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Abstract 
 

Background:  

               Polycystic ovary syndrome (PCOS) is a highly prevalent 

endocrine-metabolic disorder that implies severe consequences to female 

health, including infertility. Although its exact etiology remains elusive, it is 

known to feature several hormonal disturbances, including 

hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin 

appears to disrupt all components of the hypothalamus-hypophysis-ovary 

axis and ovarian tissue.  

     The determinants of the variability in the clinical response to 

metformin as insulin sensitizer drug in women with PCOS are multifactorial. 

Organic cation transporter 1 (OCT1) plays a crucial role in the hepatic 

uptake of metformin. Several OCT1polymorphism in recent studies showed 

a significant effect on metformin response.  

 

Aims :  

    The aims of current study were to correlate between 

polymorphisms in OCT1 with the variability in the response to metformin in 

Iraqi women with PCOS ; and find out the effect of OCT1 polymorphism on 

incidence of PCOS.   

 

Subjects and Methods: 

                This prospective case-control study was done at Kerbala teaching 

hospital for obstetrics and gynecology, department of infertility as well as 

private clinic. Two hundred twenty two PCOS patients and 106 healthy 

control aged 20-40 years were enrolled in the study. The consultant 



XX  
 

 
 

gynecologist diagnosed PCOS patients according to Rotterdam criteria and 

prescribed metformin 500 mg tablet twice daily for 3 months. Hormonal and 

biochemical tests and genetic study were performed for all patients and 

healthy control participants at the beginning of the study and after 3 months 

of patients flow up. Hormonal and biochemical tests were done in order to 

determine metformin response.  

   

Results: 

               The results demonstrated that the alleles frequencies of OCT1 

(R61C and 420del) were similar in PCOS and control groups. Concerning 

metformin response most patients with reference (wild type) and 

heterozygous alleles of OCT1 (R61C, and 420del) showed statistically 

significant hormonal and metabolic response to metformin, while patients 

with mutant alleles showed less or statistically non-significant response.    

 

Conclusions:  

             Genetic variation in OCT1 may be associated with heterogeneity in 

the response to metformin in Iraqi women with PCOS; while it was not 

associated with incidence of PCOS. 
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Chapter One 

Introduction 

1.1 Polycystic Ovary Syndrome 

 

Polycystic ovary syndrome (PCOS) was first described by Stein 

and Leventhal in 1935
 
when they noted an association between the presence 

of bilateral polycystic ovaries and signs of amenorrhea, oligomenorrhea, 

hirsutism, and obesity
 (1)

. This condition is also named as Schlerocystic 

Ovaries, Multicystic ovaries, Stein Leventhal Syndrome 
(2)

.  

 PCOS is one of the most common endocrine disorders in women 

of reproductive age. The main features include menstrual irregularity, oligo-

anovulation, infertility, as well as hirsutism, acne and polycystic ovarian 

morphology on ultrasonographic imaging 
(3)

. The aetiological causation 

behind PCOS is yet to be precisely defined, but it is evident that familiar 

genetic predisposing factors interact with environmental stimuli both in 

utero and in pre-pubertal life 
(4)

.  

The main implicating pathophysiological features include insulin 

resistance and primary ovarian dysfunction, which consequently contribute 

to both the dysregulation of the reproductive system and the increased 

likelihood of developing systemic conditions, such as obesity, type 2 

diabetes mellitus
(5)

, cardiovascular disease 
(6)

, and neuropsychological 

disorders
(7)

. 
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1.2 Clinical Presentation 

The clinical presentation of PCOS varies widely, it may present 

with amenorrhea, infertility, features of hyperandrogenemia (HA), signs of 

metabolic disturbances like insulin resistance, and dyslipidemia
(8)

. Women 

with PCOS often seek care for menstrual disturbances, clinical 

manifestations of hyperandrogenism, and infertility. Menstrual disturbances 

commonly observed in PCOS include oligomenorrhea, amenorrhea, and 

prolonged erratic menstrual bleeding
(9)

. However, 30% of women with 

PCOS will have normal menses. Approximately 85%–90% of women with 

oligomenorrhea have PCOS 
(10)

.   

  Hirsutism is a common clinical presentation of 

hyperandrogenism occurring in up to 70% of women with PCOS
(11)

. 

Infertility affects 40% of women with PCOS
(12)

. PCOS is the most common 

cause of anovulatory infertility. Approximately 90%–95% of anovulatory 

women presenting to infertility clinics have PCOS.  

 Women with PCOS have a normal number of primordial follicles, 

primary and secondary follicles are significantly increased. However, due to 

derangements in factors involved in normal follicular development, 

follicular growth becomes arrested (follicles reach a diameter of 4–8 mm), 

and because a dominant follicle does not develop so the ovulation does not 

ensue
(12,13)

. Also, spontaneous abortion occurs more frequently in PCOS 

with incidences ranging from 42%–73% 
(14,15)

. 
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1.3 Diagnosis 

When PCOS is suspected, a complete medical history, physical 

examination, blood tests, and a pelvic ultrasound should be performed; the 

medical history and physical examination will provide information about 

unexplained weight gain, menstrual cycle abnormalities, male pattern hair 

growth, skin changes, and elevated blood pressure. 

Three sets of diagnostic criteria for the polycystic ovary syndrome 

in women have been developed
(16)

. Each set involves different combination 

of hyperandrogenism, ovulatory dysfunction, and polycystic ovarian 

morphologic features
(17)

, while conditions such as insulin resistance and 

obesity which considered intrinsic to PCOS, none of them were included in 

guidelines 
(18)

. Each guideline  requires ruling out any pathological condition 

that might explain the hyperandrogenism or the menstrual irregularity
(19)

. 

The diagnostic criteria are showed in the table (1-1). 
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ia of polycystic ovary syndromeDiagnostic criter 1)-Table (1 

 

National Institute of health 

criteria 

NIH 1992  

(2 criteria ) 

 

Both of the following: 

1- chronic anovulation, documented 

by oligo-or  amenorrhea. 

2- clinical and/or biochemical signs 

of  hyperandrogenism 
(20)

 

 

Rotterdam criteria  

2004 

(2 out of 3 criteria ) 

 

 

 

 

At least two of the following: 

1- chronic anovulation, determined 

by oligomenorrhea or amenorrhea 

2-  clinical and/or biochemical 

manifestations of 

             hyperandrogenism 

3-  polycystic ovaries (by 

ultrasonography) 
(21)

 

 

Androgen Excess –PCOS 

Society criteria 

AE-PCOS 

2006 

(2 criteria)  

 

1-  Clinical and/or biochemical 

characteristics of 

              hyperandrogenism  

2-  abnormal ovarian function 

(polycystic ovarian 

       morphology and/or oligo   

ovulation/anovulation  
(22) 



5 

Chapter One                                                                                                       Introduction  

 

1.4 Epidemiology   

The worldwide prevalence of PCOS in women of reproductive age 

is ( 4%-12% ) and a higher prevalence of PCOS is among first degree 

relatives 
(23)

. In fact, according to Rotterdam diagnostic criteria PCOS 

prevalence in adolescents varies between a minimum of (3%) and a 

maximum of (26%) in Lebanon 
(24)

. PCOS prevalence rates in USA for 

underweight, normal weight, overweight, mildly obese, moderately obese, 

and severely obese women are ( 8.2%, 9.8%, 9.9%, 5.2%, 12.4%, 11.5% ), 

respectively 
(23)

. Although the prevalence of PCOS is similar in all countries, 

ethnic factors may impact the phenotypic manifestation of the syndrome, 

accordingly, the prevalence of PCOS in Caucasian women varies from 4.7% 

in Alabama to 6.5% in Spain and 6.8% in Greece 
(25)

. In Iraq the prevalence 

of PCOS in females (20-40y) was 14%, 63% of them had hirsutism, 94% 

had menstrual disturbances and 90% had ultrasonic features of polycystic 

ovary 
(26)

. 

 

 1.5 Etiology and Pathophysiology 

   The etiology of PCOS is largely unknown, however, several 

etiological factors have been proposed including genetic causes, androgen 

programming, as well as environmental and metabolic factors can contribute 

in the pathogenesis of this syndrome 
(27)

.  

1.5.1 Genetic. Factors 

Polycystic ovary syndrome is a heterogeneous disorder with 

unidentified etiology and it is known to be inherited genetically with the 

autosomal dominant manner and 50% of chances are documented of 
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inheritance from mother to daughter 
(28)

. The cytochrome P450 group of 

enzymes play a vital role in the process of steroid synthesis, and thus any 

alterations in the genes encoding for them can be associated with PCOS 
(29)

.  

Indeed, it was noted that in patients with PCOS the expression of CYP11A1 

gene is upregulated in the theca cells, and thus androgen production is 

elevated. This gene polymorphism was also linked to obesity and lower FSH 

levels 
(30)

.  Moreover, the most common allelic alteration in the CYP17 gene 

associated with PCOS was demonstrated to enhance the PCOS phenotype 

(31)
. Furthermore, in PCOS the CYP19 gene is down regulated leading to 

reduced aromatase activity, which consequently contributes to androgen 

excess 
(32)

.  In addition, the androgen receptor gene was shown to be less 

expressed in PCOS patients, thereby reducing the available receptors for 

androgens and this will  translate into lower uptake and greater free 

circulating androgens 
(33)

. 

 

1.5.2 Environmental Factors  

The main environmental factors include environmental toxins like 

phthalate , diet (such as vegan and keto diet ) and nutrition (amount of 

proteins, carbs and lipids in meals) , socioeconomic status, and geography 

(related to ethnicity) can induce PCOS
(34) 

. Excess fetal exposure to maternal 

androgens is thought to contribute to inducing the PCOS phenotype in 

offspring/children, based on experimental data from animal studies as well 

as clinical material of pathological conditions in human populations (i.e., 

congenital adrenal hyperplasia)
(35)

. In humans, higher testosterone levels, 

which were elevated to male levels, have been found in the umbilical vein in 

female infants born to mothers with PCOS 
(36,37)

. 
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1.5.3 Neuroendocrine Factors  

Hyperandrogenism and insulin resistance are the two most 

important factors that can explain the various symptoms of PCOS. There is 

evidence of increased androgen production and release by the theca cells of 

the ovaries in PCOS women
 (38)

, androgen hypersecretion and increased 

expression/efficacy of the key enzymes participating in the synthesis of 

androgens has been verified
(39, 40)

. 

The ovarian androgen excess is augmented by disordered feedback 

control of pulsatile gonadotropin-releasing hormone (GnRH) secretion in the 

hypothalamus, resulting in stimulated luteinizing hormone (LH) secretion 

from the anterior pituitary and a relative follicle-stimulating hormone (FSH) 

deficiency, which will favor androgen synthesis
(38)

. 

 Enhanced production of androgens will impair follicular 

development and increase the degree of follicular atresia leading to an 

elevated number of small follicles and enlarged stroma of the ovary. The 

clinical consequences of hyperandrogenism are the typical polycystic 

ovarian morphology figure (1-1), anovulation causing menstrual disorders, 

reduced fertility, hirsutism, and acne vulgaris 
(38, 41, 42)

. 

 

Figure (1-1) Ultrasound picture of a typical enlarged polycystic ovary with 

an increased number of small follicles 
(43)

. 
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The adrenal cortex synthesizes three major androgens; 

dehydroepiandrosterone sulfate (DHEAS), androstenedione, and 

testosterone, this is the other major site of female androgen production 

besides the ovaries. DHEAS is almost exclusively (97-99%) produced by the 

adrenal cortex and androstenedione is produced in both the adrenal gland 

and the ovaries
(44)

, 25% of testosterone is synthesized by the adrenal gland, 

25% in the ovary and the remaining part being produced through peripheral 

conversion from androstenedione in the liver, adipose tissue, and skin
(44)

.  

Women with PCOS also have an increased occurrence of insulin 

resistance, independent of obesity, leading to secondary hyperinsulinemia. 

The molecular mechanism seems to be a post-receptor defect in insulin 

signaling due to increased insulin receptor substrate-1 serine 

phosphorylation that selectively affects metabolic pathways in muscle, fat 

tissue, and in the ovary
(45)

.  

