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Abstract

The current work is including synthesis of new mannitol based bis-1,2,3-triazoles and
study of their cytotoxicity. First, aromatic azides 99a—c were synthesized in excellent
yields via the reaction of corresponding benzyl bromides with sodium azide in DMSO.
In a separate step, the commercially available D-mannitol was reacted with acetone in
the presence of zinc chloride to give 1,2:5,6-di-O-isopropylidene-D-mannitol (101) in
54% vyield, which was treated with propargyl bromide in DMF to produce 3,4-bis-O-
propargyl-1,2:5,6-di-O-isopropylidene-D-mannitol (102) in a very good yield. The
copper catalyzed cycloaddition reaction of the dialkyne 102 with azides 99a—c gave the
bis-1,2,3-triazole derivatives 103 a—c in nearly very good yields. The final step in the
synthesis was the acetal groups’ removal of compounds 103 a—c to afford the
deprotected triazole derivatives 104 a-c in quantitative yields. The synthesized
compounds were characterized followed by TLC, FT-IR, NMR, COSY, HSQC, HMBC
and HRMS. Compounds 103 a—c were in vitro screened against human mesenchymal

stem cells and found to possess fair cytotoxicity.

VI
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Chapter One: Introduction

1. Introduction

Heterocyclic compounds are one of the important classes of organic chemistry
due their wide range of applications.'” In addition to their cyclic nature, it should
contain one or more heteroatoms rather than carbon i.e. nitrogen, oxygen, sulfur,
selenium...etc. and it can be aromatic or non-aromatic.®’ Heterocyclic compounds are
classified into three, four, five, six, seven-membered rings and they could be fused-
cyclic derivatives comprises of two rings or more.2® The most important categories are
the five- and six-membered rings because their availability in compounds that have
essential role nature such as nucleotides (adenosine triphosphate (ATP) (1)),

carbohydrates (L-ascorbic acid (2)) and penicillin (3).1%!2

9o 1y
H%\Oﬁg\o/?\o O /=N HO 4 W/N S
HO /\E>—N o) o ®) N\)<
O e \/HOLZ: ® om
SN OH (@)
1 2 3

Figure 1. Structures of ATP(1), L-ascorbic acid(2), and penicillin(3)

1.1.Five-membered ring heterocyclic compounds

There are many heterocyclic derivatives categorized under this class and varies
from one to four heteroatomic molecules. The common examples of hetero-alicyclic
derivatives are tetrahydrofuran (5), pyrrolidine (6) and tetrahydrothiophene (7). These
compounds are highly consumed for industrial applications, and it produced according

to the following scheme!3-1°;
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NH3 A ~_-OH dehydration H,S
-« HO — = — =
E' NiO / Al,O3 o Al,O4 S
6 4 5 7

Scheme 1. Industrial production of tetrahydrofuran, tetrahydrothiophene and pyrrolidine

The aromatic counterparts: furan (8), pyrrole (9) and thiophen (10) of the
compounds 5-7 are also important, and their derivatives have remarkable applications

particularly in the field of drug design i.e. antimicrobial nitrofurazone (11)%, antiplatelet

®
!
2

>X—NH2 cl N
,N—NH
D_/ cl B cl NN
o NO; “~NH —

1 12 13
drug ticlopidine (12)!' and antifungal pyrrolnitrin (13).18

Figure 2. Structure of furan, pyrrole, thiophene and examples of their corresponding
drugs

When another carbon atom is replaced by nitrogen in the compounds 8-10, a
new set of diatomic heterocyclic five-membered ring is afforded, for example, isoxazole
(14), oxazole (15), pyrazole (16), imidazole (17), isothiazole (18), and thiazole (19).1%2°
The position of the nitrogen regarding to the other heteroatom governs the physical and

chemical properties of the molecule. Although, imidazole and pyrazole have similar
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chemical formula, the former compound possess higher basicity (pK» = 7.0) than the

latter (pKp = 11.5) and they have different physical properties.?! 23

| N [N\> QN [’\i> I ;/N [N\>

(0] (0] N S
H H
14 15 16 17 18 19
pr =115 pr =7.0
m.p. 68 °C m.p. 89.5 °C

Figure 3. Structure of compounds 14-19; comparison between compounds 16 and 17 in
their basicity and melting points

Once again, replacing the carbon atom (adjacent to the sp? nitrogen) by nitrogen
atom resulting in two different heterocyclic compounds; 1,2,3-triazole and 1,2,4-

triazole.

1.2.Triazoles

Triazoles are available in two isomeric forms 1,2,3-triazoles (20) and 1,2,4-
triazoles (21). Both have one sp*nitrogen atom and two sp? or pyridine-like nitrogen
atoms. This allows the two isomers to own amphoteric behavior as they can accept
proton via the sp? nitrogen or subtract proton from the pyrrole-like nitrogen and

stabilize by delocalization (Scheme 2).24-2¢

H H )
N, N+ acid N pase N, N,
[ N [ N [ N —— [ N =— [ N
N+ N N N- N

H H H

22b 22a 20 23a 23b
H H )
-N ~N+ ; -N -N -N
N N acid base N N
| ) -~ | ) - ] \> — ] \> - || />
L7 LY L LY Ly
H H H
24b 24a 21 25a 25b

Scheme 2. The amphoteric behavior of triazoles 20 and 21
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The variety in the chemical properties of triazoles affords them wide range of
applications mainly in the pharmacological domain and consequently the synthesis of
triazoles draws the attention of the researchers.?’>° There are many methods to
synthesize 1,2,4-triazole and one of the earliest routs of preparation is Pellizzari
method.3! In this reaction (Scheme 3), substituted 1,3,4-triazole derivatives are
synthesized by the condensation of amides and hydrazides. However, this reaction is

time consuming and it requires high temperature.*?

Rs3

0 H Rin N

O~_N. _R; A .

0 TR Vel BT
R, H

R,

Scheme 3. Synthesis of substituted 1,3,4-triazole through Pellizzari reaction

Pellizzari method is then developed to improve the reaction conditions and
regioselectivity. In the last decade, various components and green protocols have been

utilized to reach the substituted 1,2,4-triazoles.3?

The reaction of aldehydes with amidrazones in the presence of cerium
ammonium nitrate (CAN) and polyethylene glycol as a reaction media yielded

trisubstituted-1,2,4-triazoles in a very good yield (Scheme 4).34

-NH
N 2

A

ﬁ\ 5 mol % CAN N/N>_
PEG-300 I V>—R
NH * H™ R —>Ph)\N

I 80°C,1-2h
Ar )Ar

Ph

Scheme 4. Cerium ammonium nitrate (CAN) catalyzed synthesis of trisubstituted-1,2,4-
triazoles
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1,2,4-Triazoles can be obtained from the copper-catalyzed reaction of amidines
hydrochloride with aromatic nitriles in the presence of cesium carbonate, air and using

DMSO as a solvent at 120 °C for 24 h (Scheme 5).%

NH<HCI 5 mol % CuBr HN”N

)J\ . N 3 eq. Cs,CO; )\\ \>—Ar
R” “NH, r R7 N
air, DMSO,
120 °C, 24 h

Y
J

Scheme 5. Copper-catalyzed synthesis of disubstituted-1,2,4-triazoles

Liu et al., utilized sliver (1)* to promote the regioselective synthesis of 1,3-
disubstituted 1,2,4-triazoles in 1,2-dichloroethane at 0 °C for 6 to 12 h. (Scheme 6).

This method is highly efficient and has excellent functional group compatibility.

Ar.

0.1 eq. Ag,CO “N-N
A NBFe 4 NG COEt 9T NL VN—CO,Et
DCE, 0 °C, =N

26 6-12 h

Scheme 6. Ag (I)-catalyzed regioselective synthesis of 1,3-disubstituted 1,2,4-triazoles

However, when the starting materials are reacted in the presence of a mixture of
copper acetate and lithium acetate in THF at similar temperature, 1,5-disubstituted

1,2,4-triazoles are obtained instead (Scheme 7).%

0.1 eq. Cu(OAc)2

2.0 eq. LiOAC AT -N
A~ N2BFe + N7 CO,E )N\\ S
THF, 0 °C, EtO.C N
26 6-8 h 2

Scheme 7. Cu (Il)-catalyzed regioselective synthesis of 1,5-disubstituted 1,2,4-triazoles

The environmentally tolerated synthesis of 4,5-disubstituted 3-amino-1,2,4-

triazoles is achieved by the reaction of amidines and isothiocyanates in the presence of
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iodine as a catalyst and water as a solvent. The reaction is performed at ambient

temperature for 3 h. (Scheme 8).%’

-NH, s
| c 1eq.lp -N R
+ I \
A" NH N e | )—NH
Ar R MO N
3h Ar

Scheme 8. Friendly-environment synthesis of 4,5-disubstituted 3-amino-1,2,4-triazoles

In addition to the interest in the synthesis and application of 1,2,4-triazoles,

researchers tend to synthesize 1,2,3-triazole derivatives due to their wide applications.

1.3. 1,2,3-Triazoles

1,2,3-Triazoles are significant class of organic compounds. They are five-
membered heterocyclic molecules which consist of three consecutive nitrogen atoms

and two carbons.

1.3.1. Synthesis of 1,2,3-triazoles

There is a number of methods to construct 1,2,3-triazoles and they are varying

from non-regioselective to regioselective protocols.3%4

1.3.1.1. Cycloaddition of azides to alkynes

When a 1,3-dipole reacts with dipolarphile the reaction is then called 1,3-
cycloaddition or Huisgen cycloaddition due to the efforts of Rolf Huisgen* in the
investigation and description of the 1,3-cycloaddition reaction mechanism. There are
several organic compounds that process this feature because of the spread of two charge
over three atoms such as azides, nitro compounds, diazo compounds, nitrones and other

organic molecules (Figure 5).4243
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_ 0.+.0 Os*.0
_NENEN <—> _N=NEN N <— N
R R
R R R R
_Co <> __C. _C.+_'"R =—>» __Cs+_"R
R™ = Ns R™SND - R™SNT R™ N7
SN >N ] |
o o

Figure 5. A number of organic 1,3-dipolar compounds

1,2,3-Triazoles can be produced by the reaction of 1,3-dipolar compound
(azide) and dipolarphile (alkyne). However, this reaction affords two isomers: 1,4- and

1,5-disubstitued 1,2,3-triazoles (Scheme 9)*4°

R R R
R g\;\:N or \//)\;\N 1,3-dipolarcycloaddition> Kf\N . FZ
AN AN NS R N:N'N_\R
R R
1,4-isomer 1,5-isomer

Scheme 9. 1,3-dipolarcycloaddition between organic azides and alkynes to give 1,4-
and 1,5-disubstitued 1,2,3-triazoles

1.3.1.2. Cycloaddition of azides to allenes

Allenes are cumulated dienes having an sp-hybridized carbon atom and two sp-
hybridized carbons. Due to their electronic properties, they tolerate [2 + 2] and [2 + 4]
cycloaddition reactions.*® For example, the reaction of allenes with aromatic azides in
Deep Eutectic Solvent (DES) at 90 °C gives two different 1,4-disubstituted-1,2,3-

triazole derivatives in low yield (Scheme 10).#
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Ar. Ar.
- \N’N\N NN
+ R/\C\\ _— > + ~ N
DES, 90 °C \
COOEt R R
27 °
Ar.
SN [\!\
N
>~
7%
R
HOO

