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Abstract

Composite tubes are usually made of two or more laminated composite
materials. These tubes can be used for fuel lines, hydraulic tubes, house and

industrial uses.

In the current study, the most common types of composite materials will be
used to manufacture the tube which is carbon fiber — epoxy. It is widely used
due to its significant properties, including high strength to weight, good

toughness and suitable prices.

Because of the tendency to use successful tubes with less vibration and low
corrosion rate, this study is directed to the dynamical behavior of tube made

of the composite material conveying fluid.

The effect of flow velocity and internal damping on free vibration of tube
made of the composite material , which represents the main parameter in this

work, is investigated using different types of boundary conditions.

A systematic evaluation of the fundamental aspects of the dynamic behavior
of tube made of the composite material with the effect of flow velocity and
internal damping on free vibration of tube made of the composite material ,
which represents the main parameter in this work, is investigated using

different types of boundary conditions.

The mathematical model of tube made of the composite material is solved
analytically to calculate the effect of the related parameters and variables.
The theoretical results are presented in a dimensionless form for with the

mechanical properties.

The natural frequency was determined in the theoretical part by deriving the

governing equation using the Euler-Bernoulli theorem and substituting the



boundary conditions into the equation to extract the roots of the polynomial
equation and writing it in the form of a matrix consisting of four terms to be
substituted in the (Q-basic) program to determine the value of the natural

frequency.

It was found that increasing flow velocity causes the natural frequency to
decrease gradually. The rate of decrease increased until the natural
frequency value was nearly zero at point called “critical flow velocity"
which is the flow velocity at which the natural frequency decreases. The
simply supported composite tube has a dimensionless critical flow velocity
of 3.12. In contrast, the clamped support tube has a dimensionless critical
flow velocity of 6.23, and the dimensionless critical flow velocity for
clamped-pinned is 4.42. These results were without the effect of internal

damping.

According to the theoretical results , the critical flow velocity increased
when the mode of vibration was increased. Furthermore, the critical flow
velocity of a clamped composite tube is 50% higher than that critical flow
velocity of simply supported composite tubes. The internal damping affects
the natural frequency by up to 4.79 % when the internal damping increases
by 0.01%.

In the experimental part, a device was manufactured to confirm the
theoretical results of calculating the natural frequency by using the
tachometer to determine the rotational speed of the crankshaft, where the
number of revolutions displayed on the digital screen of the device
represents the value of the experimental natural frequency of the tube made
of composite materials and compare the experimental results with the

theoretical results.
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Nomenclatures

Symbol Meaning Units
A Cross section area m2
as Acceleration of the fluid m2/s

i | Tube internal diameter m
D, Tube outer diameter m
E Modulus of elasticity N/m?2
E* Internal damping coefficient
E. Modulus of elasticity of composite materials of tube N/m?2
Er Modulus of elasticity of fiber N/m?2
Ey Modulus of elasticity of the matrix N/m?2
F Normal force between fluid and tube per unit length N/m
I Second moment of area m*
L Tube length m
M Bending moment Nm
my Fluid mass per unit length kg/m
m, | Tube mass per unit length kg/m
o Tube density per unit length kg /'m3
P Pressure N/m?2
P; Internal pressure N/m?2
Q Fluid flow rate I/min
q Shear force per unit length N/m
S Tube's internal perimeter m
T Tension force in tube per unit length N/m
t Time sec
U Dimensionless fluid velocity




4 Axial flow velocity m/s
Ve Lateral velocity of the fluid m/s
Vi Volume fraction of the fiber
Vi | Volume fraction of the matrix

X Axial coordinate

y Lateral coordinate

Greek symbols

i1 Fluid - tube mass ratio

y Dimensionless pressure

n Dimensionless coordinate

A Roots of the polynomial equation

U Dimensionless internal damping coefficient

& Dimensionless coordinate

T Dimensionless time

n Dimensionless circular frequency of oscillation

w Natural frequency Rad/sec




Introduction




Chapter One

Introduction

1.1 General

A composite material consists of the combination of two or more
substances. This merging process leads to obtaining a new material with
engineering and physical properties that differ from the properties of the
materials in their composition. The general use of composite material
depends largely on these materials' mechanical and physical properties, so
studying these properties under the influence of forces and loads in different
conditions acquires great importance to know the appropriateness of these

properties for the place of work of these materials.

In industry, the reinforcement of resins with synthetic fibers is the most
common. For the manufacture of composite material, two materials must be

provided:

e (Matrix Material): The base material is polymeric materials, and it is
the most widely used and widespread because of its good mechanical
and thermal properties. Examples of polymeric materials are epoxy
resin.

e (Reinforcing Material): Two main advantages must be available in
such materials, which are high resistance and low ductility in order to

be able to strengthen the base materials.

There are several methods of strengthening, and the most common is the
strengthening of fibers due to their great strength compared to resin
materials. The fibers are of different types and shapes, which are continuous

or non-continuous.



In the current study, the most common types of composite materials will be
used to manufacture the tube carbon fiber — epoxy, as shown in figure (1.1).
It is widely used due to its significant properties, including high strength to
weight and good toughness, as well as reasonable prices, as they are

available in a variety of applications [1].

Figure (1.1). Carbon fiber tubes [1].

By identifying the advantages of tubes made of composite materials, the
differences between metal tubes and tubes made of composite materials can
be determined. With the increase of demand of tubes constructed from
composite materials, there has been an upsurge in research related to the
mechanics of composite tubes and predicting failure under different loading
conditions. The composite tube offers several advantages over metallic
systems, especially where control and mitigation regimes are not correctly
followed. Metallic structures require more inspection, repair, and
maintenance during their service life, meaning a need to schedule shutdowns
while increasing expenditure. These shutdowns are mitigated against the

composite tube to remove any corrosion-related problems.



Composite tubes also have a superior internal fluid flow performance
compared to metallic tubes with a lack of scaling and other bore restriction
issues. Composite tubes also demonstrate superb strength and stiffness with
much less weight, making them easier to handle without lifting equipment,
reducing lifecycle, transportation, and installation costs. However,
composite materials can be more expensive than their metal counterparts,

although the reduced assembly costs for composites can offset this cost.

Based on the preceding, it becomes clear the importance of tubes made of
composite materials, as Composite tubes are already showing a track record
of use for a range of applications across different industries. Already widely
used for transporting different types of water, these tubes are increasingly
used in the oil and gas industry, where their strength, lightweight, and lack
of problems with corrosion are proving beneficial. Easy to transport and
install, and with very little requirement for maintenance and inspection, the
benefits of composite tubes balance out the increased cost of materials.
Available in various material types and as spool-able, flexible options,

composite tubes look set to continue rising.

Because of the tendency to use successful tubes with less vibration and low
corrosion rate, this study and the previous studies are directed to the
dynamical behavior of composite tubes conveying fluid. The effect of flow
material damping and type of support on the free vibration of composite

tubes represent the focus of the current steady.



