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Abstract 

Composite tubes are usually made of two or more laminated composite 

materials. These tubes can be used for fuel lines, hydraulic tubes, house and 

industrial uses.  

In the current study, the most common types of composite materials will be 

used to manufacture the tube which is carbon fiber – epoxy. It is widely used 

due to its significant properties, including high strength to weight, good 

toughness and suitable prices. 

Because of the tendency to use successful tubes with less vibration and low 

corrosion rate, this study is directed to the dynamical behavior of tube made 

of the composite material conveying fluid.  

The effect of flow velocity and internal damping on free vibration of tube 

made of the composite material , which represents the main parameter in this 

work, is investigated using different types of boundary conditions. 

A systematic evaluation of the fundamental aspects of the dynamic behavior 

of tube made of the composite material with the effect of flow velocity and 

internal damping on free vibration of tube made of the composite material , 

which represents the main parameter in this work, is investigated using 

different types of boundary conditions. 

The mathematical model of tube made of the composite material is solved 

analytically to calculate the effect of the related parameters and variables. 

The theoretical results are presented in a dimensionless form for  with the 

mechanical properties.  

The natural frequency was determined in the theoretical part by deriving the 

governing equation using the Euler-Bernoulli theorem and substituting the 



boundary conditions into the equation to extract the roots of the polynomial 

equation and writing it in the form of a matrix consisting of four terms to be 

substituted in the (Q-basic) program to determine the value of the natural 

frequency.  

It was found that increasing flow velocity causes the natural frequency to 

decrease gradually. The rate of decrease increased until the natural 

frequency value was nearly zero at point called  "critical flow velocity" 

which is the flow velocity at which the natural frequency decreases. The 

simply supported composite tube has a dimensionless critical flow velocity 

of 3.12. In contrast, the clamped support tube has a dimensionless critical 

flow velocity of 6.23, and the dimensionless critical flow velocity for 

clamped-pinned is 4.42. These results were without the effect of internal 

damping. 

According to the theoretical results , the critical flow velocity increased 

when the mode of vibration was increased. Furthermore, the critical flow 

velocity of a clamped composite tube is 50% higher than that critical flow 

velocity of simply supported composite tubes. The internal damping affects 

the natural frequency by up to 4.79 % when the internal damping increases 

by 0.01%. 

In the experimental part, a device was manufactured to confirm the 

theoretical results of calculating the natural frequency by using the 

tachometer to determine the rotational speed of the crankshaft, where the 

number of revolutions displayed on the digital screen of the device 

represents the value of the experimental natural frequency of the tube made 

of composite materials and compare the experimental results with the 

theoretical results. 
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Nomenclatures 

Symbol Meaning Units 

  Cross section area   
 

   Acceleration of the fluid   /s 

   Tube internal diameter m 

   Tube outer diameter m 

  Modulus of elasticity N/   

𝐸  Internal damping coefficient  

𝐸  Modulus of elasticity of composite materials of tube N/   

𝐸  Modulus of elasticity of fiber N/   

𝐸  Modulus of elasticity of the matrix N/   

  Normal force between fluid and tube per unit length N/m 

  Second moment of area    

  Tube length m 

  Bending moment Nm 

   Fluid mass per unit length kg/m 

   Tube mass per unit length kg/m 

   Tube density per unit length kg/   

  Pressure N/   

   Internal pressure N/   

  Fluid flow rate l/min 

𝑞 Shear force per unit length N/m 

𝑆 Tube's internal perimeter m 

  Tension force in tube per unit length N/m 

  Time sec 

  Dimensionless fluid velocity  



𝑉 Axial flow velocity m/s 

𝑉   Lateral velocity of the fluid m/s 

𝑉  Volume fraction of the fiber  

𝑉  Volume fraction of the matrix  

x Axial coordinate  

y Lateral coordinate  

Greek symbols 

β Fluid - tube mass ratio  

γ Dimensionless pressure  

η Dimensionless coordinate  

  Roots of the polynomial equation  

  Dimensionless internal damping coefficient  

  Dimensionless coordinate  

τ Dimensionless time  

  Dimensionless circular frequency of oscillation  

  Natural frequency Rad/sec 

 

 

  



 

  



Chapter One 

Introduction  

 

1.1 General 

 A composite material consists of the combination of two or more 

substances. This merging process leads to obtaining a new material with 

engineering and physical properties that differ from the properties of the 

materials in their composition. The general use of composite material 

depends largely on these materials' mechanical and physical properties, so 

studying these properties under the influence of forces and loads in different 

conditions acquires great importance to know the appropriateness of these 

properties for the place of work of these materials. 

In industry, the reinforcement of resins with synthetic fibers is the most 

common. For the manufacture of composite material, two materials must be 

provided: 

 (Matrix Material): The base material is polymeric materials, and it is 

the most widely used and widespread because of its good mechanical 

and thermal properties. Examples of polymeric materials are epoxy 

resin. 

 (Reinforcing Material): Two main advantages must be available in 

such materials, which are high resistance and low ductility in order to 

be able to strengthen the base materials.  

There are several methods of strengthening, and the most common is the 

strengthening of fibers due to their great strength compared to resin 

materials. The fibers are of different types and shapes, which are continuous 

or non-continuous. 



In the current study, the most common types of composite materials will be 

used to manufacture the tube carbon fiber – epoxy, as shown in figure (1.1). 

It is widely used due to its significant properties, including high strength to 

weight and good toughness, as well as reasonable prices, as they are 

available in a variety of applications    . 

 

 

Figure (1.1). Carbon fiber tubes    . 

 

By identifying the advantages of tubes made of composite materials, the 

differences between metal tubes and tubes made of composite materials can 

be determined. With the increase of demand of tubes constructed from 

composite materials, there has been an upsurge in research related to the 

mechanics of composite tubes and predicting failure under different loading 

conditions. The composite tube offers several advantages over metallic 

systems, especially where control and mitigation regimes are not correctly 

followed. Metallic structures require more inspection, repair, and 

maintenance during their service life, meaning a need to schedule shutdowns 

while increasing expenditure. These shutdowns are mitigated against the 

composite tube to remove any corrosion-related problems. 

 



Composite tubes also have a superior internal fluid flow performance 

compared to metallic tubes with a lack of scaling and other bore restriction 

issues. Composite tubes also demonstrate superb strength and stiffness with 

much less weight, making them easier to handle without lifting equipment, 

reducing lifecycle, transportation, and installation costs. However, 

composite materials can be more expensive than their metal counterparts, 

although the reduced assembly costs for composites can offset this cost. 

Based on the preceding, it becomes clear the importance of tubes made of 

composite materials, as Composite tubes are already showing a track record 

of use for a range of applications across different industries. Already widely 

used for transporting different types of water, these tubes are increasingly 

used in the oil and gas industry, where their strength, lightweight, and lack 

of problems with corrosion are proving beneficial. Easy to transport and 

install, and with very little requirement for maintenance and inspection, the 

benefits of composite tubes balance out the increased cost of materials. 

Available in various material types and as spool-able, flexible options, 

composite tubes look set to continue rising. 

Because of the tendency to use successful tubes with less vibration and low 

corrosion rate, this study and the previous studies are directed to the 

dynamical behavior of composite tubes conveying fluid. The effect of flow 

material damping and type of support on the free vibration of composite 

tubes represent the focus of the current steady. 

 

 

 

 



    Objectives 

The following points can summarize the main objectives of the 

present work; 

   Investigation of the effect of flow velocity on free vibration of the 

tube made of composite material  

   Investigation of the effect of internal damping of tube material on the 

dynamical behavior of the tube. 

   Defining the values of resonance of the tube under investigation to 

prevent resonance problems such as mechanical failure. 

   Investigation the dynamics of behavior of tube with the effect of 

supporting type and the effect of adding intermediate support on free 

vibration of the tube made of composite material  

    Thesis outline 

The chapters of this thesis are arranged in the following order:  

The background for this work is presented in the first chapter to emphasize 

its relevance in the theoretical application and practical reality . The second 

chapter shows some prior studies that can apply some of the features and 

design of the topic . 