Scheme 10. Synthesis of 1,2,3-triazole derivatives from the cycloaddition of allene to
aromatic azides in Deep Eutectic Solvent (DES)

Solvent-free and uncatalyzed cycloaddition of tetrasubstituted allene 28 and
aromatic azide 29 affords highly substituted triazoles 30 and 31 in 25% and 3%,
respectively. The reaction is non-regioselective and time consuming as it requires 14

day to obtain the products (Scheme 11).%

F N3 Ph. N Ph. N
F/&C £ solvent-free N N N N
* — ~ + -
Y 90 °C, 14 days F/‘\< F3C/‘\<
F CF; F
28 29 30 (25%) 31 (3%)

Scheme 11. Solvent-free synthesis of highly substituted 1,2,3-triazole derivatives 30
and 31

1.3.1.3. Copper-catalyzed cycloaddition reaction (Click reaction)

The term “click chemistry” has been released in 2001 by Sharpless and
coworkers®® on the reactions that happened in nature between two substrates or more to
form a joint. However, this term is not limited to bioconjugation, it can be utilized in
pharmacological and chemical applications.>®>! In chemistry, click reaction is the
reaction which has relatively high yield with inoffensive byproducts and less sensitive

to moisture and air. Moreover, it is a one-pot reaction.>? In 2002, copper(l)-catalyzed
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azide-alkyne cycloaddition (CUAAC) to prepare 1H-1,2,3-triazole was independently
discovered by Sharpless®® and Meldal®* research groups. The reaction occurs by adding
Cu(l) salts to the azide alkyne mixture or using Cu(ll) slats which are mostly reduced by
ascorbic acid salts in situ to form Cu(l). The first step in the suggested reaction
mechanism (Scheme 12) demonstrates that the terminal alkyne couples with Cu(l) to
form copper(l) acetylide I. Then, the electron-rich nitrogen donates lone pair of
electrons to the copper to give complex Il followed by the intramolecular attack of
internal sp-carbon on terminal nitrogen of the azide moiety to form the six-membered
ring intermediate 111. Ring contraction of 111 affords intermediate 1V that eventually
releasees the copper complex to the cycle and gives the regioselective product 1,4-

disubstituted-1H-1,2,3-triazole derivative V.

H
cuL, Rj%
R N—R
~ N-R NN
R Conr 7 N3y
- (IZUL,., \V
N\\ ,N\ Iv

Scheme 12. Proposed mechanism copper(l)-catalyzed azide-alkyne cycloaddition
(CuAAC) to prepare 1,4-disubstituted 1H-1,2,3-triazole derivatives.*

Various 1,4-disubstituted 1H-1,2,3-triazole derivatives have been synthesized
by Sharpless and Meldal research groups in high yield at ambient temperature without

minor products (Figure 6).
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N. Ph
Ph o N” N > pp HO _N
i Hoh _)ﬁ No "\l:)‘Ph

“ N v, N

N/ﬁ)kN N\)J\OH N N "

HO NN H 0O OH

O o)
32 33 34

35 36 37

Figure 6. 1,4-Disubstituted 1H-1,2,3-triazole derivatives synthesized by Sharpless and
Meldal research groups

1,5-disubstituted 1H-1,2,3-triazoles are also prepared metal-catalyzed
cycloaddition. Nickel and ruthenium with suitable ligands in water or organic solvent
were used for this purpose to afford regioselective 1,5-disubstitued product.®>® The
proposed mechanism of nickel-catalyzed alkyne-azide cycloaddition NiAAC reaction is

illustrated in Scheme 13:

R R/
%N—R NiLn RSN
N:N/ \ +_

N=N

Ns No R-N,

Scheme 13. The proposed mechanism of nickel-catalyzed alkyne-azide cycloaddition
NiAAC reaction®

10
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1.3.2. Applications of 1,2,3-triazole derivatives

Due to their unique structural properties and high stability towards various
conditions, 1,2,3-triazoles have many applications starting from drug discovery to
material science.®” One of the significant features of 1,2,3-triazoles is their behavior as a
hydrogen bond donor owning to the H-5 that is attached to an sp? carbon atom and as a
hydrogen bond acceptor due to the existence of pyridine- and pyrrole-like nitrogen atom
in their structure (Figure 7). This improves their ability in the biological and other fields

of research.>®>°

pyridine-like nitrogen atom
H-bond acceptor

pyrrole-like nitrogen atom
H-bond acceptor
. NI
pyridine-like nitrogen atom — N~ N R

H-bond acceptor —
R H

T

H attached to an sp? carbon
H-bond donor

Figure 7. Hydrogen bond donor and acceptor events in 1,2,3-triazoles

1.3.2.1. Biological and medicinal applications

Triazole core is considered as amide bioisostere and it can replace the peptide
bond in proteins and peptide (Figure 8). However, computational studies found that the
hydrogen bonds formed by amide are stronger than those created by triazole analogues

and this will alter the peptide or protein activity in biological application.®

11
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H-bond acceptor

H-bond donor

Figure 8. Structure similarity between amide and its triazole analogue

Consequently, triazole derivatives are extensively synthesized for drug
discovery applications. A recent study found that substituting of amide in Lumacaftor
(VX 809) 38 by 1,2,3-triazole analogue maintains hydrogen bonding. However, the
calculations revealed that triazole analogue 39 formed weaker hydrogen bonds than its
amide counterpart 38 and this may eliminate some of the intermolecular interaction

which in turn affect the drug activity (Figure 9).6*
. ; Yoy
F 0 o) F NZ™
FXO]@XL O FXO]@XQ/N O H
N H
e
38 39

Figure 9. Structures of Lumacaftor (VX 809) 38 which is used for the treatment of
cystic fibrosis, and its triazole analogue 39

Mohammed et al.,®*%* synthesized a collection of sugar-based 1,2,3-tiazoles 40,
bistriazole 41 and tetrakistriazole 42 derivatives. All compounds exhibited moderate to
good antibacterial activity and this activity is attributed to the presence of triazole

moiety (Figure 10).
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. _— NG
O Y NG N/\/CGH13

N o
AcO HO
(¢ O)T ‘ '
AcO™ “'OAc HOY ‘OH

OAc OH
40 41

HO
HOm(  Nsy "
N N N= \
CaH17\/\N‘,::wN/\O/\4\N--- \Q\/O\A/N\/\CWW
N3\ \OH
o

H

42
Figure 10. Sugar-based 1,2,3-tiazoles 40, bistriazole 41 and tetrakistriazole 42
derivatives that have antibacterial activity

A novel set of uracil-containing bistriazole derivatives having silatrane moiety
are tailored and screened in vitro against E.coli, B. subtillus, V. cholera and S. aureus.
The antibacterial study showed these compounds are promising in the drug design

(Figure 11).%°

N2
Vo)
(i
0-Si-0
KL N,
N" N O
\\«—NWR
(@) \——<t/ﬁ \ .-
\v/”\\//qhwo\'>
o

Figure 11. Uracil-containing bistriazole derivatives having silatrane moiety

Gondru et al.,®® synthesized a new hybrid series of 1,2,3-triazole-thiazole

derivatives and they examined their antibacterial and antifungal activity. It is found that

13
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the designed compounds have promising in vitro toxicity against B. subtilis, S. aureus

and Candida strains (Figure 12).

Figure 12. Hybrid 1,2,3-triazole-thiazole derivatives that have antibacterial and
antifungal activity

Composites of quinoline-1,2,3-triazole 46 and 47 have been prepared through
click reaction of propargyl quinoline ether 43 and alcohol or tosylated alcohol azides 44
and 45, respectively (Scheme 14). Compound 47 was screened in vitro against bacterial
and fungal pathogens; K. pneumoniae, P. aeruginosa, C. albicans and C. neoformans,

and it exhibited more than 80% inhibition to the microbial growth.®’

CUSO4’5H20,
Q — N _~_OR sodium ascorbate> O\—<\\EN
N DCM:H,0 (1:1), N N~
N/ rt, 2 h, 50-90% N/ OR
43 44;R =H 46;R = H
45;R=Ts 47;R=Ts

Scheme 14. Synthesis of quinoline—1,2,3-triazole hybrids 46 and 47 via click chemistry

Claisen-Schmidt condensation has been employed to couple 1,2,3-triazole-
containing aldehydes and indolin-2-ones derivatives (Scheme 15). The resulting
compounds were tested in vivo as vascular endothelial growth factor receptors VEGFR-
2 inhibitors and the best kinase inhibition activity (ICso = 26.38 nM) is recorded for
compound 48.%8

14



Chapter One: Introduction

N=N
H
N-R
N X piperidine
(0] + o _—
R N EtOH,

80°C,4-8h

Scheme 15. Claisen-Schmidt condensation of indolin-2-ones derivatives with 1,2,3-
triazole-containing aldehydes; structure of compound 48

Vo et al.,*®® designed and synthesized new series of fluorinated 1,2,3-triazole
analogues of the antidiabetic medication sitagliptin 49 using click conditions. The
inhibitory activity of the synthesized derivatives was examined in vitro against the
human dipeptidyl peptidase 4 (hDDP-4) and two of them 50-51 showed remarkable

potency against the enzyme IC50 = 28 and 14 nM respectively (Figure 13).
e F 7\ 7\
N
ICs0 = 7.8 NM ICs0 = 28 NM ICs0 = 14 NM

F F F
NN NI NN
N N N
F K/N\/SZ F F
= —
49 50 51

Figure 13. Comparison between the structure and the inhibitory activity against (hDDP-
4) of sitagliptin 49 and its triazole analogues 50-51

A novel set of piperidine-based bis-1,2,3-trizoles have been tailored using
computational studies. The derivatives were then synthesized by double-click reaction
of dipropargyl piperidine 52 with a-azido amides 53-55. The antitubercular activity
were evaluated and it is demonstrated that the bis-1,2,3-trizole derivatives possess

promising antitubercular activity. However, three of the prepared compounds 56-58
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were assigned as the best agent as they required low minimum inhibitory concentration

(MIC = 12.5 pg / L) compared to the other derivatives (Scheme 16).7

R
N=N NH
/ (’\/N
| @\ CuS0,4*5H,0, \
56; R=H
sodlum ascorbate ’

() - L ()
N t- BuOH H,0 (1:1), N 58; R =Cl
\ rt., 8h, K(\

A 53; R =H O

Scheme 16. Synthesis of piperidine-based bis-1,2,3-trizoles via click chemistry

Huang et al.,”* synthesized quinoline-1,2,3-triazole hybrids through copper-
catalyzed cycloaddition reaction. The structure activity relationship (SAR) and the
antimalarial activity of the prepared derivatives have been profiled and it was revealed
that compound 59 has the best antimalarial activity (ECso = 40 nM) among the

synthesized derivatives (Figure 14).