Hypersecretion of insulin directly or synergistically with LH 

stimulates androgen production from the ovarian theca cells. Furthermore, 

insulin inhibits the hepatic synthesis of sex hormone-binding globulin 

(SHBG) and insulin-like growth factor-binding protein 1 (IGFBP-1) and 

thereby increases free and bioavailable testosterone and insulin-like growth 

factor (IGF) concentration in the ovary. Thus, hyperinsulinemia contributes 

to hyperandrogenism and ovarian dysfunction in women with PCOS (Figure 

1-2). Insulin resistance may cause metabolic symptoms including abdominal 

obesity that predisposes to type 2 diabetes, hypertension, hyperlipidemia, 

and cardiovascular disease 
(46-48)

. 

Testosterone may in turn induce insulin resistance by facilitating 

catecholamine-stimulated lipolysis in visceral fat tissue, thus exposing the 

liver to a high flux of free fatty acids, which could result in hepatic insulin 
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resistance 
(49)

. Furthermore, increased testosterone could cause insulin 

resistance by inducing decreased capillary density in peripheral muscle 

tissue, as well as visceral fat accumulation demonstrated by testosterone 

treatment in women 
(50)

.  

 
Figure (1-2) Pathophysiology of polycystic ovary syndrome

(51)
. 

 

1.6 Consequences  

Polycystic ovary syndrome can cause many abnormalities 

throughout the life of affected women including impaired fertility, and even 

if pregnancy is achieved, women with PCOS have a greater risk of 
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pregnancy related complications such as gestational diabetes, preeclampsia, 

increased risk of miscarriage and premature delivery 
(52)

. In addition, 

outcome of in vitro fertilization (IVF) treatment for patients who diagnosed 

with infertility and PCOS has been characterized by lower fertilization rate, 

impaired embryo cleavage , lower implantation rates of embryo, and a 

higher miscarriage rate 
(53, 54)

. PCOS increase risk for cardiovascular diseases 

(55, 56)
, metabolic syndrome 

(54)
, dyslipidemia 

(54)
, type 2 diabetes 

(57)
 and 

mood disorders including depression 
(58)

. 

 

 1.7 Treatment 

Importantly, no universal treatment for PCOS is available. 

Management of women with PCOS depends on the symptoms, these could 

be ovulatory dysfunction-related infertility, menstrual disorders, or 

androgen-related symptoms
(59)

. Treatment goals include alleviation of 

symptoms, restoration of fertility, and prevention of long-term 

complications. There are several therapeutic interventions available for the 

treatment of PCOS, including lifestyle modification, surgery, and 

pharmacologic therapy 
(60)

, as showed in figure (1-2). 
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Figure (1-3) Management of polycystic ovary syndrome
 (61) 

 

1.7.1 Metformin  

Metformin is the most widely used drug for reproductive 

abnormalities associated with insulin resistance and also the oldest insulin 

sensitizer in the therapeutic management of type 2 diabetes mellitus
(62)

. 

Metformin is a stable hydrophilic biguanide compound that is highly polar, 
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positively charged with low molecular weight, and has pleiotropic 

actions
(63)

. Metformin distributes in many tissues including muscle, liver, 

pancreas, adipose tissue, hypothalamus, pituitary, and the gonads. Despite 

low lipid solubility, some subcellular studies in rat liver showed that 

metformin is mainly localized in the cytosol 
(64)

and studies in mice showed 

that metformin may accumulate in certain tissues at higher concentrations 

than in plasma 
(65)

. The passive diffusion of metformin into cells is limited 

(66)
,and it mainly transported via the organic cation transporters (OCT1, 

OCT2, OCT3) or multidrug and toxic compound extrusion transporters 

(MATE1, MATE2) which can internalize metformin in the gut, hepatocytes, 

renal tubular epithelial cells and reproductive tissues
(67)

. 

Its primary action is through its insulin-sensitizing effect in the 

liver resulting in a decrease of hepatic glucose output, mainly through 

inhibition of gluconeogenesis. This action is believed to occur via alterations 

in cellular energetics that involve inhibition of mitochondrial complex 1, 

resulting in lower ATP levels and consequently higher ratios of AMP/ATP 

and ADP/ATP. The increased levels of AMP and ADP result in the 

activation of AMP kinase (AMPK), which responsible for the beneficial 

effects of metformin on hepatic glucose. output
(68)

.  

The main biological effects of AMPK are the phosphorylation and 

inactivation of acetyl-CoA carboxylase (ACC), which plays a pivotal role in 

hepatic lipid metabolism 
(69)

. It was observed that the stimulation of ACC 

phosphorylation by metformin induces reduction in triglyceride levels, 

which can be supported with increased fatty acid oxidation and/or decreased 

fatty acid synthesis 
(70)

. 
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1.7.1.1 Mechanisms of Metformin Action in Target Tissues 

Relevant to Polycystic Ovary Syndrome 

 

Metformin acts on many tissues that have relevance to the 

metabolic and reproductive abnormalities in PCOS, namely the liver, 

skeletal muscle, adipose tissue, and ovary
(71)

. Reduction in hepatic glucose 

output is the principal action of metformin although its mechanism(s) has 

not been identified. Recent data indicate that lowered hepatic glucose output 

with metformin may result from inhibition of electron transport in 

mitochondrial respiratory Complex I
(72)

, as well as antagonism of glucagon 

action in the liver
(73)

. Metformin suppresses lipolysis, modulates adipokine 

secretion, and decreases lipogenesis in adipose tissue
(71)

.  

In the ovary, metformin is presumed to exert both direct and 

indirect effects on androgen production. Many studies demonstrated a 

reduction in   CYP17A1 activity in women with PCOS upon metformin 

treatment consequent to lowering of serum insulin levels 
(74)

. Also, there is 

evidence that metformin directly inhibits ovarian steroidogenesis
 (75, 76)

. 

Inhibition of mitochondrial Complex I has been implicated as one potential 

mechanism for this action
(77)

. Also metformin lowers androgen levels by an 

inhibitory effect on 3β-hydroxysteroid dehydrogenase 
(78)

. 

 

1.8 Organic Cation Transporter 

 Organic cation transporters (OCTs) are a polyspecific, bi-

directional, facilitative diffusional transporters that play major physiological 

roles in metabolite and drug clearance
(79)

. Organic cation transporters belong 

to the solute carrier family (SLC22A). In humans, OCT1 (SLC22A1) is 
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predominantly expressed in the hepatocytes 
(80)

, OCT1 gene expression and 

protein levels are also detectable in adipose tissue
(81)

, skeletal muscles, 

ovaries, and intestine
(82)

. OCT2 is expressed in proximal tubular cells of the 

kidney. OCT3 exhibits a broader tissue distribution and is found in 

astrocytes 
(83)

, blood-cerebrospinal fluid barrier in choroid plexus epithelial 

cells 
(84)

,  as well as in the placenta, bronchial and intestinal epithelium
(85)

. 

OCTs play major roles in clearance for both endogenous and xenobiotic 

compounds. 

OCT1 is predominantly expressed on the blood side (basolateral 

membrane) of hepatocytes. Although bi-directional, it typically behaves as 

an uptake transporter in vivo, extracting substrates from the blood into the 

hepatocyte, as the first step in the hepatic elimination of drug substrates
(86)

. 

OCT  1  topology consists of 12 alpha-helical transmembranes (TM) domains 

with a large extracellular loop between TM1 and TM2 which is glycosylated 

(87)
 and a large intracellular loop between TM6 and TM7 which is involved 

in post-transcriptional regulation 
(88)

.   

 
Figure (1-4) Predicted topology of human OCT1 with glycosylation sites on 

the large extracellular loop (ψ) and phosphorylation sites (green) 
(88)
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OCT1 mediates transport of Type I organic cations (protonated 

molecules), such as dopamine and choline
(88)

, as well as Type II cations 

(larger and bulkier molecules) such as metformin and quinidine. OCT1-

mediated organic cation transport is electrogenic and sensitive to membrane 

potential
(89)

.  The human SLC22A1 gene encoding OCT1 consists of 11 

exons, has been mapped to chromosome 6q26, and spans about 37 kb
(90)

.    

 

1.9 Organic Cation Transporter1 Polymorphism and 

Metformin Response 
 

There is significant variability in the clinical response to 

metformin treatment in PCOS.  Studies revealed significant heterogeneity in 

its ability to reduce testosterone and insulin levels, regulate menses, and 

improve body weight 
(91)

. This heterogeneity in response remained even after 

adjustment for many potential confounders, these findings suggest that 

unknown or unmeasured factor(s) impact the response to metformin therapy 

in PCOS
(92)

. In type 2 diabetes, the glycemic response to metformin is 

heritable, although the genetic contribution is probably a result of individual 

variants across the genome rather than a few loci
 
. Similarly, genetic factors 

are likely to mediate the response to metformin in PCOS
(93)

. 

Polymorphisms in genes involved in metformin transport or action 

have been implicated in the heterogeneous response to metformin in type 2 

diabetes 
(94, 95)

, and, to a lesser extent, in PCOS
(96)

.  Polymorphism in genes 

encoding metformin transport proteins, such as OCT1, which is involved in 

the transport of metformin into hepatocytes 
(89)

 thought to play a role in 

metformin response  
(97)

. Two small European studies, demonstrating that 
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polymorphisms in OCT1 may account for the variability of response to 

metformin in PCOS 
(98, 99)

. OCT1 is highly polymorphic in ethnically diverse 

populations and mediate differences in transporter function 
(100)

. Carriers of 

some of the variants in OCT1 display altered pharmacokinetic and 

pharmacodynamic properties of metformin compared with carriers of the 

reference allele
 (101,89)

.  

         Variant such as R61C position on chr6:160122116, which is 

a missense variant, the 181C>T polymorphism at rs122083571 consisting of 

an amino acid substitution (arginine to cysteine at position 61 (Arg61Cys), is 

known to induce a robust substrate-wide loss of OCT1 activity, leading to 

decrease in OCT1-mediated uptake by more than 70% for all substrates 

including metformin
(102)

. The second variant of OCT1 is  M420del position 

chr6:160139849, allele delATG, the rs72552763 polymorphism constitutes a 

3 bp deletion at position 420 and is the most common functional OCT1 

variant which can causes a robust decrease in metformin uptake 

(>60%). Met420del does not change OCT1 membrane localization and the 

exact mechanism how it affects OCT1 function remains unknown 
(103-

106)
. Many studies have identified genetic polymorphisms in the SLC22A1 

gene among different populations groups but there were still contradictory 

reports on the effects of OCT1 polymorphisms on metformin-related 

therapeutic responses 
(107)

. 
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1.10 Aims of Study  

This study aimed to investigate 

1- The effect of OCT1 polymorphisms on the therapeutic response of 

metformin in patients with polycystic ovary syndrome in Iraq. 

 

2-  The effect of OCT1 polymorphism on the  pathogenesis of PCOS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Two

Subjects, Materials 

and Methods 



18 

Chapter Two                                                                 Subjects, Materials and Methods 

 

 

  Chapter Two 

Subjects, Materials and Methods 

2.1 Subjects (Patients and Control) 

A total of 320 patients aged 20-40 years were enrolled in this 

study during their visiting to Kerbala teaching hospital of obstetrics and 

gynecology and privet clinic seeking for medical treatment and advice 

concerning their cases. This study performed from July 2019 to April 2020. 

Only 222 patients continued the study, 65 patients refuse to complete the 

study due to quarantine applied because of Corona virus pandemic while 33 

patients were excluded as they became pregnant during study time. All 

patients were diagnosed by consultant gynecologist according to Rotterdam 

criteria and treated according to practice guidelines. Also 106 healthy 

control aged 20-40 years were enrolled.             

2.1.1 Patients Criteria  

2.1.1.A  Inclusion Criteria   

    Patients aged between 20 – 40 years, newly diagnosed with PCOS 

according to Rotterdam criteria. 

2.1.1.B  Exclusion Criteria 

1-Patients with congenital adrenal hyperplasia, androgen-secreting tumors, 

cushing syndrome, hyperprolactinemia and thyroid dysfunction. 