The equation of motion for composite tubes that convey fluids, including the 

internal damping to determine the natural frequency necessary for composite 

tube vibration, is presented in the third chapter. The fourth chapter explains 

and clarifies the practical application and the equipment utilized. The fifth 

chapter provides the theoretical and experimental findings of the tests under 

different boundary conditions. Finally, the sixth chapter draws the topic 

conclusions. 

  



 



Chapter two 

Literature review 

 

    Introduction  

Pipelines for fluid conveying are important in various design 

applications because they have provided an important service on a large 

scale in a wide variety of industrial sectors to convey fluid. These tubes are 

utilized in various applications, water supply lines, and fuel conveying line 

drainage. Numerous researches have been undertaken to investigate the 

dynamic behavior of tubes made of various materials due to the large variety 

of systems that utilize tubes. 

 

2.2 Literature survey  

2.2.1 Tube conveying fluid 

 Paidoussis and Issid [ ] investigated the dynamics and methods of 

stabilization of flexible tubes that convey fluids, assuming that the velocity 

is steady. Stability maps are presented for parametric instabilities, computed 

by Bolotin's method, for tubes with pinned or clamped ends, as well as for 

cantilevered tubes. It is found that the extent of the instability regions 

increases with flow velocity for clamped – clamped and pinned–pinned 

tubes. At the same time, a more complex behavior obtains in the case of 

cantilevered tubes. It is shown that conservative systems are subject to 

buckling (divergence) at sufficiently high flow velocities and oscillatory 

instabilities (flutter) at higher flow velocities. In all cases, dissipation 

reduces the extent of or eliminates parametric instability zones. 



Liu and Xuan [ ] investigated the dynamic analysis of supported tubes 

conveying pulsating fluid in the Hamiltonian system using (Precise 

Integration Method) PIM, which is considered a practical way to investigate 

the dynamic analysis of tubes conveying fluid. To confirm this 

methodology, many pinned-pinned tubes were solved numerically using 

different velocities and frequencies. 

Yi-min et al.  [ ] investigated the natural frequency of fluid-structure 

interaction in pipeline conveying fluid by the eliminated element-Galerkin 

method. The natural frequency equations with different boundary conditions 

are obtained. The characteristics of pipeline conveyed fluid, such as flow 

velocity, stiffness, mass, and length linked to the natural frequency, were 

investigated. The results indicate that the effect of Coriolis force on natural 

frequency is inappreciable. Then the relationship between the natural 

frequency of the pipeline conveying fluid and that of the Euler beam is 

analyzed. 

Al-Rajihy and Alwan [ ] investigated the vibrational characteristics of a Y-

shaped tube conveying flowing fluid. The tube comprises 3- straight tube 

segments math at the intermediate junction. The governing equation of 

straight tube conveying fluid is used with each of the three segments. The 

clamped free and clamped-pinned boundary conditions were discussed. The 

coupled effects of the type of boundary conditions, the angle between the 

two Y-segments, fluid velocity, and length ratio of segments on the 

dynamics of the tube are studied. The Y-tube loses its stability at flow 

velocity higher than the straight tube of the same characteristics.  

Al-sahib et al.  [ ] focused their study on the vibration and stability of 

straight tubes made of ASTM-214-71 mild steel, conveying turbulent steady 

water with different velocities and boundary conditions. Single-pass fusion 



arc welding with appropriate parameters welded the tube on its mid-span. A 

new analytical model was derived from investigating the effects of residual 

stresses at girth welds of a tube on the vibration characteristics and stability. 

The reaction components of the residual stresses at a single pass girth weld 

in a tube were combined with a tensioned Euler-Bernoulli beam and plug 

flow model to investigate the effect of welding on the vibration 

characteristics of a tube. A finite element (FE) simulation was presented to 

evaluate the velocity and pressure distributions in a single-phase fluid flow. 

A prestressed modal analysis was employed to determine the vibration 

characteristics of a welded tube conveying fluid. Experimental work was 

carried out by building a rig mainly composed of different boundary 

conditions welded tubes conveying fluid and provided with the necessary 

measurement equipment is to fulfill the required investigations. It has been 

proven theoretically and experimentally that the residual stresses due to 

welding reduce natural frequencies for both clamped–clamped and clamped-

pinned tube conveying fluid. Also, it proved that for small fluid velocity 

(sub-critical), the clamped–clamped and clamped-pinned welded tubes 

conveying fluid are stable for relatively high fluid velocities (super-critical). 

Ismail [ ] provided the analytical solutions to determine essential properties 

of conservative and non-conservative energy tubes conveying fluid, such as 

pressure, velocity, and mass ratio. With low rather than high flow rate 

pumps, a method for calculating the critical velocity has been provided. The 

findings revealed that the approach worked with conservative tubes, with a 

5% error rate between theoretical and actual outcomes, and that non-

conservative tubes required more sophisticated solutions. 

Ritto et al.  [ ] discussed the problem of a tube conveying fluid of interest in 

several engineering applications, such as micro-systems or drill-string 



dynamics. The deterministic stability analysis developed by Paidoussis and 

Issid (1974) is extended to the case for which modeling errors in the 

computational model induce model uncertainties. The Euler-Bernoulli beam 

model is used to model the tube, and the plug flow model is used to take into 

account the internal flow in the tube. The resulting differential equation is 

discretized using the finite element method, and a reduced-order model is 

constructed from some eigenmodes of the beam. The numerical results show 

the random response of the system for different levels of uncertainty and the 

system's reliability for different dimensionless speeds and levels of 

uncertainty. 

Kesimli et al. [ ]  discussed linear vibration of the fluid-carrying tube with 

intermediate support. Supports located at the ends of the tube were clamped 

supports. Support was located in the middle section show the features of 

simple support. It was accepted that the fluid velocity varied harmonically 

by an average speed. The equation of motion and limit conditions of the 

system were obtained using the Hamilton principle. The solutions were 

obtained using the Multiple Scale Method, one Perturbation Methods. The 

first term in the perturbation series causes the linear problem. Exact natural 

frequencies were calculated by the solution of the linear problem for the 

different positions of the support at the center, different longitudinal 

stiffness, different tube coefficient, different rate of fullness, and natural 

frequencies depending on the fluid's velocity exactly. 

Al-Rajihy and Kadhom [1 ] focused on fluid velocity on the bending 

behavior of a cantilever tube under a lateral impact force. According to the 

results, increasing flow velocity lowers the amplitude of the bending 

moment's first reaction to the impact lateral force by approximately 9%. The 

findings take around 48% of the time to lower the amplitude of the bending 



moment response by 90%. The findings of this study indicate that fluid flow 

velocity has a substantial influence on the dynamic response of tubes 

conveying fluid. 

A dynamic stability test of the tube conveying fluid with a linear spring was 

carried out by Alnomani [1 ]. The spring work produced good results for the 

system frequency utilizing the finite element analysis approach. The 

stiffness ratio of the tube is raised to improve the system's stability. The 

spring's position is determined by the tube's flow velocity and the spring's 

stability.  

Sutar et al.     ] calculated the natural frequencies of fluid conveying tubes 

using ( guided - simple, guided - clamped, guided - guided, and guided - 

free) boundary conditions. It is described how fluid flow velocity affects 

natural frequencies. The point of flutter is found by determining critical 

velocities. To simulate the tube, a Euler–Bernoulli beam is used. Hamilton's 

approach creates the differential equation of motion for free vibration. 

Muller's approximate technique is used to generate the natural frequency 

equation. There is a decrease in natural frequency as velocity increases for 

any boundary conditions. 

 

 2.2.2  Composite tube conveying fluid  

The vibrational behavior of the tube made of composite material 

conveying fluid has been studied by many research.  