N=N Q
\)\/

|
N/
Cl

N
A
N N
| ~-N
59
EC50 =40 nM

Figure 14. Structure and ECsg of compound 59

Recently, Nerella and co-workers’? reported the synthesis of carbohydrate-

based 1,2,3-triazoles via silver (I)-N-heterocyclic carbene 60 (Ag(l)-NHC)-catalyzed
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cycloaddition. Among the synthesized hybrids, sugar triazoles 61 and 62 demonstrated

notable anticancer activity against prostate and breast cancer cell lines (Figure 15).

AcQ HO  oH
X - N:N\ i
N \/‘\/ O\A/N OH
[ »H—Ag—Cl o ©
N
AcO HO
o)
60 61 62
ICso = 1.02 + 0.02 uM ICs50 = 1.25£0.02 uM

Figure 15. Structure of silver (1)-N-heterocyclic carbene 60; structures and 1Cso of
derivates 61 and 62

One-pot synthesis and anticancer activity of arylacetamides based 1,4-
disubstituted 1,2,3-triazoles have been reported. The anticancer activity against four
human tumor cell lines; prostate cancer, lung cancer, liver cancer and breast epithelial
exhibited significant antitumor activity of the compounds bearing phenyl 63 and

naphthyl 64 group which possess ICso = 4.0 and 3.5 pg / mL respectively (Figure 16).”

OH

63 64
|C50 =40 Kng / mL |C50 =35 ug /L

Figure 16. Arylacetamides based 1,4-disubstituted 1,2,3-triazoles that have antitumor
activity

Moderate anticancer activity of monosaccharide-containing 1,2,3-triazoles when

screened against human liver, breast and lung cancer cells. The triazole derivatives 68
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and 69 were synthesized via Cu(l) catalyzed cycloaddition between N-propargyl

imidazolopyrimidine 65 and glycosyl azides 66 and 67 (Scheme 17).7

O N3 CuS0,°5H,0, /\/Ej\ /> ACO OAc
(K WOA
\ JOAC sodium ascorbate, )\ wWUAC
| /> o) ___DIPEA
P + / N" o g
N© N R OAC TTHRH,0 (1), H,0 (1:1), _ '
H N=N
— ac rt, 15h
65 66; R=H 68:R=H
67; R = CH,OAc 69; R = CH,OAc
OH
Q Hoﬁ\OH
2
MeOH N:N O Yo
rt,7h
70;R=H
71; R = CH,OH

Scheme 17. Monosaccharide-containing 1,2,3-triazoles 68 and 69

Seghetti and co-workers™ functionalized the naturally occurring curcumin 70
with 1,2,3-triazole moiety at position 4 using click chemistry approach. The effects of
the synthesized derivative on the cancer apoptosis pathway have been studied and it is
revealed that compound 71 is the most potent derivative because its ICso against
leukemia cell growth was 3.13 uM after 48 h compared with parent curcumin (ICsp =

10.51 uM) (Figure 17).

70
ICs = 3.13 pM ICs0 = 10.51 uM L@*F

Figure 17. Curcumin 70, its analogue 71 and their ICso

A recent in silico study of a library of phthalimide-based 1,2,3-triazoles

demonstrated that these derivatives 72—78 (Figure 18) can be active against viruses.
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Moreover, they are promising drug for treatment of COVID-19 through the interruption

of virus spike, protease or nucleocapsid proteins.’®

72 73 74

Q%N ( N ‘N@ m N ‘N©

75

K
gl Qi g

77
Figure 18. Structure of phthalimide-based 1,2,3-triazole derlvatlves 72-78

1.3.2.2. Other applications

Apart from biological and pharmaceutical applications, 1,2,3-triazole
derivatives are widely used in the material sciences due to their physicochemical
properties. Several studies demonstrate the use of 1,2,3-triazole compounds as

chemosensors for different species.”””°

Kamble et al.® synthesized helicenoid bis-1,2,3-triazole 81 starting from
dipropargyl derivative 79 and azide 80 by Cu(l)-catalyzed cycloaddition approach. Then

compound 81 was converted to compound 82 by Williamson etherification. The target
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compound has been utilized as a sensor for iodide and its sensing ability was followed

by *H NMR titration with tetrabutylammonium iodide TBAI (Scheme 18).

/©/0\
N<
| | N //N
e i\ oeWa
HO 0", © Cul, EtsN HO (o) CICH,l, Cs,CO;3

—> e
HO e o THF, HO Oe o MeCN, reflux,
Cl rt., 24 h 4h
L
79 80 81 o~

Vel o™
OO )/k TBA| ‘ e )/k
1H NMR
OO )\( titration Oe
82 i Nogl 83 o/

Scheme 18. Synthesis of helicenoid bis-1,2,3-triazole 82 and its complex with iodide 83

Niskanen and co-workers,®! prepared 1,2,3-triazole-based polyionic liquids
bearing organic counterion 84. The thermal stability and electrical properties of the
synthesized polymer have been characterized. It was suggested that such polymer can

be used in organic electronics (Figure 19).
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84

Figure 19. Structure of polymer 84

In the field of catalysis, 1,2,3-triazole ligands were employed to aid the formation of
other triazole derivative through cycloaddition in the presence of copper iodide. It was
revealed that adding 0.5 mol% of the ligands 87 and 88 to the reaction of phenyl
acetylene 85 with benzyl azide 86 produce the corresponding triazole 89 in quantitative

yields (Scheme 19).

| | N3
Cul, 0.5 mol% 87 or 88 ©\/ N=N
+ > )
MeCN, r.t., 2 h, N\/)\©

quantitative

85 86 89
|\N N=N N— r,\J:N N=—
]
AN\ S OSY,
|/
87 88

Scheme 19. Copper-catalyzed cycloaddition of phenyl acetylene 85 and benzyl azide 86
in the presence of catalytic amounts of ligands 87 or 88

Nahle et al.,®? synthesized a couple of 1,2,3-triazole derivatives using click

protocol and investigated their anticorrosion activity by different electrochemical
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measurements. It was demonstrated that the corrosion of mild steel was inhibited by
95.3% and 95% when triazole compounds 90 and 91 were employed in 1.0 HCI (Figure

20).

90 91

Figure 20. Structures of anticorrosion triazole 90 and 91

Finally, as liquid crystals, 1,2,3-triazoles have been successfully utilized as a
spacer to join two cholesteryl moieties (Figure 21). The prepared dimers were examined
by polarising optical microscopy and differential scanning calorimetry to display

enantiotropic mesophases, nematic or smectic phases.®®

(0]
(0] N=N /@/L(O
1
a0
92:n=5 95:n=8
93;:n=6 96;n=9
94:n=7 97;: n =10

Figure 21. Structure of compounds 92-97 that have liquid crystal properties
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1.4.Aim of this work

The aim of the current work is:

1- Synthesis of new bis-1,2,3-triazole derivative starting from b-mannitol via
copper-catalyzed cycloaddition reaction.

2- Characterization of the synthesized molecules by TLC in addition to
spectroscopic techniques; FT-IR, *H NMR, *C NMR, °F NMR, COSY, HSQC
and HRMS.

3- Examining the cytotoxicity of the synthesized compounds against mesenchymal

stem cells MSC:s.
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2. Experimental Part

2.1. General methods

The reagents and solvents were purchased from different chemicals’ suppliers
and they were used as supplied. All reactions were carried out in oven-dried glassware
unless stated otherwise. The progress of performed reactions was monitored by a Thin
Layer of Chromatography using Merck aluminium-backed silica 60 Fzs4 (0.2 mm) TLC
plates and the spots were visualised by KMnOs staining solutions. Silica gel 40-63
mesh was utilized in the column chromatography as stationary phase and the stated
eluting solvents were used as mobile phase. Melting points were measured using
Stanford Research System Optimelt automated melting point apparatus. IR spectra were
collected using Shimadzu FTIR spectrometer, University of Karbala, Irag. 1D and 2D
NMR spectra were recorded at 298 K (+ 1 K) using Bruker Advance IlI, 500 or 600
MHz instruments, Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical
Centre, The University of New South Wales UNSW, Sydney, Australia. Residual
solvents peaks were utilised to calibrate *'H NMR and *3C NMR spectra. Chemical shifts
were reported in part per million (ppm). High resolution mass spectra HRMS were
recorded at the Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical
Centre, The University of New South Wales UNSW, Sydney, Australia using Orbitrap

LTQ XL ion trap MS in positive ion mode using electrospray ionisation (ESI) source.

2.2. Synthetic procedures and characterization

General procedure 1: Synthesis fluorobenzyl azides 99a—c (Modified procedure)®

Sodium azide (1.95 g, 30 mmol) was added to the stirred solution of the
appropriate fluorobenzyl bromide 98 a—c (10 mmol) in DMSO (25 mL) and the

suspension was stirred at 50 °C for 24 h. The reaction mixture was diluted with water
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(50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were
washed with saturation solution of NaCl (2 x 50 mL), water (50 mL), dried over
Na,SO4 and evaporated to dryness under reduced pressure to give a yellow liquid.
Column chromatography of the residue (silica gel, n-hexane / EtOAc; 10:0 — 9:1,)

afforded the appropriate fluorobenzyl azide.
1-(Azidomethyl)-2-fluorobenzene (99a)

Colorless liquid (1.35 g, 89%). Rs = 0.75 (EtOAc). FTIR (KBr) cm™: N

3053, 2937, 2881, 2100, 1616, 1587, 1492, 1454, 1348, 1236, 1180, 1103, F
1031, 941, 883, 839, 756, 669, 588, 551, 520, 424. 'H NMR (600 MHz,

CDCls) 6 ppm: 7.36-7.32 (m, 2H, Ar-H), 7.17 (td, J = 7.6, 1.0 Hz, 1H, Ar-H), 7.11 (t,
J = 9.1 Hz, 1H, Ar-H), 4.41 (s, 2H, Ar—-CH>). 2*C NMR (150 MHz, CDCl3) ¢ ppm:
161.0 (d, J = 247.4 Hz, ArC), 130.5 (d, J = 4.1 Hz, ArC), 130.4 (d, J = 8.6 Hz, ArC),
1245 (d, J = 3.4 Hz, ArC), 122.8 (d, J = 15.3 Hz, ArC), 115.8 (d, J = 21.7 Hz, Ar—C),
48.6 (d, J = 3.2 Hz, Ar—CH,). 1F NMR (564 MHz, CDCls) 6 ppm: —117.9 (m, 1F,

Ar—F).
1-(Azidomethyl)-3-fluorobenzene (99b)

Colorless liquid (1.22 g, 81%). Rf = 0.75 (EtOAc). FTIR (KBr) cm- N,
1: 3064, 2933, 2879, 2102, 1616, 1593, 1487, 1450, 1344, 1259, 1139, 1103,

1078, 943, 891, 860, 785, 750, 690, 557, 524, 443. *H NMR (600 MHz, F
CDClz) 6 ppm: 7.36 (m, 1H, Ar—H), 7.11 (m, 1H, Ar—H), 7.06-703 (m, 2H, Ar—H),
4.34 (s, 2H, Ar-CH>). 3C NMR (150 MHz, CDCls) 6 ppm: 163.0 (d, J = 246.6 Hz,
ArC), 138.0 (d, J = 7.1 Hz, ArC), 130.5 (d, J = 8.6 Hz, ArC), 123.7 (d, J = 3.0 Hz,
ArC), 115.3 (d, J = 21.1 Hz, ArC), 115.1 (d, J = 22.0 Hz, Ar-C), 54.2 (Ar—CH>). °F