2- Patients suffering from any other diseases and patients taking any OCT1 

substrate drugs. 

3- Patients whom became pregnant during the study. 
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2.1.1. C Ethical and Scientific Approval 

 The proposal of research was discussed and approved by the scientific 

and ethical committee in Collage of Pharmacy – Kerbala University. 

 The agreement of general health director in Kerbala governorate was 

achieved 

 All participant women were enrolled in this study after signing a 

written informed consent with full explanation of the aim of the study 

and requested to answer a specially designed questionnaire.   

 

2.1.2 Study Design 

In this prospective case control study 222 PCOS Iraqi female 

patients were included and 106 healthy females clinically without any 

disease were served as control group. From overnight fasted control 

participants at second day of menstruation, blood samples were collected for 

hormonal, biochemical and genetic study. A blood sample was  also 

collected from each overnight fasted patient in day two of the menstrual 

cycle and any day in case of amenorrhea in some patients 
(108)

 for genetic, 

hormonal and biochemical tests before and after three months treatment with 

metformin 500 mg twice daily according to recent study 
(109)

. 
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Figure (2-1): Flow chart of the study groups  

426 participants 

PCOS  Patients 
(N=320)Treated 
with Metformin 

500 mg BID 

 

98 patients lost due to  

pregnancy (N=33) and 
some refused to 

continue the study due 
to coronavirus  

pandemic (N= 65) 

 

222 Patients 
continued the 

study  

Healthy Control 
Females  

 (N=106) 

Blood samples 
collection 

 

Data cllection 

 

Statistical 
analysis 
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2.2 Materials 

2.2.1 Instruments and Equipment and Their Suppliers  

      All instruments used in this study are listed in table (2-1) 

accompanied with their manufacturing company  

Table (2-1) Instruments and the manufacturing companies.  

Equipment Company Country 

Centrifuge SIGMA Germany 

Cobas e 411 Roche Germany 

Digital camera Canon England 

Distillator GFL Germany 

Gel documentation system Techin me England 

Hood LabTech Korea 

Micropipettes SLAMED Japan 

PCR machine  TECHINE UK 

Sensitive balance AND Taiwan 

UV- Transilluminator Syngene England 

Vortex mixer HumanTwist Germany 

Water bath LabTech Korea 
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2.2.2 Chemicals, Kits, Drug and Their Suppliers 

All chemicals and kits used in this study are listed in table (2-2) 

accompanied with the producing company  

Table (2-2) Chemicals and kits and their producing companies.  

 

 Chemicals and Kits Company Country 

Chemicals 

Agarose powder CONDA Spain 

Ethanol 90% SDI Iraq 

Ethedium Bromide  Intron  Korea  

Isopropanol  SDI Iraq 

Metformin 500mg tab Merck France   

Nuclease  free water  Intron Korea 

 

 

Hormonal 

Kits 

FSH kit Roche Germany  

LH kit  Roche  Germany  

Prolactin kit Roche Germany  

SHBG kit Roche Germany  

Testosterone kit Roche Germany  

TSH kit Roche Germany 
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Biochemical 

Kits 

Cholesterol kit Roche Germany 

Fasting serum glucose kit Roche Germany  

Glycosylated Hemoglobin kit  Roche Germany  

HDL kit Roche Germany  

Insulin kit  
Drug  

International  
USA  

LDL kit  Roche Germany  

Triglyceride kit  Roche Germany  

Kits For 

Genetic 

Study 

DNA extraction kit 

(G-DEX IIb) 
Intron Korea 

PCR mastermix kit Genome  Korea 

DNA ladder marker  Genome  Korea 

Primers  

OCT1 rs12208357 c>t 

OCT 1 rs72552763 ATGAT>AT 

 

Bioneer  

 

Korea  

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/snp/rs72552763
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2.3 Methods 

2.3.1 Samples Collection 

After overnight fasting,7 ml blood samples were collected from all 

patients and healthy control by vein puncture, before starting metformin  

treatment and then after three months of patients follow up to determine the 

changes in the studied parameters. Collected blood samples were divided 

into three parts, first part was kept in the EDTA tube for DNA extraction, 

the second part was kept in an EDTA tube for HbA1c% and the last part was 

kept in a gel tube to isolate serum for hormonal and other biochemical tests.  

 

2.3.2 Hormonal and Biochemical Assays 

2.3.2.1 Determination of Glycemic Indices   

2.3.2.1.A  Measurement of Fasting  Serum Glucose (FSG) 

Glucose level  estimated by UV, Enzymatic reference method with 

hexokinase in which Hexokinase catalyzes the phosphorylation of glucose to 

glucose-6-phosphate by ATP. Glucose-6-phosphate dehydrogenase oxidizes 

glucose-6- phosphate in the presence of NADP to gluconate-6-phosphate. 

No other carbohydrate is oxidized. The rate of NADPH formation during the 

reaction is directly proportional to the glucose concentration and is measured 

photometrically 
(110)

. 

 

2.3.2.1.B  Measurement of Fasting Serum Insulin (FSI) 

Serum insulin Level was determined using a ready-made kit for 

this purpose, the insulin ELISA kit is a solid phase - enzyme- linked 
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immunosorbent assay based on the sandwich principle. The micro-titer wells 

were coated with monoclonal antibody directed towards a unique antigenic 

site on human insulin molecule. An aliquot of patients serum samples 

containing endogenous insulin was incubated in the coated well with 

enzyme conjugate, which is an anti-insulin antibody conjugated with biotin. 

After incubation the unbound conjugate was washed off. During the second 

incubation step streptavidin-peroxidase enzyme complex binds to biotin 

anti-insulin antibody. The mount of bound horseradish peroxidase (HRP) 

complex is proportional to the concentration of insulin in the sample. Having 

added substrate solution, the intensity of color developed is proportional to 

the concentration of insulin in the patient sample with running proper 

standards of insulin. Absorbance was measured spectrophotometrically at 

450nm. The results were expressed as µ.IU/ml 
(111)

.  

 

2.3.2.1.C  Estimation of Insulin Resistance 

Insulin resistance was determined using the homeostasis model 

assessment (HOMA) which is calculated from fasting serum glucose (FSG) 

and fasting serum insulin (FSI) using the following formula. 

                         HOMA = FSI(µIU/ml) * FSG ( mg/dl) /405 
(112)

 

 

2.3.2.1.D  Measurement of Glycosylated Hemoglobin (HbA1c) 

The blood specimen that was kept in the EDTA tube  hemolyzed 

automatically on the cobas integra 400+ analyzer with cobas integra 

hemolyzing reagent gen.2. This method used tetradecyltrimethylammonium 

bromide (TTAB) as the detergent in the hemolyzing reagent to eliminate 
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interference from leukocytes (TTAB does not lyse leukocytes). Sample pre-

treatment to remove labile HbA1c was not necessary.  All hemoglobin 

variants which were glycated at the beta-chain N-terminus and which have 

antibody recognizable regions identical to that of HbA1c were measured by 

this assay. Glycohemoglobin (HbA1c) in the sample reacts with an anti-

HbA1c antibody to form soluble antigen-antibody complexes. Since the 

specific HbAq2c antibody site is present only once on the HbA1c molecule, 

the complex formation does not take place (polyhapten reagent). The 

polyhaptens react with excess anti-HbA1c antibodies to form an insoluble 

antibody-polyhapten complex which can be measured turbidmetrica 
(113)

. 

 

2.3.2.2 Measurement of Serum Follicle  Stimulating Hormone 

(FSH) , Luteinizing Hormone(LH)  level and (LH/FSH Ratio 

Calculation)  

              Immunoassay for the in vitro quantitative determination of FSH and 

LH in human serum was used in this study. The electrochemiluminescence 

immunoassay “ECLIA” is intended for use on elecsys and cobas e 

immunoassay analyzers which employs two different monoclonal antibodies 

specifically directed against these hormones to form a sandwich complex. 

The microparticles are magnetically captured onto the surface of the 

electrode. Application of a voltage to the electrode then induces 

chemiluminescent emission which was measured by a photomultiplier 
(114, 

115)
. 

2.3.2.3 Measurement of Serum Prolactin  

               Immunoassay for the in vitro quantitative determination of 

prolactin in human serum was used in this study. The 
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electrochemiluminescence immunoassay "ECLIA" is intended for use on 

elecsys and cobas e immunoassay analyzers which employs two different 

monoclonal antibodies specifically directed against prolactin hormone to 

form a sandwich complex. The microparticles are magnetically captured 

onto the surface of the electrode. Application of a voltage to the electrode 

then induces chemiluminescent emission which was measured by a 

photomultiplier 
(116)

.                       

 

2.3.2.4 Measurement of Serum Sex Hormone Binding Globulin 

(SHBG) 

               The SHBG was measured by specific ELISA kit using the 

Sandwich-ELISA principle. The micro ELISA plate provided in this kit has 

been pre-coated with an antibody specific to human SHBG. Samples (or 

Standards) and biotinylated detection antibody specific for human SHBG 

were added to the micro ELISA plate wells. Human SHBG would combine 

with the specific antibody, then Avidin-Horseradish Peroxidase (HRP) 

conjugate were added successively to each micro plate well and incubated. 

Free components were washed away. The substrate solution was added to 

each well. Only those wells that contain human SHBG, biotinylated 

detection antibody and Avidin-HRP conjugate will appear blue in color. The 

enzyme-substrate reaction was terminated by the addition of stop solution 

and the color turns yellow. The optical density (OD) was measured 

spectrophotometrically at a wavelength of 450 ±2 nm. The OD value is 

proportional to the concentration of human SHBG.  
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2.3.2.5 Measurement of Serum Testosterone  

               Immunoassay for the in vitro quantitative determination of 

testosterone in human serum was used in this study. The 

electrochemiluminescence immunoassay "ECLIA" is intended for use on 

elecsys and cobas e immunoassay analyzers which is based on a competitive 

test principle using a high-affinity monoclonal antibody (sheep) specifically 

directed against testosterone. Endogenous testosterone released from the 

sample by 2‑bromoestradiol competes with the added testosterone derivative 

labeled with a ruthenium complex) for the binding sites on the biotinylated 

antibody. Application of a voltage to the electrode induces 

chemiluminescent emission which was measured by a photomultiplier 
(117)

.                                       

 

2.3.2.6 Estimation of Free Androgen Index (FAI) 

               Free Androgen Index was determined from total testosterone level 

and sex hormone-binding globulin (SHBG) by using a specific formula. 

Free androgen index (FAI) = Total testosterone (nmol/L)*100/ sex 

hormone binding globulin ( SHBG) (nmol/L)
(118)

 

                      

2.3.2.7 Measurement of Serum Thyroid Stimulating Hormone  

(TSH)  

              Immunoassay for the in vitro quantitative determination of TSH in 

human serum was used in this study. The electrochemiluminescence 

immunoassay “ECLIA” was intended for the use on Elecsys and cobas e 

immunoassay analyzers and the principle was the same as described for 

prolactin hormone 
(119)

.  
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2.3.2.8 Determination of Lipid Profile  

2.3.2.8. A Measurement of Total Cholesterol (TC) 

             In vitro quantitative enzymatic colorimetric method was used for 

the determination of total cholesterol in serum on cobas integra systems. 

Cholesterol esters are cleaved by the action of cholesterol esterase (CE) to 

yield free cholesterol and fatty acids. Cholesterol oxidase (CHOD) then 

catalyzes the oxidation of cholesterol to cholest-4-en-3-one and hydrogen 

peroxide. In the presence of peroxidase (POD), the hydrogen peroxide 

formed effects the oxidative coupling of phenol and 4‑aminoantipyrine (4-

AAP) to form a red quinone-imine dye. 

 

Cholesterol esters + H2O             
CE                                        

cholesterol + RCOOH 

Cholesterol + O2                          
CHOD                  

cholest-4-en-3-one + H2O2 

2 H2O2 + 4‑AAP + phenol             
POD

                      quinone-imine dye + 4 

H2O 

            The color intensity of the dye formed is directly proportional to the 

cholesterol concentration. It was determined by measuring the increase in 

absorbance at 512 nm 
(120)

. 