1.2 Objectives

The following points can summarize the main objectives of the

present work;

1. Investigation of the effect of flow velocity on free vibration of the
tube made of composite material

2. Investigation of the effect of internal damping of tube material on the
dynamical behavior of the tube.

3. Defining the values of resonance of the tube under investigation to
prevent resonance problems such as mechanical failure.

4. Investigation the dynamics of behavior of tube with the effect of
supporting type and the effect of adding intermediate support on free

vibration of the tube made of composite material
1.3 Thesis outline
The chapters of this thesis are arranged in the following order:

The background for this work is presented in the first chapter to emphasize
its relevance in the theoretical application and practical reality .The second
chapter shows some prior studies that can apply some of the features and

design of the topic .

The equation of motion for composite tubes that convey fluids, including the
internal damping to determine the natural frequency necessary for composite
tube vibration, is presented in the third chapter. The fourth chapter explains
and clarifies the practical application and the equipment utilized. The fifth
chapter provides the theoretical and experimental findings of the tests under
different boundary conditions. Finally, the sixth chapter draws the topic

conclusions.






Chapter two

Literature review

2.1 Introduction

Pipelines for fluid conveying are important in various design
applications because they have provided an important service on a large
scale in a wide variety of industrial sectors to convey fluid. These tubes are
utilized in various applications, water supply lines, and fuel conveying line
drainage. Numerous researches have been undertaken to investigate the
dynamic behavior of tubes made of various materials due to the large variety

of systems that utilize tubes.

2.2 Literature survey
2.2.1 Tube conveying fluid

Paidoussis and Issid [2] investigated the dynamics and methods of
stabilization of flexible tubes that convey fluids, assuming that the velocity
Is steady. Stability maps are presented for parametric instabilities, computed
by Bolotin's method, for tubes with pinned or clamped ends, as well as for
cantilevered tubes. It is found that the extent of the instability regions
increases with flow velocity for clamped — clamped and pinned—pinned
tubes. At the same time, a more complex behavior obtains in the case of
cantilevered tubes. It is shown that conservative systems are subject to
buckling (divergence) at sufficiently high flow velocities and oscillatory
instabilities (flutter) at higher flow velocities. In all cases, dissipation

reduces the extent of or eliminates parametric instability zones.



Liu and Xuan [3] investigated the dynamic analysis of supported tubes
conveying pulsating fluid in the Hamiltonian system using (Precise
Integration Method) PIM, which is considered a practical way to investigate
the dynamic analysis of tubes conveying fluid. To confirm this
methodology, many pinned-pinned tubes were solved numerically using

different velocities and frequencies.

Yi-min et al. [4] investigated the natural frequency of fluid-structure
interaction in pipeline conveying fluid by the eliminated element-Galerkin
method. The natural frequency equations with different boundary conditions
are obtained. The characteristics of pipeline conveyed fluid, such as flow
velocity, stiffness, mass, and length linked to the natural frequency, were
investigated. The results indicate that the effect of Coriolis force on natural
frequency is inappreciable. Then the relationship between the natural
frequency of the pipeline conveying fluid and that of the Euler beam is

analyzed.

Al-Rajihy and Alwan [5] investigated the vibrational characteristics of a Y-
shaped tube conveying flowing fluid. The tube comprises 3- straight tube
segments math at the intermediate junction. The governing equation of
straight tube conveying fluid is used with each of the three segments. The
clamped free and clamped-pinned boundary conditions were discussed. The
coupled effects of the type of boundary conditions, the angle between the
two Y-segments, fluid velocity, and length ratio of segments on the
dynamics of the tube are studied. The Y-tube loses its stability at flow

velocity higher than the straight tube of the same characteristics.

Al-sahib et al. [6] focused their study on the vibration and stability of
straight tubes made of ASTM-214-71 mild steel, conveying turbulent steady

water with different velocities and boundary conditions. Single-pass fusion



arc welding with appropriate parameters welded the tube on its mid-span. A
new analytical model was derived from investigating the effects of residual
stresses at girth welds of a tube on the vibration characteristics and stability.
The reaction components of the residual stresses at a single pass girth weld
in a tube were combined with a tensioned Euler-Bernoulli beam and plug
flow model to investigate the effect of welding on the vibration
characteristics of a tube. A finite element (FE) simulation was presented to
evaluate the velocity and pressure distributions in a single-phase fluid flow.
A prestressed modal analysis was employed to determine the vibration
characteristics of a welded tube conveying fluid. Experimental work was
carried out by building a rig mainly composed of different boundary
conditions welded tubes conveying fluid and provided with the necessary
measurement equipment is to fulfill the required investigations. It has been
proven theoretically and experimentally that the residual stresses due to
welding reduce natural frequencies for both clamped—clamped and clamped-
pinned tube conveying fluid. Also, it proved that for small fluid velocity
(sub-critical), the clamped—clamped and clamped-pinned welded tubes

conveying fluid are stable for relatively high fluid velocities (super-critical).

Ismail [7] provided the analytical solutions to determine essential properties
of conservative and non-conservative energy tubes conveying fluid, such as
pressure, velocity, and mass ratio. With low rather than high flow rate
pumps, a method for calculating the critical velocity has been provided. The
findings revealed that the approach worked with conservative tubes, with a
5% error rate between theoretical and actual outcomes, and that non-

conservative tubes required more sophisticated solutions.

Ritto et al. [8] discussed the problem of a tube conveying fluid of interest in

several engineering applications, such as micro-systems or drill-string



dynamics. The deterministic stability analysis developed by Paidoussis and
Issid (1974) is extended to the case for which modeling errors in the
computational model induce model uncertainties. The Euler-Bernoulli beam
model is used to model the tube, and the plug flow model is used to take into
account the internal flow in the tube. The resulting differential equation is
discretized using the finite element method, and a reduced-order model is
constructed from some eigenmodes of the beam. The numerical results show
the random response of the system for different levels of uncertainty and the
system's reliability for different dimensionless speeds and levels of

uncertainty.

Kesimli et al. [9] discussed linear vibration of the fluid-carrying tube with
intermediate support. Supports located at the ends of the tube were clamped
supports. Support was located in the middle section show the features of
simple support. It was accepted that the fluid velocity varied harmonically
by an average speed. The equation of motion and limit conditions of the
system were obtained using the Hamilton principle. The solutions were
obtained using the Multiple Scale Method, one Perturbation Methods. The
first term in the perturbation series causes the linear problem. Exact natural
frequencies were calculated by the solution of the linear problem for the
different positions of the support at the center, different longitudinal
stiffness, different tube coefficient, different rate of fullness, and natural

frequencies depending on the fluid's velocity exactly.

Al-Rajihy and Kadhom [10] focused on fluid velocity on the bending
behavior of a cantilever tube under a lateral impact force. According to the
results, increasing flow velocity lowers the amplitude of the bending
moment's first reaction to the impact lateral force by approximately 9%. The

findings take around 48% of the time to lower the amplitude of the bending



moment response by 90%. The findings of this study indicate that fluid flow
velocity has a substantial influence on the dynamic response of tubes

conveying fluid.