NMR (564 MHz, CDCls) 6 ppm: —112.3 (m, 1F, Ar—F).
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1-(Azidomethyl)-4-fluorobenzene (99c)

Colorless liquid (1.35 g, 1.40%). Rs = 0.75 (EtOAC). FTIR (KBr) cm™: Nj
3045, 2933, 2879, 2100, 1602, 1510, 1450, 1344, 1226, 1157, 1097, 1016,
941, 881, 852, 823, 767, 665, 540, 480, 420. *H NMR (600 MHz, CDCls) &
ppm: 7.32-7.28 (m, 2H, Ar-H), 7.01-7.05 (m, 2H, Ar-H), 4.31 (s, 2H, Ar—Cﬂzl):. BBC
NMR (150 MHz, CDCl3) & ppm: 162.7 (d, J = 248.1 Hz, ArC), 131.3 (d, J = 3.2 Hz,
ArC), 130.1 (d, J = 8.1 Hz, ArC), 115.8 (d, J = 21.9 Hz, Ar-C), 54.1 (Ar-CH>). °F

NMR (564 MHz, CDCl3) 6 ppm: —113.6 (m, 1F, Ar—F).
Synthesis of 1,2:5,6-di-O-isopropylidene-D-mannitol (101)%

Anhydrous zinc chloride (60 g, 0.44 mol) was suspended in -xgo

acetone (300 mL) in closed flask at room temperature then D-mannitol

(100) (10 g, 0.055 mol) was added, and the resulting white suspension ~ HO
stirred vigorously for 24 h at 25 °C. The reaction mixture was poured

onto a solution of K2COs (70 g, 0.506 mol) in (70 mL) of H20 and covered with (300
mL) of Et2O. The mixture is stirred for 2h, then filtered and the organic layer was
washed with (100 mL) of ((CHs).CO / Et20, 1:1) and the combined filtrates evaporated
to dryness on a rotary evaporator at 40°C. The dry residue was yellow oil extracted with
ether (5 x 250 mL), the combined filters evaporated and slowly cooled to give crystals.
The product was purified by re-crystallization with n-hexane to yield compound 101 as
tiny white crystals (7.8 g, 54%). Rr = 0.3 (EtOAc), m.p. 120-121 °C. FTIR (KBr) cm™:
3464, 3317, 2989, 2935, 2881, 1485. 1458, 1417, 1379, 1255, 1211, 1155, 1072, 1041,
997, 852, 781, 698, 646, 592, 516. 'H NMR (600 MHz, MeOH-d4) § ppm: 4.14 (ddd, J
= 8.3, 6.0, 6.0 Hz, 2H, 2 x (-CHO-CH;0)), 4.08 (dd, J = 8.3, 6.3 Hz, 2H, 2 x

(—CHO-CH?0)), 3.97 (dd, J = 8.4, 5.3 Hz, 2H, 2 x (-CHO—CH-0)), 3.64 (d, J = 8.2
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Hz, 2H, 2 x (~CHOH)), 1.37 (s, 6H, 2 x (~C(CH3)2)), 1.33 (s, 6H, 2 x (-C(CHs)2)). 3C
{tH} NMR (150 MHz, MeOH-ds) § ppm: 110.2 (2 x (-C(CHa))), 765 (2 x
(-CHO-CH,0)), 722 (2 x (~CHO-CH;0)), 682 (2 x (~CHOH)), 27.2 (2 x
(-C(CHs)2)), 25.7 (2 x (-C(CHa)2)). HRMS-ESI [M + Na]* calculated for

C12H2206Na’: 285.1308; found: 285.1306.

Synthesis of 3,4-Bis-O-propargyl-1,2:5,6-di-O-isopropylidene-D-mannitol (102)2

1,2:5,6-Di-O-isopropylidene-D-mannitol (101) (0.787 g,
3 mmol) was dissolved in DMF (30 mL) in a dry flask and

crushed NaOH (0.48 g, 12 mmol) was added. The flask was

cooled in an ice—salt bath at —20 °C and the contents stirred
for 10 min before propargyl bromide (0.76 mL, 8.54 mmol) was added dropwise over
one minute. The mixture was then allowed to stir for a further 24 h, while gradually
warming to r.t. Then, the mixture was quenched with H,O (30 mL) and extracted with
EtO (3 x 30 mL). The combined organic layers were washed with aqueous saturated
NH4CI (3 x 20 mL) and H20 (30 mL), dried over Na>SO4 and filtered. The solvent was
evaporated under reduced pressure to yield a pale-yellow oil. Column chromatography
(silica gel, n-hexane / EtOAc; 9:1-3:1) afforded 3,4-bis-O-propargyl-1,2:5,6-di-O-
isopropylidene-D-mannitol (102) as white prismatic crystals (0.85 g, 84%); m.p. 51-52
°C; Rr= 0.56 (EtOAC). FTIR (KBr) cm™: 3252, 2985, 2931, 2904, 2115, 1456, 1379,
1348, 1265, 1213, 1163, 1109, 1060, 1018, 964, 918, 862, 817, 675, 515. *H NMR (500
MHz, CDCls) 6 ppm: 4.60 (dd, J = 16.0, 2.2 Hz, 2H, 2 x (-CH2C=CH)), 4.35 (dd, J =
16.0, 2.3 Hz, 2H, 2 x (-CH.C=CH)), 4.21 (dd, J = 11.0, 6.2 Hz, 2H, 2 x
(-CHO—-CH:0)), 4.11 (dd, J = 8.5, 6.3 Hz, 2H, 2 x (-~CHO-CH0)), 4.03 (dd, J = 8.0,
6.9 Hz, 2H, 2 x (-CHO-CH:0)), 3.84 (d, J = 4.3 Hz, 2H, 2 x (-CHO-CH,C=CH)),
2.45 (t, J = 2.0 Hz, 2H, 2 x (-CH2C=CH)), 1.39 (s, 6H, 2 x (-C(CHa)2)), 1.32 (s, 6H, 2
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x (~C(CH3)2)). 13C NMR (125 MHz, CDCls) J ppm: 108.5 (2 x (-C(CHs)2)), 79.9 (2 x
(—~CH2C=CH)), 78.6 (2 % (~CH2C=CH)), 76,5 (2 x (-CHO-CH:0)), 74.9 (2 x
(~CHO-CH,0)), 66.2 (2 x (-CHO-CH2C=CH)), 59.7 (2 x (~CH2C=CH)), 26.6 (2 x
(—C(CHs)2)), 25.3 (2 x (—C(CHj3)2)). HRMS-ESI [M + Na]* calculated for C1gH260¢Na:

361.1621; found: 361.1621.

General procedure 2: Synthesis of bis-1,2,3-triazoles 103 a-c (Modified

procedure)®’

A suspension of sodium ascorbate (0.0396 g, 0.2 mmol) and CuSO4'5H20
(0.025 g, 0.01 mmol) in DMSO (2 mL) was added to a solution of propargyl ether 102
(0.34 g, 1.0 mmol) in DMSO (2 mL) and the mixture was stirred for 10 min. Next,
appropriate fluorobenzyl azide 99 a—c (0.35 g, 2.5 mmol) was added, and the mixture
heated at 50 °C with stirring for 36 h. The mixture was diluted with H,O (30 mL),
extracted with EtOAc (3 x 30 mL), the combined organic layers washed with saturated
NaCl (2 x 20 mL), dried over Na,SO4 and evaporated under reduced pressure. The
residue was flash chromatographed (silica gel, n-hexane / EtOAc; 2:1 — 1:2,) to yield

the corresponding bis-1,2,3-triazole.

3,4-Bis-O-((2-fluorobenzyl-1H-1,2,3-triazole-4-yl)methyl)1,2:5,6-di-O-

isopropylidene-D-mannitol (103a)

White solid (0.49 g, 77%);
m.p. 98-101 °C; Rf= 0.53 (EtOAC).

FTIR (KBr) cm™: 3138, 2987, 2935,

2877, 1620, 1589, 1544, 1494, 1458,
1375, 1232, 1072, 1041, 1024, 889, 846, 761, 655, 513. 'H NMR (600 MHz, CDCls) ¢

ppm: 7.54 (s, 2H, 2 x H triazole)), 7.34 (dddd, J = 13.6, 7.3, 5.4, 1.7 Hz, 2H, 2 x
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(Ar-H)), 7.25 (td, J = 7.5, 1.7 Hz, 2H, 2 x (Ar-H)), 7.13 (td, J = 7.6, 1.1 Hz, 2H, 2 x
(Ar-H)), 7.10 (dd, J = 8.4, 0.9 Hz, 2H, 2 x (Ar-H)), 555 (s, 4H, 2 x
(Ar—CH»—triazole)), 4.79 (d, J = 12.2 Hz, 2H, 2 x (—CHO-CH.—triazole)), 4.785 (d, J
= 12.2 Hz, 2H, 2 x (-CHO—CHa-triazole)), 4.17 (dd, J = 12.4, 6.2 Hz, 2H, 2 x
(~CHO-CH20)), 3.96 (dd, J = 8.5, 6.4 Hz, 2H, 2 x (—CHO—CH.0)), 3.86 (dd, J = 8.5,
6.2 Hz, 2H, 2 x (—CHO—-CH>0)), 3.77-3.75 (m, 2H, 2 x (—CHO-triazole)), 1.36 (s, 6H,
2 x (—C(CHBa)2)), 1.29 (s, 6H, 2 x (—C(CHBa)2)). 1*C NMR (150 MHz, CDCls) 6 ppm:
160.7 (d, J = 248 Hz, 2 x (ArC)), 145.6 (2 x (—C triazole)), 131.0 (d, J = 8.2 Hz, 2 %
(ArC)), 130.1 (d, J = 3.2 Hz, 2 x (ArC)), 125.0 (d, J = 3.7 Hz, 2 x (ArC)), 122.9 (d, J =
1.3 Hz, 2 x (—C triazole)), 122.0 (d, J = 14.5 Hz, 2 x (ArC)), 116.0 (d, J = 21.1 Hz, 2 %
(Ar—C)), 108.8 (2 x (—C(CHa)2)), 80.3 (2 x (-CHO—CH>triazole)), 75.7 (2 x
(~CHO—CH;0)), 66.7 (2 x (-CHO-CH-0)), 66.2 (2 x (~-CHO—CHatriazole)), 47.7 (d,
J = 4.4 Hz, 2 x (Ar-CHatriazole)), 26.7 (2 x (-C(CHa)2)), 25.3 (2 x (~C(CHa)y)). °F
NMR (564 MHz, CDCls) § ppm: -118.2 (m, 2F, Ar-F). HRMS-ESI [M + Na]*

calculated for CsxHsgFoNgOgNa*: 663.2713; found: 663.2708.