 

2.3.2.8. B 
 
Measurement of Serum Triglyceride (TG) 

               In vitro quantitative enzymatic colorimetric method was used for 

determination of triglyceride in serum on cobas integra systems 
(121)

 

triglycerides + 3 H2O           
Lipoprotein lipase   

          glycerol + 3 RCOOH 

glycerol + ATP          
Glycero Kinase 

                glycerol-3-phosphate + ADP   
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 glycerol-3-phosphate + O2     
Glycerol-3-Phosphate Oxidase 

     dihydroxyacetone 

phosphate + H2O2 

H2O2 + 4-aminophenazone + 4-chlorophenol          
peroxidase

 

4-(p-benzoquinone-monoimino)-phenazone + 2 H2O + HCl 

 

2.3.2.8. C Measurement of Serum High Density Lipoprotein  

(HDL) 

               In vitro quantitative enzymatic colorimetric method was used for 

the determination of HDL in serum on cobas integra systems. In the 

presence of magnesium ions and dextran sulfate, water-soluble complexes 

with LDL, VLDL, and chylomicrons are formed which are resistant to PEG-

modified enzymes. The cholesterol concentration of HDL-cholesterol was 

determined enzymatically by cholesterol esterase and cholesterol oxidase 

coupled with PEG to the amino groups (approximately 40 %). Cholesterol 

esters are broken down quantitatively into free cholesterol and fatty acids by 

cholesterol esterase. In the presence of oxygen, cholesterol is oxidized by 

cholesterol oxidase to Δ4‑cholestenone and hydrogen peroxide 
(122)

. 

HDL-cholesterol esters + H2O   
PEG-cholesterol esterase

     HDL-cholesterol + 

RCOOH  

HDL-cholesterol + O2            
PEG-cholesterol oxidase

          Δ4-cholestenone + 

H2O2 

2 H2O2 + 4‑aminoantipyrine + HSDAa) + H+ + H2O        
peroxidase

      purple 

blue pigment (
a) Sodium N‑(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline ) 

)
 
+ 5 H2O   

            The color intensity of the blue quinoneimine dye formed is directly 

proportional to the HDL-cholesterol concentration. It was determined by 

measuring the increase in absorbance at 583 nm. 
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2.3.2.8.D Measurement of Serum Low Density Lipoprotein 

(LDL)  

Cholesterol esters and free cholesterol in LDL are measured based 

on a cholesterol enzymatic method using cholesterol esterase and cholesterol 

oxidase in the presence of surfactants which selectively solubilize the only 

LDL. The enzyme reactions to the lipoproteins other than LDL are inhibited 

by surfactants and a sugar compound. Cholesterol in HDL, VLDL, and 

chylomicron is not determined. 

LDL‑cholesterol esters + H2O   
detergent

        cholesterol + free fatty acids 

(selective micellary  solubilization) 

               Cholesterol esters are broken down quantitatively into free 

cholesterol and fatty acids by cholesterol esterase. 

LDL‑cholesterol + O2    
cholesterol oxidase

         Δ4‑cholestenone + H2O2 

          In the presence of oxygen, cholesterol is oxidized by cholesterol 

oxidase to Δ4‑cholestenone and hydrogen peroxide. 

2 H2O2 + 4‑aminoantipyrine + EMSEa) + H2O + H+    
Peroxidase

     red purple 

pigment (
a) N‑ethyl‑N‑(3‑methylphenyl)‑N‑succinylethylenediamine 

) + 5 H2O 

              In the presence of peroxidase, the hydrogen peroxide generated 

reacts with 4‑aminoantipyrine and EMSE to form a red-purple dye. The 

color intensity of this dye is directly proportional to the cholesterol 

concentration and is measured  by photometer 
(123)

. 
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2.3.2.9 Determination of Body Mass Index 

              Body Mass Index (BMI) is a value obtained from the weight and 

height of an individual. The BMI was described as the body weight divided 

by the square of the body height and is globally expressed in units of kg/m2, 

resulting from the mass in kilograms and height in meters 
(186)
. 

 

BMI=Weight (Kg) /{Height(m)}
2
 

Normal weight falls between BMI values of 18.5-24.9, overweight between 

25-30 and obese above 30. 
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2.3.3 Genetic Analysis  

2.3.3.1 Extraction of Genomic DNA from Blood Sample  

             DNA extraction kit from Intron offer simple DNA extraction 

method for high molecular weight genomic DNA suitable for storage and 

immediate application.  

 (1ml) blood sample in Eppendorf  tube was centrifuged (2000rpm -1 

min) then buffy coat collected by micropipette and transferred to 

another tube.  

 900 µl of RBC lysis solution was added and the solution mixed well 

then inverted several times and incubated 5 min then the solution 

centrifuged (10000rpm -1min).  

 Supernatant poured off except 100 µl remained with pellet which was 

vortex in order to be dissolved. 300µl of cell lysis solution was added 

then the tube refrigerated for 5 min. 

 100µl of PPT buffer was added and mixed by vortex 20sec then the 

mixture centrifuged (16000rpm -5min).Protein precipitated in this step 

while DNA remain in the supernatant.  

 300 µl of supernatant transferred to another tube and 300 µl 

isopropanol was added and the tube inverted several times and 

centrifuged (16000-1min). 

 After discarding supernatant, 1ml Ethanol added then centrifuged and 

supernatant discarded. 

 After drying in air for few minutes, 200 µl of DNA rehydration 

solution was added and the tube kept in water bath 56 C for ½ hours. 

After that DNA dissolved in the solution and it ready to use.  
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2.3.3.2 Determination of Concentration and Purity of Genomic 

DNA   

              DNA concentration was measured using Nano-spectrophotometer 

(NanoDrop) by placing 1 µl of the DNA sample on the highly sensitive 

micro-detector. The purity was detected by noticing the ratio of optical 

density at 260/280.  

 

 2.3.3.3 Allele Specific Polymerase Chain Reaction  

2.3.3.3.A Primers Preparation  

                 Polymerase Chain Reaction (PCR) was performed by using 

specific primers to amplify OCT1 gene rs12208357 and rs72552763. The 

primers of this study were designed by Asst. Prof. Dr. Hassan Mahmood 

Mousa Abo Almaali using primer-blast software and purchased from 

Bioneer, Korea as lyophilized product of different picomols concentrations. 

Lyophilized forward and revers primers were dissolved in specific volumes 

of nuclease free water to get a concentration of 100 pmol/ µl (stock 

solution). To prepare 10pmol/ µl of working solution of each primer, 10µl of 

each primer (stock solution) was diluted with 90 µl of nuclease free water. 

The primers were kept at -20 C until further use. Table (2-3) illustrates the 

primers used to amplify the gene alleles.    
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Table (2-3) Primers sequences of OCT1 rs12208357 and rs72552763  

Primers  Sequence 

Product 

size 

(bp) 

Primers 

sequences of 

OCT 1 (R61C) 

rs12208357 

Alleles C>T 

Forward CAGATGGCCACGTGCATTCTTC - 

Allele C 

R1 
AGGGCTCCAGCCACAGCG 407 

Allele R2 

 
CAGGGCTCCAGCCACAGCA 407 

Primers 

sequences of 

OCT 1 

(420del) 

rs72552763  

 Alleles: 

ATGAT>AT 

 

Un-delet 

 

GCAGCCTGCCTCGTCATG 
100 

DEL-

ATG 
GCAGCCTGCCTCGTCATT 100 

o-r AGTCACAACACTTTCCCCACA - 

 

2.3.3.3.B Optimization of Polymerase Chain Reaction 

Conditions   

Optimization of PCR was done by several attempt to detect the 

best annealing temperature, the best concentration of both DNA and primers, 

and the best number of amplification cycles. The components of PCR for all 

the amplified fragments and the optimized PCR programs are stated in Table 

(2-4), Table (2-5) and Table (2-6) respectively.  

https://www.ncbi.nlm.nih.gov/snp/rs72552763
https://www.ncbi.nlm.nih.gov/snp/rs72552763
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2.3.3.3.C Running the Polymerase Chain Reaction   

              The PCR was prepared by mixing reaction components with the 

optimized concentrations and using the optimized PCR programs as shown 

in the tables below. 

Table (2-4) PCR mix reaction for genotyping Of OCT 1 rs12208357 

Alleles: C>T and rs72552763  Alleles: ATGAT>AT  

Component  Volume (µl) 

Forward primer 1.25  

Reverse primer  1.25  

Reverse primer  1.25 

DNA template  5 

Deionized water  7.5 

Master mix  10 

 

 

https://www.ncbi.nlm.nih.gov/snp/rs12208357
https://www.ncbi.nlm.nih.gov/snp/rs72552763
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Table (2-5) PCR Condition for genotyping of OCT 1 gene (R61C) 

rs12208357    Alleles: C>T 

Steps  Temperatures/c  Time /second Cycle 

 Denature template 94 3minutes 1 

 Initial denaturation 94 30 Sec 

30 Annealing 63 40 Sec 

Extension 72 55 Sec 

Final extension 72 5minutes 1 

 

Table (2-6) PCR condition for genotyping of OCT 1 gene (420del) 

rs72552763 Variant type: delin. Alleles: ATGAT>AT. 

Steps  Temperatures/c  Time /second Cycle 

Denature template 94 3 minutes 1 

Initial denaturation 95 30 Sec 

30 Annealing 58 45 Sec 

Extension 72 55 Sec 

Final extension 72 5 minutes 1 

 

https://www.ncbi.nlm.nih.gov/snp/rs72552763
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2.3.3.4  Agarose Gel Electrophoresis 

• Agarose gel was prepared by dissolving 1.5 g of agarose powder in 100 ml of 

1x TBE buffer (pH 8) in microwave.  

• The solution was cooled to 50˚C. 

• Two microliters of ethidium bromide solution were added. 

• The comb was fixed at one end of the tray for making wells used for loading 

the samples, i. e. DNA or PCR product samples. 

• The agarose was poured gently into the tray, and allowed to solidify at room 

temperature for 30 min. 

• The comb was removed gently from the tray. 

• The tray was fixed in an electrophoresis chamber. The chamber was filled 

with a TBE buffer. 

• Five microliters of each DNA sample was transferred to an Eppendorf tube; 

half a microliter of loading buffer was added to the tube; the mixture was 

loaded into the wells in agarose gel. 

• PCR products were directly loaded into the wells without mixing with the 

loading dye. 

• The voltage of the electrophoresis apparatus was fixed to ensure an electrical 

field adjusted with 5 v.cm-1 for distance between cathode and anode. 

• At the end of the run, ultraviolet trans-illuminator was used at 320-336 nm for 

bands detection. 

• The gel was photographed using a digital camera. 
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2.4 Statistical Analysis   

                  Data of study participants were transferred into computerized 

database, revised for errors or inconsistency and then managed, processed 

and analyzed using the statistical package for social sciences (SPSS) version 

25, IBM, US. All continuous (scale) variables were examined for normal 

statistical distribution using Kolmogorov Smirnov test  and histogram. 

Descriptive statistics for nominal (categorical) variables presented as 

frequency (number of participants) and proportion (percentage). Scale 

variables presented in mean, standard deviation (SD).  

                   Scale variables like age, BMI and number of children follow the 

statistical normal distribution, parametric tests were applied. To compare the 

studied parameters between studied groups, Student t  test for two samples 

was applied. While other parameters did not follow the statistical normal 

distribution, non-parametric tests were applied. To compare the studied 

parameters between both studied groups, Mann-Whitney U test for two 

independent samples was applied. To compare the studied parameters within 

PCOS group, before and after treatment, Wilcoxon Signed Ranks Test was 

applied. 

               Test for Hardy-weinberg equilibrium  in controls and allelic or 

genotypic association in cases versus control were evaluated by Chi – square 

(x
2
) test. This analysis was performed for all genotypes in this study using 

Hardy-weinberg equilibrium  online  calculator and P value less than 0.05 

was regarded as significant. 