Oke and  Khulief [1 ] looked at how interior surface degradation influences 

the vibrational behavior of the tube made of composite material conveying 

fluid. The wave-based finite element approach is utilized to model and 

determine the faulty fluid tube system using the extended Hamilton 



principle. The modal characteristics of tube vibrations were calculated using 

the generalized eigenvalue problem. The suggested model was evaluated, 

and many standard solutions were used to verify the influence of inner wall 

thinning on the vibrational behavior of composite tubes conveying fluid. The 

obtained results make it possible to use the vibration signature as a basis for 

detecting internal corrosion defects in pipelines. 

Szabó et al. [  ] used a finite element model and practical testing to 

demonstrate the actual performance of a filament-wound composite tube 

bent three times. The composite reinforcement plies were characterized 

using the linear viscoelastic material model, included in the finite element 

model. The rubber liners were classified as a two-parameter model under the 

Mooney - Rivlin model. There is a high agreement between the modeling 

results and the experimental findings for three-point bending force-

displacement curves.  

Oke and Khulief [  ] analyzed the dynamic response when fluid flows 

through a tube with an internal surface imperfection. The extended 

Hamilton's principle was used to derive equations of motion, while the 

wavelet-based finite element method (WBFEM) was used to discretize the 

equations. Internal surface flaws prolong the tube's length and have a cross-

section that changes radial and angular directions. Integrating the equations 

of motion using the MATLAB solver ODE45 yields the faulty tube's 

dynamic response. ANSYS was used to assess the dynamic model. Some 

benchmark findings show the impact of internal surface imperfections on the 

dynamic response of composite tubes conveying fluid. 

Dai et al. [16] studied The dynamics of fluid-conveying cantilevered tubes 

consisting of two segments made of different materials, focusing on the 

effects of different length ratios between the two segments. Two kinds of 



hybrid tubes are considered: one is made of steel and aluminum, and the 

other is aluminum and epoxy. The complex frequency of the four lowest 

modes of the hybrid system is calculated in two representative cases for 

successively increasing flow velocity values to demonstrate how the 

transition from stability to instability occurs. Compared with a uniform tube 

conveying fluid, it is found that the hybrid tube is capable of displaying 

more complex and sometimes unexpected dynamical behaviors. The 

numerical results show that an instability–restabilization–instability 

sequence would occur in such a hybrid tube system as the flow velocity is 

successively increasing. When the length ratio between the two segments is 

successively increased, the lowest order of unstable modes may frequently 

shift from one to another. It is also demonstrated that the flutter instability 

first occurring in the fourth mode is possible with increasing flow velocity, 

and a certain unstable mode may suddenly regain stability. 

Al - Raheimy [17] investigated the influence of several forms of support on 

the cross-sectional frequency of composite tubes with parameters of 1 m 

length, 1 mm thickness, and 1 cm inner radius, including clamped – free, 

clamped – clamped and clamped – pinned. The tube is made of fiberglass 

and a polyester resin that has been solidified into a matrix. The fibers are of 

various lengths; the first is short but not connected, while the second is 

lengthy and continuous for a specific fiber section. The natural frequency 

decreases as the flow increases from zero to critical velocity. The length of 

the disconnected fiber determines the frequency rise. It has been concluded 

that the fiberglass tubes would have a low critical velocity and a low natural 

frequency than Kevlar fiber tubes. 

Khudayarov et al. [18] investigated the Vibration problems of pipelines 

made of composite materials conveying pulsating flow of gas and fluid. A 



dynamic model of motion of pipelines conveying pulsating fluid flow 

supported by a Hetenyi’s base is developed taking into account the viscosity 

properties of the structure material, axial forces, internal pressure and 

Winkler’s viscoelastic base  To describe the processes of viscoelastic 

material strain, the Boltzmann–Volterra integral model with weakly singular 

hereditary kernels is used. Using the Bubnov–Galerkin method, the problem 

is reduced to the study of a system of ordinary integro-differential equations 

(IDE). A computational algorithm is developed based on the elimination of 

the features of IDE with weakly singular kernels, followed by the use of 

quadrature formulas. The effect of rheological parameters of the pipeline 

material, flow rate and base parameters on the vibration of a viscoelastic 

pipeline conveying pulsating fluid is analyzed. The convergence analysis of 

the approximate solution of the Bubnov–Galerkin method is carried out. It 

was revealed that the viscosity parameters of the material and the pipeline 

base lead to a significant change in the critical flow rate. It was stated that an 

increase in excitation coefficient of pulsating flow and the parameter of 

internal pressure leads to a decrease in the critical flow rate. It is shown that 

an increase in the singularity parameter, the Winkler base parameter, the 

rigidity parameter of the continuous base layer and the Reynolds number 

increases the critical flow rate. 

Geuchy and  Hoa [19] studied the flexural stiffness of thick composite tubes. 

For thick composite tubes, a fiber placement machine was used 

automatically. The tubes were put through their paces using a different 

testing method. Stresses and flexural stiffness were measured using Both 

strain gages and Digital Image Correlation. The tubes' flexural stiffnesses 

during the bending experiment were measured. A comparison is made 



between the experimental results and those obtained using different 

equations. 

Malawi et al. [20] developed a model that replicates the behavior of 

unidirectional fiber composite tubes made of the same material type. The 

modules are firmly connected to produce a separate axial grading tube for 

this purpose. Once the transfer matrix analysis was complete, the Levenberg 

- Marquardt method solved the resulting nonlinear equations with their 

complex roots. It was decided to make some handy diagrams. Because of 

this, the current design may use piecewise tube grading in material 

properties, wall thickness, and length to develop lighter composite tube 

designs with improved dynamic stability and increased flutter speed. 

Oke and Khulief [21] used a finite element formulation based on B-spline 

wavelets on an interval to model composite tube-free vibrations. Wavelet 

space is used to construct the finite tube first, and then it is transported to the 

physical space. Analytically Wavelet functions and B-splines can represent 

composite tube mass and stiffness matrices. There is also a consideration of 

the Euler-Bernoulli beam theory and the Timoshenko beam theory. The 

modal characteristics of the composite tube may be calculated using an 

extended eigenvalue problem. Compared to the traditional finite element 

method, the suggested wavelet-based discretization methodology for 

composite tube modeling employs a fraction of the components.  

Khudayarov et al.[22] investigated the Vibration problems of pipelines made 

of composite materials with account for lumped masses. A mathematical 

model of the motion of pipelines conveying fluid flow is developed based on 

the Winkler base with account for viscosity properties of the material of 

structures and pipeline bases, axial forces, internal pressure, resistance 

forces, and lumped masses. The Boltzmann-Volterra integral model with 



weakly singular hereditary kernels describes viscoelastic material strain 

processes. Using the Bubnov-Galerkin method, the problem is reduced to 

studying a system of ordinary integro-differential equations. A 

computational algorithm is developed to eliminate the features of integral-

differential equations with weakly singular kernels, followed by quadrature 

formulas. The effect of rheological parameters of the pipeline material, 

lumped masses, internal pressure, Reynolds numbers, and base parameters 

on the vibration of a viscoelastic pipeline conveying fluid flow are analyzed. 

It is revealed that the viscosity parameters of the material and the pipeline 

base lead to a significant change in critical flow rate. It was found that an 

increase in the viscosity parameter, the parameters of lumped masses, and 

internal pressure leads to a decrease in critical flow rate. It is shown that 

when the lumped masses are moved away from the center along the pipeline 

length, the vibration frequency increases. 

 

2.2.3 Tube conveying fluid with the effect of Internal damping  

Internal damping is a critical design parameter of dissipation energy in 

materials under stress, particularly for vibrating structures used in the oil and 

car industries. Damping in various engineering metals has been explored 

using various experimental and computational approaches. Furthermore, 

because damping varies with several environmental conditions, many 

distinct parameters were employed in those investigations. 