3,4-Bis-O-((3-fluorobenzyl-1H-1,2,3-triazole-4-yl)methyl)1,2:5,6-di-O-

isopropylidene-D-mannitol (103b)

White solid (0.52 g, 81%);
m.p. 116-118 °C; R¢= 0.57 (EtOAC).
FTIR (KBr) cm™: 3136, 3072, 2987,

2937, 2877, 1647, 1593, 1544, 1492,

1485, 1454, 1373, 1249, 1114, 1024, 887, 783, 750, 682, 513. 'H NMR (600 MHz,
CDCI3) ¢ ppm: 7.50 (s, 2H, 2 x H triazole)), 7.33 (ddd, J = 13.8, 7.8, 5.9 Hz, 2H, 2 x
(Ar—H)), 7.03 (td, J = 7.5, 7.5, 1.7 Hz, 4H, 2 x (2Ar—H)), 6.94 (dt, J = 9.2, 1.8 Hz, 2H,

2 x (Ar-H)), 5.48 (s, 4H, 2 x (Ar—CH—triazole)), 4.80 (d, J = 12.1 Hz, 2H, 2 x
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(—CHO—-CH>—triazole)), 4.797 (d, J = 12.1 Hz, 2H, 2 x (—CHO—-CH>—triazole)), 4.18
(dd, J = 12.0, 6.0 Hz, 2H, 2 x (-CHO-CH,0)), 3.96 (dd, J = 8.4, 6.4 Hz, 2H, 2 x
(—~CHO-CH:0)), 3.87 (dd, J = 8.4, 6.3 Hz, 2H, 2 x (-CHO-CH:0)), 3.75 (broad d, J =
5.5 Hz 2H, 2 x (-CHO-triazole)), 1.36 (s, 6H, 2 x (—~C(CH3)2)), 1.29 (s, 6H, 2 x
(~C(CHa)2)). 3C NMR (150 MHz, CDCl3) § ppm: 163.1 (d, J = 247.6 Hz, 2 x (ArC)),
145.8 (2 x (—C triazole)), 137.2 (d, J = 7.1 Hz, 2 x (ArC)), 130.9 (d, J = 8.4 Hz, 2 x
(ArC)), 123.7 (d, J = 3.1 Hz, 2 x (ArC)), 122.8 (2 x (-C triazole)), 115.9 (d, J = 21.0
Hz, 2 x (ArC)), 115.1 (d, J = 22.7 Hz, 2 x (Ar-C)), 108.9 (2 x (—C(CHBa)z2)), 80.3 (2 x
(~CHO-CHga-triazole)), 75.7 (2 x (-CHO-CH20)), 66.6 (2 x (-CHO-CH:0)), 66.2 (2
x (~CHO-CHo.—triazole)), 53.6 (2 x (Ar—CH>—triazole)), 26.7 (2 x (—C(CH3)2)), 25.3
(2 x (-C(CH3)2)). 1°F NMR (564 MHz, CDCls) 6 ppm: —111.6 (ddd, J = 14.6, 8.6, 5.7
Hz, 2F, Ar-F). HRMS-ESI [M + Na]* calculated for Cs2HssF2NsOsNa: 663.2713;

found: 663.2715.

3,4-Bis-O-((4-fluorobenzyl-1H-1,2,3-triazole-4-yl)methyl)1,2:5,6-di-O-

isopropylidene-D-mannitol (103c)

White solid (0.5 g,
78%); m.p. 105-107 °C; R¢ =
0.51 (EtOACc). FTIR (KBr) cm-

1. 3136, 3074, 2985, 2877,

1606, 1512, 1460, 1375, 1224, 1072, 1024, 844, 748, 599, 499. 'H NMR (600 MHz,
CDCI3z) 6 ppm: 7.45 (s, 2H, 2 x H triazole)), 7.25 (dd, J = 8.6, 3.5 Hz, 4H, 2 x
(2Ar—H)), 7.05 (t, J = 8.6 Hz, 4H, 2 x (2Ar—H)), 5.46 (s, 4H, 2 x (Ar—CHz—triazole)),
4.783 (d, J = 12.1 Hz, 2H, 2 x (-CHO—CH2triazole)), 4.78 (d, J = 12.1 Hz, 2H, 2 x
(—~CHO—CHga-triazole)), 4.17 (dd, J = 12.3, 6.1 Hz, 2H, 2 x (-CHO—CH:0)), 3.94 (dd,

J = 85, 6.4 Hz, 2H, 2 x (-CHO-CH,0)), 3.85 (dd, J = 8.4, 6.3 Hz, 2H, 2 x
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(~CHO-CH20)), 3.75 (broad d, J = 5.9 Hz 2H, 2 x (~CHO-triazole)), 1.36 (s, 6H, 2 x
(—C(CHs)2)), 1.29 (s, 6H, 2 x (—=C(CHs)2)). **3C NMR (150 MHz, CDCls) 6 ppm: 163.0
(d, J =248.4 Hz, 2 x (ArC)), 145.7 (2 x (—C triazole)), 130.6 (d, J = 3.2 Hz, 2 x (ArC)),
130.9 (d, J = 8.4 Hz, 2 x (ArC)), 130.1 (d, J = 8.2 Hz, 2 x (ArC)), 122.6 (2 x (-C
triazole)), 116.3 (d, J = 21.6 Hz, 2 x (ArC)), 108.8 (2 x (—C(CHz3).)), 80.3 (2 x
(—~CHO-CH>—triazole)), 75.8 (2 x (-CHO—CH:0)), 66.6 (2 x (-CHO-CH>0)), 66.2 (2
x (—CHO—-CHz—triazole)), 53.5 (2 x (Ar—CH>—triazole)), 26.7 (2 x (—C(CHa)2)), 25.3
(2 x (-C(CH3)2)). 1°F NMR (564 MHz, CDCl3) d ppm: —112.7 (tt, J = 8.5, 5.2 Hz, 2F,
Ar-F). HRMS-ESI [M + Na]* calculated for CzHisF2NeOgNa: 663.2713; found:

663.2712.
General procedure 3: Acetal removal of bis-1,2,3-triazoles®®

To the solution of protected triazole (0.186 g, 0.29 mmol) in MeOH / H20 (1:1,
5 mL), Amberlite IR 120 H* (0.29 g, 1.0 g.mol!) was added and the mixture was stirred
at 60 °C for 72 h. The resin was filtered and washed with MeOH (3 x 5 mL). The

filtrate was evaporated to yield the deprotected triazole as a white gum.
3,4-Bis-O-((2-fluorobenzyl-1H-1,2,3-triazole-4-yl)methyl)-D-mannitol (104a)

White gum (0.162 g, 77%); Rf = 0.15
(DCM / MeOH, 9:1). FTIR (KBr) cm™: 3360, o .
2924, 2856, 1653, 1592, 1562, 1498, 1386, 1226,
1128, 1041, 767, 650, 609, 522, 492. HRMS-ESI N=N

[M + H]" calculated for CosH31F2NeOs:

561.2267; found: 561.22609.
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3,4-Bis-O-((3-fluorobenzyl-1H-1,2,3-triazole-4-yl)methyl)-D-mannitol (104b)

White gum (0.161 g, 77%); Rs= 0.17 F
(DCM / MeOH, 9:1). FTIR (KBr) cm: 3396,
2926, 2856, 1579, 1421, 1340, 1203, 1132, 1047,

1012, 925, 833, 786, 650, 617, 509, 468. HRMS- N=N

ESI [M + Na]* calculated for C26H30F2NgOsNa':

583.2087; found: 583.2086.
3,4-Bis-O-((4-fluorobenzyl-1H-1,2,3-triazole-4-yl)methyl)-D-mannitol (104c)

White gum (0.160 g, 77%); Rt = 0.16 (DCM /
MeOH, 9:1). FTIR (KBr) cm: 3433, 2924,
2856, 1653, 1610, 1514, 1460, 1371, 1226,
1168, 1122, 1039, 1003, 837, 781, 707, 599,

449. HRMS-ESI [M + Na]® calculated for

C26H30F2NsOsNa': 583.2087; found: 583.2087.

F

2.3. Cytotoxicity of triazoles (Modified Procedure)®

Sample preparation: all compounds were dissolved in 10% DMSOQO. Briefly
20 pL was added to all samples until they were completely dissolved, and the volume
was completed to 200 pL with MiliQ water to make up 1 mM stock solution. The latter

was subsequently diluted to make 0.5 mM solutions.

Cell maintenance: Mesenchymal stem cells were harvested in passage 14 when
they reached 80% confluency by adding pre-warmed 0.25% Trypsin-EDTA (catalog #:

15050065, Thermo Fisher scientific) Then, incubated at 37 °C incubator supplied with
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5% CO2 for 5 minutes. When cells were completely detached form the flask, the
trypsinization were neutralized by adding cell growth media (10% FBS, 1%
penicillin/streptomycin in Dulbecco's Modified Eagle Medium). Cell suspension was
transferred in 15 mL tube and centrifuged at 600 rpm for 6 minutes. The supernatant

was discarded, and cell pellet was then re-suspended in 1 mL cell growth media.

Cell culture: 1 mM and 0.5 mM samples were deposited in triplicate in
polystyrene 96 well plate (COSTAR) and 5000 cells/well added atop of samples. The
control included untreated cells in the same cell density. The plate was left overnight in
37 °C incubator supplied with 5% CO>. The viability rate was then quantified with
alamarBlue assay (catalog # DAL1025, Thermo Fisher scientific). Briefly, 10%
alamarBlue in DMEM solution was added on each well. Samples were placed in
incubator for 4 hours and the fluorescence with 560 Excitation /590 Emission was

recorded using CLARIOstar plate reader.
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3. Results and discussion

Heterocyclic compounds have a wide range of applications particularly in the
synthesis of pharmaceuticals and medications. One of those important derivatives that
comprise of three nitrogen atoms are triazoles. It has been increasingly synthesized
since the discovery of copper-catalyzed alkyne azide 1,3-dipolar cycloaddition reaction

in the early of the last decade.”**2

In the current project, three novel D-mannitol-based 1,2,3-triazole derivatives have

been prepared starting from the alcoholic monosaccharide D-mannitol (Scheme 20).

@ABr i @ANs
—_—
F F

98a-c 99a-c
A(O A(O
O O /_:
i OH i o iv
D-Mannitol —— HO — 1) —_—
100 2ile) ; le)
o o
101 102
F F

)(o HO
ol N Hon N
o NN d NN
_ o)

=N 0] E—

OH

N NN
N2 3 A oM
o
F 103a—c F 104a—c

Reagents and conditions: i] NaN3, DMSO, 50 °C, 24 h; 88-91%ii] acetone, ZnCl,, r.t., 24 h, 54%;
iii] propargyl bromide, DMF, —20 °C-r.t.,24 h, 84%; iv] 99a—c, Na ascorbate, CuSO4*5H,0, DMSO,
50 °C, 36 h, 77-81%; v] Amberlite IR 120 H+, MeOH / H,0, 60 °C, 72 h.quantitative.

Scheme 20. Synthesis of D-mannitol-based 1,2,3-triazole derivatives
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3.1.Synthesis of fluorine-containing benzyl azides

Fluorine-containing benzyl bromides 98a—c were reacted with sodium azide via
Sn2 mechanism®3® in DMSO at 50 °C for 24 h to afford the corresponding benzyl
azides 99a—c in 88-91% yields (Scheme 21).

