124	0.374	2 1215	
71	Base (18-B)	3.543	2646.296	0.674	1783.603	0.312	2.1215	
72	binder (19A)	2.638	1664.247	1.12	1863.957	0.418	0.0775	
73	Base (19A)	3.465	3482.200	0.685	2385.307	0.368	2.3775	
74	binder (19B)	2.638	2170.098	0.95	2061.593	0.435	0.410	
75	Base (19B)	3.465	3532.929	0.665	2349.398	0.365	2.412	
76	binder (20A)	2.717	1515.457	1.278	1936.754	0.424	25455	
77	Base (20A)	3.583	4122.643	0.69	2844.624	0.389	2.5455	
78	binder (20B)	3.031	3800.327	0.775	2945.254	0.52	2 5572	
79	base (20B)	2.835	2429.934	0.8544	2076.136	0.346	2.5572	

Table (C.2) The structural number of sections in study area determined depending on data collection by marshal test. (Continue)

ucpenu	ing on data co	Average		. (Continue			
sample	layer name	thickness of layer (inches)	stability Ib	Corr.facter of H	stability Ib	layer coff. A	SN
80	binder (21A)	2.677	1769.209	1.185	2096.513	0.439	2.5228
81	Base (21A)	3.386	4091.338	0.747	3056.229	0.398	2.5220
82	binder (21B)	2.677	2811.576	1.027	2887.489	0.513	2.6938
83	Base (21B)	3.386	4113.384	0.689	2834.121	0.39	2.0730
84	surface (22A)	2.441	2110.705	1.258	2655.267	0.43	
85	binder (22A)	2.283	1028.015	1.298	1334.364	0.34	3.5428
86	Base (22A)	2.598	2655.467	0.95	2522.694	0.368	5.5420
87	Base (22A)	2.717	1529.853	0.99	1514.555	0.28	
88	surface (22B)	2.559	2049.858	0.97	1988.362	0.428	
89	binder (22B)	2.087	752.658	1.465	1102.644	0.31	3.4134
90	Base (22B)	2.913	3556.055	0.862	3065.320	0.4	5.4154
91	Base (22B)	1.969	702.833	1.87125	1315.177	0.257	
92	binder (23- 1A)	2.559	878.542	0.989	868.878	0.277	1.8827
93	Base (23-1A)	2.835	2886.798	0.756	2182.419	0.352	
94	binder (23-1B)	2.480	987.935	1.12	1106.487	0.312	1.9572
95	Base (23-1B)	2.992	2662.081	0.8768	2334.113	0.361	1.9372
96	binder (24A)	2.756	1077.619	0.91	980.634	0.288	1.8303
97	Base (24A)	2.323	2302.507	1.258	2896.554	0.383	1.6505
98	binder (24B)	2.480	909.473	1.0375	943.578	0.283	1.8712
99	Base (24B)	2.756	2741.932	0.928	2544.513	0.373	1.0/12
100	binder (25A)	2.992	2641.137	0.655	1729.945	0.405	2 0257
101	Base (25A)	2.520	2009.072	0.95	1908.618	0.327	2.0357
102	binder (25B)	3.465	1985.483	0.655	1300.491	0.349	1 0090
103	Base (25B)	2.323	1800.294	1.148	2066.738	0.34	1.9989
104	surface (26A)	2.795	2280.042	0.8768	1999.141	0.43	
105	binder (26A)	3.110	3647.106	0.775	2826.507	0.51	3.1543
106	Base (26A)	2.638	829.202	1.133	939.486	0.215	
107	surface (26B)	2.913	2548.984	0.8768	2234.949	0.45	
108	binder (26B)	3.031	3800.327	0.775	2945.254	0.52	3.0109
109	Base (26B)	2.480	682.551	1.06	723.504	0.185	

Table (C.2) The structural number of sections in study area determined depending on data collection by marshal test. (Continue)

APPENDIX D

Review PAVER PCI and Model Data

Table (D.1) Total number of sample units and The minimum sample units required for the section of study area.

required for the section of study area.				
Network ID	Branch ID	Section ID	Actual number of unit (N)	Minimum number of sample unit inspected (n)
Karbala	13	А	54	13
		В	54	13
Karbala	14	А	11	7
Karbala	15	А	63	13
		В	63	13
Karbala	16	А	14	8
Karbala	17	А	34	11
		В	34	11
Karbala	18	А	34	11
		В	34	11
Karbala	19	А	6	5
		В	6	5
Karbala	20	А	8	6
		В	8	6
Karbala	21	А	4	4
		В	4	4
Karbala	22	А	22	10
		В	22	10
Karbala	23	А	2	2
		В	2	2
		1A	7	5
		1B	7	5
Karbala	24	А	12	7
		В	12	7
Karbala	25	А	46	12
		В	46	12
Karbala	26	А	18	9
		В	18	9
Karbala	27	A	20	10
Karbala	28	1A	18	9
		1B	19	9
Karbala	28	2A	16	8
		2B	16	8
Karbala	28	3A	16	8
		3B	16	8
Karbala	28	4A	3	3
		4B	3	3
Karbala	28	5A	11	7
		5B	5	5
Karbala	28	6A	5	5
		6B	5	4
Karbala	28	7A	5	5
		7B	5	4
		/ D	5	4

Network ID	Branch ID	Section ID	Actual number of unit (N)	Minimum number of sample unit inspected (n)
	20	8A	4	4
V - 1 - 1	28	8B	4	4
Karbala	29	9A	2	2
	28	9B	9	6
	29	1A	7	5
	29	2A	11	7
	29	3A	2	2
	29	4A	3	3
	30	1A	8	5
Karbala	30	2A	8	6
Karbala	30	3A	3	3
	30	4A	18	9
	30	5A	11	7
	30	6A	3	3
	30	7A	13	8
	30	8A	5	5
	31	1A	13	8
		2A	3	3
	31	2B	3	3
	31	3A	10	7
Karbala	31	4A	10	7
	31	5A	9	6
	31	6A	6	5
	31	7A	5	5
	31	8A	4	4
	32	1A	15	8
	52	1B	15	8
	32	2A	18	9
Karbala	32	3A	9	4
	20	4A	8	5
	32	4B	8	4
	32	5A	7	5

Table (D.1) Total number of sample units and The minimum sample units required for the section of study area(Continue).