Patel [23] An internally damped tapered truncated cantilever beam was 

investigated for vibrations. There are two viable solutions for a square cross-

section beam with linear depth and breadth variation: (1) a discrete mass 

distribution and (2) a continuous mass distribution. The beam should be 

viscoelastic at Kelvin temperatures. Precision oscillation frequency, mode 



shape, and steady-state response solutions may be found in this topic. The 

results of discrete and continuous experiments employing the first two 

modes of a typical beam were compared. The natural frequencies of the two 

approaches are just around 9% different, and the mode shapes are nearly 

identical. The beam's steady-state response to harmonic stimulation is 

calculated. The response of the discrete model is calculated using the 

excitation frequency as the fundamental natural frequency of the beam. 

Because assessing Bessel functions with intricate data is difficult, 

continuous analysis cannot respond. 

Kroisová [24] investigated the damping properties of epoxy composite 

materials. Composite structures were built utilizing a two-component of 

epoxy resin and a variety of fillers to perform testing (lead particles and 

chippings, ferrous - ferric oxide particles, titanium dioxide particles, alloy 

hollow tubes, carbon chopped fibers, and cork particles). The fillers in the 

polymer matrix varied in composition, particle size, shape, and weight 

percentage. Damping tests on the cast and cured epoxy composite systems 

were carried out at a temperature of 220 C, a low frequency of 50 Hz to 100 

Hz, and atmospheric pressure, representing the structure's dynamic stress 

condition. The deflection of samples was measured using photoelectric 

equipment, and the loss coefficient was determined using a traditional 

method. The form, size,  surface of the fillers,  fracture surfaces, and 

interfaces of composites were all studied using SEM microscopy. 

Wang et al. [25] studied the dynamics of supported fluid-conveying tubes 

with geometric imperfections by considering the integral–partial–differential 

equation of motion. The effect of sinusoidal wave or parabolic variations of 

imperfections is investigated for the system's four-degree-of-freedom (N¼4) 

model. Linear analysis shows that each type of imperfection affects the 



natural frequency of only one single mode. For half-sinusoidal wave or 

parabolic variation of imperfections, the critical flow velocity at which 

buckling instability occurs is higher than for a tube without imperfections. 

The tube remains in its undeformed static equilibrium state at low flow 

velocity in all cases. At high flow velocity, however, the nonlinear analysis 

predicts that the tube would be attracted to one of two other nontrivial 

equilibria, which, more importantly, maybe asymmetric due to the presence 

of imperfections. For tubes with imperfection in the form of half-sinusoidal 

wave or parabolic variation, interestingly, the nonlinear theory predicts that 

a small buckling displacement would occur at flow velocities slightly lower 

than the critical flow velocity predicted by the linear theory.  

Colakoglu [26] found that The internal damping of metallic materials varies 

with many different environmental effects. These are the frequency, 

amplitude of strain or stress, and temperature. In addition, internal damping 

is affected by corrosion fatigue, grain size, and porosity. The damping also 

depends on the number of fatigue cycles. There is a functional relationship 

between the damping, number of cycles, and applied stress. These seven 

different environmental factors and their effects on the damping are 

analyzed in the case of 6061 aluminum alloy. The relationships between the 

damping and every effective factor vary depending on the aluminum type.  

Karic et al. [27] presented results from estimating internal structural 

damping coefficients for bending free vibrations of elastic systems. The 

internal damping force created by the deformation of a structure is supposed 

to be proportional to velocity. The New-Mark method was utilized to obtain 

the vibrating structure's temporal response. The computational coefficient of 

internal damping was modified on elastic cantilever beams to match the 

experimental results. As a result, there is a strong correlation between the 



cross-sectional moment of inertia and the damping factor. The correlations 

fit the structural damping hypothesis. 

 

2.3 Summary  

Previous studies found that little research focused on the dynamics of tubes 

made of composite materials that convey fluid, especially from the analytical 

point of view. Therefore, the current research is directed to this point in 

addition to determining the effect of internal damping on the natural 

frequency of the tube. Also, an analytical approach will be made to derive 

the equation of motion for tubes made of composite materials that convey 

fluids at different flow velocities. In order to demonstrate the effectiveness 

of the analytical solution, a simple device is manufactured. 

 

  



 

 

 



Chapter Three 

Mathematical Modelling 

 

 .1 Introduction 

This chapter covers the theoretical analysis of the dynamics of a 

straight tube conveying internal flowing fluid. The tube is considered a 

single-span tube and multi-span tube supported by clamped and simple 

supports. The derivation of the equation of motion is done by using 

Newton's second law. The fluid flow is assumed to be steady, and the 

effective parameters will be taken into account in deriving the equation of 

motion of tube - fluid system. 

 

    Materials and Methods  

This work studies the dynamics of a composite tube conveying a steady 

flow. The derivation of the governing equation is based on the Euler-

Bernoulli theorem. The following assumptions are considered to simplify the 

complexities of the derivation, which have negligible effects: 

 - Neglecting the influence of gravity by assuming horizontal tube. 

 - The tube is inextensible. 

 - Neglecting the effect of rotary inertia and shear deformation. 

 - Small tube lateral motion. 

 - Neglecting the details of fluid flow, such as the flow velocity 

distribution across tube sections. 

 



Before balancing forces and moments, it is essential to explain the velocity 

and acceleration of the fluid element that moves axially inside the tube and 

laterally with the vibrational motion of the tube. The velocity of the fluid 

element is composed of two components; the first is the axial flow velocity 

V and the second is the lateral velocity of the fluid due to the vibrational 

motion 
 y 

  
 Where y is the lateral motion of the tube  

Expressing the equation for the lateral velocity of the fluid element  28 : -  

𝑉   =   
   

  
  +  𝑉 

   

  
                                                                              (   )                                                                                                     

The acceleration of the fluid element is the resultant of the components  

as given by the following equation     :- 

  = 
     

  
 =  
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                               (   )       

                       

Figure (3.1). A fluid-conveying tube with simply supported ends 

 



 

Figure (   )  Representation of forces acting on the fluid element  

 

Balancing axial forces along the x-axis on the fluid element, shown in figure 

( . ), results in the following equation. [10] 

  
  

  
 𝑞 𝑆 +  

   

  
=                                                                              (   ) 

The force balance in the lateral direction, along the y-axis, yields   9] 
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 =                                             (   )                                                       

Where F denotes the transverse force per unit length between the tube wall a

nd the fluid, and  S   denotes the tube's internal perimeter  

 



 

Figure (   )  Representation of forces acting on the tube element  

 

The balancing of forces on the tube element in the axial direction along the 

x-axis is shown in figure ( . )    ; 

  

  
+ 𝑞 𝑆    

  

   
=                                                                                 (   ) 

Force balance in the y-direction is   8]; 
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According to the tube deformation, the transverse shear force Q in the tube 

is related to the bending moment M by   9 :  

  

  
+  =                =     

  

  
                                                           (   )   

The equation of bending moment (M) is [22]: -              

 =  𝐸    
   

   
 +  𝐸     

   

     
                                                                    (   )                                                                             

Substituting Eq. ( .8) into Eq. ( .7) makes the transverse shear force Q in 

the tube be written as [5]: 

 Q     ( 𝐸  
 

  
         

   

   
                                                                     (   ) 

Where, 𝐸  Is the internal damping coefficient   5]. 

 

  
       =                                                                                      (    ) 

Integrating  the above  equation  yields      

       =                                                                                         (    ) 

Where C is a constant. 