Br NaNs, DMSO o N3
50 °C, 24 h,

F 88-91% F

98a-c 99a-c

Scheme 21. Synthesis of fluorine-containing benzyl azides 99a—

FT-IR spectra of compounds 99a-c (Figures 22-24) showed C-H aromatic
stretching bands above 3000 cm™ in addition to the characteristic —N3 stretching band
around 2100 cm™ and the C=C aromatic stretching bands above 1600 cm™ and 1580

cmL. Other important bands are shown above 1220 cm™ attributed to stretching of the

C—F aromatic.
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Figure 22. FT-IR spectrum of compounds 99a
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Figure 24. FT-IR spectrum of compounds 99c

The synthesized benzyl azide derivatives 99a—c were also characterized by

NMR technique. *H NMR spectra (Figures 25-27) of these compounds displayed

multiplet signals integrated for four protons at 6 7.50-7.00 ppm belong to the aromatic
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protons and singlets between ¢ 4.41 ppm and 4.31 ppm attributed to the methylene

protons.
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Figure 27. 'H NMR spectrum (CDCls, 600 MHz) of compound 99¢
13C NMR spectra of compounds 99a—c (Figures 28-30) demonstrated that all

aromatic carbon signals have been splitting due to the fluorine effect® particularly the
signal of the quaternary carbon attached to the fluorine around 162 ppm with coupling
constant higher than 245 Hz. In addition, the benzylic carbon signal of the meta and
para isomers appeared around 54.2 ppm and 54.1 ppm respectively while that of ortho
counterpart was observed at 48.6 ppm. °F NMR spectra of the azide derivatives 99a—c
(Figures 31-33) showed one multiplet at 6 —117.9 ppm, —112.3 ppm and —113.6 ppm

assigned to one fluorine atom for 2-, 3- and 4-fluorobenzyl azide, respectively.
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Figure 31. °F NMR spectrum (CDCls, 564 MHz) of compound 99a
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Figure 32. °F NMR spectrum (CDCls, 564 MHz) of compound 99b
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3.2.Synthesis of dipropargyl derivative

Next, four hydroxyl groups of D-mannitol (100) are protected using excess of
(CH3)2CO in the presence of ZnCl; at room temperature for 24 h to produce 1,2:5,6-di-

O-isopropylidene-D-mannitol (101) in 54% vyield (Scheme 22).

acetone, ZnCl,
rt,24h,54% HO

D-Mannitol

100

Scheme 22. Synthesis of 1,2:5,6-di-O-isopropylidene-D-mannitol (101)

The mechanism of the acetal formation is catalyzed by Lewis acid (zinc
chloride).® Initially, the oxygen atom of the carbonyl group forms coordination bond
with zinc, and this will promote the attack of the hydroxyl group of the diol by
increasing the electrophilicity of the carbon atom of the carbonyl to form tetrahedral
intermediate followed proton transfer then the attack of the second hydroxyl group and
elimination of zinc complex. Finally, oxonium ion is deprotonated to afford the cyclic

acetal.’
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Scheme 23. Proposed mechanism of the cyclic acetal formation

The formation of compound 101 is confirmed by FT-IR spectrum (Figure 34)
that shows characteristic O-H stretching bands at 3464 cm™* and 3317 cm™. Also,
intense C—H stretching bands appeared at 2989 cm™, 2935 cm™ and 2881 cm™ in

addition to various C—O stretching bands between 1255 cm™ and 1072 cm™.
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Figure 34. FT-IR spectrum of compound 101
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H NMR spectrum of compound 101 (Figure 35) displayed a doublet of doublet of
doublet centred at 4.14 ppm attributed to H-2 and H-5, two doublets of doublet belong
to H-1ab and H-6 ab at 4.08 ppm and 3.97 ppm, a doublet at 3.64 ppm assigned for H-3
and H-4, and two singlets of isopropylidene protons at 1.37 ppm and 1.33 ppm. *C
NMR spectrum of compound 101 (Figure 36) showed six signals that confirm the
suggested structure; a signal at 6 110.2 ppm belongs to the quaternary carbon of the
isopropylidene moiety, 76.5 ppm for C-2 and C-5, 72.2 ppm for C-1 and C6, 68.2 for C-
3, and signals at 6 C-4, 27.2 ppm and 25.7 ppm that assigned for CHs carbon atoms of
the isopropylidene protecting group. The accurate assignment of the proton and carbon
signals was also verified by 2D NMR spectra (Figures 37 and 38). Finally, HRMS

analysis (Figure 39) afforded a base peak at m/z 285.1306, consistent with the formula

C12H206Na*
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Figure 35. 'H NMR spectrum (MeOH-d4, 600 MHz) of compound 101
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The reaction of the diol 101 with using propargyl bromide in DMF at —20 °C to
the ambient temperature for 24 h afforded 3,4-bis-O-propargyl-1,2:5,6-di-O-

isopropylidene-D-mannitol (102) in very good yield (Scheme 24).

propargyl bromide,
NaOH, DMF

-20 °C-r.t.,
24 h, 84%

Y

Scheme 24. Synthesis of 3,4-bis-O-propargyl-1,2:5,6-di-O-isopropylidene-D-mannitol
(102)

The suggested mechanism of the formation of compound 102 is Williamson
etherification.®® First, the sp® carbon atom of propargyl bromide has been directly
attacked by the hydroxyl group of an alcohol through Sn2 mechanism to form a

transition state followed by NaOH-assisted elimination of HBr to form the desired

product (Scheme 25).
Transition
state
. _Br Br A
AN . ANE — N
R oH M R (clb\ R0
H
C
OH

Scheme 25. Suggested mechanism of the alkyl propargyl ether formation

The formation the dipropargyl ether 102 is confirmed FT-IR (Figure 40) which
showed strong absorption band at 3252 cm™ due to the terminal alkyne C—H stretching

and weak absorption band at 2115 cm™ of the C=C stretching. Moreover, all hydroxyl
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absorption bands disappeared in the spectrum, which also confirms the dipropargyl

ether formation.
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Figure 40. FT-IR spectrum of compound 102

'H NMR spectrum (Figure 41) has also added a further evidence for the formation

of compound 102. New signals belong to the propargyl moiety appeared in the

spectrum. The first two doublet of doublets at 4.38 ppm and 4.33 ppm having similar

coupling constants 16.0 Hz and 2.2 Hz due to the methylene protons (H-7 and H-10)

and a triplet at 2.45 ppm with coupling constant 2.0 Hz attributed to the acetylenic

protons (H-9 and H-12). In the 3C NMR spectrum (Figure 42), three new signals

appeared at 78.9 ppm, 78.6 and 59.7 which ascribed to sp carbon atoms (C-8, C-9, C-11

and C-12) and methylene carbons (C-7 and C-10) respectively. Finally, HRMS analysis

(Figure 43) afforded a base peak at m/z 361.1621, consistent with the formula

CigH2606Na".
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Figure 43. HRMS of compound 102

3.3.Synthesis of bistriazoles

The last stage in the synthetic protocol in the current work is the combination of

the aromatic azides 99a—c with the dipropargyl sugar derivative 102. For this purpose,

aromatic azides 99a—c were separately reacted with the compound 102 in DMSO® in

the presence of sodium ascorbate and copper sulphate pentahydrate at 50 °C for 36 h to

produce bis-1,2,3-triazoles 103 a—c in approximately very good yield (Scheme 26).

)(O )(o
— N F

O /—— 99a-c, Na ascorbate, O /_(/\:lll/\@

o CuS0,4+5H,0, DMSO o N

o] - NeNe O

=/ Yo 50 °C, 36 h, .\/)—/ o

)T 77-81% F N )T

o) o)
102 103a-c

Scheme 26. Synthesis of bis-1,2,3-triazoles 103 a—
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The mechanism of copper(l)-catalyzed azide-alkyne cycloaddition (CUAAC) is
illustrated in Chapter 1 (Scheme 12). The first step in the suggested reaction mechanism
is the generation Cu(l) in situ through the reduction of Cu(ll) by sodium ascorbate.
Then, the terminal alkyne couples with Cu(l) to form copper(l) acetylide I followed by
the complexation of copper with the electron-rich nitrogen. Afterwards, the terminal
nitrogen of the azide is intramolecularly attacked by internal sp-carbon to form the six-
membered ring intermediate 111. Ring contraction of 111 affords intermediate 1V that
eventually release the copper complex to the cycle and gives the regioselective product

1,4-disubstituted-1H-1,2,3-triazole derivative V.

The formation of the triazole derivatives 103 a—c is confirmed by FT-IR spectra
(Figures 44-46) that displayed C-H triazole stretching band at 3136 cm! C-H
aromatic stretching band around 3072 cm™, C=C stretching bands around 1610 cm™

and 1500 cm and the characteristic sharp C—F stretching band from 1240-1220 cm ™.

B sHimabzu

105—
%T | ,
97.5—| Ny A\ Mg é ;

162026~ «
655.8
S13.08— <—_

1589.40— ~

90—

313829 =
88921— <=

2877.89

82.5—

846.78— ——

75

1494.88— ~
145823
137529— ——

76191 ~

oG
107246~ —

e T I LI e A L B
4000 3600 3200 28'00 2400 2000 1800 1600 1400 1200 1000
ZM-Click 2F

800 600 400
1/cm

Figure 44. FT-IR spectrum of compounds 103a
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Figure 46. FT-IR spectrum of compounds 103c

Moreover, *H NMR spectra (Figures 47—49) of compounds 103a—c confirm the
formation of 1,4-disubstited triazole by affording one singlet between 7.53 ppm and
7.45 ppm that indicates the presence of one triazole isomer. Furthermore, the
appearance of the aromatic signals between 7.50 ppm and 7.00 ppm and the benzylic

protons singlet around 5.50 ppm is an excellent proof of the azide-alkyne cycloaddition.
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There is also significant shift downfield of the -O—CH2>— protons doublet of
doublet  from 4.36 ppm in alkyne 102 to 4.79 ppm in the spectra of triazoles 103a—c.
The 3C NMR spectra (Figures 50-52) of triazole derivatives 103a—¢ demonstrated the
formation and the high purity of the produced compounds as it has the exact number of
carbon signals corresponding to each derivative. First, the aromatic region includes all
phenylene signals between 161 ppm and 115 ppm in addition to the triazole carbon
signal around 145 ppm and 122 ppm. It is important to mention that the isopropylidene
protecting groups did not affect by click reaction condition due to the presence of the
isopropylidene carbon signals at 108.8 ppm, 26.7 ppm and 25.3 ppm. All other signals
in 33C NMR spectra are attributed either to the sugar backbone carbon signals or to the

methylene carbons.
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Figure 47. 'H NMR spectrum (CDCls, 600 MHz) of compound 103a
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Figure 52. 3C{*H} NMR spectrum (CDCls, 150 MHz) of compound 103c

All F NMR spectra (Figures 53-55) showed one fluorine signal due to two
symmetrical fluorine atoms at —118.2 ppm, —111.6 ppm, —112.7 ppm for compounds
triazole derivatives 103a, 103b and 103c respectively. The multiplicity of the fluorine

signal is caused by fluorine-hydrogen splitting.%
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Figure 53.