Table (D.2) PAVER User Defined Reports of Last Condition for Study Area.

Network	Branch	Section	SURFACE	PCI	PCI	PCI Pct	PCI Pct	PCI Pct
ID	ID	ID	SUKFACE	PCI	Category	Climate	Load	Other
Karbala	15	1A	AC	66	Fair	51	36	13
Karbala	15	1B	AC	74	Satisfactory	19	50	31
Karbala	16	1A	AC	63	Fair	21	48	31
Karbala	17	1A	AC	71	Satisfactory	58	34	8
Karbala	17	1B	AC	76	Satisfactory	86	7	7
Karbala	18	1A	AC	87	Good	41	14	45
Karbala	18	1B	AC	84	Satisfactory	90	1	9
Karbala	19	1A	AC	70	Fair	32	34	34
Karbala	19	1B	AC	60	Fair	38	44	18

(Conunu	,	~ •			DOT	DOLD	DOLD	DOID
Network ID	Branch ID	Section ID	SURFACE	PCI	PCI Category	PCI Pct Climate	PCI Pct Load	PCI Pct Other
Karbala	20	1D 1A	AC	47	Poor	24	29	47
Karbala	20	1B	AC	55	Poor	14	37	49
Karbala	21	12 1A	AC	54	Poor	23	16	61
Karbala	21	1B	AC	52	Poor	20	27	53
Karbala	22	1 <u>D</u> 1A	AC	81	Satisfactory	28	21	51
Karbala	22	1B	AC	88	Good	9	27	64
Karbala	23	12 1A	APC	100	Good	0	0	0
Karbala	23	1B	APC	97	Good	100	0	0
Karbala	23 1	1A	APC	85	Satisfactory	65	0	35
Karbala	23 1	1B	APC	80	Satisfactory	100	0	0
Karbala	24	1A	APC	80	Satisfactory	65	25	10
Karbala	24	1B	APC	87	Good	16	51	33
Karbala	25	1A	APC	76	Satisfactory	34	66	0
Karbala	25	1B	APC	86	Good	30	70	0
Karbala	26	1A	APC	66	Fair	52	11	37
Karbala	26	1B	APC	69	Fair	47	38	15
Karbala	27	1A	AC	50	Poor	68	16	16
Karbala	28_1	1A	AC	98	Good	0	17	83
Karbala	28_1	1B	AC	97	Good	68	32	0
Karbala	28 2	1A	AC	94	Good	1	99	0
Karbala	28_2	1B	AC	96	Good	100	0	0
Karbala	28_3	1A	AC	91	Good	18	52	30
Karbala	28_3	1B	AC	94	Good	26	0	74
Karbala	28_4	1A	AC	93	Good	71	0	29
Karbala	28_4	1B	AC	90	Good	47	53	0
Karbala	28_5	1A	AC	97	Good	0	100	0
Karbala	28_5	1B	AC	98	Good	100	0	0
Karbala	28_6	1A	AC	94	Good	0	42	58
Karbala	28_6	1B	AC	85	Satisfactory	0	74	26
Karbala	28_7	1A	AC	97	Good	0	19	81
Karbala	28_7	1B	AC	93	Good	0	44	56
Karbala	28_8	1A	AC	86	Good	30	0	70
Karbala	28_8	1B	AC	83	Satisfactory	0	27	73
Karbala	28_9	1A	AC	83	Satisfactory	0	0	100
Karbala	28_9	1B	AC	68	Fair	20	32	48
Karbala	29_1	1A	AC	40	Very Poor	28	44	28
Karbala	29_2	1A	AC	36	Very Poor	36	29	35
Karbala	29_3	1A	AC	12	Serious	46	33	21
Karbala	29_4	1A	AC	16	Serious	39	36	25
Karbala	30_1	1A	AC	48	Poor	51	20	29
Karbala	30_2	1A	AC	27	Very Poor	46	20	34
Karbala	30_3	1A	AC	32	Very Poor	44	16	40
Karbala	30_4	1A	AC	49	Poor	42	18	40
Karbala	30_5	1A	AC	45	Poor	51	34	15
Karbala	30_6	1A	AC	46	Poor	30	36	34
Karbala	30_7	1A	AC	43	Poor	53	17	30
Karbala	30_8	1A	AC	43	Poor	36	28	36
Karbala	31_1	1A	AC	54	Poor	34	21	45

Table (D.2) PAVER User Defined Reports of Last Condition for Study Area (Continue).

Network	Branch	Section		DCI	PCI	PCI Pct	PCI Pct	PCI Pct
ID	ID	ID	SURFACE	PCI	Category	Climate	Load	Other
Karbala	31_2	1A	AC	43	Poor	47	28	25
Karbala	31_2	1B	AC	48	Poor	50	12	38
Karbala	31_3	1A	AC	64	Fair	38	2	60
Karbala	31_3	1B	AC	100	Good	0	0	0
Karbala	31_4	1A	AC	53	Poor	59	8	33
Karbala	31_5	1A	AC	53	Poor	53	32	15
Karbala	31_6	1A	AC	43	Poor	51	32	17
Karbala	31_7	1A	AC	89	Good	67	0	33
Karbala	31_7	1B	AC	100	Good	0	0	0
Karbala	31_8	1A	AC	75	Satisfactory	72	18	10
Karbala	32_1	1A	AC	28	Very Poor	47	17	36
Karbala	32_1	1B	AC	76	Satisfactory	41	44	15
Karbala	32_2	1A	AC	42	Poor	42	17	41
Karbala	32_3	1A	AC	65	Fair	52	30	18
Karbala	32_4	1A	AC	75	Satisfactory	38	0	62
Karbala	32_4	1B	AC	76	Satisfactory	63	18	19
Karbala	32_5	1A	AC	58	Fair	38	15	47

Table (D.2) PAVER User Defined Reports of Last Condition for Study Area (Continue).