At the end of the tube where x=L, the tension value is zero T        P = Pi, 

substituting that into Eq. (    ) gives   8]   

     =  –                                                                                      (    ) 

Combining equations (   ), (   ), and (   ) results in the following partial 

differential equation [ 5]: 
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Substituting  Eq. (    ) into Eq. (    )  to get the equation of motion of a 

tube conveying fluid taking into account the effect of the internal damping 

coefficient, which is  [ 5]   

𝐸    
   

         
+  𝐸    

   

   
   [ (  𝑉

 +     ) ]
   

   
                              

           +     𝑉 
   

    
+   

  

  

  

  
+ (   +   )

   

   
  =    

      (    )                                                                                                                   

                 

Modulus of elasticity of composite material of the tube can be written                     

according to the Rule of Mixtures, as follows [33]  

𝐸 =  𝐸  𝑉  +  𝐸  𝑉                                                                            ( .  ) 

 𝑉  +  𝑉    =                                                                                      (    ) 

By knowing the volume fraction of the fiber, the elastic modulus is written 

as [33]  

𝐸  =  𝐸  𝑉  +  𝐸        𝑉                                                                (    ) 

Where, 𝐸 = 𝐸   For multi-layer of the composite tube conveying fluid . 

Substituting  𝐸   into Eq. (    ) with neglecting the term (
  

  
) because the 

flow is assumed to be steady, the equation of motion of the composite tube 

conveying fluid with the effect of internal damping is written as;  

𝐸 
      

   

         
+ 𝐸      

   

   
  [ (  𝑉

 +     ) ]
   

   
                  

                              +     𝑉 
   

    
+ (   +   )

   

   
  =     

         (    )                                         

Equation (    ) is in a dimensional form. For generality, it is more 

convenient to write this equation in a dimensionless form by using the 

following nondimensional notations;  



where:     =
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   ,      =

       

  
     

   =
 

  
  √
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Use the above  dimensionless groups with equation (3.18) to get    ]:  

   ̇     +     +      +      +         ̇ +  ̈   =                             ( .  ) 

Where    =
   

   
   and   ̇ =

  

  
     

 

 .3 Vibration Analysis  

This section will evaluate the natural frequencies and the vibration 

characteristics of tubes conveying fluid.   

The solution of this equation is composed of the following spatial time 

variables,   [10] : 

            =  ∑                  
                                                            (    ) 

Substituting Eq. (    ) into Eq. ( .  ) results in a fourth-order polynomial 

equation for λ as follows : 

      +     (  +    )                    =                         (    )             

Where  Ω is the dimensionless circular frequency of oscillation which is 

    :   

 =       √
(      )

  
    

Where   is the circular natural frequency (rad/sec) 



Substituting the roots resulting from the polynomial (    ) into Eq. (    ) 

and using the boundary conditions, the natural frequency can be calculated. 

 

 .3.1 Boundary conditions 

The following boundary conditions are considered to support the tube 

under investigation. 

 

1- Simply supported 

When the tube is simply supported at its ends, both the lateral displacement 

and bending moment are zero. These two conditions are satisfied 

mathematically as     ; 

{
    =                =           =   

    =                  =                 =    
}                                     (    )   

 

By solving the problem with the government equation (    ) which the same 

solve for all supported. 
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2- Clamped support 

For clamped end conditions, each of the lateral displacement and slope is 

zero and can be represented as     ; 

{
    x =           η     τ =            η     τ =  

   x =          η     τ  =         η      τ  =  
}                                   (    )    

3- Intermediate support 

If simple support is imposed in the middle between two clamped spans, each 

span has a length of L. The conditions are; 

{
 
 

 
 

    =                  =                  =    

    =               =                   =         

             =                            =    

    =                     =                   =    
 }

 
 

 
 

                          (    )                                                                                                                                                                                   

4- Clamped - pinned support 

For Clamped - pinned end conditions, each of the lateral displacement, 

slope, and bending moments is zero, which can be represented as     ; 

{
     =                 =               =  

     =                      =                   =   
}                               (    )  

5- Clamped -free support 

For Clamped – free end conditions, each of the lateral displacement, slope,  

bending moment, and shear force is  zero, which can be represented as     ; 

{
     =                 =               =  

     =                         =                    =   
}                           (    )                                                                                                      

 

 



 - Free - free support 

For free–free end conditions, each of the bending moment and shear force is  

zero, which can be represented as; 

{
     =                    =                     =   

     =                         =                    =   
}                          (    )   

   

 .3.2  Tube Natural Frequencies 

 The natural frequency of the tube can be calculated by substituting the 

solution given by Eq. ( .21) in the corresponding boundary conditions. This 

substitution results in a set of coupled equations written in a matrix form. 

The form of the matrix, the values of the matrix elements, depending on the 

type of the boundary conditions used. In a tube simply supported at both 

ends, where the displacements and bending moments are zero, all matrix 

elements depend on the boundary condition. The matrix equation is written 

as     ; 

[

    
        

        

                

] {

  

  

  

  

} = {

 
 
 
 

}                                             (    ) 

 

When the tube is clamped at both ends, the zero values of both the 

displacement and slope at both ends make the matrix equation be written as : 

[

    
    
        

            

] {

  

  

  

  

} = {

 
 
 
 

}                                                    ( .  )      



If the tube is clamped at one end and simply supported at the other, the 

matrix will be composed of the elements related to the clamped end, and 

those of the simply supported one, and it is written as: 

[

    
    
        

                

] {

  

  

  

  

} = {

 
 
 
 

}                                            (    ) 

When the tube is supported by more than two supports, one at each end and 

another at the mid-span, the matrix will be doubled. In the case of a tube 

clamped at the extreme ends and simply supported at the middle, the matrix 

equation is written as: 

[
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     (    ) 

If the tube is clamped at one end and free at the other, where the lateral 

displacement, slope,  bending moment, and shear force are zero, the resulted 

matrix equation  is: 

[

    
    

                

                

] {

  

  

  

  

} = {

 
 
 
 

}                                             ( .  )      

 

 



When the tube is free at both ends,  the bending moment and shear force are 

zero; the matrix equation will be written as: 

[

        

        

                

                

] {

  

  

  

  

} = {

 
 
 
 

}                                           ( .  )      

To solve the simply supported and another ends, substituting Eq. (    ) into 

boundary condition, the results matrix equation  : 

[

            

            

            

            

] {

  
  
  
  

}  = {

 
 
 
 

}                                                 (    ) 

The steps of calculation are shown in Appendix A. 

                                                 

 

  



 

 

 



Chapter Four 

Experimental Work 

 

 .1 Introduction  

This chapter deals with the experimental work to validate the 

theoretical analysis presented in the previous chapter. The natural frequency 

of the tube under investigation is measured experimentally with the available 

boundary conditions. Water is used as the flowing fluid in the tube via a 

water pump, and a flowmeter is used to measure the flow rate value. 

Different values of flow velocities of the fluid are considered to show the 

effect of flow velocity on the free vibration of the tube. A DC motor is used 

to excite the tube laterally to distinguish the tube's natural frequency. 

 

 .2 Testing models 

The present work used three types of composite tubes with the 

properties shown in Table (4.1).  

Table (   )  Specifications of tested models. 

No. of 

Model 
  (m)   (m) t(m) 

m (kg)  

of  L= 3.32 m 

      3                   

2                         

3                 3       

 



 .3 Test Rig 

A suitable apparatus has been manufactured to implement the required 

tests. The apparatus is composed of the following components; 

 -  The basic structure of the apparatus represents the base to the other 

components and welded steel members connected. This structure includes 

the tube supports, as shown in figures (   ,   ). 

 - The tested tube. 

 - Exciting motor. 

 - Flowmeter. 

 - Water pump. 

 - Reservoir (Water tank) 

 

 

Figure ( . )  Schematic diagram of the basie structure. 

 

 



 

Figure ( . )  The structure and the different parts of the test rig. 

 

Components 4, 5, and 6 represent the water circuit which is represented by 

the schematic diagram shown in figure (   ) 

 

Figure (   )  Schematic diagram of the circle of water. 

 



 .4 Vibration test 

The mechanisms shown in figure (   ) was used to excite the tested 

tube laterally via a DC electric motor with a crankshaft  

A voltage regulator controls the motor speed to get the required speed. The 

crankshaft was used to produce a controlled harmonic motion.  