F NMR spectrum (CDCls, 564 MHz) of compound 103a
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F NMR spectrum (CDCls, 564 MHz) of compound 103b
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Figure 55. 1°F NMR spectrum (CDCls, 564 MHz) of compound 103c

The accurate characterization of compounds 103a-c is also achieved by 2D
NMR technique *H-'H COSY, 'H-*C HSQC and 'H-*C HMBC. COSY spectra are
important tool to determine proton—proton coupling by showing cross peaks between
the protons on neighboured carbons. The zoomed in TH-*H COSY spectra (Figures 56—
58) of compound 103a—c exhibited the cross signals between mannitol core protons and
they are almost similar. However, the magnified spectra (Figures 59-61) of the aromatic
region exhibit significant differences between the three derivatives 103a—c due to the
substitution on the aromatic ring that results in different splitting patterns. This is also

clear from the 1D NMR spectra.
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Figure 57. Zoomed in *H-'H COSY (600 MHz, CDCI3) of compound 103b
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Figure 58. Zoomed in *H-'H COSY (600 MHz, CDCI3) of compound 103c
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Figure 59. Zoomed in *H-'H COSY (600 MHz, CDClI3) of compound 103a
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Derivatives 103a—c were also precisely identified using Heteronuclear Single
Quantum Coherence HSQC and Heteronuclear Multiple Bond Correlation HMBC
(Figures 62-66). All compounds displayed almost similar spectra for the sugar core

region. However, the aromatic region exhibited obvious differences between the three

compounds.
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Figure 62. Zoomed in *H-*C HSQC (600 MHz, CDCls) of compound 103a
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Figure 64. Zoomed in *H-*3C HSQC (600 MHz, CDCl3) of compound 103c
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Figure 65. Zoomed in *H-*C HMBC (600 MHz, CDCl3) of compound 103a
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Figure 66. Zoomed in *H-*3C HMBC (600 MHz, CDCls3) of compound 103b

Finally, high resolution mass spectra have been utilized to identify the accurate
mass of each derivative. HRMS analysis (Figures 67-69) base peaks at m/z 663.2707,
663.2714 and 663.2711 were observed for the compounds 103a, 103b and 103c

respectively consistent with the formula Cs2HssF2NegOsNa*.
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Figure 69. HRMS of compound 103c

3.4. Acetal removal of bistriazoles

The last step in the synthetic protocol of the current work is the removal of
acetal protecting groups. The treatment of compounds 103a—c with acidic resin
(Amberlite IR 120 H*) in a mixture of methanol / water at 60 °C for 72 h produced the
deprotected triazole derivatives 104a—c quantitative vyields (Scheme 27). The
employment of the resin in the step is to avoid the cleavage of other ether linkage

because ethers are sensitive to the acid.1!

66



Chapter Three: Results and discussion

On. /_(/\’}‘ Amberiite IR 120 H,
=N

MeOH / H,0

\

AN 60 °C, 72 h.

Ill\/)_/ "o quantitative

F 103a-c F 104a-c

Scheme 27. Acetal removal of bis-1,2,3-triazoles 103 a—c

The formation of compounds 104 a—c was confirmed by IR and HRMS. FTIR
spectra (Figures 70-72) showed a broad band assigned for the hydroxyl groups between
3360 cm™ and 3433 cm™ whereas the concrete evidence was afforded by high
resolution mass spectra HRMS. The HRMS of compound 104a (Figure 73) exhibited a
base peak at m/z 561.2269 consistent with the formula C2sHs1F2NsOs™ while HRMS of
compounds 104b and 104c (Figures 74 and 75) showed base peaks at 583.2086 and

583.2087 respectively consistent with the formula C2sH3z0F2NsOsNa™.
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Figure 70. FT-IR spectrum of compounds 104a
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Figure 75. HRMS of compound 104c

The important physical properties and spectral data of the synthesized

compounds are summarized in Table 1.
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Table 1. Some of the physical properties and spectral data of the synthesized compounds

Comp Physical Rrand IR data NMR data HRMS
No. state and eluent
melting calculated | found
point
99a Colorless 0.75 FTIR (KBr) cm™: 3352, 3053, 2937, | *H NMR (600 MHz, CDCl3) § ppm: 7.36-7.32 (m, 2H, Ar—H),
liquid (EtOAc) | 2881, 2100, 1616, 1587, 1492, 1454, | 7.17 (td, J = 7.6, 1.0 Hz, 1H, Ar-H), 7.11 (t, J = 9.1 Hz, 1H,
1348, 1236, 1180, 1103, 1031, 941, | Ar—H), 4.41 (s, 2H, Ar—CH,). *C NMR (150 MHz, CDCls) ¢
883, 839, 756, 669, 588, 551, 520, 424. | ppm: 161.0 (d, J = 247.4 Hz, ArC), 130.5 (d, J = 4.1 Hz, ArC),
130.4 (d, J = 8.6 Hz, ArC), 124.5 (d, J = 3.4 Hz, ArC), 122.8 (d,
J=15.3 Hz, ArC), 115.8 (d, J = 21.7 Hz, Ar—C), 48.6 (d, J = 3.2
Hz, Ar—CH,). F NMR (564 MHz, CDCl3) 6 ppm: —117.9 (m,
1F, Ar—F).
99b Colorless 0.74 FTIR (KBr) cm™: 3064, 2933, 2879, | 'H NMR (600 MHz, CDCl3) 6 ppm: 7.36 (m, 1H, Ar-H), 7.11
liquid (EtOAc) | 2102, 1616, 1593, 1487, 1450, 1344, | (m, 1H, Ar-H), 7.06-703 (m, 2H, Ar-H), 4.34 (s, 2H, Ar—CH>).
1259, 1139, 1103, 1078, 943, 891, 860, | *C NMR (150 MHz, CDCl3) 6 ppm: 163.0 (d, J = 246.6 Hz,
785, 750, 690, 557, 524, 443. ArC), 138.0 (d, J = 7.1 Hz, ArC), 130.5 (d, J = 8.6 Hz, ArC),
123.7 (d, J = 3.0 Hz, ArC), 115.3 (d, J = 21.1 Hz, ArC), 115.1
(d, J = 22.0 Hz, Ar-C), 54.2 (Ar—CH,). F NMR (564 MHz,
CDCl3) 6 ppm: —112.3 (m, 1F, Ar—F).
99c Colorless 0.76 FTIR (KBr) cm™: 3045, 2933, 2879, | *H NMR (600 MHz, CDCl3) § ppm: 7.32-7.28 (m, 2H, Ar—H),
liquid (EtOACc) | 2100, 1602, 1510, 1450, 1344, 1226, | 7.01-7.05 (m, 2H, Ar-H), 4.31 (s, 2H, Ar—CH,). **C NMR (150
1157, 1097, 1016, 941, 881, 852, 823, | MHz, CDCls) § ppm: 162.7 (d, J = 248.1 Hz, ArC), 131.3 (d, J =
767, 665, 540, 480, 420. 3.2 Hz, ArC), 130.1 (d, J = 8.1 Hz, ArC), 115.8 (d, J = 21.9 Hz,
Ar-C), 54.1 (Ar—CH,). F NMR (564 MHz, CDCls) § ppm:
—113.6 (m, 1F, Ar—F).
101 With solid 0.30 FTIR (KBr) cm: 3464, 3317, 2989, | *H NMR (600 MHz, MeOH-d4) 6 ppm: 4.14 (ddd, J = 8.3, 6.0, | 285.1308 | 285.1306
120-121 °C (EtOAc) | 2935, 2881, 1485. 1458, 1417, 1379, | 6.0 Hz, 2H, 2 x (-CHO-CH;0)), 4.08 (dd, J = 8.3, 6.3 Hz, 2H,
1255, 1211, 1155, 1072, 1041, 997, | 2 x (-CHO-CH:0)), 3.97 (dd, J = 8.4, 53 Hz, 2H, 2 x
852, 781, 698, 646, 592, 516. (-CHO-CH0)), 3.64 (d, J = 8.2 Hz, 2H, 2 x (-CHOH)), 1.37
(s, 6H, 2 x (—=C(CH3)2)), 1.33 (s, 6H, 2 x (-C(CHa)2)). 3C {*H}
NMR (150 MHz, MeOH-ds) d ppm: 110.2 (2 x (—C(CHs3)2)),
76.5 (2 x (-CHO—-CH 0)), 72.2 (2 x (-CHO-CH-0)), 68.2 (2 x
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(—CHOH)), 27.2 (2 x (—C(CHa)2)), 25.7 (2 x (—C(CHz)y)).

102

white
prismatic
crystals
51-52 °C

0.56
(EtOAC)

FTIR (KBr) cm™: 3252, 2985, 2931,
2904, 2115, 1456, 1379, 1348, 1265,
1213, 1163, 1109, 1060, 1018, 964,
918, 862, 817, 675, 515.

IH NMR (500 MHz, CDCls)  ppm: 4.60 (dd, J = 16.0, 2.2 Hz,
2H, 2 x (-CH2C=CH)), 4.35 (dd, J = 16.0, 2.3 Hz, 2H, 2
(-CH,C=CH)), 421 (dd, J = 11.0, 6.2 Hz, 2H, 2
(-CHO-CH:0)), 4.11 (dd, J = 85, 6.3 Hz, 2H, 2
(-CHO-CH.0)), 4.03 (dd, J = 80, 6.9 Hz, 2H, 2
(-CHO-CH.0)), 384 (d, J = 43 Hz 2H, 2

(-CHO-CH,C=CH)), 245 (t, J = 2.0 Hz, 2H, 2

(~CH2C=CH)), 1.39 (s, 6H, 2 x (~C(CHa)2)), 1.32 (s, 6H, 2
(—~C(CHs)2)). 3C NMR (125 MHz, CDCls) 6 ppm: 1085 (2 x
(—~C(CHs)2)), 79.9 (2 x (~CH,C=CH)), 78.6 (2 x (~CH,C=CH)),
76.5 (2 x (-CHO-CH;0)), 74.9 (2 x (-CHO—-CH,0)), 66.2 (2 x
(-CHO-CH,C=CH)), 59.7 (2 x (~CH,C=CH)), 26.6 (2 x
(—~C(CHs)2)), 25.3 (2 x (~C(CHs)y)).

X X X X X X X

361.1621

361.1621

103a

White solid
98-101 °C

0.53
(EtOAC)

FTIR (KBr) cm™: 3138, 2987, 2935,
2877, 1620, 1589, 1544, 1494, 1458,
1375, 1232, 1072, 1041, 1024, 889,
846, 761, 655, 513.