 Chi square test used to assess the significance of comparison of 

nominal /categorical variables including, number of abortions, employment 

and education level between both studied groups.  
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 To assess the predictability of PCOS, logistic analysis of R61C and 

420del was applied, this yielded odds ratio (OR) also the 95% confidence 

interval of the OR was calculated which is good estimator for the 

significance of the OR; when the value of “one” included within interval, 

this is an indicator that the OR is not significant.  

 All statistical procedures and tests were applied under a level of 

significance (P- value) of   less than 0.05 to be considered as significant 

difference or correlation.  
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Chapter Three 

Results 

3.1 Socio-demographic Data 

              Socio-demographic data for 222 PCOS patients and 106 healthy 

women (control group) demonstrated in the table (3-1). The age range was 

between 20-40  years with a mean ± SD of 28.1± 6.4 for control and 27.6 ± 

5.1 for patients, there was non-significant difference in age between the two 

groups . BMI was 27.8± 4.7 for control and 31.4 ± 4.9 for patients; this 

result showed that BMI of PCOS patients was significantly higher than those 

of healthy control women. One hundred eighty six (83%) patients had 

alopecia and 206 (92%)  of them had hirsutism. Abortion percentage was 

higher in PCOS patients 27.7% than in control women 15%. Regarding the 

education status there was non-significant difference between the two 

groups.  
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Table (3-1) Assessment of socio-demographic data between PCOS group 

and healthy control group  

 

Variables Control PCOS p-value 

Number 106 222 - 

Age (y) 28.1 ± 6.4 27.6 ± 5.1 0.451 [NS] 

BMI (kg/m
2
) 27.8 ± 4.7 31.4 ± 4.9 <0.001 [S] 

Hirsutism, n (%) 0 (0.0%) 206 (92.8%) <0.001 [S] 

Alopecia, n (%) 0 (0.0%) 186 (83.8%) <0.001 [S] 

Married, n (%) 89 (84.0%) 195 (87.8%) 0.429 [NS] 

Abortion, n (%) 9 (15.0%) 54 (27.7%) 0.046 [S] 

Employed, n (%) 41 (38.7%) 73 (32.9%) 0.364 [NS] 

Education, n (%)   

0.945 [NS] 
   Illiterate 5 (4.7%) 9 (4.1%) 

   Primary 46 (43.4%) 104 (46.8%) 

   Secondary 32 (30.2%) 63 (28.4%) 

   College 23 (21.7%) 46 (20.7%) 

Results are presented as mean±SD , n= number of subjects , (p< 0.05) considered 

significantly different,  [S] significant ,[NS] non-significant 
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3.2 Hormonal and Metabolic Parameters for Control Group 

and Polycystic Ovary Syndrome Group 

 

3.2.1 Hormonal Profile of Healthy Control Group and Poly-

cystic Ovary Syndrome Patients Group 

 

As shown in table (3-2), serum FSH level was significantly lower 

in the PCOS group than in the control group (P = 0.002). In contrast, serum 

LH level and LH/FSH ratio was significantly higher in PCOS patients than 

control (P = 0.011, 0.001) respectively. Thyroid-stimulating hormone (TSH) 

and testosterone were significantly higher in PCOS patients (P = 0.010, 

<0.001) respectively while SHBG was significantly lower in PCOS patients    

(P<0.001) compared to control. 
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Table (3-2) Hormonal parameters of a control group and polycystic ovary 

syndrome group  

 

Variables Control PCOS p-value 

Number 106 222 - 

LH (m.IU/L) 7.8 ± 2.1 9.9 ± 5.4 0.011 [S] 

FSH (m.IU/L) 6.4 ± 1.7 5.8 ± 2.0 0.002 [S] 

LH/FSH ratio 1.3 ± 0.3 1.8 ± 0.9 <0.001 [S] 

TSH (uIU/L) 1.9 ± 0.6 2.2 ± 0.9 0.010 [S] 

Prolactin (ng/mL) 18.3 ± 5.0 23.6 ± 13.5 <0.001 [S] 

Testosterone (ng/ml) 0.3 ± 0.2 0.6 ± 0.4 <0.001 [S] 

SHBG (nmol/L) 85.2 ± 6.9 53.2 ± 24.7 <0.001 [S] 

FAI 0.77 ± 0.2 2.72 ± 2.5 <0.001 [S] 

Results are presented as mean±SD  

(p< 0.05) considered significantly different 

 [S] significant  

[NS] non-significant 
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3.2.2 Glycemic Parameters of Healthy Control Group and 

Polycystic Ovary Syndrome Patients Group 

 

  Data in the table (3-3) showed a significant difference in insulin 

level and HOMA-IR between the two groups, there were a significant 

increase in insulin level and HOMA-IR value of PCOS group (P <0.001) 

compared to control, although there was no significant difference in FSG 

and HbA1c between two groups. 

 

Table (3-3) Glycemic parameters of control group and polycystic ovary 

syndrome group 
 

Variables Control PCOS p-value 

Number 106 222 - 

FSG (mg/dL) 98.6 ± 10.9 98.4 ± 12.8 0.864[NS] 

Insulin (µIU/ml) 18.49 ± 19.6 23.06 ± 13.8 <0.001 [S] 

HOMA-IR 4.54 ± 5.1 5.65 ± 3.6 <0.001 [S] 

HbA1c (%) 5.1 ± 3.9 5.0 ± 2.6 0.060[NS] 

Results are presented as mean±SD  

(p< 0.05) considered significantly different 

 [S] significant 

[NS] non-significant  
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3.2.3 Lipid Profile of Healthy Control Group and Polycystic 

Ovary Syndrome Patients Group 

 

             The data in table (3-4) indicated that PCOS patients had 

significantly higher levels of TG, LDL, and cholesterol (P<0.001) compared 

to controls, while HDL levels was significantly lower in the PCOS group 

than control (P =0.009).  

 

Table (3-4) Lipid profile parameters of the control group and polycystic 

ovary syndrome group 

Variables Control PCOS p-value 

Number 106 222 - 

Triglyceride (mg/dL) 76.1 ± 19.5 127.8 ± 43.5 <0.001 [S] 

LDL (mg/dL) 51.2 ± 15.2 97.6 ± 66.2 <0.001 [S] 

HDL (mg/dL) 49.0 ± 8.9 45.9 ± 10.6 0.009 [S] 

Total Cholesterol (mg/dL) 119.2 ± 29.6 162.8 ± 42.5 <0.001 [S] 

 Results are presented as mean±SD  

(p< 0.05) considered significantly different 

 [S] significant   
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3.3 Genetic Analysis 

               Analyses were conducted to assess the association between the 

OCT1 polymorphism R61C (rs12208357) and 420del (rs72552763) with the 

pathophysiology of PCOS. 

 R61C (rs12208357) [CC(Reference allele ),CT (heterozygous 

type), and TT (mutant  type)] as shown in figure (3-1 ) 

 420del (rs72552763) [ATG-ATG (Reference allele), ATG-

Del (heterozygous type), and Del-Del (mutant type)] as shown in 

figure (3-2 ). Results in the table (3-5) showed that the frequencies of 

the polymorphisms of OCT1 were not significantly different between 

the control and PCOS (p>0.05). 

 

 

Table (3-5) Alleles frequencies of R61C and 420del in the study groups  

 

SNP Alleles  Control PCOS 
p-

value 

R61C 

(rs12208357) 

  TT (Mutant) 25 (23.6%) 49 (22.1%) 

0.842   CT (Heterozygous) 35 (33.0%) 69 (31.1%) 

  CC (Reference ) 46 (43.4%) 104 (46.8%) 

420del 

(rs72552763) 

 Del-Del (Mutant) 25 (23.6%) 46 (20.7%) 

0.757  ATG-Del (Heterozygous) 38 (35.8%) 88 (39.6%) 

 ATG-ATG(Reference ) 43 (40.6%) 88 (39.6%) 

 

               As illustrated in table (3-6) odds ratio was not significantly 

different between PCOS group and healthy control group.  
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Table (3-6) Logistic analysis of R61C and 420del to predict polycystic 

ovary syndrome  

 Variables OR (95%CI) p-value 

R61C 

(rs12208357) 

   TT 0.87 (0.48 – 1.57) 0.637 

   CT 0.87 (0.51 – 1.49) 0.616 

   CC  1.0 - 

420del 

(rs72552763) 

    Del-Del 0.90 (0.49 – 1.65) 0.732 

   ATG-Del 1.13 (0.67 – 1.92) 0.646 

   ATG-ATG  1.0 - 

OR: odds ratio 

 CI: confidence interval 

 (p< 0.05) considered significantly different 
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Figure (3-1) PCR amplification of OCT1 gene C>T showing the C and T 

alleles (both alleles are 407bp in size) 

 

 

Figure (3-2) PCR amplification of OCT1 gene: delin. Alleles: ATGAT>AT 

showing the ATG and Del alleles (both alleles are 100bp in size) 
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3.4Effects of Organic Cation Transporter1 Polymorphism 

R61C(rs12208357) on Hormonal and Metabolic Response 

to Metformin  

 

3.4.1 Effect of R61C (rs12208357)  on Hormonal Profile After 

Three Months of Metformin Treatment  

 

  It is clear  from Table (3-7) that the metformin therapy was 

modulated the hormonal disturbance in PCOS women after 2 months of 

treatment, as shown that LH level was significantly reduced after three 

months of treatment with metformin in women with CC and CT alleles, (P-

value <0.001) but there was no significant reduction in those with TT, (P-

value > 0.05). FSH was significantly increased after treatment only in women 

with CC allele, (P<0.001), while not in those with CT and TT (P>0.05).  The 

LH/FSH ratio was significantly reduced after treatment in women with CC 

and CT, (P<0.001), while there was no significant difference in women with 

TT, (P>0.05).  

Testosterone was significantly reduced after treatment, (P<0.001) 

in women with CC and CT alleles while not in those with TT, (P>0.05). 

SHBG was significantly elevated after treatment in women with CC and CT 

(P-value < 0.001), but the difference in mean SHBG before and after 

treatment was statistically insignificant in women with TT, (P>0.05).  FAI 

was significantly reduced in all PCOS women at all three alleles; CC, CT, 

and TT, (P-value <0.001).  
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Table (3-7)  Hormonal   parameters in  polycystic   ovary   syndrome  

women before and after treatment with metformin according to R61C 

Variables Allele Before  After  P. value 

LH (m.IU/L)  

 

CC 9.6 ± 5.1 8.3±4.5 <0.001 [S] 

CT 9.8 ± 6.1 8.1±4.8 <0.001 [S] 

TT 10.5 ± 5.2 10.0±5.8 0.771 [NS] 

FSH 

(m.IU/L) 

 

CC 5.7 ± 1.9 6.5±2.3 <0.001 [S] 

CT 5.6 ± 2.0 6.0±2.3 0.100 [NS] 

TT 6.1 ± 2.1 6.5±2.4 0.374 [NS] 

LH/FSH 

Ratio  

CC 1.8 ± 0.9 1.4±0.7 <0.001 [S] 

CT 1.8 ± 1.0 1.4±0.8 <0.001 [S] 

TT 1.8 ± 0.9 1.7±1.2 0.485 [NS] 

Testosterone 

(ng/ml)  

CC 0.60 ± 0.38 0.49±0.29 <0.001 [S] 

CT 0.62 ± 0.35 0.49±0.32 <0.001 [S] 

TT 0.69 ± 0.44 0.64±0.41 0.541 [NS] 

SHBG  

(nmol/L) 

CC 53.6 ± 24.3 58.1±22.1 <0.001 [S] 

CT 48.2 ± 22.7 53.5±20.8 <0.001 [S] 

TT 59.2 ± 27.4 58.1±23.5 0.111 [NS] 

FAI  

 

CC 6.75± 2.4 4.1± 2.59 <0.001 [S] 

CT 8.5 ± 2.8 4.75 ± 3.8 <0.001 [S] 

TT 8.25 ±2.6 5.75 ± 2.1 < 0.001 [S] 

Results are presented as mean±SD  

(p< 0.05) considered significantly different 

 [S] significant,[NS] non-significant 

 