Table (D.3) The Review Model Data for Zone of Study area

Age at					Network	Branch	Section		
Insp	PCI	Model	Difference	Status	ID	ID	ID	Surface	Rank
0.25	100	100	0		Karbala	2	1B	APC	Α
6.01	48	70	22		Karbala	14	1A	AC	С
7.01	71	67	-4		Karbala	17	1A	AC	С
8	66	66	0		Karbala	26	1A	APC	Α
6.01	50	70	20		Karbala	27	1A	AC	С
7.79	55	66	11		Karbala	1	1	AC	Α
8.29	86	66	-20		Karbala	1	А	AC	Α
8.29	85	66	-19		Karbala	1	В	AC	Α
2.21	97	91	-6		Karbala	10	1A	AC	Α
2.21	91	91	0		Karbala	10	1B	AC	А
2.21	93	91	-2		Karbala	11	1A	AC	Α
2.21	87	91	4		Karbala	11	1B	AC	А
6	94	70	-24		Karbala	12	1A	APC	Α
6	95	70	-25	Out of Bounds	Karbala	12	1B	APC	Α
6.21	80	69	-11		Karbala	12-1	1A	AC	Α
6.17	80	69	-11		Karbala	12-1	1B	AC	Α
7.54	76	67	-9		Karbala	13	1A	AC	В
7.5	68	67	-1		Karbala	13	1B	AC	В
9.01	66	66	0		Karbala	15	1A	AC	В
9.01	74	66	-8		Karbala	15	1B	AC	В
4.01	63	79	16		Karbala	16	1A	AC	С
7.01	76	67	-9		Karbala	17	1B	AC	С
4.01	87	79	-8		Karbala	18	1A	AC	С
4.01	84	79	-5		Karbala	18	1B	AC	С
10.01	70	66	-4		Karbala	19	1A	AC	В
10.01	60	66	6		Karbala	19	1B	AC	В

	D.3)	THC KC		el Data for Zo		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Age at Insp	PCI	Model	Difference	Status	Network ID	Branch ID	Section ID	Surface	Rank
3.28	72	83	11	Status	Karbala	2	1D 1B	APC	A
10.01	47	66	11		Karbala	20	1D 1A	AC	B
10.01	55	66	19		Karbala	20	1A 1B	AC	B
	54		11			20			
10.01	52	66			Karbala		1A 1D	AC	B
10.01		66	14		Karbala	21	1B	AC	B
10.01	81	66	-15		Karbala	22	1A	AC	B
10.01	88	66	-22		Karbala	22	1B	AC	B
3.01	100	85	-15	Out of Bounds	Karbala	23	1A	APC	B
4.01	97	79	-18		Karbala	23	1B	APC	B
3.84	85	80	-5		Karbala	23-1	1A	APC	B
4.01	80	79	-1		Karbala	23-1	1B	APC	B
4.01	80	79	-1		Karbala	24	1A	APC	В
4.01	87	79	-8		Karbala	24	1B	APC	В
8.05	76	66	-10		Karbala	25	1A	APC	A
8.01	86	66	-20		Karbala	25	1B	APC	A
7.84	69	66	-3		Karbala	26	1B	APC	Α
3.01	98	85	-13		Karbala	28-1	1A	AC	E
3.01	97	85	-12		Karbala	28-1	1B	AC	E
3.01	94	85	-9		Karbala	28-2	1A	AC	E
3.01	96	85	-11		Karbala	28-2	1B	AC	E
3.01	91	85	-6		Karbala	28-3	1A	AC	Е
3.01	94	85	-9		Karbala	28-3	1B	AC	Е
3.01	93	85	-8		Karbala	28-4	1A	AC	Е
3.01	90	85	-5		Karbala	28-4	1B	AC	Е
3.01	97	85	-12		Karbala	28-5	1A	AC	Е
3.01	98	85	-13		Karbala	28-5	1B	AC	Е
3.01	94	85	-9		Karbala	28-6	1A	AC	Е
3.01	85	85	0		Karbala	28-6	1B	AC	Е
3.01	97	85	-12		Karbala	28-7	1A	AC	Е
3.01	93	85	-8		Karbala	28-7	1B	AC	Е
3.01	86	85	-1		Karbala	28-8	1A	AC	E
3.01	83	85	2		Karbala	28-8	1B	AC	E
3.01	83	85	2		Karbala	28-9	1D 1A	AC	E
3.01	68	85	17		Karbala	28-9	1B	AC	E
6.01	40	70	30		Karbala	29-1	1D 1A	AC	E
6.01	36	70	30	Outlier	Karbala	29-1	1A 1A	AC	E
6.01	12	70	58	Outlier	Karbala	29-2	1A 1A	AC	E
6.01	12	70	54	Outlier	Karbala	29-3	1A 1A	AC	E
2.01	100	92	-8	oumer	Karbala	3	10A	APC	A
2.01	100	92	-8		Karbala	3	10A 10B	APC	
									A
2.01	98	92	-6		Karbala	3	1A 1P	APC	A
2.01	100	92	-8		Karbala		1B	APC	A
2.03	90	92	2		Karbala	3-1	1A 1D	AC	A
0.01	98	100	2		Karbala	3-1	1B	AC	A
14.01	60	58	-2		Karbala	4	1A	AC	A
14.01	46	58	12		Karbala	4	1B	AC	A
3.01	77	85	8		Karbala	5	1B	AC	C
0.01	80	100	20	Out of Bounds	Karbala	5	1A	AC	C
3.04	85	85	0		Karbala	6	1A	AC	С

Table (D.3) The Review Model Data for Zone of Study area (continue).

Age at					Network		Section		
Insp	PCI	Model	Difference	Status	ID	ID	ID	Surface	Rank
3.04	82	85	3		Karbala	6	1B	AC	С
3.04	73	85	12		Karbala	7	1A	AC	С
3.01	70	85	15		Karbala	7	1B	AC	С
3.1	86	85	-1		Karbala	8	1A	APC	Α
3.01	90	85	-5		Karbala	8	1B	APC	A
3.05	90	85	-5		Karbala	9	1A	APC	Α
3.05	85	85	0		Karbala	9	1B	APC	Α
3.05	85	85	0		Karbala	9	1C	APC	А
18.02	48	42	-6		Karbala	30-1	1A	AC	E
18.02	27	42	15		Karbala	30-2	1A	AC	E
18.02	32	42	10		Karbala	30-3	1A	AC	E
18.02	49	42	-7		Karbala	30-4	1A	AC	E
18.02	45	42	-3		Karbala	30-5	1A	AC	E
18.02	46	42	-4		Karbala	30-6	1A	AC	E
18.02	43	42	-1		Karbala	30-7	1A	AC	E
18.02	43	42	-1		Karbala	30-8	1A	AC	E
4.26	54	77	23		Karbala	31-1	1A	AC	E
4.29	43	77	34	Outlier	Karbala	31-2	1A	AC	E
4.29	48	77	29		Karbala	31-2	1B	AC	E
4.26	64	77	13		Karbala	31-3	1A	AC	E
4.26	53	77	24		Karbala	31-4	1A	AC	E
4.26	53	77	24		Karbala	31-5	1A	AC	E
4.26	43	77	34	Outlier	Karbala	31-6	1A	AC	E
4.26	89	77	-12		Karbala	31-7	1A	AC	E
4	75	79	4		Karbala	31-8	1A	AC	C
16.26	28	47	19		Karbala	32-1	1A	AC	E
8.27	42	66	24		Karbala	32-2	1A	AC	E
8.27	65	66	1		Karbala	32-3	1A	AC	E
8.27	75	66	-9		Karbala	32-4	1A	AC	E
8.27	76	66	-10		Karbala	32-4	1B	AC	E
8.27	58	66	8		Karbala	32-5	1A	AC	E
8	50	66	16		Karbala	2	1A	APC	Α
16.05	76	48	-28		Karbala	32-1	1B	AC	E