'H NMR (600 MHz, CDCls) 6 ppm: 7.54 (s, 2H, 2 x H
triazole)), 7.34 (dddd, J = 13.6, 7.3, 5.4, 1.7 Hz, 2H, 2 x
(Ar-H)), 7.25 (td, J = 7.5, 1.7 Hz, 2H, 2 x (Ar—H)), 7.13 (td, J =
7.6, 1.1 Hz, 2H, 2 x (Ar-H)), 7.10 (dd, J = 8.4, 0.9 Hz, 2H, 2 x
(Ar—H)), 5.55 (s, 4H, 2 x (Ar—CHy—triazole)), 4.79 (d, J = 12.2
Hz, 2H, 2 x (-CHO—-CHatriazole)), 4.785 (d, J = 12.2 Hz, 2H,
2 x (-CHO—-CHgtriazole)), 4.17 (dd, J = 12.4, 6.2 Hz, 2H, 2 x
(-CHO—-CH;0)), 396 (dd, J = 85, 6.4 Hz, 2H, 2 x
(-CHO-CH0)), 3.86 (dd, J = 85, 6.2 Hz, 2H, 2 x
(—CHO—-CH>0)), 3.77-3.75 (m, 2H, 2 x (—CHO-triazole)), 1.36
(s, 6H, 2 x (~C(CH3)2)), 1.29 (s, 6H, 2 x (—C(CHa)2)). °C NMR
(150 MHz, CDCls) ¢ ppm: 160.7 (d, J = 248 Hz, 2 x (ArQC)),
145.6 (2 x (—C triazole)), 131.0 (d, J = 8.2 Hz, 2 x (ArC)), 130.1
(d, 3 = 3.2 Hz, 2 x (ArC)), 125.0 (d, J = 3.7 Hz, 2 x (ArQ)),
122.9 (d, J = 1.3 Hz, 2 x (-C triazole)), 122.0 (d, J = 145 Hz, 2
x (ArC)), 116.0 (d, J = 21.1 Hz, 2 x (Ar-C)), 108.8 (2
(—C(CHs)2)), 80.3 (2 x (-CHO-CHz—triazole)), 75.7 (2
(-CHO—-CH;0)), 66.7 (2 x (—CHO-CH:0)), 66.2 (2
(-CHO-CHy-triazole)), 477 (d, J = 44 Hz, 2

(Ar—CHy—triazole)), 26.7 (2 x (—C(CHa)2)), 253 (2

(=C(CHj3)2)). ®F NMR (564 MHz, CDCl3) 6 ppm: —118.2 (m,
2F, Ar—F).

X

X X X X

663.2713

663.2708

72




Chapter Three: Results and discussion

103b

White solid
116-118 °C

0.52
(EtOAC)

FTIR (KBr) cm - 3136, 3072, 2987,
2937, 2877, 1647, 1593, 1544, 1492,
1485, 1454, 1373, 1249, 1114, 1024,
887, 783, 750, 682, 513,

'H NMR (600 MHz, CDCls) 6 ppm: 7.50 (s, 2H, 2 x H
triazole)), 7.33 (ddd, J = 13.8, 7.8, 5.9 Hz, 2H, 2 x (Ar-H)),
7.03 (td, J = 7.5, 7.5, 1.7 Hz, 4H, 2 x (2Ar-H)), 6.94 (dt, J
9.2, 18 Hz, 2H, 2 x (Ar-H)), 548 (s, 4H, 2

(Ar—CHytriazole)), 4.80 (d, J = 121 Hz, 2H, 2

(—-CHO—-CHgztriazole)), 4.797 (d, J = 121 Hz, 2H, 2
(—CHO-CHgztriazole)), 4.18 (dd, J = 12.0, 6.0 Hz, 2H, 2
(-CHO-CH:0)), 3.96 (dd, J 8.4, 6.4 Hz, 2H, 2
(-CHO—CH:0)), 3.87 (dd, J 8.4, 6.3 Hz, 2H, 2
(-CHO-CHy0)), 3.75 (broad d, J = 55 Hz 2H, 2
(—CHO-triazole)), 1.36 (s, 6H, 2 x (—C(CHa)=2)), 1.29 (s, 6H, 2
(=C(CHs3),)). C NMR (150 MHz, CDCls) § ppm: 163.1 (d, J =
247.6 Hz, 2 x (ArC)), 145.8 (2 x (—C triazole)), 137.2(d,J=7.1
Hz, 2 x (ArC)), 130.9 (d, J = 8.4 Hz, 2 x (ArC)), 123.7 (d, J =
3.1 Hz, 2 x (ArQ)), 122.8 (2 x (—C triazole)), 115.9 (d, J = 21.0
Hz, 2 x (ArC)), 115.1 (d, J = 22.7 Hz, 2 x (Ar—C)), 108.9 (2 x
(—C(CHa)2)), 80.3 (2 x (—~CHO-CHtriazole)), 75.7 (2 x
(-CHO-CH;0)), 66.6 (2 x (-CHO-CH;0)), 66.2 (2 x
(—CHO—-CH2—triazole)), 53.6 (2 x (Ar—CHj—triazole)), 26.7 (2 x
(—=C(CHz3)2)), 25.3 (2 x (=C(CHs)2)). ®F NMR (564 MHz,
CDCls) 6 ppm: —111.6 (ddd, J = 14.6, 8.6, 5.7 Hz, 2F, Ar—F).

X X X X x x x x |

663.2713

663.2715

103c

White solid
105-107 °C

0.52
(EtOAC)

FTIR (KBr) cm™: 3136, 3074, 2985,
2877, 1606, 1512, 1460, 1375, 1224,
1072, 1024, 844, 748, 599, 499.

'H NMR (600 MHz, CDCls) 6 ppm: 7.45 (s, 2H, 2 x H
triazole)), 7.25 (dd, J = 8.6, 3.5 Hz, 4H, 2 x (2Ar—H)), 7.05 (t, J
= 86 Hz, 4H, 2 x (2Ar-H)), 5.46 (s, 4H, 2
(Ar—CHj—triazole)), 4.783 (d, J = 121 Hz, 2H, 2
(—CHO—CHytriazole)), 4.78 (d, J = 121 Hz, 2H, 2
(-CHO—-CHy—triazole)), 4.17 (dd, J = 12.3, 6.1 Hz, 2H, 2
(-CHO-CH;0)), 3.94 (dd, J = 85, 6.4 Hz, 2H, 2
(-CHO-CH0)), 3.85 (dd, J = 84, 6.3 Hz, 2H, 2
(-CHO-CHy0)), 3.75 (broad d, J = 5.9 Hz 2H, 2
(—CHO-triazole)), 1.36 (s, 6H, 2 x (—C(CHa)2)), 1.29 (s, 6H, 2
(=C(CHa)2)). BC NMR (150 MHz, CDCls) 6 ppm: 163.0 (d, J =
248.4 Hz, 2 x (ArC)), 145.7 (2 x (—C triazole)), 130.6 (d, J =3.2
Hz, 2 x (ArC)), 130.9 (d, J = 8.4 Hz, 2 x (ArC)), 130.1 (d, J =
8.2 Hz, 2 x (ArQ)), 122.6 (2 x (—C triazole)), 116.3 (d, J = 21.6
Hz, 2 x (ArC)), 108.8 (2 x (-C(CHs)y)), 80.3 (2 x

X

| X X X X X X X

663.2713

663.2712
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(—CHO—-CH,—triazole)), 75.8 (2 x (—-CHO—CH0)), 66.6 (2 x
(—-CHO-CH0)), 66.2 (2 x (-CHO—-CH,—triazole)), 53.5 (2 x
(Ar-CHy—triazole)), 26.7 (2 x (—C(CHa))), 253 (2 x
(—C(CHj3)2)). F NMR (564 MHz, CDCls) 6 ppm: —112.7 (it, J
=8.5,5.2 Hz, 2F, Ar—F).

104a White gum 0.15 FTIR (KBr) cm™: 3360, 2924, 2856, 561.2267 | 561.2269
(DCM/ | 1653, 1592, 1562, 1498, 1386, 1226,
MeOH, 1128, 1041, 767, 650, 609, 522, 492.
9:1)
104b White gum 0.17 FTIR (KBr) cm™: 3396, 2926, 2856, 583.2087 | 583.2086
(DCM/ | 1579, 1421, 1340, 1203, 1132, 1047,
MeOH, 1012, 925, 833, 786, 650, 617, 509,
9:1) 468.
104c White gum 0.15 FTIR (KBr) cm™: 3433, 2924, 2856, 583.2087 | 583.2087
(DCM/ | 1653, 1610, 1514, 1460, 1371, 1226,
MeOH, 1168, 1122, 1039, 1003, 837, 781, 707,
9:1) 599, 449.
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3.5. Cytotoxicity of compounds 103a—103c

The in vitro cytotoxicity of compounds 103a-103c is screened against human
mesenchymal stem cells using alamarBlue as an Indicator in two concentrations 1.0 mM
and 0.5 mM. This is a colorimetric method depends on the reduction of non-toxic
indicator resazurin dye (7-hydroxy-10-oxidophenoxazin-10-ium-3-one) (105), by

dehydrogenase enzymes in the living cells, to the resofurin (106) (Scheme 28).192

HO (o) O Reduction by dehydrogenase HO @) (@)
of living cells
+~ > ~
N N

0]

105 106

Scheme 28. Reduction of resazurin (105) to resofurin (106) by dehydrogenase of living
cells

The concentration of the red dye resofurin (106) and the amount of the
fluorescence produced increase as the amount of the living in the assay rises. Table 2
and Figure 76 illustrate that compounds 103a—103c possess fair cytotoxicity. Generally,
compounds 103a and 103c have higher cytotoxic effect 48% and 40% respectively at
1.0 mM. However, the increase of the concentration of compound 103b from 0.5 mM to
1.0 mM does not affect the cytotoxicity. This can be attributed to the structures of the
compounds. The electron-withdrawing effect extends in the first two compounds
because the fluorine atom attaches to the ortho and para positions, which disturbs the
lipophilicity of the molecules and hence affects the diffusion of the molecules into cells

through the lipid bilayer membrane.%®
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Table 2. In vitro cytotoxicity of compounds 103a—103c against human mesenchymal

stem cells
Cells Viability%
Compound No.
1.0 mM 0.5 mM
Control 100%
103a 52% 69%
103b 79% 72%
103c 60% 77%
120%
100% E1lmM
X
> 80% m0.5mM
S 60%
>
= 40%
[+}]
(&)
20%
0%
Control 103a 103b 103c
Compounds

Figure 76. Cytotoxicity studies using alamarBlue assay with MSCs seeded overnight on

top of compounds 103a—-103c. Control represents the bottom well.
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3.6.Conclusion

Triazole are important class of organic compounds that have a wide range of
applications. This work included the synthesis of new category of bis-1,2,3-triazoles
starting of readily available carbohydrate derivative (D-mannitol). The synthesized
molecules were fully characterized by TLC and spectroscopic techniques. Insertion of
fluorine containing segment in the molecule increase the lipophilicity as the fluorine is
hydrophilic element. This enhanced the properties of molecules towards the biological
applications. The cytotoxicity of the protected triazoles 103a—103c against human

mesenchymal stem cells was reasonable at two concentrations 0.5 mM and 1.0 mM.
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3.7.Future work

It is recommended to study the cytotoxicity of the deprotected set of the bis-1,2,3-
triazoles 103a—103c against human mesenchymal stem cells because they have both
hydrophilic and hydrophobic parts. This will facilitate the transmission of the molecules
inside the cells through the lipid bilayer membrane and consequently affords better
results. It is also proposed to profoundly examine the activity of the synthesized
compounds against different types of pathogenic bacteria and fungi due to the
aforementioned reason. Moreover, the synthesized compounds can be utilized as ligands
in the synthesis of various organometallic complexes which have numerous applications

such as  the medicinal, catalysis  or  material science  fields.
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