The function of the connecting arm mechanism was transferring the 

harmonic motion from the crankshaft to the knocking shaft to excite the 

tested tube.  

The mechanism is to change the rotational speed of the crankshaft and thus 

rotate the knocking shaft by the connecting arm to excite the tested tube. The 

DC motor speed is measured by digital laser tachometer type (DT-2234), as 

shown in figure ( . ).  

The principle of working of this device is installing a silver-colored adhesive 

piece placed on the spindle of the crankshaft and then directing the laser 

beam of the tachometer device on the axis of rotation, whereby changing the 

speed of rotation by the regulator, the crankshaft moves at different speeds. 

This leads to the rotation of the sticker to cut the laser beam with each lap of 

rotation during one minute so that the number of laps is displayed on the 

digital screen of the tachometer. Thus, the rotational speed of the crankshaft 

is measured. 

 

 

  

 



 

Figure (   )  Vibration generator parts. 

 

 

 Figure ( . ). Digital laser RPM Tachometer. 

 

 

 



 .5 Modulus of Elasticity and Density of the tube 

 The tested tubes are all composed of the same material, carbon-fiber 

epoxy, but their internal and external diameters varied. The modulus of 

elasticity of the tube is estimated by applying a load at the mid-span of a 

simply supported tube of a 12 cm length and measuring the amount of 

deflection. The load-deflection is shown in figure (4.6). The modulus of 

elasticity for all tubes used in the test was 2.6 Gpa, which was calculated by 

the following equation: 

𝐸 =  
  

          
    , where      =  

          

    
 

 

 

Figure ( . ). Load–deflection curve of a simply supported composite tube. 

 

 

 



The density is estimated by taking a 2 cm length of each tube, and the mass 

is measured by an electronic low-scale that reads three decimal digits. The 

density for all tubes of L= 0.02m used in the test was          Kg/   .The 

following formula was used to determine the density of the test tubes : 

  =  
   

    (  
     

 )
                                                                               (   ) 

Where m  is mass of tube,    and    are the outside and inner diameters of 

the test tube, respectively. 

 

 .6 Calibration of Flowmeter 

 The flowmeter is calibrated by collecting 23 liters and measuring the 

time required to collect this volume of water. This process is repeated three 

times, and the average time value is calculated to minimize the error. The 

flowmeter and tank volume calibration curve is shown in figure (4.7).  

The velocity of the fluid passing through the test tube can be determined by 

measuring the flow rate using the following relationship: 

Q (  /s) = V (m/s) * A (  )                                                              (   ) 

Where; Q is the fluid flow rate, V is the fluid flow velocity, and A is the 

internal cross-section area. 



 

Figure ( . ). The curve of calibration for a flowmeter. 

 

 

 .7 Experimental Natural Frequency Test 

 This test includes three boundary conditions for the carbon fiber tube: 

simply supported, firmly supported, and bolted support. For all models, the 

tube length is 0.82 m, and the maximum flow rate is 20 l/min. 

A crankshaft mechanism connected to the regulator, a speed controller, 

excited the tube. The engine speed gradually increases until the resonance 

appears. The rotational speed of the crankshaft is then recorded using the 

number of turns displayed on the tachometer's digital display. Convert 

tachometer units from RPM to Rad/sec to find   . 

 

  



 

 

 



Chapter Five 

Results and Discussion 

 

 .1 Introduction  

The theoretical and experimental findings related to the tubes made of 

composite material conveying fluid are provided in this chapter. The effects 

of flow velocity, internal damping, and type of boundary conditions on the 

dynamics of the tube were calculated and presented through tables and 

graphs. The experimental results were compared with the theoretical results 

to find the error ratio. 

 

 .2 Theoretical Results 

Theoretical results deal with the variation of the natural frequency of a 

composite tube affected by main parameters. This is done by solving the 

governing equation, represented by Eq. (    ), for selected boundary 

conditions. Some of the present results were compared with other published 

works for verification. The theoretical results include the following:  

 

      Effect of flow velocity on the natural frequency 

The first step in evaluating the results in this work is represented by 

calculating the first two modes of free vibration of the composite material 

tube by using the governing equation and assuming flow velocity is zero for 

different boundary conditions as shown in table (   )   

The results show that the tube with zero flow has the same natural frequency 

as that for a beam with the same specifications and type of end support. This 



conclusion is significant where it indicates that the results presented here are 

on the right side.  

 

Table (   )  The first two modes natural frequencies of the composite tube 

with different types of supporting, U = 0,   = 0, and                . 

No. Beam Configuration First mode Second mode 

  Simply support            

  Clamped support             

  Clamped-pinned support             

  Clamped-free support            

  Free-free support             

 

 

The variations of the first and second dimensionless natural frequencies with 

a dimensionless flow velocity of the composite tube for each type of support 

are presented in figures ( .1 to  .6). The results presented in these figures 

are taken for   γ  , β       , and μ     

From these figures, one can get the following results;  

   The natural frequency decreased with the gradual increase in the flow 

velocity until it reached almost zero, which means that the tube lost its 

stability due to the buckling phenomenon. The value of the flow velocity of 

the fluid at which the natural frequency approaches zero is called the 

"critical flow velocity". This means that the fluid flow has a damping effect 

on the lateral vibration of the tube. 



   The type of support has an essential effect on the value of the natural 

frequency of the tube. It is shown that the natural frequency of a clamped–

clamped support of composite tube is higher than that of the clamped–

pinned support,  the latter is higher than that of a simply support, and the 

simply support is higher than of clamped–free support. This can be 

attributed to raising the bending moment when preventing bending rotation 

at fixed ends. 

   Inserting intermediate support between two clamped supports does not affect 

the tube's natural frequency value when the length of the intermediately 

supported beam equals twice the length of the tube supported by two 

clamped end supports, shown in figure (5.4). When the length of the 

intermediate support tube is the same as that supported by two clamped 

supports, the natural frequency is doubled. 

 

 

 

 

 

 

 



 

Figure (   )  Variation of the first two natural frequencies with flow 

velocity for simply supported tube ( β       , γ   ,  =  ). 

 

 

Figure (   )  Variation of the first two natural frequencies with flow 

velocity for clamped-clamped tube ( β       , γ   , μ  ) 

 



 

Figure (   )  Variation of the first two natural frequencies with flow 

velocity for clamped – pinned supported tube( β       , γ   , μ  )  

 

 

Figure (   )  Variation of the first two natural frequencies with flow 

velocity for clamped – clamped tube with intermediate support ( β       , γ 

  , μ  ) 



 

Figure (   )  Variation of the first two natural frequencies with flow 

velocity for clamped–free support (β       , γ   , μ  ). 

 

 

Figure (   )  Variation of the first two natural frequencies with flow 

velocity for free – free support ( β       , γ   ,  =  ). 

 

 

 



      Effect of internal damping on the natural frequency  

Table ( .2) shows the values for the first mode of the natural frequency 

of the composite tube when the effect of internal damping and flow velocity 

of the fluid is zero for different boundary conditions. 

 

Table (   )  First mode natural frequency of composite tube including the 

effect of internal damping (U = 0, γ    , and β         ). 

No. Beam Configuration μ=0 μ=0 0  μ=0   

  Simply support                   

  Clamped support                     

  Clamped-pinned support                     

  Clamped-free support                   

  Free-free support                     

 

 

Figures ( .7 to  .12) show the internal damping influence on the natural 

frequency of clamped-clamped, simply supported, clamped-pinned, 

clamped-clamped with simple intermediate support, clamped-free, and free-

free supports.  

In these figures, the internal damping effect on the dynamical behavior of 

the composite material tube is taken into consideration. It can be deduced 

that: 

 



   The internal damping affects the natural frequency of the tube due to 

the resistance to the relative motion between the material particles. The 

natural frequency decreased by about 4.79 %. 

   The effect of internal damping at the low flow velocity range is more 

than that at the high-velocity range. This behavior is attributed to the 

dominant damping of flowing fluid at high flow velocities. 