Table (D.3) The Review Model Data for Zone of Study area (continue).

APPENDIX E

Statistical Analysis Results of Develop Models

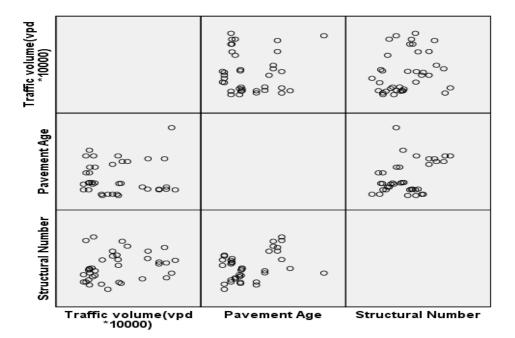


Figure (E-1A) scatter plot show the Correlation Between the Independent Variable of the First Developed Model for the Selected Roadway in Karbala City.

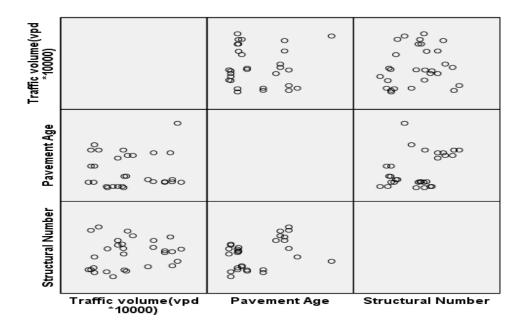
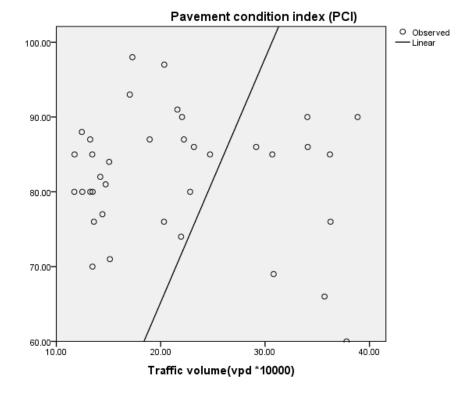


Figure (E-1B) scatter plot show the Correlation Between the Independent Variable of the Second Developed Model for the Selected Roadway in Karbala City.

Table (E.1) Statistical Analysis Layout for the first developed model (Cl₁)


A- Curve Fit between PCI and ADT

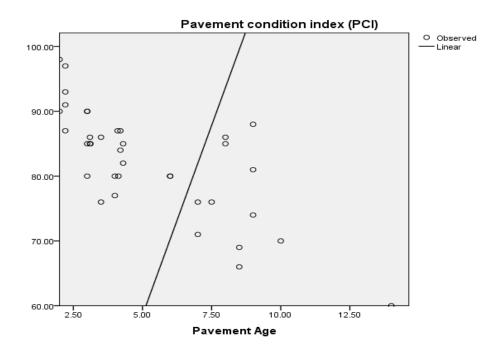
A.1 ANOVA^a

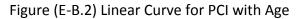
	Sum of Squares	df	Mean Square	F	Sig.
Regression	213037.800	1	213037.800	193.177	.000
Residual	39701.200	36	1102.811		
Total	252739.000	37			

The independent variable is Traffic volume(vpd *10000).^a

a. The equation was estimated without the constant term.

Figure (E-A.2) Linear Curve for PCI with ADT


B-Curve Fit between PCI and Age


B.1 ANOVA^a

	Sum of Squares	df	Mean Square	F	Sig.
Regression	177283.302	1	177283.302	84.582	.000
Residual	75455.698	36	2095.992		
Total	252739.000	37			

The independent variable is Pavement Age.^a

a. The equation was estimated without the constant term.

C-Curve Fit between PCI and SN

C.1 ANOVA^a

	Sum of Squares	df	Mean Square	F	Sig.
Regression	240385.616	1	240385.616	700.527	.000
Residual	12353.384	36	343.150		
Total	252739.000	37			

The independent variable is Structural Number.^a

a. The equation was estimated without the constant term.

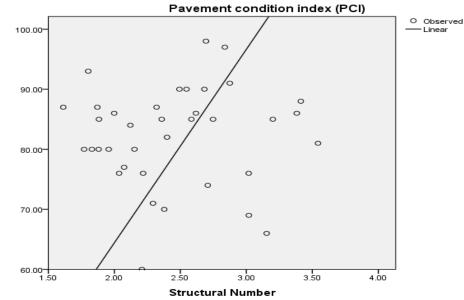


Figure (E-C.2) Linear Curve for PCI with ADT

	LAUEIN	e Values		
			Case Number	Value
Pavement condition index	Highest	1	4	98.00
(PCI)		2	15	97.00
		3	17	93.00
		4	16	91.00
		5	3	90.00 ^ª
	Lowest	1	5	60.00
		2	36	66.00
		3	37	69.00
		4	27	70.00
		5	23	71.00
Pavement Age	Highest	1	5	14.00
		2	27	10.00
		3	22	9.00
		4	28	9.00
		5	29	9.00
	Lowest	1	4	2.00
		2	3	2.00
		3	18	2.21
		4	17	2.21
		5	16	2.21 ^b
Traffic volume(vpd *10000)	Highest	1	11	38.87
		2	5	37.80
		3	34	36.27
		4	13	36.21
		5	36	35.69
	Lowest	1	6	11.73
		2	30	11.75
		3	29	12.44
		4	20	12.49
		5	25	13.24
Structural Number	Highest	1	28	3.54
		2	29	3.41
		3	1	3.38
		4	2	3.20
		5	36	3.15
	Lowest	1	18	1.61
		2	19	1.77
		3	17	1.80
		4	32	1.83
		5	33	1.87

D. outliner boundary for first develop model. Extreme Values

a. Only a partial list of cases with the value 90.00 are shown in the table of upper extremes.

b. Only a partial list of cases with the value 2.21 are shown in the table of lower extremes.