A dynamic stability test of the tube conveying fluid with a linear spring was
carried out by Alnomani [11]. The spring work produced good results for the
system frequency utilizing the finite element analysis approach. The
stiffness ratio of the tube is raised to improve the system's stability. The
spring's position is determined by the tube's flow velocity and the spring's

stability.

Sutar et al. [12] calculated the natural frequencies of fluid conveying tubes
using ( guided - simple, guided - clamped, guided - guided, and guided -
free) boundary conditions. It is described how fluid flow velocity affects
natural frequencies. The point of flutter is found by determining critical
velocities. To simulate the tube, a Euler—Bernoulli beam is used. Hamilton's
approach creates the differential equation of motion for free vibration.
Muller's approximate technique is used to generate the natural frequency
equation. There is a decrease in natural frequency as velocity increases for

any boundary conditions.

2.2.2 Composite tube conveying fluid

The vibrational behavior of the tube made of composite material

conveying fluid has been studied by many research.

Oke and Khulief [13] looked at how interior surface degradation influences
the vibrational behavior of the tube made of composite material conveying
fluid. The wave-based finite element approach is utilized to model and

determine the faulty fluid tube system using the extended Hamilton



principle. The modal characteristics of tube vibrations were calculated using
the generalized eigenvalue problem. The suggested model was evaluated,
and many standard solutions were used to verify the influence of inner wall
thinning on the vibrational behavior of composite tubes conveying fluid. The
obtained results make it possible to use the vibration signature as a basis for

detecting internal corrosion defects in pipelines.

Szabo et al. [14] used a finite element model and practical testing to
demonstrate the actual performance of a filament-wound composite tube
bent three times. The composite reinforcement plies were characterized
using the linear viscoelastic material model, included in the finite element
model. The rubber liners were classified as a two-parameter model under the
Mooney - Rivlin model. There is a high agreement between the modeling
results and the experimental findings for three-point bending force-

displacement curves.

Oke and Khulief [15] analyzed the dynamic response when fluid flows
through a tube with an internal surface imperfection. The extended
Hamilton's principle was used to derive equations of motion, while the
wavelet-based finite element method (WBFEM) was used to discretize the
equations. Internal surface flaws prolong the tube's length and have a cross-
section that changes radial and angular directions. Integrating the equations
of motion using the MATLAB solver ODE45 vyields the faulty tube's
dynamic response. ANSYS was used to assess the dynamic model. Some
benchmark findings show the impact of internal surface imperfections on the

dynamic response of composite tubes conveying fluid.

Dai et al. [16] studied The dynamics of fluid-conveying cantilevered tubes
consisting of two segments made of different materials, focusing on the

effects of different length ratios between the two segments. Two kinds of



hybrid tubes are considered: one is made of steel and aluminum, and the
other is aluminum and epoxy. The complex frequency of the four lowest
modes of the hybrid system is calculated in two representative cases for
successively increasing flow velocity values to demonstrate how the
transition from stability to instability occurs. Compared with a uniform tube
conveying fluid, it is found that the hybrid tube is capable of displaying
more complex and sometimes unexpected dynamical behaviors. The
numerical results show that an instability—restabilization—instability
sequence would occur in such a hybrid tube system as the flow velocity is
successively increasing. When the length ratio between the two segments is
successively increased, the lowest order of unstable modes may frequently
shift from one to another. It is also demonstrated that the flutter instability
first occurring in the fourth mode is possible with increasing flow velocity,

and a certain unstable mode may suddenly regain stability.

Al - Raheimy [17] investigated the influence of several forms of support on
the cross-sectional frequency of composite tubes with parameters of 1 m
length, 1 mm thickness, and 1 cm inner radius, including clamped — free,
clamped — clamped and clamped — pinned. The tube is made of fiberglass
and a polyester resin that has been solidified into a matrix. The fibers are of
various lengths; the first is short but not connected, while the second is
lengthy and continuous for a specific fiber section. The natural frequency
decreases as the flow increases from zero to critical velocity. The length of
the disconnected fiber determines the frequency rise. It has been concluded
that the fiberglass tubes would have a low critical velocity and a low natural

frequency than Kevlar fiber tubes.

Khudayarov et al. [18] investigated the Vibration problems of pipelines

made of composite materials conveying pulsating flow of gas and fluid. A



dynamic model of motion of pipelines conveying pulsating fluid flow
supported by a Hetenyi’s base is developed taking into account the viscosity
properties of the structure material, axial forces, internal pressure and
Winkler’s viscoelastic base. To describe the processes of viscoelastic
material strain, the Boltzmann—Volterra integral model with weakly singular
hereditary kernels is used. Using the Bubnov—Galerkin method, the problem
Is reduced to the study of a system of ordinary integro-differential equations
(IDE). A computational algorithm is developed based on the elimination of
the features of IDE with weakly singular kernels, followed by the use of
quadrature formulas. The effect of rheological parameters of the pipeline
material, flow rate and base parameters on the vibration of a viscoelastic
pipeline conveying pulsating fluid is analyzed. The convergence analysis of
the approximate solution of the Bubnov—Galerkin method is carried out. It
was revealed that the viscosity parameters of the material and the pipeline
base lead to a significant change in the critical flow rate. It was stated that an
increase in excitation coefficient of pulsating flow and the parameter of
internal pressure leads to a decrease in the critical flow rate. It is shown that
an increase in the singularity parameter, the Winkler base parameter, the
rigidity parameter of the continuous base layer and the Reynolds number

increases the critical flow rate.

Geuchy and Hoa [19] studied the flexural stiffness of thick composite tubes.
For thick composite tubes, a fiber placement machine was used
automatically. The tubes were put through their paces using a different
testing method. Stresses and flexural stiffness were measured using Both
strain gages and Digital Image Correlation. The tubes' flexural stiffnesses

during the bending experiment were measured. A comparison is made



between the experimental results and those obtained using different

equations.

Malawi et al. [20] developed a model that replicates the behavior of
unidirectional fiber composite tubes made of the same material type. The
modules are firmly connected to produce a separate axial grading tube for
this purpose. Once the transfer matrix analysis was complete, the Levenberg
- Marquardt method solved the resulting nonlinear equations with their
complex roots. It was decided to make some handy diagrams. Because of
this, the current design may use piecewise tube grading in material
properties, wall thickness, and length to develop lighter composite tube

designs with improved dynamic stability and increased flutter speed.

Oke and Khulief [21] used a finite element formulation based on B-spline
wavelets on an interval to model composite tube-free vibrations. Wavelet
space is used to construct the finite tube first, and then it is transported to the
physical space. Analytically Wavelet functions and B-splines can represent
composite tube mass and stiffness matrices. There is also a consideration of
the Euler-Bernoulli beam theory and the Timoshenko beam theory. The
modal characteristics of the composite tube may be calculated using an
extended eigenvalue problem. Compared to the traditional finite element
method, the suggested wavelet-based discretization methodology for

composite tube modeling employs a fraction of the components.

