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Abstract

Artificial limbs are an essential device in the life of amputees. The

demand for artificial limbs was increased drastically due to the spread of

wars, catastrophes, and road accidents. The conventionally available

prostheses are passive. The passive prosthesis does not produce a positive

network, unlike the natural limbs, which have a positive net work by the

muscles-tendon system. Powered prosthesis tries to mimic the function

of the natural limb through the use of the powered system. This work

aims to investigate, design, and build a powered ankle-foot prosthesis.

The optimal design of the powered ankle-foot prosthesis is explored in

this work with its valid mathematical model and the design parameters

variation. The maximum force that the actuator must exert to maintain a

normal gait cycle is calculated in this work This work covers the design

of a powered ankle-foot prosthesis model using Solidworks software

based on the chosen mathematical model.

The Gaussian-based mixture model is used to optimize the muscle

contraction datasets, corrupted with noise to be applied to the regression

process.

The highest regression performance will produce a more accurate

angle prediction response of the powered ankle-foot prosthesis. Several

Regression techniques were benchmarked to get the optimal regression

approach to fit the ankle joint angle dataset. The electromyographical

signals were filtered using root means square rectifier, low pass filter, and

Gaussian smoothing filter. The proposed method that works based on the
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Gaussian mixture model improved the performance of the regression

process from 55% to 82% with the use of both the Lowpass filter and the

root mean square rectification in the polynomial regression algorithm.

The highest regression performance was achieved using Gaussian

smoothing filter and the root means square rectifier by the polynomial

regression to 84% and by K-nearest neighbor regression to 97%. This

means that the created statistical model can predict the ankle joint angle

based on the electromyographical signal with 97% accuracy.

Ankle joint angle regression feature selection to get the most effective

muscle on the plantarflexion and dorsiflexion movements were studied.

The linear correlation coefficient is used to get the most influential muscle

on the ankle joint angle. Both Lateral and Medial Gastrocnemius muscles

produce the highest correlation coefficient with the ankle joint angle.
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Chapter 1

Introduction

1.1 Background

Recently the number of amputees increased rapidly due to the drastic

increment of wars, terrorist explosions, catastrophes, road accidents, severe

diseases, and trauma that required amputation. The American statistical

studies showed that the number of amputees was about 1.6 million in 2005.

In 2017, 57.7 million people were living with limb amputation due to

traumatic causes worldwide [1]. The prediction studies projected that the

number of amputees in the USA will be increased to 3.6 million in

2050 [2]. Most of these limb losses are in the lower limb [3]. The number

of amputees has increased during the last four decades in Iraq because of

the wars, mine lands and terrorist explosions. According to DW, the

number of amputations in Iraq in 2011 was about 100k [4]. As just taken

the battles with Daesh in Mosul(2016-2017) as a case, statistics by the

United Nations reported 4,800 amputees during these battles [5].

Limb loss significantly impacts amputees’ physiological and

psychological effects. Several approaches to solve amputees’

transportation, such as crutches and wheelchairs. The most used method to

solve this issue is the usage of prostheses. A Prosthesis is an install of an

artificial instrument that replaces the missing biological part of a body. The
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objective of a prosthesis is to restore the standard capability of the missing

biological piece [6].

Losing any part of the human body is considered as a physical disability,

but the loss of mobility greatly influences the human being. Therefore, the

lower limb prosthesis is widely studied. Lower limb prosthesis function

varies from standing to walking to running. Restoring the aforementioned

intuitive abilities will make amputees have a higher life quality. Lower limb

prostheses’ affordable and improved performance will give amputees a

better life, but they have tremendous business demand.

Lower limb prostheses are classified according to the type of amputation

into Hemipelvectomy, Hip disarticulation, Above knee amputation(AK),

Through the knee amputatoin, Below knee amputations(BK), Ankle

disarticulation, Partial foot amputation, as shown in figure 1.1.

‘

FIGURE 1.1: Lower limb amputation types.
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1.2 Biomechanics of Ankle Joint

1.2.1 Gait Cycle

The gait cycle refers to the locomotion of the human body by the movement

of the lower limbs. The most available gait cycle for a human being is the

normal gait cycle, as shown in figure 1.2. It is considered the perfect and

intuitive gait for humans.

‘

FIGURE 1.2: Normal Gait Cycle[7].