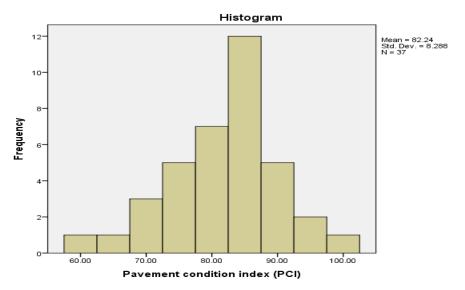


Figure (D.1)frequency distribution histogram for pavement condition index of first model

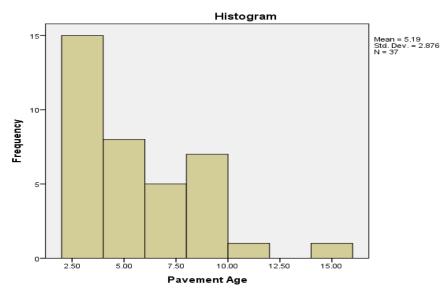


Figure (D.2) frequency distribution histogram pavement age of first model

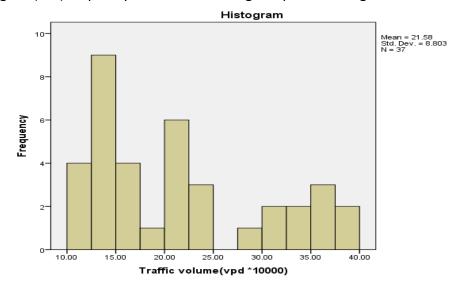


Figure (D.3) frequency distribution histogram traffic volume of first model

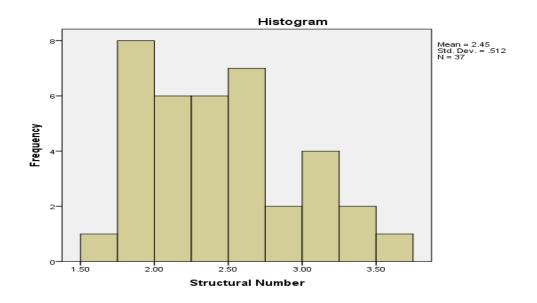


Figure (D.4) frequency distribution histogram for structural number of first model

- F. Regression Analysis Layout for the first developed model (Cl₁)
- F.1 Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Structural Number , Traffic volume(vpd *10000), Pavement Age ^b		Enter

a. Dependent Variable: Pavement condition

b. All requested variables entered.

F.2 Coefficients

		95.0% Confidence Interval for B		Correlations			Collinearity Statistics	
Mod	lel	Lower Bound	Upper Bound	Zero- order	Partial	Part	Tolerance	VIF
1	(Constant)	74.957	90.384					
	Traffic volume(vpd *10000)	368	003	137	339	192	.945	1.058
	Pavement Age	-3.197	-2. 018	748	843	833	.848	1.179
	Sutractural Number	3.486	10.285	.031	.538	.382	.806	1.241

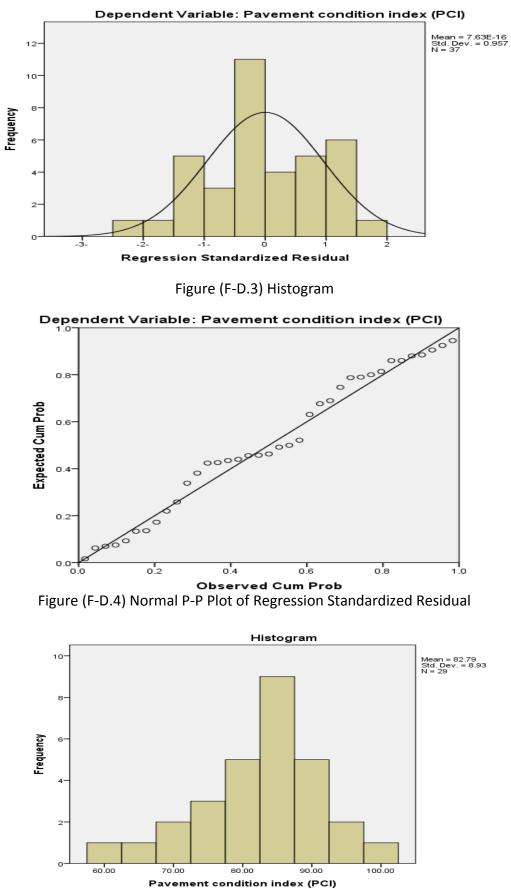


Figure (F.1) frequency distribution histogram for pavement condition index of second