Khudayarov et al.[22] investigated the Vibration problems of pipelines made
of composite materials with account for lumped masses. A mathematical
model of the motion of pipelines conveying fluid flow is developed based on
the Winkler base with account for viscosity properties of the material of
structures and pipeline bases, axial forces, internal pressure, resistance

forces, and lumped masses. The Boltzmann-Volterra integral model with



weakly singular hereditary kernels describes viscoelastic material strain
processes. Using the Bubnov-Galerkin method, the problem is reduced to
studying a system of ordinary integro-differential equations. A
computational algorithm is developed to eliminate the features of integral-
differential equations with weakly singular kernels, followed by quadrature
formulas. The effect of rheological parameters of the pipeline material,
lumped masses, internal pressure, Reynolds numbers, and base parameters
on the vibration of a viscoelastic pipeline conveying fluid flow are analyzed.
It is revealed that the viscosity parameters of the material and the pipeline
base lead to a significant change in critical flow rate. It was found that an
increase in the viscosity parameter, the parameters of lumped masses, and
internal pressure leads to a decrease in critical flow rate. It is shown that
when the lumped masses are moved away from the center along the pipeline

length, the vibration frequency increases.

2.2.3 Tube conveying fluid with the effect of Internal damping

Internal damping is a critical design parameter of dissipation energy in
materials under stress, particularly for vibrating structures used in the oil and
car industries. Damping in various engineering metals has been explored
using various experimental and computational approaches. Furthermore,
because damping varies with several environmental conditions, many

distinct parameters were employed in those investigations.

Patel [23] An internally damped tapered truncated cantilever beam was
investigated for vibrations. There are two viable solutions for a square cross-
section beam with linear depth and breadth variation: (1) a discrete mass
distribution and (2) a continuous mass distribution. The beam should be

viscoelastic at Kelvin temperatures. Precision oscillation frequency, mode



shape, and steady-state response solutions may be found in this topic. The
results of discrete and continuous experiments employing the first two
modes of a typical beam were compared. The natural frequencies of the two
approaches are just around 9% different, and the mode shapes are nearly
identical. The beam's steady-state response to harmonic stimulation is
calculated. The response of the discrete model is calculated using the
excitation frequency as the fundamental natural frequency of the beam.
Because assessing Bessel functions with intricate data is difficult,

continuous analysis cannot respond.

Kroisova [24] investigated the damping properties of epoxy composite
materials. Composite structures were built utilizing a two-component of
epoxy resin and a variety of fillers to perform testing (lead particles and
chippings, ferrous - ferric oxide particles, titanium dioxide particles, alloy
hollow tubes, carbon chopped fibers, and cork particles). The fillers in the
polymer matrix varied in composition, particle size, shape, and weight
percentage. Damping tests on the cast and cured epoxy composite systems
were carried out at a temperature of 220 C, a low frequency of 50 Hz to 100
Hz, and atmospheric pressure, representing the structure's dynamic stress
condition. The deflection of samples was measured using photoelectric
equipment, and the loss coefficient was determined using a traditional
method. The form, size, surface of the fillers, fracture surfaces, and

interfaces of composites were all studied using SEM microscopy.

Wang et al. [25] studied the dynamics of supported fluid-conveying tubes
with geometric imperfections by considering the integral—partial-differential
equation of motion. The effect of sinusoidal wave or parabolic variations of
imperfections is investigated for the system's four-degree-of-freedom (N%4)

model. Linear analysis shows that each type of imperfection affects the



natural frequency of only one single mode. For half-sinusoidal wave or
parabolic variation of imperfections, the critical flow velocity at which
buckling instability occurs is higher than for a tube without imperfections.
The tube remains in its undeformed static equilibrium state at low flow
velocity in all cases. At high flow velocity, however, the nonlinear analysis
predicts that the tube would be attracted to one of two other nontrivial
equilibria, which, more importantly, maybe asymmetric due to the presence
of imperfections. For tubes with imperfection in the form of half-sinusoidal
wave or parabolic variation, interestingly, the nonlinear theory predicts that
a small buckling displacement would occur at flow velocities slightly lower

than the critical flow velocity predicted by the linear theory.

Colakoglu [26] found that The internal damping of metallic materials varies
with many different environmental effects. These are the frequency,
amplitude of strain or stress, and temperature. In addition, internal damping
is affected by corrosion fatigue, grain size, and porosity. The damping also
depends on the number of fatigue cycles. There is a functional relationship
between the damping, number of cycles, and applied stress. These seven
different environmental factors and their effects on the damping are
analyzed in the case of 6061 aluminum alloy. The relationships between the

damping and every effective factor vary depending on the aluminum type.

Karic et al. [27] presented results from estimating internal structural
damping coefficients for bending free vibrations of elastic systems. The
internal damping force created by the deformation of a structure is supposed
to be proportional to velocity. The New-Mark method was utilized to obtain
the vibrating structure's temporal response. The computational coefficient of
internal damping was modified on elastic cantilever beams to match the

experimental results. As a result, there is a strong correlation between the



cross-sectional moment of inertia and the damping factor. The correlations

fit the structural damping hypothesis.

2.3 Summary

Previous studies found that little research focused on the dynamics of tubes
made of composite materials that convey fluid, especially from the analytical
point of view. Therefore, the current research is directed to this point in
addition to determining the effect of internal damping on the natural
frequency of the tube. Also, an analytical approach will be made to derive
the equation of motion for tubes made of composite materials that convey
fluids at different flow velocities. In order to demonstrate the effectiveness

of the analytical solution, a simple device is manufactured.
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Chapter Three
Mathematical Modelling

3.1 Introduction

This chapter covers the theoretical analysis of the dynamics of a
straight tube conveying internal flowing fluid. The tube is considered a
single-span tube and multi-span tube supported by clamped and simple
supports. The derivation of the equation of motion is done by using
Newton's second law. The fluid flow is assumed to be steady, and the
effective parameters will be taken into account in deriving the equation of

motion of tube - fluid system.

3.2 Materials and Methods

This work studies the dynamics of a composite tube conveying a steady
flow. The derivation of the governing equation is based on the Euler-
Bernoulli theorem. The following assumptions are considered to simplify the

complexities of the derivation, which have negligible effects:

1- Neglecting the influence of gravity by assuming horizontal tube.

2- The tube is inextensible.

3- Neglecting the effect of rotary inertia and shear deformation.

4- Small tube lateral motion.

5- Neglecting the details of fluid flow, such as the flow velocity

distribution across tube sections.



Before balancing forces and moments, it is essential to explain the velocity
and acceleration of the fluid element that moves axially inside the tube and
laterally with the vibrational motion of the tube. The velocity of the fluid
element is composed of two components; the first is the axial flow velocity

V and the second is the lateral velocity of the fluid due to the vibrational

.9 : .
motion a_yt Where y is the lateral motion of the tube.