The goal of the gait cycle is the forward progression of the centre of mass

of a body. The gait cycle can be defined as the period between the same two

consecutive events for one leg. The gait cycle can be divided into a double

support period and a single support period. In double support period

both limbs are in contact with the ground. Only one limb is in contract with

the ground in a single support period. The gait cycle also can be divided

into the Stance and Swing periods. In the stance period, the leg is in contract

with the ground. In the swing period, the leg is off the ground. The length of

a gait cycle is called stride. The stance period has 60% of the stride, while

the swing period has 40% ,as illustrated in the figure 1.3. The stance period

includes the following events:
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‘

FIGURE 1.3: Normal Gait Cycle[8].

Normal gait cycle phases are as shown in figure 1.2,

• Heel Strike (Initial contact): evet at which the foot contacts the

ground.

• Load response: Initial double support event when the leg takes the

weight.

• Mid-stance: The body moves forward through the supporting limb

with load moving to the forefoot.

• Terminal-stance: The last single support period ends with opposite

initial contact.

The swing period includes the following events:

• Pre-swing: swing preparation through which load is moving to the

contralateral limb.

• Initial-swing: first one-third of the swing period, ends with foot

adjacent.
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• Mid-swing: middle one-third of the swing period, ends with the

vertical tibia.

• Terminal-swing: the last one-third of the swing period, the knee

extends for the next initial contact position.

1.2.2 Ankle joint Motion

Rotation of foot about the ankle joint in the sagittal plane called Dorsiflexion

(DF) and Plantarflexion (PF), as shown in figure 1.4. Inversion and Eversion

are other ankle movements in the frontal plane. This study will focus on the

movements in the sagittal plane (Dorsiflexion and Planterflexion).

(A)

FIGURE 1.4: Ankle Joint Movements[9].

The muscle responsible for the plantar-flexion movement is mainly by

the Gastrocnemius muscle (plantarflexion prime mover) with the aid of the

Soleus muscle (located directly beneath the Gastrocnemius muscle) shown

in figure 1.5. As mentioned earlier, the combination of the muscles is called
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the Calf muscle group. Calf Muscle group connected to the skeleton bones

by Achilles tendon. Minor muscles contribute to the plantar-flexion

movement are Peroneus Longus, peroneus Brevis, Flexor Digitorum

Longus, Flexor Hallicus Longus, and Tibialis posterior.

FIGURE 1.5: Calf Muscle Group.

Dorsi-flexion movement, on other hand, is done by the Tibialis

Anterior muscle (it is also responsible for inversion movement). The

Tibialis Anterior muscle is located on the lateral portion of the Tibia bone,

and it is connected to the mid-portion of the foot, as shown in figure 1.6.

Three additional minor muscles contribute to the Dorsi-flexion movement

Extensor Digitorum Longus, Peroneus Tertius, and Extensor Hallucis

Longus.
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FIGURE 1.6: Muscles of the Anterior[10].

1.2.3 The Importance of the Ankle Joint in the Gait Cycle

Figure 1.7 represent joints angle, internal joints moment, and joints power

versus gait cycle stride of the lower limb joints (hip, knee, ankle),

respectively. Typically ankle joints pass through several events after the

middle stance phase, such as foot flat, maximum DF (at terminal stance),

and toe-off (which separate between stance and swing periods). The

amount of work and power (done by) at the ankle joint is higher than both

knee and hip joints, as shown in figure 1.7(B) and figure 1.7(C). The reason

of high powered done by the ankle joint is the rising and progression of the

body are majorly done by this joint.

All figures concentrated on the sagittal plane since most of the

movements take place in this plane. Ankle angle is between the tibia and
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the normal standing position of the foot [11].

(A) (B)

(C)

FIGURE 1.7: Mechanical Specification of Human
Lower Limb During Normal Gait Cycle [9].

1.3 Prosthetic Legs

Prosthesis manufactured to improve life quality or restore a missing function

or appearance [12]. Prosthesis types are as follows:

• Limb prostheses include:

1. Arm prostheses include above or below the elbow, hand, and finger

.

2. Leg prostheses have above or below the knee, foot, and toe.
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1.3.1 Lower Limb Prosthesis Components

Most of the prosthetic legs have the same components and as shown in figure

1.8) [13]:

FIGURE 1.8: Below Knee prosthesis [14].

• Socket

A plastic or composite material element links a prosthesis to a residual

limb part. It should be comfortable and provide a good weight

distribution around the residual limb [13].