model

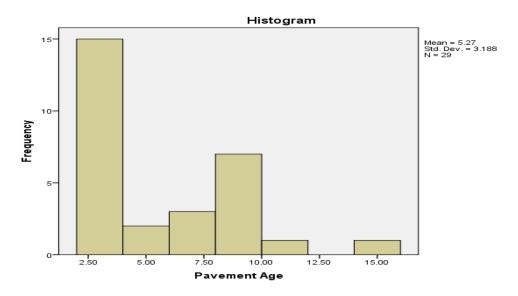


Figure (F.2) frequency distribution histogram pavement age of second model

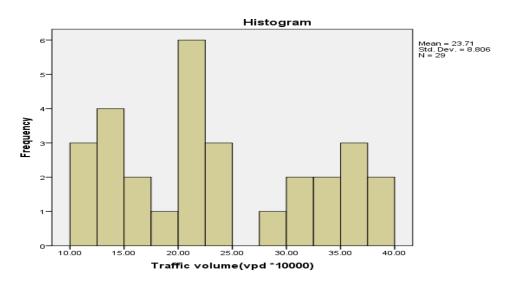


Figure (F.3) frequency distribution histogram traffic volume of second model

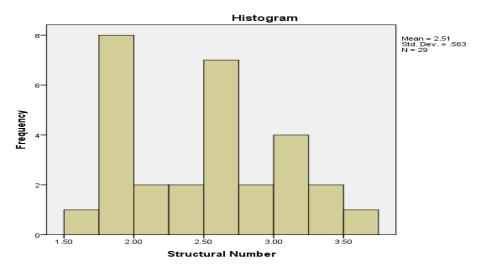


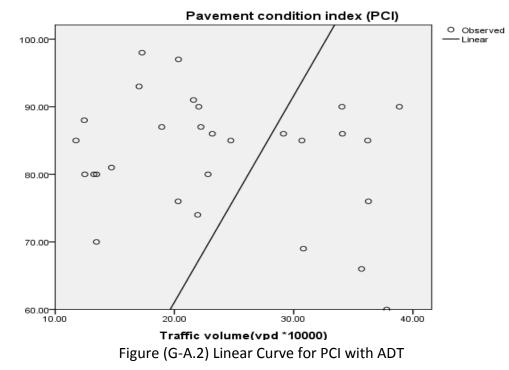
Figure (F.4) frequency distribution histogram for structural number of second model

	Extreme	e Values		
			Case Number	Value
Traffic volume(vpd *10000)	Highest	1	7	38.87
		2	5	37.80
		3	26	36.27
		4	9	36.21
		5	28	35.69
	Lowest	1	22	11.75
		2	21	12.44
		3	16	12.49
		4	23	13.25
		5	19	13.46
Pavement Age	Highest	1	5	14.00
J J	U	2	19	10.00
		3	18	9.00
		4	20	9.00
		5	21	9.00
	Lowest	1	4	2.00
		2	3	2.00
		3	14	2.21
		4	13	2.21
		5	12	2.21 ^ª
Structural Number	Highest	1	20	3.54
		2	21	3.41
		3	1	3.38
		4	2	3.20
	.	5	28	3.15
	Lowest	1	14	1.61
		2	15	1.77
		3 4	13 24	1.80 1.83
		4 5	24	1.85
Pavement condition index	Highest	1	4	98.00
(PCI)	inglicat	2	4 11	97.00
, , ,		2	13	93.00
		3 4	13	93.00 91.00
		4 5	3	91.00 ^b
	Lowest	1	5	60.00
	LOWESI			
		2	28	66.00
		3	29	69.00 70.00
		4	19	70.00
	-	5	18	74.00

G. outliner boundary for first develop model. Extreme Values

a. Only a partial list of cases with the value 2.21 are shown in the table of lower extremes.

b. Only a partial list of cases with the value 90.00 are shown in the table of upper extremes.


Table (G.2) Statistical Analysis Layout for the Second Developed model Cl₂

A- Curve Fit between PCI and ADT
A.1 ANOVA ^a

	Sum of Squares	df	Mean Square	F	Sig.
Regression	172327.870	1	172327.870	168.177	.000
Residual	28691.130	28	1024.683		
Total	201019.000	29			

The independent variable is Traffic volume(vpd *10000).^a

a. The equation was estimated without the constant term.

B-Curve Fit between PCI and Age

B.1 ANOVA^a

	Sum of Squares	df	Mean Square	F	Sig.
Regression	133054.675	1	133054.675	54.816	.000
Residual	67964.325	28	2427.297		
Total	201019.000	29			

The independent variable is Pavement Age.^a

a. The equation was estimated without the constant term.

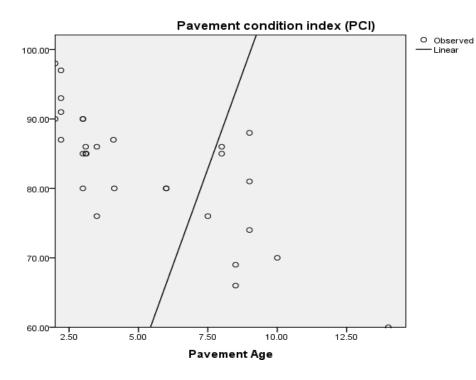
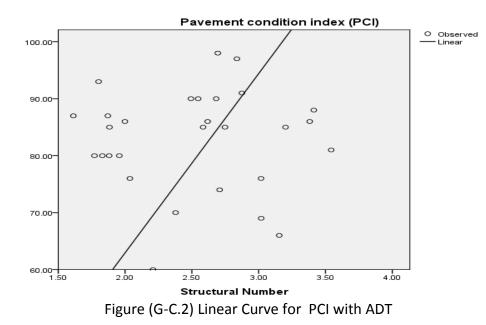


Figure (G-B.2) Linear Curve for PCI with Age


C-Curve Fit between PCI and SN

C.1 ANOVA^a

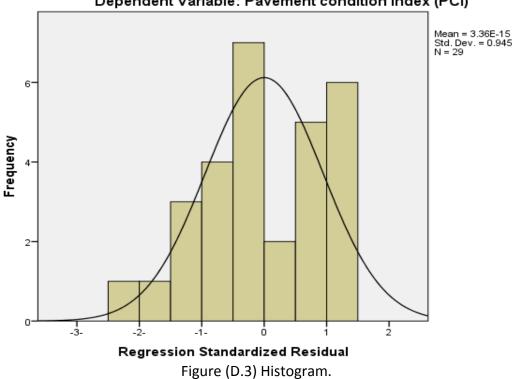
	Sum of Squares	df	Mean Square	F	Sig.
Regression	189517.718	1	189517.718	461.383	.000
Residual	11501.282	28	410.760		
Total	201019.000	29			

The independent variable is Structural Number.^a

a. The equation was estimated without the constant term.

D- Regression Analysis Layout for the Second Developed Model Cl₂

D.1 Variables Entered/Removed^a


Model	Variables Entered	Variables Removed	Method
1	Structural Number, Traffic volume(vpd *10000), Pavement Age ^b		Enter

a. Dependent Variable: Pavement condition

b. All requested variables entered.