Expressing the equation for the lateral velocity of the fluid element [28]: -

_ %y
Vi = = +V— (3.1)

The acceleration of the fluid element is the resultant of the components

as given by the following equation [10]:-

LW 0L, Oy 0y vy
U= T oz v ayot tV oxz T ot ox (32)
¥
Element
r—-..._._‘___‘_‘_‘_‘-‘_‘_\_ _,_,_.--""_——FH-FH} _
-H"_"‘-'--._._h__‘ _,_,_,—-'—"_'H- 4
L
L

Figure (3.1). A fluid-conveying tube with simply supported ends
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Figure (3.2). Representation of forces acting on the fluid element.

Balancing axial forces along the x-axis on the fluid element, shown in figure

(3.2), results in the following equation. [10]

op oy _
—Aa—qS+Fa—0 (3.3)
The force balance in the lateral direction, along the y-axis, yields [29]
9 dy dy v\? _
Fads(P2Z)+m (Z+V2) =0 (3.4)

Where F denotes the transverse force per unit length between the tube wall a

nd the fluid, and S denotes the tube's internal perimeter.
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Figure (3.3). Representation of forces acting on the tube element.

The balancing of forces on the tube element in the axial direction along the
x-axis is shown in figure (3.3) [4];

oT oy

a+qS—F£—O (3.5

Force balance in the y-direction is [28];

00Q 0 oy 0’y
2t (T2)+F -m 23 =0 (3.6)



According to the tube deformation, the transverse shear force Q in the tube

is related to the bending moment M by [29]:

oM oM
E+Q—O > Q = ~ 3.7)

The equation of bending moment (M) is [22]: -

0%y 03y
M_E162+E16x26t

(3.8)

Substituting Eg. (3.8) into Eq. (3.7) makes the transverse shear force Q in
the tube be written as [5]:

Q=—(E*—+E)Iax3 (3.9)
Where, E* Is the internal damping coefficient [25].

Z (T —PA) = 0 (3.10)
Integrating the above equation yields [10]

(T—PA) = C (3.11)
Where C is a constant.

At the end of the tube where x=L, the tension value is zero T=0 and P = Pi,
substituting that into Eq. (3.11) gives [28]

T —PA = - P,A (3.12)

Combining equations (3.4), (3.6), and (3.9) results in the following partial
differential equation [25]:

((E*—+E)I )+ [(T PA)
- , az (3.13)
— mf(— +V ) —m -3 =0




Substituting Eg. (3.12) into Eq. (3.13) to get the equation of motion of a
tube conveying fluid taking into account the effect of the internal damping

coefficient, which is [25]

Bl =22+ E1 22 — [(mV2 +PA) |22 o
ov o )
+2meaat falt/ay-l_(mf-l_mt)atz =0

Modulus of elasticity of composite material of the tube can be written
according to the Rule of Mixtures, as follows [30]

Vy + V) =1 (3.16)

By knowing the volume fraction of the fiber, the elastic modulus is written
as [30]

Where, E. = E,, For multi-layer of the composite tube conveying fluid .

Substituting E,, into Eqg. (3.14) with neglecting the term (‘;—:) because the

flow is assumed to be steady, the equation of motion of the composite tube

conveying fluid with the effect of internal damping is written as;

E'aql Goget Eeal 5 = [(meZ”A)]axz (.18
+2me +(mf+mt)at2 =0

Equation (3.18) is in a dimensional form. For generality, it is more
convenient to write this equation in a dimensionless form by using the

following nondimensional notations;



t El m
T =— and f = L
L mf+mp mf+mp

Use the above dimensionless groups with equation (3.18) to get [28]:

un 4™+ (U2 + "+ 2pUN +ij =0 (3.19)
19 S
Where 7 = 3 and n=

3.3 Vibration Analysis

This section will evaluate the natural frequencies and the vibration

characteristics of tubes conveying fluid.

The solution of this equation is composed of the following spatial time
variables, [10]:

n(& 1) =Xic et e (3.20)

Substituting Eq. (3.20) into Eq. (3.19) results in a fourth-order polynomial

equation for A as follows :
uQ+2* —(U2+y)22 =200 — 2% =0 (3.21)

Where Q is the dimensionless circular frequency of oscillation which is
[29]:

(mf+mp)
EI

N = wl?

Where w is the circular natural frequency (rad/sec)



Substituting the roots resulting from the polynomial (3.21) into Eq. (3.20)

and using the boundary conditions, the natural frequency can be calculated.

3.3.1 Boundary conditions
The following boundary conditions are considered to support the tube

under investigation.

1- Simply supported

When the tube is simply supported at its ends, both the lateral displacement
and bending moment are zero. These two conditions are satisfied

mathematically as [10];

{ Atx=0 ;n(0,7)=0,1"(0,7) =0 } (3.22)

Atx=L ;n(L,t) =0,n"(L,t) =0

By solving the problem with the government equation (3.21) which the same

solve for all supported.
4 . .
N6 T) = ) g ettt el
j=1
n (0, T) = [cy+ cy+ c3+ ¢4l
1 (1, t) = [c1+ ¢+ c3+ c4][(cos (Ag) — sin (Ag)) e~ Y]
4 . .
nll (é, T) — _/1]2 Z Cj elljvf el.Q‘L'
j=1
n” (0, T) = [C1+ C2+ C3+ C4][AR2 + ZI,ARA]_ A]Z]

n" (1, 1) = [e1+ co+ ezt cu)[ A% + 2idpd;— A,%][(cos(Ag)
— sin(g)) e~ Y]



2- Clamped support

For clamped end conditions, each of the lateral displacement and slope is

zero and can be represented as [10];

{At x=0 ;n0, =0 |, T]’(O,T)=0}

Atx=L ;;nL,1y =0 ,n({L,v) =0 (3.23)

3- Intermediate support

If simple support is imposed in the middle between two clamped spans, each
span has a length of L. The conditions are;

( Atx=0 ,n(,7) =0, 7n'(0,7)=0

\
{IAtx=L ,nL,r) =0 , n'(L,1) = U'(O;T)i
I
)

n'(L,7t) =n"071) , n,7) =0 (3.24)

Ik Atx=L, n({,7) =0, n({L,7) =0

4- Clamped - pinned support

For Clamped - pinned end conditions, each of the lateral displacement,

slope, and bending moments is zero, which can be represented as [10];

{ Atx=0 ;7n(0,0)=0 ,7n(0,7)=0 } (3.25)

Atx =L ;nL, )y =0 ,n"(L,t) =0
5- Clamped -free support

For Clamped — free end conditions, each of the lateral displacement, slope,

bending moment, and shear force is zero, which can be represented as [17];

{ Atx=0 ;7(0,00=0 ,7'(0,7)=0 } (3.26)

Atx =1L ;' (L,t)y =0 ,9"(L,t) =0



6- Free - free support

For free—free end conditions, each of the bending moment and shear force is

zero, which can be represented as;

A — . ! — nr —
{tx 0 ;7n"(0,1) 0 ,n"(,1) 0} (3.27)

Atx =L ;" (L,t) =0 ,n"(L,t) =0

3.3.2 Tube Natural Frequencies

The natural frequency of the tube can be calculated by substituting the
solution given by Eqg. (3.21) in the corresponding boundary conditions. This
substitution results in a set of coupled equations written in a matrix form.
The form of the matrix, the values of the matrix elements, depending on the
type of the boundary conditions used. In a tube simply supported at both
ends, where the displacements and bending moments are zero, all matrix
elements depend on the boundary condition. The matrix equation is written
as [10];