   When the value of the flow velocity of the fluid increases, the natural 

frequency gradually decreases with the increase (for any value of internal 

damping), then approaching a value at which the natural frequency 

approaches zero. The value of flow velocity that vanishes the natural 

frequency is called the critical flow velocity. 

 

 

Figure (   )  Effect of internal damping on the first mode natural frequency 

of a simply supported tube conveying fluid at various velocities          

(β       , γ   )  

 



 

Figure (   )  Effect of internal damping on the first mode natural frequency 

of a clamped supported tube conveying fluid at various velocities              

(β       , γ   )  

 

 

Figure (   )  Effect of internal damping on the first mode natural frequency 

of a clamped-pinned tube conveying fluid at various velocities            

(β       , γ   )  

 



 

Figure (   0)  Effect of internal damping on the first mode natural 

frequency of a clamped-clamped tube conveying fluid with simply 

intermediate support (β       , γ   )  

 

Figure (    )  Effect of internal damping on the first mode natural 

frequency of clamped-free support tube conveying fluid at various velocities     

(β       ,  γ   )  

 



 

Figure (    )  Effect of internal damping on the first mode natural 

frequency free-free support tube conveying fluid at various velocities 

(β       , γ   )  

 

 

Figures ( .13 to     ) are calculated for U = (0 and 2), and β         .  

These figures show that: 

   The internal damping has a non-linear effect on the natural frequency 

of the tube when the flow velocity is at a certain value.  

   The natural frequency decreases gradually at low values of internal 

damping then reaches a point that is almost close to zero when the internal 

damping is greater than 0.3. 

 

 



 

Figure (    )  The effect of internal damping on a simply supported 

composite tube conveying fluid (β       ,  γ   )  

 

 

Figure (    )  The effect of internal damping on a clamped supported 

composite tube conveying fluid (β       ,  γ   )  

 



 

Figure (    )  The effect of internal damping on a clamped–pinned 

supported composite tube conveying fluid (β       , γ   )  

 

 

Figure (    )  The effect of internal damping on a clamped-clamped 

composite tube conveying fluid with intermediate support (β       ,  γ   )  



 

Figure (    )  The effect of internal damping on clamped-free supported 

composite tube conveying fluid (β       , γ   )  

 

 

Figure (    )  The effect of internal damping on a free – free, supported 

composite tube conveying fluid (β       ,  γ   )  

 

 

 



      Effect of supporting type on the natural frequency  

The natural frequency is affected by many factors, such as the increase 

in the flow velocity value and the internal damping. 

Figure ( .19) shows the natural frequency variation with flow velocity using 

different supports.  

An increase in the flow velocity leads to a decrease in the natural frequency 

until it reaches the critical flow velocity. The natural frequency approaches 

zero because the tube loses its stability due to the buckling phenomenon. 

Figures ( .20) and ( .21) show the effect of the internal damping force and 

flow velocity on the natural frequency with different types of supports.  

It can be seen that the increase in internal damping with increasing flow 

velocity decreases the natural frequency by 4.  %. 

 

 

Figure (    )  Variation of the tube first mode natural frequency with the 

effect of flow velocity for different supporting types at (β       , γ   , 

μ  )  



 

Figure (   0)  Effect of flow velocity on the tube's first mode natural 

frequency for different forms of supports at (β       , γ   ,  =     ). 

 

 

Figure (    )  Effect of flow velocity on the tube's first mode natural 

frequency for different forms of supports at (β       , γ   ,  =    ). 

 

 

 



 .3 Experimental Results  

This part deals with the experimental results obtained through measurement 

by the manufactured device with the rest of the auxiliary parts discussed in 

the third chapter and compares these practical values with the relevant 

theoretical results evaluated from the mathematical model presented in the 

second chapter. Water is used as the internal fluid passing through the tube 

in this work.  

The readings from the apparatus include the value of the natural frequency 

of the exciting composite material tube and the value of flow velocity. The 

mean flow velocity of the flowing water is calculated from the value of the 

water flow rate divided by the tube internal sectional area.  

Flowmeter measures the water flow rate inserted within the flow circuit. The 

natural frequency of the tube is recorded when the amplitude of the tubes 

reaches its maximum value as the speed of the exciter increases gradually 

from zero.  

The exciter speed is measured by a laser tachometer, which gives the 

readings in revolution per minute. It is converted to radians per second to be 

comparable with the theoretical values.  

The experimental values are conducted for three tubes made from the 

composite material. 

The calculated and measured values of the tube natural frequencies are 

presented in Figures (5.22 to 5.24) for three types of boundary conditions.  

From the theoretical and experimental results shown in the figures for the 

three tubes used in the test, it was found that all the experimental values are 

less than the corresponding theoretical results and that there is an acceptable 

agreement between the theoretical and practical results: 



 

 Inaccuracy in measuring devices and errors resulting during 

measurements 

 The supports used for supporting the tube are not ideal. 

 

These results found that the natural frequency is affected by many factors, 

including the increase in the fluid flow velocity and the effect of the internal 

damping force of the tube material, as well as is affected by the type of 

supports used in the experimental application. 

The three tubes are made from the carbon-fiber epoxy composite. The 

modulus of elasticity is 2.6 Gpa. 

For the first tube, the outer diameter is 0.023 m, the inner diameter is 0.013 

m, the thickness is 0.005 m, the mass of the 0.02 m long piece is  0.012 kg. 

Figure (     ) shows the relationship between the natural frequency and 

fluid velocity in the first mode for three boundary conditions. 

 

 

(a) simply support 



 

(b) clamped support 

 

(c) clamped – pinned support 

Figure ( .22/a, b, c). Experimental and theoretical effects of flow velocity 

on the tube's first mode natural frequency for the first tube                                  

(β       ,γ   ,  =   ). 

 

 

 



For the second tube, the outer diameter is 0.015 m, the inner diameter is 

0.007 m, the thickness is 0.004 m, the mass of the 0.02 m long piece is  

0.007 kg. Figure (     ) shows the relationship between the natural 

frequency and fluid velocity in the first mode for three boundary conditions. 

 

 

(a) simply support 

 

(b) clamped support  



 

(c) clamped – pinned support 

Figure ( .23/a, b, c). Experimental and theoretical effects of flow velocity 

on the tube's first mode natural frequency for the second tube                                  

(β       ,  γ   ,  =  ). 

 

 

 

 

 

 

 

 

 

 

 



For the third tube, the outer diameter is 0.013 m, the inner diameter is 0.007 

m, the thickness is 0.003 m, the mass of the 0.02 m long piece is  0.003 kg. 

Figure (     ) shows the relationship between the natural frequency and 

fluid velocity in the first mode for three boundary conditions. 

 

(a) simply support  

 

(b) clamped support  



 

(C) clamped – pinned support  

Figure ( .24/a, b, c). Experimental and theoretical effects of flow velocity 

on the tube first mode natural frequency for the third tube                                

(β       , γ   ,  μ  ). 

 

 

 

  



 

 



Chapter Six 

Conclusions and Work Suggestions 

 

6.1 Introduction 

This chapter deals with the conclusions obtained from the present 

study. It also provides some recommendations and suggestions which may 

be useful for future works. 

 

    Conclusions 

   Flow velocity factor plays an important role in the value of free vibration of 

composite tubes. Depending on type ends conditions, it may cause instability 

to the tube when reaching a certain value. 

   The flow velocity value of the fluid reduces the value of the natural 

frequency of the free vibration of the composite material tube, which means 

that the tube loses its stability due to the phenomenon of buckling, as the 

natural frequency decreases gradually until a point approaching zero called 

the "critical velocity value". Also, the flow velocity reduces the vibration 

amplitude due to the damping delivered by fluid forces. 