 



52 

Chapter Three                                                                                                             Results  

 

 

3.4.2 Effect of R61C(rs12208357) on Glycemic Parameters After  

Three Months of Metformin Treatment  

 

               Data in table (3-8) showed significant reduction in body mass index 

after three months of  metformin treatment for all three alleles, however the 

reduction in CC and CT alleles(P< 0.001) was higher than TT alleles (P= 

0.021). The changes in FSG, HbA1c, Insulin level, and HOMA-IR in PCOS 

women after treatment were shown in table (3-8), FSG and HbA1c were 

significantly lowered in CC and CT alleles after treatment with metformin 

(P<0.001) but not in the TT allele (P>0.05). The insulin level and HOMA-IR 

were significantly reduced in the CC and CT groups (P=0.001). 
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Table (3-8) Glycemic parameters in the polycystic  ovary syndrome   

women before and after treatment with metformin according to R61C 

 

Parameter Allele Before After  P. value 

BMI 
(kg/m

2
) 

CC 31.2 ± 4.7 28.5 ± 3.6 < 0.001[S] 

CT 31.8 ± 4.5 28.4 ± 3.9 < 0.001[S] 

TT 31.1 ± 4.6 28.9± 5.2 0.021 [S] 

FSG (mg/dL) 

CC  97.1 ± 13.0 93.2 ± 14.7 0.001 [S] 

CT 98.8 ± 12.6 94.6 ± 11.7 <0.001 [S] 

TT 100.3 ± 12.4 99.7 ± 12.7 0.576 [NS] 

Insulin 

(µIU/ml) 

 

CC 22.6 ± 14.5 20.2 ± 11.3 <0.001 [S] 

CT 23.9 ± 15.1 20.9 ± 11.5 <0.001 [S] 

TT 22.8 ± 10.6 23.3 ± 10.4 0.332 [NS] 

HOMA-IR 

CC  5.4 ± 3.5 4.7 ± 2.8 <0.001 [S] 

CT 5.9 ± 4.0 5.0 ± 2.9 <0.001 [S] 

TT 5.7 ± 2.7 5.8 ± 2.7 0.446 [NS] 

HbA1c (%) 

CC  4.9 ± 0.7 4.5 ± 0.7 <0.001 [S] 

CT 4.9 ± 0.7 4.5 ± 0.6 <0.001 [S] 

TT 5.6 ± 5.4 5.5 ± 0.6 0.894 [NS] 

Results are presented as mean±SD 

 (p< 0.05) considered significantly different 

 [S] significant, [NS]: non-significant 
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3.4.3 Effect of R61C(rs12208357) on Lipid Profile  After Three  

Months of Metformin Treatment  

 

Table (3-9) demonstrated the results of lipid profile for the 

participants PCOS women before and after treatment with metformin which 

indicated that triglycerides levels were significantly reduced after treatment 

in all women with CC, CT, and TT alleles, (P<0.001 ). LDL level was 

significantly reduced while HDL level was significantly increased in women 

with CC and CT alleles, (P<0.05), but no significant changes in LDL and 

HDL levels in women with TT, (P>0.05). The total cholesterol level was 

significantly lower after treatment in all subgroups with CC, CT, and TT, 

(P<0.05). 
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Table (3-9) Lipid profiles of polycystic ovary syndrome  women before and 

after treatment with metformin according to R61C 

 

Parameter Allele Before After  P. value 

TG (mg/dL)  

CC 127.2 ± 43.1 114.2 ± 35.5 <0.001 [S] 

CT 132.5 ± 45.4 118.8 ± 36.9 <0.001 [S] 

TT 122.4 ± 41.8  120.8 ± 40.9 0.037 [S] 

LDL (mg/dL)  

CC 99.8 ± 90.3 83.0 ± 20.4 <0.001 [S] 

CT 97.8  ± 35.2 88.4 ± 25.2 <0.001 [S] 

TT 92.5 ± 29.1 91.7 ± 27.2 0.996[ NS] 

HDL (mg/dL)  

CC 45.8 ± 10.3 47.8  9.2 0.003 [S] 

CT 45.6 ± 11.2 47.0 ± 10.3 0.002 [S] 

TT 46.4 ± 10.5 44.3 ± 11.6 0.339 [NS] 

Total 

Cholesterol 

(mg/dL)  

CC 161. 0 ± 42.3 148.8 ± 44.8 <0.001 [S] 

CT 166.5 ± 43.2 151.2 ± 41.7 <0.001 [S] 

TT 164.3 ± 41.9 161.3 ± 42.4 0.001 [S] 

Results are presented as mean±SD,  (p< 0.05) considered significantly different, [S] 

significant, [NS]: non-significant 
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3.5   Effects of  Organic Cation Transporter  1 Polymorphism 

420del (rs72552763) on Hormonal and Metabolic Response to 

Metformin    

 

3.5.1 Effect of  420del ( rs72552763 ) on Hormonal Profile  After  

Three  Months of Metformin Treatment  
 

The hormonal parameters of PCOS women before and after 

treatment according to 420del were summarized in (Table 3-10) where LH, 

and the LH/FSH ratio were significantly decreased after treatment in women 

with ATG-ATG and ATG-Del, (P<0.05), but no significant differences were 

found in these parameters among PCOS women with Del-Del, (P>0.05).  

The Testosterone level was significantly reduced after treatment in 

women with ATG-ATG and ATG-Del alleles, (P<0.05), but no significant 

difference was reported in those with Del-Del, (P>0.05). There was a 

significant elevation in the level of SHBG after treatment in women with 

ATG-ATG and ATG-Del, (P. value < 0.001 and 0.004, respectively), but the 

difference in mean SHBG before and after treatment was statistically 

insignificant in women with Del-Del, (P>0.05).  FAI was significantly 

reduced in all PCOS women at all three alleles; ATG-ATG, ATG-Del, and 

Del-Del, (P. value <0.001). 
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Table (3-10) Hormonal parameters of polycystic ovary syndrome women 

before and after three months of metformin treatment according to 420del  

Variables  Allele Before  After  P. value 

LH 

(m.IU/L) 

 

ATG-ATG 10.0± 5.2 8.3±4.6 <0.001 [S] 

ATG-Del 10.0±5.1 8.7±4.7 <0.001 [S] 

Del-Del 9.5±6.3 9.3±5.9 0.765[NS]   

FSH 

(m.IU/L)  

 

ATG-ATG 5.6 ± 2.0 6.2±1.9 <0.001 [S] 

ATG-Del 5.9±2.0 6.5±2.8 0.031 [S] 

Del-Del 5.9±1.9 6.2±2.2 0.128 [NS] 

LH/FSH 

Ratio 

ATG-ATG 1.9 ± 1.0 1.4±0.9 <0.001 [S] 

ATG-Del 1.8±0.8 1.5±0.8 <0.001 [S] 

Del-Del 1.6±0.9 1.5±0.8 0.225 [NS] 

Testosterone 
(ng/ml)  

ATG-ATG 0.65±0.4 0.52 ± 0.37 <0.001[S] 

ATG-Del 0.57± 0.3 0.46±0.30 <0.001 [S] 

Del-Del 0.71±0.4 0.65±0.39 0.167 [NS] 

SHBG  

(nmol/L) 

ATG-ATG 52.3±24.6 59.5 ± 22.5 <0.001 [S] 

ATG-Del 53.0±25.7 57.2 ± 22.0 0.004 [S] 

Del-Del 52.4±23.8 54.8 ± 21.7 0.775 [NS] 

FAI  

 

ATG-ATG 7.1±2.26 6.3 ± 6.11 <0.001 [S] 

ATG-Del 7.1 ±2.7 4.25 ± 3.4 <0.001 [S] 

Del-Del 7.5 ±2.5 4.75 ± 2.3 <0.001 [S] 

Results are presented as mean±SD 

(p< 0.05) considered significantly different  

[S] significant, [NS]: non-significant 
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3.5.2  Effect of  420del ( rs72552763 ) on Glycemic Profile  After  

Three  Months of Metformin Treatment 

 

 

Data in table (3-11) showed significant reduction in body mass 

index after three months of  metformin treatment for all three alleles, 

however the reduction in ATG-ATG and ATG-Del alleles(P< 0.001) was 

higher than Del-Del alleles (P=0.028). Assessment of changes in FSG, 

HbA1c, Insulin level, and HOMA-IR in PCOS women after treatment 

according to 420del are demonstrated in (Table 3-11). FSG was significantly 

lowered in ATG-ATG group (P<0.001) and ATG-Del (P<0.002)   while not 

in Del-Del groups (P>0.05). HbA1c, Insulin level, and HOMA-IR were 

significantly reduced in ATG-ATG and ATG-Del groups, (P<0.001).    
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Table (3-11) Glycemic parameters in polycystic ovary syndrome women 

before and after treatment with metformin 

 

Variables Allele Before  After  p-value 

BMI (kg/m
2
) 

ATG-ATG 31.4 ± 4.9 28.0 ± 3.6 < 0.001[S] 

ATG-Del 31.3 ± 4.7 28.8 ± 4.5 < 0.001[S] 

Del-Del 31.2 ± 4.7 29.1 ± 3.7 0.028 [S] 

FSG (mg/dL) 

ATG-ATG 96.5 ± 12.5 93.5 ± 10.7 <0.001 [S] 

ATG-Del 99.2 ± 12.5 94.6 ± 16.1 0.002 [S] 

Del-Del 100.3 ± 13.6 98.7 ± 12.8 0.126 [NS] 

Insulin 

(µIU/ml) 

ATG-ATG 23.2 ± 15.6 20.8 ± 11.8 <0.001 [S] 

ATG-Del 21.8 ± 13.7 19.8 ± 10.7 <0.001 [S] 

Del-Del 25.1 ± 10.6 24.0 ± 10.5 0.178 [NS] 

HOMA-IR 

ATG-ATG 5.6 ± 3.8 4.8 ± 2.9 <0.001 [S] 

ATG-Del 5.4 ± 3.5 4.8 ± 2.9 <0.001 [S] 

Del-Del 6.2 ± 2.8 5.9 ± 2.6 0.114 [NS] 

HbA1c (%)  

ATG-ATG 5.2 ± 4.0 4.5 ± 0.7 <0.001 [S] 

ATG-Del 4.9 ± 0.9 4.6 ± 0.6 <0.001 [S] 

Del-Del 4.8 ± 0.7 4.7 ± 0.7 0.268 [NS] 

 Results are presented as mean±SD 

p< 0.05) considered significantly different  

 [S] significant, [NS]: non-significant 
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3.5.3 Effect of  420del  ( rs72552763 )  on  lipid   Profile   After  

Three  Months of Metformin Treatment 

 

The lipid profile of the participant PCOS women before and after 

treatment according to the 420del was shown in (Table 3-12), which 

revealed that triglycerides levels were significantly reduced after treatment 

in women with ATG-ATG and ATG-Del alleles, (P<0.001 and P=0.001), 

but no significant difference was found in women with Del-Del.  LDL level 

was significantly reduced while HDL level was significantly elevated in 

women with ATG-ATG and ATG-Del, (P<0.05), but non-significant 

changes in LDL and HDL levels in women with Del-Del, (P>0.05). Total 

cholesterol level was significantly lower after treatment in women with 

ATG-ATG and ATG-Del, alleles (P<0.05), with non-significant difference 

in women with Del-Del allele, (P>0.05). 
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Table (3-12) Lipid profile of polycystic ovary syndrome women before and 

after treatment with metformin according to 420del  

 

Parameter  Allele Before  After  P. value 

Triglycerides 

(mg/dL) 

ATG-ATG 126.4±41.9 115.1 ± 37 <0.001 [S] 

ATG-Del 134.6 ± 46.5 121.2 ± 39.7 <0.001 [S] 

Del-Del 117.6 ± 39.3 113.2 ± 32 0.817 [NS] 

LDL (mg/dL) 

ATG-ATG 91.3 ± 26.7 84.4 ± 21.5 <0.001 [S] 

ATG-Del 108.5 ± 99.3 89.8 ± 27.4 <0.001 

Del-Del 89.0 ± 29.8 84.8 ± 19.9 0.087 [NS] 

HDL (mg/dL) 

ATG-ATG 47.3 ± 11.2 49.4 ± 10.6 <0.001 [S] 

ATG-Del 44.5 ± 9.9 45.8 ± 7.8 0.013 [S] 

Del-Del 45.7 ± 10.5 43.6 ± 12.0 0.289 [NS] 

Total 

Cholesterol 

(mg/dL) 

ATG-ATG 162.4 ± 34.7 148.7 ± 40.3 <0.001 [S] 

ATG-Del 165.0 ± 47.1 154.4 ± 45.5 <0.001 [S] 

Del-Del 159.2 ± 47.3 158.4 ± 45.4 0.639 [NS] 

Results are presented as mean±SD 

p< 0.05) considered significantly different  

[S] significant, [NS]: non-significant 
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Chapter Four 

Discussion 

4.1 Socio-demographic Data  

                 Polycystic ovary syndrome (PCOS) is a complex endocrine 

condition that affects reproduction
)07(

 and contributes to long-term 

metabolism disturbance, such as diabetes and heart disease 
(7)

. High 

androgen level and insulin resistance result in metabolic and hormonal 

dysfunctions in PCOS patients 
(125)

, which lead to high comorbidity rates  

(126)
.   