1 1 1 17 (G
A A A A2 )G

et et et e |)C3(

A2er AZer AZer A2Zetr] \(C,

(3.28)

o oo O

When the tube is clamped at both ends, the zero values of both the

displacement and slope at both ends make the matrix equation be written as :

1 1 1 17 (C
A A A AllG
A

0

_)O0

e e ) (T )0 (3.29)
0

At et Aer Aetr \Cy



If the tube is clamped at one end and simply supported at the other, the
matrix will be composed of the elements related to the clamped end, and

those of the simply supported one, and it is written as:

1 1 1 1 Cy 0
A A A A l)Gl o
et et et et Cs;( )0 (3.30)
AZer AZer AZer AZer \(C, 0

When the tube is supported by more than two supports, one at each end and
another at the mid-span, the matrix will be doubled. In the case of a tube

clamped at the extreme ends and simply supported at the middle, the matrix

equation is written as:

] (Cl\

1 1 1 1 0 0 0 o0 0

A A A A 0 0 0 01]]|C 0

e7‘7\ e7‘7\ ex}\ e7‘}L 0 0 0 0|]|Cs 0

C

szeex 73\2ee7‘ 7i\2ee7‘ 7i\2ee7\ '/{\2 _/{\2 {\2 _/{\2 = 8> (3.31)
0 0 0 0 1 1 1 11llce 0

0 0 0 0 e e e erMllG 0
L0 0 0 0 aer aer aer aeM g \o/

If the tube is clamped at one end and free at the other, where the lateral

displacement, slope, bending moment, and shear force are zero, the resulted
matrix equation is:

1 1 1 1 Cq
S W W W | Yo
}\2 e?\ }\2 e?\ }\2 e)\ }\2 e}\ C3
}\3 e?\ }\3 e?\ }\3 e)\ }\3 e}\ C4

(3.32)

oS OO O



When the tube is free at both ends, the bending moment and shear force are

zero; the matrix equation will be written as:

A2 A2 A2 2271 (C 0
B3 3 2Bl o
AZer AZer A%er AZer||Ca O 3:33)
et A3er A3t A3eM \C, 0

To solve the simply supported and another ends, substituting Eq. (3.20) into

boundary condition, the results matrix equation :

a11 A1z A13 Q14] (C1
Q1 Q2 Az3 Az4])C2
31 A3z A3z Q34| ) C3
Qg1 Q42 Qg3 Ag4] \C4

0
0

.34
0 (3.34)
0

The steps of calculation are shown in Appendix A.
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Experimental Work

4.1 Introduction

This chapter deals with the experimental work to validate the
theoretical analysis presented in the previous chapter. The natural frequency
of the tube under investigation is measured experimentally with the available
boundary conditions. Water is used as the flowing fluid in the tube via a
water pump, and a flowmeter is used to measure the flow rate value.
Different values of flow velocities of the fluid are considered to show the

effect of flow velocity on the free vibration of the tube. A DC motor is used

Chapter Four

to excite the tube laterally to distinguish the tube's natural frequency.

4.2 Testing models

The present work used three types of composite tubes with the

properties shown in Table (4.1).

Table (4.1). Specifications of tested models.

No. of m (kg)
Dy (M) D;(m) t(m)
Model of L=0.02m
1 0.023 0.013 0.005 0.012
2 0.015 0.007 0.004 0.007
3 0.013 0.007 0.003 0.003




4.3 Test Rig

A suitable apparatus has been manufactured to implement the required

tests. The apparatus is composed of the following components;

1- The basic structure of the apparatus represents the base to the other
components and welded steel members connected. This structure includes
the tube supports, as shown in figures (4.1,4.2).

The tested tube.

(US I \S)
1 1

Exciting motor.

Flowmeter.

T

Water pump.

O.\

Reservoir (Water tank)

Slide support

80.0cm

et 150.0cm =J

Figure (4.1). Schematic diagram of the basie structure.



Simply support Tested tube Exciting motor Basie structure

Reservoir
Flowmeter

Water pump

Figure (4.2). The structure and the different parts of the test rig.

Components 4, 5, and 6 represent the water circuit which is represented by

the schematic diagram shown in figure (4.3)

Test tube

1l

Figure (4.3). Schematic diagram of the circle of water.



4.4 Vibration test

The mechanisms shown in figure (4.4) was used to excite the tested

tube laterally via a DC electric motor with a crankshaft

A voltage regulator controls the motor speed to get the required speed. The

crankshaft was used to produce a controlled harmonic motion.

The function of the connecting arm mechanism was transferring the
harmonic motion from the crankshaft to the knocking shaft to excite the
tested tube.

The mechanism is to change the rotational speed of the crankshaft and thus
rotate the knocking shaft by the connecting arm to excite the tested tube. The
DC motor speed is measured by digital laser tachometer type (DT-2234), as

shown in figure (4.5).

The principle of working of this device is installing a silver-colored adhesive
piece placed on the spindle of the crankshaft and then directing the laser
beam of the tachometer device on the axis of rotation, whereby changing the
speed of rotation by the regulator, the crankshaft moves at different speeds.
This leads to the rotation of the sticker to cut the laser beam with each lap of
rotation during one minute so that the number of laps is displayed on the
digital screen of the tachometer. Thus, the rotational speed of the crankshaft

IS measured.



Crank shaft
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Figure (4.5). Digital laser RPM Tachometer.



4.5 Modulus of Elasticity and Density of the tube

The tested tubes are all composed of the same material, carbon-fiber
epoxy, but their internal and external diameters varied. The modulus of
elasticity of the tube is estimated by applying a load at the mid-span of a
simply supported tube of a 12 cm length and measuring the amount of
deflection. The load-deflection is shown in figure (4.6). The modulus of
elasticity for all tubes used in the test was 2.6 Gpa, which was calculated by

the following equation:

L3 deflection
E= , where M;_4 = deflection
481 Ml—d load

500

450

RZ2=0.9995

400

350

300

250

load (N)

200

150
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50

0 5 10 15 20 25 30 35
Deflection (mm)

Figure (4.6). Load—deflection curve of a simply supported composite tube.



The density is estimated by taking a 2 cm length of each tube, and the mass
Is measured by an electronic low-scale that reads three decimal digits. The
density for all tubes of L= 0.02m used in the test was 2122.091 Kg/m3 .The

following formula was used to determine the density of the test tubes :

4m

Pt = T (4.0

mL (Doz_ Diz)

Where m is mass of tube, D, and D; are the outside and inner diameters of

the test tube, respectively.

4.6 Calibration of Flowmeter

The flowmeter is calibrated by collecting 20 liters and measuring the
time required to collect this volume of water. This process is repeated three
times, and the average time value is calculated to minimize the error. The

flowmeter and tank volume calibration curve is shown in figure (4.7).