   The effect of fluid flow velocity at lower velocities is small compared to 

higher velocities. This trend is seen for all types of boundary conditions. The 

type of boundary conditions significantly affects the value of the natural 

frequency. It is shown that the natural frequency of a clamped support of 

composite tube is higher than that of the clamped-pinned support, the latter 

is higher than that of a simply support, and the simply support higher than of 

clamped-free support. This behavior referred to the effects of the bending 

moment raised when preventing bending rotation at fixed ends. 



   Inserting intermediate support between two clamped supports does not affect 

the tube's natural frequency value when the length of the intermediately 

supported beam equals twice the length of the tube supported by two 

clamped end supports. When the length of the intermediate support tube is 

the same as that supported by two clamped supports, the natural frequency is 

doubled. 

   The internal damping affects the natural frequency by up to 4.79 % when the 

internal damping increases by 0.01% due to the resistance to the relative 

motion between the material particles.  

   The effect of internal damping at the low-velocity range is more than that at 

the high-velocity range. This behavior is attributed to the dominant damping 

of flowing fluid at high flow velocities. 

 

    Future Work Suggestions 

 - Analyzing the same problem using the method of characteristics. 

 - Studying the dynamics of tubes conveying fluid, considering the viscous 

damping and the temperature. 
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 ملخص الرسالة
ػادج ِا ذىْٛ الأٔاتٍة اٌّشوثح ِصٕٛػح ِٓ ِادذٍٓ ِشوثرٍٓ أٚ أوثش. ٌّىٓ اسرخذاَ ٘زٖ 

 .ٍح ٚالاسرخذاِاخ إٌّضٌٍح ٚاٌصٕاػٍحالأٔاتٍة ٌخطٛط اٌٛلٛد ٚالأٔاتٍة اٌٍٙذسٌٍٚى

ذُ اسرخذاَ أوثش أٔٛاع اٌّٛاد اٌّشوثح شٍٛػًا ٌرصٍٕغ الأٔثٛب ٚ٘ٛ أٌٍاف  اٌحاٌٍح،فً اٌذساسح 

 ّماِٚحتّا فً رٌه اٌ اٌّّٙح،الإٌثٛوسً. ٌسرخذَ ػٍى ٔطاق ٚاسغ تسثة خصائصٗ  -اٌىشتْٛ 

 .ٕاسثحاٌؼاٌٍح ٌٍٛصْ ٚاٌّرأح اٌدٍذج ٚالأسؼاس اٌّ

ذُ ذٛخٍٗ ٘زٖ اٌذساسح  ِٕخفط،تسثة اًٌٍّ إٌى اسرخذاَ أٔاتٍة ٔاخحح ِغ ا٘رضاص ألً ِٚؼذي ذآوً 

 اٌّشوثح اٌرً ذٕمً اٌسٛائً.اٌّصٕٛػح ِٓ اٌّٛاد إٌى اٌسٍٛن اٌذٌٕاٍِىً ٌلأٔاتٍة 

وثح اٌرمٍٍُ إٌّٙدً ٌٍدٛأة الأساسٍح ٌٍسٍٛن اٌذٌٕاٍِىً ٌلأٔثٛب اٌّصٕٛع ِٓ اٌّادج اٌّش ذمذٌُذُ 

 اٌّشوثح،ِغ ذؤثٍش سشػح اٌرذفك ٚاٌرخٍّذ اٌذاخًٍ ػٍى الا٘رضاص اٌحش ٌلأٔثٛب اٌّصٕٛع ِٓ اٌّادج 

 . ٌحششٚط اٌحذٚداٌتاسرخذاَ أٔٛاع ِخرٍفح ِٓ  اٌؼًّ،اٌشئٍسً فً ٘زا  ؼاًِٚاٌزي ٌّثً اٌ

 ُاٌصٍح. ذراخ ذُ حً إٌّٛرج اٌشٌاظً ٌلأٔثٛب اٌّشوة ذحٍٍٍٍاً ٌحساب ذؤثٍش اٌّؼٍّاخ ٚاٌّرغٍشاخ 

 .ذمذٌُ إٌرائح إٌظشٌح فً شىً لا أتؼاد ٌٙا ِغ اٌخصائص اٌٍّىأٍىٍح

ذُ ذحذٌذ اٌرشدد اٌطثٍؼً فً اٌدضء إٌظشي ِٓ خلاي اشرماق اٌّؼادٌح اٌحاوّح تاسرخذاَ ٔظشٌح 

فً اٌّؼادٌح لاسرخشاج خزٚس اٌّؼادٌح ِرؼذدج اٌحذٚد  ٌحششٚط اٌحذٚداٌتشًٌٔٛ ٚاسرثذاي -أٌٍٚش

 ( ٌرحذٌذ لٍّح اٌرشدد اٌطثٍؼً.Q-basicفً تشٔاِح )ٚوراترٙا راترٙا فً شىً ِصفٛفح ٚو

ٚخذ أْ صٌادج سشػح اٌرذفك ذؤدي إٌى أخفاض اٌرشدد اٌطثٍؼً ذذسٌدٍاً. صاد ِؼذي إٌمص حرى وأد 

لٍّح اٌرشدد اٌطثٍؼً ذماسب اٌصفش ػٕذ ٔمطح ذسّى "سشػح اٌرذفك اٌحشخح" ًٚ٘ سشػح اٌرذفك اٌرً 

ٌٗ سشػح ذذفك حشخح  تذػُ تسٍطالأٔثٛب اٌّشوة اٌّذػَٛ  ٚخذ اْ ٌٕخفط ػٕذ٘ا اٌرشدد اٌطثٍؼً.

ٌٗ سشػح ذذفك  ِحىُذػُ ت اٌّذػَٛاٌّشوة  ٔثٛبالأفئْ  رٌه،. ػٍى إٌمٍط ِٓ 3.12 لا تؼذٌح ذثٍغ

غ دػُ اٌلاتؼذٌح ٌلأٔثٛب اٌّذػُ تذػُ تسٍط ِ حٚسشػح اٌرذفك اٌحشخ ،6.23ذثٍغ  حلا تؼذٌحشخح 

 اٌذاخًٍ. اخز ذؤثٍش ِؼاًِ اٌرخٍّذذْٚ ت. وأد ٘زٖ إٌرائح 4.42ً٘ ِحىُ 

 



فئْ  رٌه،صادخ سشػح اٌرذفك اٌحشخح ػٕذ صٌادج ٚظغ الا٘رضاص. ػلاٚج ػٍى  إٌظشٌح،ٚفماً ٌٍٕرائح 

٪ ِٓ سشػح اٌرذفك اٌحشخح 53أػٍى تٕسثح  ِحىُذػُ ت اٌّذػَٛسشػح اٌرذفك اٌحشخح ٌلأٔثٛب 

ٌؤثش اٌرخٍّذ اٌذاخًٍ ػٍى اٌرشدد اٌطثٍؼً تٕسثح ذصً إٌى  تذػُ تسٍط.اٌّشوة اٌّذػَٛ ٌلأٔثٛب 

 ٪.3.31٪ ػٕذِا ٌضٌذ اٌرخٍّذ اٌذاخًٍ تٕسثح 4.79

اسرخذاَ ِٓ خلاي حساب اٌرشدد اٌطثٍؼً ٌ خٙاص ٌرؤوٍذ إٌرائح إٌظشٌح ذصٍٕغ ذُ اٌردشٌثًفً اٌدضء 

ػذد اٌذٚساخ اٌّؼشٚظح  حٍث ذّثً اٌّشفمً،ٌؼّٛد ِمٍاط سشػح اٌذٚساْ ٌرحذٌذ سشػح دٚساْ ا

 لٍّح اٌرشدد اٌطثٍؼً اٌؼًٍّ ٌلأٔثٛب اٌّصٕٛع ِٓ اٌّٛاد اٌّشوثح ػٍى اٌشاشح اٌشلٍّح ٌٍدٙاص

 إٌظشٌح. إٌرائح ِغاٌردشٌثٍح  ِٚماسٔح إٌرائح
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