              Table (3-1) demonstrates 222 PCOS patients and 106 healthy 

control enrolled in this study were at the reproductive age. Both groups in 

this study were overweight, BMI for PCOS patients was 31.4 ±4.9 and for 

healthy control 27.8 ±4.7. Barber et al  8774 . confirmed that weight gain and 

obesity occur in approximately  (76%) of women with PCOS 
(127)

. Alopecia 

and hirsutism were (92%) and (83%) in PCOS patients, PCOS can cause 

both alopecia and hirsutism as one of the most reliable results of 

hyperandrogenism associated with this syndrome 
(128)

.  

 

4.2 Hormonal and Metabolic Variation between Control 

Group and Polycystic Ovary Syndrome Group  

 

              In the present study, serum LH and testosterone levels were 

significantly higher in PCOS patients, while FSH was significantly lower in 

patients in comparison with control participants. Hence the LH/FSH ratio 

was significantly elevated in PCOS patients as showed in the table (3-2). 
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These results compatible with that reported by Neoklis et al   8714 .,who 

found that the LH, LH/FSH ratio, total testosterone, and FAI were elevated 

in women with PCOS as compared to control with lower FSH level in PCOS 

women than control subjects
(129)

. 

       Insulin resistance and hyperinsulinemia may play a part in the 

development of the typical increases in the amplitude and frequency of 

GnRH and LH pulse secretion in PCOS
(130)

. This effect may be mediated by 

the action of insulin on GnRH-secreting cells in the hypothalamus and 

potentiating GnRH gene transcription through the MAPK pathway. 

Increased GnRH synthesis and secretion lead to a subsequent elevation in 

LH level, this continuous stimulation would translate into the augmented 

synthesis of ovarian steroid hormones, particularly androgens 
(131)

. 

                  Serum prolactin level was elevated in PCOS patients with the 

excluding of hyperprolactinemia during the diagnosis of PCOS. Prolactin is 

a circulating hormone released from the pituitary gland and is regulated by 

the suppression effect of dopamine which is secreted from the 

hypothalamus
(132)

, one of the possible causes of PCOS is the abnormal 

hypothalamus-pituitary axis that leads to impaired suppression of 

prolactin
(132, 133)

. PCOS is characterized by increased inflammation with 

abdominal obesity 
(134)

. Furthermore, the macrophage-derived from adipose 

tissue released prolactin in response to inflammation and high glucose 

concentration 
(135)

.  

               We found that the SHBG level was significantly lower in PCOS 

patients than healthy control while FAI was significantly higher. SHBG is 

the main transporter protein for testosterone that modulates its biological 

activity 
(136)

. Polymorphism of the sex hormone-binding globulin (SHBG) 



64 

Chapter Four                                                                                                         Discussion   

 

 

gene has been associated with low SHBG levels and increased risk for 

PCOS or hyperandrogenism
(137)

. Insulin inhibits the hepatic synthesis of  

SHBG  and insulin-like growth factor-binding protein 1 (IGFBP-1) thereby 

increases free and bioavailable testosterone and insulin-like growth factor 

(IGF) concentration in the ovary  
(46)

,  Cupisti et al. reported that obese 

PCOS women were associated with significantly increased FAI, and 

decreased SHBG 
(138)

,  an observation  that was also confirmed  by Mueller 

et al. 
(139)

. Both studies findings were compatible with the current study.   

               In this study, the TSH level was significantly higher in PCOS 

patients compared to the control group but still within the normal range. The 

link between thyroid function and PCOS is unclear however PCOS is 

associated with an increase in pro-inflammatory markers and an increase in 

insulin resistance
(140)

 which through undefined mechanisms, leads to 

decreased deiodinase-2 activity at the pituitary level resulting in relative 

increase in TSH levels, the raised TSH levels act on adipocytes to increase 

their proliferation 
(141)

, El-Hafez et al.2016  found that euthyroid, IR-PCOS 

women had higher TSH levels compared with euthyroid, non-IR-PCOS 

women
(142)

.   

                 Regarding the metabolic picture of PCOS patients, study data in 

the table (3-3) revealed elevated serum insulin levels in PCOS patients, but 

with no significant differences in fasting blood sugar and HbA1c between 

study groups. The HOMA-IR was significantly higher in PCOS patients than 

in healthy control, these results were compatible with those observed by 

Behboudi-Gandevani et al 2016. who found a significant increase in insulin 

level and HOMA-IR in obese PCOS women
(143)

.   50% to 90% of women 

diagnosed with PCOS have insulin resistance (IR) 
(144)

, hyperandrogenism 
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(HA)  aggravate IR by reducing the sensitivity and expression level of 

glucose transporter protein-4 (Glut-4), inhibiting the degradation of insulin 

by the liver, and exacerbating central obesity
(145)

. Hyperinsulinemia develops 

as a compensatory response to IR in PCOS. However, theca cells remain 

insulin sensitive and the insulin interacts synergistically with LH and 

stimulates the androgen production in theca cells 
(146)

.  

                 In the present study as illustrated in table (3-4) we found that the 

mean values of the lipid profile components were significantly higher in the 

PCOS group as compared to healthy women except for HDL which was 

lower in PCOS. The findings of our study were following Kader et al 2007. 

who suggested that this compromised metabolic profile in PCOS puts these 

women at higher cardiovascular risk
(147)

, Kalra et al 2006, in their study 

found that insulin-resistant PCOS women had high triglycerides , total 

cholesterol and lower high-density lipoprotein compared to insulin-sensitive 

women, they concluded that insulin resistance is associated with 

dyslipidemia in women with PCOS
 (148)

. The presence of an atherogenic lipid 

profile in women with PCOS was also confirmed by Valkenburg et al 2013 

(149)
. The effects of IR on lipid metabolism were well known. IR impairs the 

ability of insulin to suppress lipolysis increasing mobilization of free fatty 

acids from adipose stores with consequent increased hepatic delivery of free 

fatty acids, thus impairing insulin inhibition of hepatic very-low-density 

lipoprotein synthesis, and altering catabolism of very-low-density 

lipoprotein
(150)

. 
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4.3 The Association of  Organic  Cation Transporter 1 Poly-

morphism with the Incidence of Polycystic Ovary Syndrome   

 

               Since 1968, studies have suggested an important genetic role 

contributing to the etiology of PCOS
(151)

. Genome-Wide Association 

Studies (GWAS) have identified several new risk loci and candidate genes 

for PCOS. Despite these findings, the association studies have explained 

less than 10% of heritability
(152)

. In this study as shown in table (3-5) and 

(3-6) the allele frequencies of R61C (rs122083571 [CC (reference allele), 

CT (heterozygous type), and TT (mutated type)]  and 420del (rs72552763) 

[ATG-ATG (reference allele), ATG-Del (heterozygous type), and Del-Del 

(mutated type)])  were similar in both  PCOS patients and control group, 

this indicates that OCT1 polymorphism was not associated with PCOS 

pathophysiology and this agreed with a study by Hui Hua Chang et al 

2019. who showed similar findings 
(153)

. 

 

4.4 Influence of Organic Cation Transporter 1 Polymorphism 

on Metformin Response 
 

             Metformin was the first insulin-sensitizing drug to be used in PCOS 

(154)
. Velazquez and colleagues reported a significant improvement in 

menstrual regularity and reduction in circulating androgen levels in PCOS 

patients treated with metformin
(154)

. Considerable inter‐individual variability 

exists in response to metformin, both non‐genetic and genetic factors were 

determinants of the metformin effect. 
(155)

 The majority of pharmacogenetic 
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studies performed with metformin have been focusing on the identification 

of gene variants related to metformin pharmacokinetics
(156)

.  

              Pharmacogenetics differs from more classical genetic approaches in 

that there must be an interaction between gene and drug therapy, as opposed 

to a more straightforward association to disease. Drug-genome interactions 

can occur in several ways including  

a-genetic variation in the direct molecular target of a drug class ,  

b- class of genes are those involved in drug ADME absorption, distribution 

(such as OCT1), metabolism, and excretion. In general, ADME genes can 

affect the action of many drugs, independent of their intended molecular 

target. Shu et al. 2007
(157) 

in their integrative pharmacogenomics study 

revealed the diversity of responders to a drug leads to personalized treatment 

regimens that ensure the administration of the right drug for the right person 

at the right time
(158)

.  

            Organic cation transporter (OCT) proteins mediate the transport of 

organic cations across the cell membrane. Metformin has been demonstrated 

to be a substrate of liver-specific OCT1 
(159)

, several studies indicated that 

the pharmacokinetic and pharmacodynamics profiles of metformin are 

mediated by the activity of OCT1 
(160)

.   

            In this study, the follow up of PCOS cases with metformin for 3 

months revealed a significant fall in serum LH, LH/FSH ratio, and 

testosterone in patients with reference alleles and heterozygous alleles for 

both R61C and 420del, while PCOS women with mutant alleles did not 

show significant reduction of these parameters. Metformin significantly 

increases serum FSH level in patients with reference alleles, while mutant 

alleles didn’t show significant elevation for both R61C and 420del. 
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Although patients with heterozygous alleles of 420del showed a significant 

increase in the FSH level, they didn’t show that effect in R61C. Concerning 

the SHBG level, metformin increases its concentration in patients with 

reference alleles and heterozygous alleles for both R61C and 420del while 

the mutant allele didn't show a significant response.  These findings 

suggested that metformin lowers testosterone levels in women with PCOS; 

this effect may be attributed to a reduction in hyperinsulinemia because of 

enhanced insulin sensitivity 
(161, 162)

,  and reduction in CYP17  activity in 

women with PCOS upon metformin treatment consequent to lowering of 

serum insulin levels 
(161)

. However, there was evidence that metformin 

directly inhibits ovarian steroidogenesis
 (163)

 
(164)

.  Jolanta Nawrocka et 

al.2007 indicated that  the metformin causes a statistically significant 

decrease in luteinizing hormone (LH) , the free androgen index (FAI), and 

significant increases in FSH, FSH/LH ratio and SHBG concentration 
(165)

. 

                In women with mutant alleles diminished metformin response may 

be due to reducing the transport of metformin via (OCT1) in the intestine 

leading to decrease metformin bioavailability and consequently diminished 

metformin effects on its main target tissue in PCOS like liver, skeletal 

muscles, and ovary, make the patients liable to gastrointestinal side effects 

due to high metformin concentration in  gastrointestinal tract( GIT) 
(166)

.  