The velocity of the fluid passing through the test tube can be determined by

measuring the flow rate using the following relationship:
Q (m3/s) =V (m/s) * A (m?) 4.2)

Where; Q is the fluid flow rate, V is the fluid flow velocity, and A is the

internal cross-section area.
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Figure (4.7). The curve of calibration for a flowmeter.

4.7 Experimental Natural Frequency Test

This test includes three boundary conditions for the carbon fiber tube:
simply supported, firmly supported, and bolted support. For all models, the

tube length is 0.82 m, and the maximum flow rate is 20 I/min.

A crankshaft mechanism connected to the regulator, a speed controller,
excited the tube. The engine speed gradually increases until the resonance
appears. The rotational speed of the crankshaft is then recorded using the
number of turns displayed on the tachometer's digital display. Convert

tachometer units from RPM to Rad/sec to find w,,.



Discussion

—p=0 ——p=001 ——p=0.1

o 0% 1 15 2 245 a
dimensionless flow velocity, U



Chapter Five

Results and Discussion

5.1 Introduction

The theoretical and experimental findings related to the tubes made of
composite material conveying fluid are provided in this chapter. The effects
of flow velocity, internal damping, and type of boundary conditions on the
dynamics of the tube were calculated and presented through tables and
graphs. The experimental results were compared with the theoretical results

to find the error ratio.

5.2 Theoretical Results

Theoretical results deal with the variation of the natural frequency of a
composite tube affected by main parameters. This is done by solving the
governing equation, represented by Eqg. (3.21), for selected boundary
conditions. Some of the present results were compared with other published

works for verification. The theoretical results include the following:

5.2.1 Effect of flow velocity on the natural frequency

The first step in evaluating the results in this work is represented by
calculating the first two modes of free vibration of the composite material
tube by using the governing equation and assuming flow velocity is zero for
different boundary conditions as shown in table (5.1).

The results show that the tube with zero flow has the same natural frequency

as that for a beam with the same specifications and type of end support. This



conclusion is significant where it indicates that the results presented here are

on the right side.

Table (5.1). The first two modes natural frequencies of the composite tube
with different types of supporting, U =0,y =0, and f = 0.6336 [31].

No. Beam Configuration First mode | Second mode
1 | Simply support 9.872 39.5
2 | Clamped support 22.376 61.7
3 | Clamped-pinned support 15.424 50.0
4 | Clamped-free support 3.521 22.0
5 | Free-free support 22.375 61.7

The variations of the first and second dimensionless natural frequencies with
a dimensionless flow velocity of the composite tube for each type of support
are presented in figures (5.1 to 5.6). The results presented in these figures
are taken for y=0, p=0.6336, and p=0.

From these figures, one can get the following results;

. The natural frequency decreased with the gradual increase in the flow
velocity until it reached almost zero, which means that the tube lost its
stability due to the buckling phenomenon. The value of the flow velocity of
the fluid at which the natural frequency approaches zero is called the
“critical flow velocity". This means that the fluid flow has a damping effect

on the lateral vibration of the tube.



2. The type of support has an essential effect on the value of the natural
frequency of the tube. It is shown that the natural frequency of a clamped-
clamped support of composite tube is higher than that of the clamped—
pinned support, the latter is higher than that of a simply support, and the
simply support is higher than of clamped—free support. This can be
attributed to raising the bending moment when preventing bending rotation
at fixed ends.

3. Inserting intermediate support between two clamped supports does not affect
the tube's natural frequency value when the length of the intermediately
supported beam equals twice the length of the tube supported by two
clamped end supports, shown in figure (5.4). When the length of the
intermediate support tube is the same as that supported by two clamped

supports, the natural frequency is doubled.
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Figure (5.1). Variation of the first two natural frequencies with flow

velocity for simply supported tube ( f=0.6336, y =0, u = 0).
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Figure (5.2). Variation of the first two natural frequencies with flow

velocity for clamped-clamped tube ( =0.6336, y =0, u=0)
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Figure (5.3). Variation of the first two natural frequencies with flow

velocity for clamped — pinned supported tube( p=0.6336, y =0, u=0).
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Figure (5.4). Variation of the first two natural frequencies with flow
velocity for clamped — clamped tube with intermediate support ( f=0.6336, y
=0, p=0)
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Figure (5.5). Variation of the first two natural frequencies with flow

velocity for clamped—free support (3=0.6336, y =0, u=0).
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Figure (5.6). Variation of the first two natural frequencies with flow

velocity for free — free support ( p=0.6336, y =0, u = 0).



5.2.2 Effect of internal damping on the natural frequency

Table (5.2) shows the values for the first mode of the natural frequency
of the composite tube when the effect of internal damping and flow velocity

of the fluid is zero for different boundary conditions.

Table (5.2). First mode natural frequency of composite tube including the
effect of internal damping (U =0, y=0, and 3 = 0.6336).

No. Beam Configuration p=0 n=0.01 n=0.1
1 | Simply support 9.872 9.399 6.139
2 | Clamped support 22.376 20.012 8.548
3 | Clamped-pinned support 15.424 14.281 7.584
4 | Clamped-free support 3.521 3.461 2.956
5 | Free-free support 22.376 20.012 8.548

Figures (5.7 to 5.12) show the internal damping influence on the natural
frequency of clamped-clamped, simply supported, clamped-pinned,
clamped-clamped with simple intermediate support, clamped-free, and free-

free supports.

In these figures, the internal damping effect on the dynamical behavior of
the composite material tube is taken into consideration. It can be deduced
that:




1. The internal damping affects the natural frequency of the tube due to
the resistance to the relative motion between the material particles. The
natural frequency decreased by about 4.79 %.

2. The effect of internal damping at the low flow velocity range is more
than that at the high-velocity range. This behavior is attributed to the
dominant damping of flowing fluid at high flow velocities.

3. When the value of the flow velocity of the fluid increases, the natural
frequency gradually decreases with the increase (for any value of internal
damping), then approaching a value at which the natural frequency
approaches zero. The value of flow velocity that vanishes the natural

frequency is called the critical flow velocity.
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Figure (5.7). Effect of internal damping on the first mode natural frequency
of a simply supported tube conveying fluid at wvarious velocities
(B=0.6336, y =0).
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Figure (5.8). Effect of internal damping on the first mode natural frequency
of a clamped supported tube conveying fluid at various velocities
(p=0.6336, y =0).
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Figure (5.9). Effect of internal damping on the first mode natural frequency
of a clamped-pinned tube conveying fluid at various velocities
(B=0.6336, y =0).
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Figure (5.10). Effect of internal damping on the first mode natural
frequency of a clamped-clamped tube conveying fluid with simply

intermediate support (p=0.6336, y =0).
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Figure (5.11). Effect of internal damping on the first mode natural
frequency of clamped-free support tube conveying fluid at various velocities
(B=0.6336, y=0).
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Figure (5.12). Effect of internal damping on the first mode natural
frequency free-free support tube conveying fluid at various velocities
($=0.6336, y =0).

Figures (5.13 to 5.18) are calculated for U = (0 and 2), and B = 0.6336.