D.2 Coefficients

		95.0% Confide	nce Interval for					
		В		Correlations		Collinearity Statistics		
м	odel	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	78.409	96.137		l			
	Traffic volume(vpd *10000)	484	076	229	492	273	.976	1.025
	Pavement Age	-3.180	-1.968	768	868	845	.845	1.183
	Struactural Number	2.799	9.733	005	.597	.359	.827	1.210

Dependent Variable: Pavement condition index (PCI)

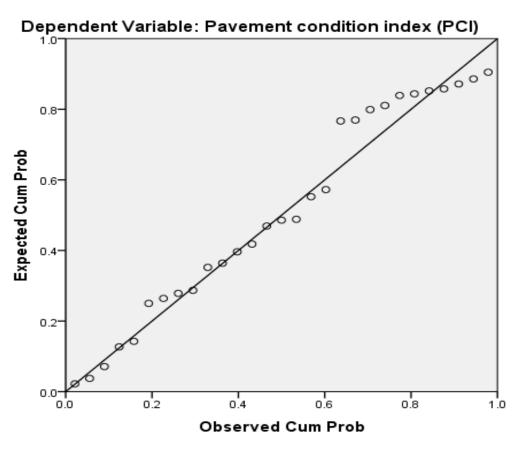


Figure (D.4) Normal P-P Plot of Regression Standardized Residual

Statistical Analysis of Irrespective Weight

Statistical analysis is made for 35 questionnaire samples as show in Figure (E-3.1). Three questionnaire samples are excluded and repeat the test as show in Figure (F-3.2).

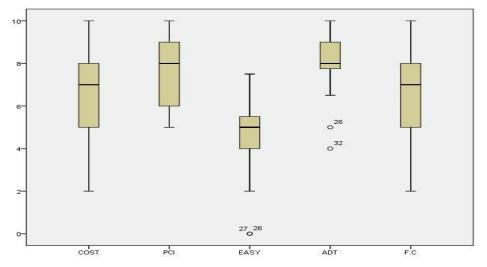


Figure (E-3.1) Statistical Analysis is Made for 35 Questionnaire Samples.

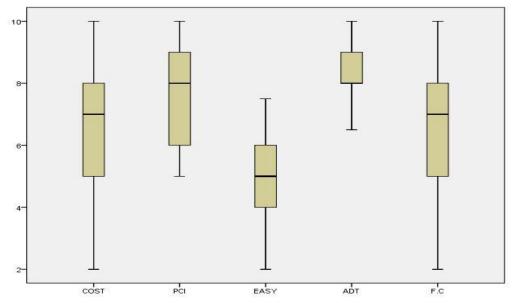


Figure (E-3.2) Statistical Analysis is Made for 32 Questionnaire Samples

Check Sample Size

The equation of sample size as shown below:

$$N = (S Z /E)^2$$
(1)

For 95% degree of confidences and acceptable error of ± 1 with std. deviation , depended on eq. (1) the sample size determined as shown in Table (F-3.3).

	N	Mean	Std. Deviation	sample size	
COST	32	6.39	2.105	17	
PCI	32	7.61	1.684	11	
EASY	32	5.00	1.289	7	
ADT	32	8.34	.979	2	
F.C	32	6.88	2.000	15	
Valid N (listwise)	32				

Table (E-3.3) Descriptive Statistics and sample size.

APPENDIX F

MATLAB R2015a

This appendix shows develop special program to accomplish the calculations which is the most efficient and effective application for this way. MATLAB R2015a is developed to determine the priority of section roads.

```
I. Main Program:
   clc;
   clear;
   close all;
   Filename = 'Info.xlsx'; %% FIle name of Data.
    [ ID, Sec, Cost, Benefit, n ] = Readfile(Filename);
   N ID = ID;
   Rank = zeros(n, 1);
   max ID = zeros(n, 1);
   \max g = \operatorname{zeros}(n, 1);
    for i=1:n
        [ m_ID, m_g ] = ith_trial( N_ID, Cost, Benefit );
        [ N ID ] = Final( m ID, N ID );
        Rank(i, 1) = i;
        \max ID(i,1) = m ID;
       \max g(i,1) = m g;
        Section(i,1) = Sec(m ID);
```

end

```
% xlswrite('Result.xlsx','Rank',1,'A1')
% xlswrite('Result.xlsx','Section',1,'B1')
% xlswrite('Result.xlsx','Repeat',1,'C1')
xlswrite('Result.xlsx',Rank,1,'A2')
xlswrite('Result.xlsx',Section,1,'B2')
xlswrite('Result.xlsx',max_g,1,'C2')
```

II. Read File Program:

010	Detailed explanation goes here	
informat	<pre>[num,txt] = xlsread(Filename); ion.</pre>	%% Read file Excel for
I.D./m2.	Cost = num(:,1);	%% Cost of section
	<pre>Benefit = num(:,2);</pre>	%% PCI Benefit.
procedur	<pre>Sec_int = txt(:,1); e.</pre>	%% Name of Section
	<pre>n = length(Cost);</pre>	<pre>%% Numbers of Section (alternatives).</pre>
	<pre>len = length(Sec_int);</pre>	88
	<pre>Section = Sec_int(3:len);</pre>	%% Name of Section
	id = 1:n;	%% ID of Scetion
end	<pre>ID = reshape(id,n,1);</pre>	%% ID of Scetion

الخلاصة

تواجه مدينة كربلاء المقدسة تحديا كبيرا بسبب التدهور الكبير في البنية التحتية لشبكة الطرق. تؤدي طريقة الإدارة غير السليمة (إن وجدت) إلى زيادة التدهور . هذه الدراسة، تهدف الى استحداث نظام أسبقيات مرشد في نظام إدارة صيانة رصفات الطرق (PMMS) على مستوى الشبكة.