               This study revealed that metformin can affect body weight. All 

patients in this study (carrier of reference allele, heterozygous allele and 

mutant allele) for both R61C and 420del showed significant reduction in 

BMI after three months of 1000 mg metformin treatment. Metformin can 

reduce body weight by several mechanisms, Its  primarily acts on the central 

nervous system to reduce appetite by attenuating hypothalamic AMPK 

https://pubmed.ncbi.nlm.nih.gov/?term=Nawrocka+J&cauthor_id=17505944
https://pubmed.ncbi.nlm.nih.gov/?term=Nawrocka+J&cauthor_id=17505944
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activity, which decreases orexigenic peptides, neuropeptide (NPY), and 

increases pro-opiomelanocortin (anorectic) expression, also metformin has 

an additional food-lowering effects by improving leptin and insulin 

sensitivity, increasing glucose-like polypeptide-1 levels, and affecting gut 

flora. Metformin also reduces ectopic lipid depots (i.e. liver and skeletal 

muscle) through increased fat oxidation and decreased lipid synthesis, which 

may be regulated to some extent by circadian clock genes. 

  Polymorphism in OCT1 gene (R61C and 420del) did not affect the 

ability of metformin for lowering the body weight, this may be due to 

metformin main action on body weight occur in brain, skeletal muscles, 

adipose tissue where metformin uptake accrue via passive diffusion and 

other transporters. Reduced body weight maybe due to lifestyle modification 

like low carbohydrate diet, avoidance of fatty meals and daily exercise.   

Fasting blood sugar, insulin level, HbA1C, and HOMA-IR were 

significantly reduced in patients with reference alleles and heterozygous 

alleles but they did not in mutated alleles for both R61C and 420del.   

Metformin exerts pleiotropic actions in several tissues, primarily the liver, 

where it inhibits hepatic gluconeogenesis and glycogenolysis, through which 

the drug contributes to improving insulin sensitivity.  The potential 

mechanisms for inhibiting  the hepatic gluconeogenesis including direct 

inhibition of gluconeogenic enzymes (e.g. phosphoenolpyruvate 

carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase), 

reduced hepatic uptake of substrates for gluconeogenesis, and increased 

phosphorylation of insulin receptor and insulin receptor substrates (IRS)-1 

and -2 
(167-169)

. Other investigators have also demonstrated the inhibition of 
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mitochondrial respiration by metformin, may reduce the energy supply 

required for gluconeogenesis 
(170)

. 

             Patients with mutated alleles didn't have a significant response and 

this may be due to reduce or loss of OCT1 function and diminished hepatic 

uptake of metformin due to gene polymorphisms. Our study was compatible 

with Yan Shu et al 2007 who showed that the effects of metformin on 

glucose tolerance tests were significantly lower in individuals carrying 

reduced function polymorphisms of OCT1
(157)

.   Sundelin et al 2017 in their 

study showed that hepatic distribution of metformin was significantly 

reduced after oral intake in carriers of 420del  and R61C variants 

in SLC22A1 
(171)

.  

                Dyslipidemia is common in PCOS patients, characterized by 

higher triglycerides (TG) and lower high-density lipoprotein (HDL). 

Dyslipidemia occurs independently of body mass index (BMI); however, 

there is a synergistic deleterious effect of obesity and insulin resistance in 

PCOS analogous to that seen in T2DM. Dyslipidemia in PCOS has 

multifactorial causation, insulin resistance plays a pivotal role by the 

stimulation of lipolysis and altered expression of lipoprotein lipase and 

hepatic lipase 
(6)

.    

             In this study after three months of metformin treatment, we found 

that TG, LDL, and cholesterol were significantly reduced in patients with 

reference alleles and heterozygous alleles, while mutant alleles showed less 

response in both R61C and 420del.  The cholesterol level in patients with 

R61C mutant alleles, respond better than those with mutant alleles of 420del. 

HDL level significantly increases in patients with reference alleles and 

heterozygous alleles, while patients with mutant alleles didn’t respond, 



71 

Chapter Four                                                                                                         Discussion   

 

 

altered OCT1 function as a result of polymorphism able to influence the 

intracellular metformin concentrations and therefore metformin action on 

lipogenic enzymes, particularly inhibition of acetyl-CoA carboxylase (ACC) 

activity via an AMPK-dependent pathway 
(70)

.  

              The results were in line with previous studies on PCOS, where 

metformin has been shown to improve the lipid profile, mainly by increasing 

serum HDL concentrations 
(172)

, Glueck et al 2003 reported a significant 

decrease in triglyceride levels
(173)

, on the other hand, Rautio et al 2005 

reported a non-significant change in serum cholesterol, triglycerides, and 

LDL-C levels 
(174)

.  
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4.5 Conclusions 

These data provide a proof of concept, in a clinical setting that 

 

 OCT1 polymorphism can be considered as one of the genetic factors 

responsible for heterogeneity in the response to metformin in Iraqi 

female suffering from PCOS. 

 Carrier of  reference allele and heterozygous alleles for both SNPs 

showed significant response after three months of metformin 

treatment  

 Carrier of mutant alleles showed non-significant response after three 

months of metformin treatment  

 Polymorphism of the OCT1 gene is not associated with the incidence 

of PCOS. 
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4.6 Recommendations and Future works 

1- Further studies will be necessary to confirm the impact of genetic variants 

in other candidate genes associated with metformin disposition like OCT2 

and MATEs 

 

2- Studying other OCT1 SNPs in order to find out the effect of multiple OCT1 

polymorphisms on metformin response in PCOS patients 

 

3- Metformin  plasma  level should be determined in next  study to proof   the  

 effect of transporter gene polymorphism on metformin bioavailability.  

 

4-Larger scale studies  enrolling  more  PCOS  patients and  healthy  control 

   participants from different Iraqi cities are required 

 

4- In clinical setting, I recommend to develop genetic tests that could predict 

a person’s  response to  metformin  treatment and create  personalized drugs 

with greater efficacy and safety. 
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ّضحح ا نتٌئححتعد  ؼححيلا ناتحح٘ية نتاٌ٘٘ححك تٌتنححل نتيححت ْ٘ى نتؼتححْٕ ناّ   ححتى هئ ححت ِت  ححٖ  اننتااج:  

,  .  ٖ هت ٗئؼلح   تاضحئات ك نتؼية٘حك تؼ حتم نتوئيحْمه٘يهاوْػك نتٌطتء نتورٗتتة ّنتٌطتء نتطل٘وتة

نضححئات ك تنة لااتححك نيةححتع٘ك  نهؼظححن نتورٗتححتة نت ححتهية تيت٘ححل نتطححتعي ّنات٘ححل نتوئٌ ححٖ ن ِححرّ

 ّنض ك ّتيي نتورٗتتة نت تهية تيت٘ل نتطت ر تن ٗظِرّن نضئات ك ػيةَ٘  ٖ

 

ني ٗئرن   ناخئيف نتاٌٖ٘ تٌتنل نتيت ْ٘ى ناّ  هغ ػيم نتئاتًص  ٖ نضئات ك نتورضحٔ  الاستنتجج 

 , تيي ت٘ص تَ ػينك  إهرنضَ٘ هئيزهك  ي٘ص نتوبتٗض.  يئيْمه٘تلو٘

 



 
 

 
 

 انخلاصت 

: هئيزهك  ي٘ص نتوبتٗض ُٖ نضطرن تة نٗتَ٘ ّ ُرهًَْ٘ شحتعؼك ةحين ّتِحت ػحير نضحرنم  انخهفٍت

ػلٔ ص َ نتٌطتء نتوةت تة ّنُوِحت نتؼ حن.  حتترمن هحي ػحيم هؼر حك نتطحبس نترع٘طحٖ تِحمٍ نتوئيزهحك 

ئ ي نى ناضبتب  يوي  ٖ نضطرنب نتِرهًْتة ّنُوِت نتِرهْى نتم رٕ ناًحيمّة٘ي نتٔ ناى تيي ٗؼ

ّ متك ه تّهك ناًطْت٘ي ّنم يتع ًطبك ناًطْت٘ي  ٖ نتيم. ُرهْى ناًطْت٘ي ٗطبس   ْٗش  ٖ ػوحل 

نتغيٍ   ا نتوِتلا ّنتغير نتٌخته٘حك ّ حمتك نتوبح٘ض ّتتحك ٗحللإ نتحٔ خلحل  حٖ ناٗحض نتخلحْٕ ّزٗحتلار 

اًححيمّة٘ي نتححمٕ ٗؼئبححر نتوطححبس نترع٘طححٖ  ححٖ ناػححرن  نتطححرٗرٗك تححيٓ نتٌطححتء نتوةححت تة ُرهححْى ن

 وئيزهححك  يحح٘ص نتوبححتٗض. ٗؼئبححر نتوئيححْمه٘ي هححي نُححن نتؼيةححتة نتوطححئخيهك تِححمٍ نتوئيزهححك نا نى 

نتؼتْٕ ٗلؼس لاّم هِن  ٖ نلاخت  نتوئيحْمه٘ي  نتيت ْ٘ىنضئات ك نتورٗتتة هئبتٌٗك تؼير نضبتب. ًتنل 

تِححمن نتٌتنححل  ححل ر ػلححٔ نضححئات ك  نتاٌ٘٘ححكتحٔ خيٗححت نتيبححي. ّةححي  ححٖ لامنضححتة ييٗاححك نى  ؼححيلا ناشححيت  ن

 .  يتلو٘ئيْمه٘نتورضٔ 

نتغححر  هححي ُححمٍ نتيمنضححك ُححْ توؼر ححك  ححا ٘ر  ؼححيلا ناشححيت  نتاٌ٘٘ححك تٌتنححل   انهااذم يااٍ انذ اساات

تححيٓ هرٗتححتة  يحح٘ص نتوبححتٗض  ححٖ  يتلو٘ئيححْمه٘ ْ٘ى نتؼتححْٕ ناّ  ػلححٔ ناضححئات ك نتؼية٘ححك تنتيحح

 نتؼرنق. 

ُمٍ نتيمنضك هر  بك  وا  ٖ هطئ ئ نتٌطتع٘ك ّنتئْت٘ي نتئؼل٘وٖ  ٖ  ر يء نطن   انًرضى وانطرق

نتؼ ن ّ متك  ٖ نتؼ٘تلار نتختصك تطب٘بك نضئ حتمٗك نخةحتع٘ك  ًطحتع٘ك ّ ْت٘حي ّ حن   حخ٘ي نتورٗتحتة 

هرٗتحك  وئيزهحَ  يح٘ص  888 تحوٌا ُحمٍ نتيمنضحك ب٘بحك نػئوحتلان ػلحٔ نْنػحي مّ حرلانم. طهي نبل نت

. نػطححٖ ػححيم نتوئيححْمه٘ي  ارػحححك 67-87نهححر ر ضححل٘وك  ئححرنّر نػوحححتمُن  حح٘ي  174نتوبححتٗض ّ 

هلغ هر تى ْٗه٘ت توير  حي  نشحِر. نخحمة ػٌ٘حتة لام هحي نتورٗتحتة نبحل ّ ؼحي  ي حك نشحِر هحي 277

طحير ّناًطحْت٘ي ّنتحيُْى ّتغحر  ػيم نتوئيْمه٘ي تغحر  ن٘حتش ًطحس نتِرهًْحتة ّهطحئْٗتة نت

نتؼتحْٕ ناّ  ّلامنضحك  حا ٘رٍ   ْ٘ىتنةرنء نتيمنضك نتاٌ٘٘ك توؼر حك  ؼحيلا ناشحيت  نتاٌ٘٘حك تلٌتنحل نتيح

 ػلٔ نضئات ك نتورٗتتة  وئيزهك  ي٘ص نتوبتٗض تؼيم نتوئيْمه٘ي. 

 

 

 



 

 

 جًهى ٌت انعراق 

 وزا ة انتعهٍى انعجنً وانبحث انعهًً

 ججيعت كربلاء 

 ٍت انصٍذنتكه

 

علاقت تعذد الأشكجل انجٍنً ننجقم انكجتٍىٌ انعضىي الاول يع الاستججبت 

انعلاجٍت نهًٍتفى يٍٍ فً اننسجء انًصجبجث بًتلازيت تكٍس انًبجٌض فً 

 انعراق

مضتتك ه يهك نتٔ  ل٘ك نتة٘يتك  اتهؼك  ر يء  اسء هي هئطلبتة لامةك 
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