These figures show that:

1. The internal damping has a non-linear effect on the natural frequency
of the tube when the flow velocity is at a certain value.

2. The natural frequency decreases gradually at low values of internal
damping then reaches a point that is almost close to zero when the internal

damping is greater than 0.3.
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Figure (5.13). The effect of internal damping on a simply supported
composite tube conveying fluid (f=0.6336, y =0).
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Figure (5.14). The effect of internal damping on a clamped supported
composite tube conveying fluid (p=0.6336, y =0).
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Figure (5.15). The effect of internal damping on a clamped—pinned

supported composite tube conveying fluid (f=0.6336, y =0).
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Figure (5.16). The effect of internal damping on a clamped-clamped

composite tube conveying fluid with intermediate support (3=0.6336, y =0).
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Figure (5.17). The effect of internal damping on clamped-free supported

composite tube conveying fluid (B=0.6336, y =0).
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Figure (5.18). The effect of internal damping on a free — free, supported

composite tube conveying fluid (B=0.6336, y =0).



5.2.3 Effect of supporting type on the natural frequency

The natural frequency is affected by many factors, such as the increase

in the flow velocity value and the internal damping.

Figure (5.19) shows the natural frequency variation with flow velocity using

different supports.

An increase in the flow velocity leads to a decrease in the natural frequency
until it reaches the critical flow velocity. The natural frequency approaches

zero because the tube loses its stability due to the buckling phenomenon.

Figures (5.20) and (5.21) show the effect of the internal damping force and

flow velocity on the natural frequency with different types of supports.

It can be seen that the increase in internal damping with increasing flow

velocity decreases the natural frequency by 4.79%.
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Figure (5.19). Variation of the tube first mode natural frequency with the

effect of flow velocity for different supporting types at (=0.6336, y =0,
u=0).
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Figure (5.20). Effect of flow velocity on the tube's first mode natural

frequency for different forms of supports at (f=0.6336, y =0, u = 0.01).
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Figure (5.21). Effect of flow velocity on the tube's first mode natural

frequency for different forms of supports at (f=0.6336, y =0, u = 0.1).



5.3 Experimental Results

This part deals with the experimental results obtained through measurement
by the manufactured device with the rest of the auxiliary parts discussed in
the third chapter and compares these practical values with the relevant
theoretical results evaluated from the mathematical model presented in the
second chapter. Water is used as the internal fluid passing through the tube

in this work.

The readings from the apparatus include the value of the natural frequency
of the exciting composite material tube and the value of flow velocity. The
mean flow velocity of the flowing water is calculated from the value of the

water flow rate divided by the tube internal sectional area.

Flowmeter measures the water flow rate inserted within the flow circuit. The
natural frequency of the tube is recorded when the amplitude of the tubes
reaches its maximum value as the speed of the exciter increases gradually

from zero.

The exciter speed is measured by a laser tachometer, which gives the
readings in revolution per minute. It is converted to radians per second to be

comparable with the theoretical values.

The experimental values are conducted for three tubes made from the

composite material.

The calculated and measured values of the tube natural frequencies are

presented in Figures (5.22 to 5.24) for three types of boundary conditions.

From the theoretical and experimental results shown in the figures for the
three tubes used in the test, it was found that all the experimental values are
less than the corresponding theoretical results and that there is an acceptable

agreement between the theoretical and practical results:



e Inaccuracy in measuring devices and errors resulting during

measurements

e The supports used for supporting the tube are not ideal.

These results found that the natural frequency is affected by many factors,
including the increase in the fluid flow velocity and the effect of the internal
damping force of the tube material, as well as is affected by the type of

supports used in the experimental application.

The three tubes are made from the carbon-fiber epoxy composite. The

modulus of elasticity is 2.6 Gpa.

For the first tube, the outer diameter is 0.023 m, the inner diameter is 0.013
m, the thickness is 0.005 m, the mass of the 0.02 m long piece is 0.012 kg.
Figure (5.22 ) shows the relationship between the natural frequency and

fluid velocity in the first mode for three boundary conditions.
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Figure (5.22/a, b, c). Experimental and theoretical effects of flow velocity
on the tube's first mode natural frequency for the first tube
(B=0.6336,y =0, u = 0).



For the second tube, the outer diameter is 0.015 m, the inner diameter is
0.007 m, the thickness is 0.004 m, the mass of the 0.02 m long piece is
0.007 kg. Figure (5.23 ) shows the relationship between the natural

frequency and fluid velocity in the first mode for three boundary conditions.
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Figure (5.23/a, b, c). Experimental and theoretical effects of flow velocity
on the tube's first mode natural frequency for the second tube
(p=0.6336, y=0, u = 0).



For the third tube, the outer diameter is 0.013 m, the inner diameter is 0.007
m, the thickness is 0.003 m, the mass of the 0.02 m long piece is 0.003 kg.
Figure (5.24 ) shows the relationship between the natural frequency and

fluid velocity in the first mode for three boundary conditions.
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Figure (5.24/a, b, c). Experimental and theoretical effects of flow velocity
on the tube first mode natural frequency for the third tube
($=0.6336, y =0, u=0).
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Chapter Six
Conclusions and Work Suggestions

6.1 Introduction

This chapter deals with the conclusions obtained from the present
study. It also provides some recommendations and suggestions which may

be useful for future works.

6.2 Conclusions

. Flow velocity factor plays an important role in the value of free vibration of
composite tubes. Depending on type ends conditions, it may cause instability
to the tube when reaching a certain value.

. The flow velocity value of the fluid reduces the value of the natural
frequency of the free vibration of the composite material tube, which means
that the tube loses its stability due to the phenomenon of buckling, as the
natural frequency decreases gradually until a point approaching zero called
the "critical velocity value". Also, the flow velocity reduces the vibration
amplitude due to the damping delivered by fluid forces.

. The effect of fluid flow velocity at lower velocities is small compared to
higher velocities. This trend is seen for all types of boundary conditions. The
type of boundary conditions significantly affects the value of the natural
frequency. It is shown that the natural frequency of a clamped support of
composite tube is higher than that of the clamped-pinned support, the latter
is higher than that of a simply support, and the simply support higher than of
clamped-free support. This behavior referred to the effects of the bending

moment raised when preventing bending rotation at fixed ends.



Inserting intermediate support between two clamped supports does not affect
the tube's natural frequency value when the length of the intermediately
supported beam equals twice the length of the tube supported by two
clamped end supports. When the length of the intermediate support tube is
the same as that supported by two clamped supports, the natural frequency is
doubled.

. The internal damping affects the natural frequency by up to 4.79 % when the

internal damping increases by 0.01% due to the resistance to the relative
motion between the material particles.

The effect of internal damping at the low-velocity range is more than that at
the high-velocity range. This behavior is attributed to the dominant damping

of flowing fluid at high flow velocities.

6.3 Future Work Suggestions

Analyzing the same problem using the method of characteristics.
Studying the dynamics of tubes conveying fluid, considering the viscous

damping and the temperature.
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