استخدم برنامج (6.5.7) PAVER لحساب قيم ال (PCI) لمنطقة مختارة من شبكة الطرق في مدينة كربلاء. تم إجراء المسح البصري للتحقق من نوع ومستوى الخطورة ومدى الفشل في مقاطع ووحدات العينة المختارة من الطرق. ويبلغ طول المنطقة قيد الدراسة ٢,٨٠ كيلومترا متضمنة كل الأنواع الوظيفية تقريبا للطرق الحضرية. تحقق جمع البيانات لعدد (١٠٩) من مقاطع الطرق متضمنة: 20 مقطع شرياني رئيسي، ٢٨مقطع شرياني ثانوي، ١٤مقطع تجميعي، و مقطع ٢٧ مقطع متضمنة: 20 مقطع شرياني رئيسي، ٢٨مقطع شريانت لكل مقطع من مقاطع الطرق محلي. و علاوة على ذلك، قد تم جمع البيانات لكل مقطع من مقاطع الطرق ويباغ مولي المنطقة قيد الدراسة ٢٩.٩) من مقاطع الطرق متضمنة: 20 مقطع شرياني رئيسي، ٢٨مقطع شرياني ثانوي، ١٤مقطع تجميعي، و مقطع ٢٧ مقطع محلي. و علاوة على ذلك، قد تم جمع البيانات لكل مقطع من مقاطع الطرق وتقييمها باستخدام برنامج (6.5.7) PAVER. كذالك، فقد تم احتساب مؤشر حاله ألرصفه (PCI) لمقاطع مختلفة ورابط المعلومات الجغرافية (GIS) مع برنامج (6.5.7) PAVER لإخراج النتائج و إظهار اسبقيه الصيانة وإعادة التأهيل للشبكة بأكملها والتي تمت باستخدام قيم (PCI) الحرجة.

فظلا عن مؤشر الأسبقيات البسيطة المعتمدة على قيمه (PCI) الناتجة من مخرجات برنامج (6.5.7) PAVER، تقدم الدراسة مؤشرات أخرى لكل مقطع من مقاطع الطريق. الأول، مؤشر اسبقيه الصيانة (MPI) والذي يعتمد على عوامل متعددة تم التحقيق فيها من خلال معرفة الخبراء حول العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على الاستبيان المصمم مسبقا. ويرتبط MPI جول العوامل متعدد منها؛ التكلفة المناسبة للصيانة المقترحة، سهولة الصيانة المقترحة، متوسط الحرية الخابراء مؤشر مؤمر معرفة الخبراء مؤلم العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على الاستبيان المصمم مسبقا. ويرتبط مول العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على الاستبيان المصمم مسبقا. ويرتبط مول العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على الاستبيان المصمم مسبقا. ويرتبط مول العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على الاستبيان المصمم مسبقا. ويرتبط مول العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على الاستبيان المصمم مسبقا. ويرتبط مول العوامل التي تؤثر على تحديد الأولويات وأوزانها باعتماد على موليا الصيانة المقترحة، متوسط مول العوامل متعدد منها؛ التكلفة المناسبة للصيانة المقترحة، سهولة الصيانة المقترحة، الموسط الحركة البوسيان (PCI). الثاني، الحركة اليومية والتصنيف الوظيفي للطريق بالإضافة إلى مؤشر حاله الرصيف (PCI). الثاني، مؤشر الأسبقيات التكميلي للفوائد والتكاليف (BCR) والذي يوفر عملية الترتيب المثلى نظرا للاستفادة وتكلفة الصبانة.

تقدم الدراسة عرضا فعالا للإخراج والترتيب للمنطقة المختارة من نظام شبكه الطرق على أساس مؤشر (MPI) وطريقة (BCR) الإضافية. لكن الاختبار الإحصائي يظهر أنه لا يوجد فرق كبير بين ترتيب جميع أساليب تحديد الأولويات. الطرق المستحدثة يمكن استخدامها كامتداد لطريقه المعتمدة على قيمه PCI.

PCI بالاضافه إلى ذلك، فإن الموديل الإحصائي المطور لل PCI تبين أن ٧٠٪ من التباين في PCI يمكن تفسير ها من خلال نموذج الانحدار المتعدد فيما يتعلق (العمر، متوسط الحركة اليومية، ورقم الهيكل (SN)) وأظهرت الدراسة أن ٣٠٪ من مقاطع الطرق في منطقة الدراسة المختارة لها حالة جيدة (SN)) وأظهرت الدراسة أن ٣٠٪ لها حالة مرضية (PCI = (٠٠-٠٠))، ٢٢٪ لها حالة عادلة عادلة (SN) = PCI))، ٢٠٪ لها حالة مرضية (PCI = (٠٠-٠٠))، ٢٠٪ لها حالة سيئة (PCI = (٠٤-٠٠))، ٢٠٪ لها حالة عادلة (Co-٠٠))، ٢٠٪ لها حالة عادلة (Co-٠٠))، ٢٠٪ لها حالة سيئة (PCI = (٠٤-٠٠))، ٢٠٪ لها حالة مرضية (PCI = (٠٤-٠٠))، ٢٠٪ لها حالة مرضية (Co-٠٠))، ٢٠٪ لها حالة مرضية (PCI = (٠٤-٠٠))، ٢٠٪ لها حالة عادلة (Co-٠٠))، ٢٠٪ لها حالة مرضية (Co-٠٠))، ٢٠٪ لها حالة مرضية (PCI = (٠٤-٠٠))، ٢٠٪ لها حالة مرضية (Co-٠٠))، ٢٠٪ لها مالة عادلة مرضية (Co-٠٠))، ٢٠٪ لها حالة مرضية (Co-٠٠))، ٢٠٪ لها مالة = (٠٠٠٠)).

ويمكن استنتاج أن الطريقتان المطورتان لتحديد الأولويات لمنطقه الدراسة يمكن استخدامها بنجاح بالإضافة إلى طريقه الترتيب البسيط من برنامج PAVER. أيضا، الموديلات المطورة لPCI قدمت علاقة جيدة مع كل من المتغيرات المستقلة؛ العمر، متوسط الحركة اليومية ورقم الهيكل، ويمكن استخدامها لتقدير حالة رصف الطرق.

جمموريه العراق وزاره التعليم العالي والبحث العلمي جامعه كربلاء كليه المندسه / قسم المندسه المدنيه

تطوير برنامج أولوية لنظام أحاره صيانة الطرق

رسالة متحمه إلى

قسم المزحسة المدنية/ كليه المزحسة في جامعه كربلاء كجزء من متطلبات نيل درجه الماجستير في علوم المزحسة المدنية / اختصاص مزحسة البنى التحتية

> من قبل سجى جاسم محمد الاسدي (بكالوريوس مزدسه مدزيه ۲۰۱٤)

> > بإشراهم

الأستاذ الدكتور حسين علي عوض الدكتور رائد رحمن عدنان المحنه

محرم / ۲۰۱۷ ه. ۱۶۳۷ ه.