• Pylon (shank) and Connectors

Metal or composite material tube is used to link the socket to the knee

joint and ankle joint to the knee joint AK prosthesis or to attach the

socket to the ankle joint (BK prosthesis). Connectors are used to

connect tubes to sockets or joints. Angle and distance between socket

and foot can be adjusted in modular connector type [13].
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• Foot

Ground attacking element. It should absorb ground reaction forces and

grant an equilibrium state during the stance period. A study found

more than 16-foot types. The difference between foot types is in the

biomechanical durability, and one of the most known problems is their

short life (range between 32-16 months) [15].

• Knee and Ankle Joint

They are used to replace the functions of a biological joint. They may

require special connectors to connect the other components. The ankle

joint may be replaced by a flexible plate member or a single-axis

joint [13].

1.4 Electromyography

Electromyography (EMG) is a measurement of the electrical activity of a

muscle. A device that measures electrical activity is called an

electromyograph, and it produces data (or graph) as time domain signal

called an electromyogram, as shown in figure 1.9 [16].

FIGURE 1.9: Electromyography Signal [17].

EMG is less effective in measuring the activity of subcutaneous muscles,

unlike superficial muscle, where it is not possible to neglect the effect of
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superficial muscles. Fat has a tremendous impact on the EMG signal. The

Motor unit is all the muscle fibres connected to a single motor neuron. Motor

neurons release a neuron transmitter and fire action potential in the muscular

cells (fibres) [18].

Two kinds of EMG devices are used Intramuscular EMG and Surface

EMG. Intramuscular EMG could be achieved by using various types of

electrodes. The most commonly used needle inserted inside muscle under

consideration with a surface electrode as a reference or two needles to

measure the electrical potential. Intramuscular EMG can measure the

electrical activity of a low-level muscle. Surface EMG uses more than one

electrode (at least two electrodes) or a matrix of plenty of electors. The

limitations of surface EMG are that it can measure the electrical activity of

only superficial muscles, and it is highly affected by the tissue above

muscles. It is recommended to position the electrodes on the belly of the

muscle (along its longitudinal center) since it is situated in the middle

between the motor unit and tendon effect point, as shown in figure

1.10 [19] (Appendix C.1 for the appropriate surface EMG installation

position).

The amplitude of surface EMG signals (sEMG) varies from V to a few

mV range. The record produced by EMG is called an electromyogram.

Myoelectric signals are formed by physiological variation in the state of the

muscle fibre membrane. Myoelectric signals are formed by physiological

variation in the state of the muscle fibre membrane. To instantiate a

contraction, a neuron generates a small electrical potential on the surface of

the muscle fibre tissue and produces a waveform. The waveform travels the

muscle fibre length and is known as Action Potential (AP). The Motor

unit is composed of a single motor neuron and all of the muscle cells it

stimulates, as shown in figure 1.11.
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FIGURE 1.10: Surface EMG Installation [17].

FIGURE 1.11: Motor Unit [17].

The number of muscle cells within a motor unit determines the degree

of movement when the motor unit is stimulated. Motor units vary in size,

small motor units are used for precise, small movements as motor units that

control eyes; large motor units are used for gross movement. The

recruitment process stimulus as large as possible motor units to increase

muscle contraction.

Action Potential (AP) is the induced voltage difference across a muscle
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fibre. However to produce a muscle contraction the neural cell produces

a voltage difference on the surface of the muscle fiber, which produces a

polarization on the muscle and produces a signal.

1.5 Machine Learning

Machine learning is a subset of artificial intelligence in computer science

that often uses statistical techniques to give computers the ability to "learn"

with data without being explicitly programmed.

Machine learning algorithms are divided as follows:

1. Supervised Learning

The machine-learning task of learning a function that maps an input to

an output based on examples (input-output pairs). It infers a function

from labelled training data consisting of training examples.

Supervised learning emerges from a rational principle called Induction

reasoning. Inductive reasoning consists of constructing the axioms

from observing the supposed consequences of these hypotheses

scientists like physicists observe natural phenomena then postulate the

law of nature. Inductive reasoning shortly means you move from

specific observations to the general rule, for example, the sun rises

today and yesterday and before yesterday and so on, therefore it will

rise tomorrow. Induction can be illustrated as shown in figure 1.12.

Supervised learning mainly comprises of two approaches,

classification, and regression. Classification is the process of

labelling data based on pre-fed labelled data. Regression is the

process of mapping output to a pre-trained data set consisting of both

pair input-output. Both classification and regression will be explained

in detail with the most used algorithms in chapter three [21].
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FIGURE 1.12: Inductive Reasoning [20].

2. Unsupervised Learning

Derive some structure from data by looking at the relationship between

the input. Unsupervised learning is about creating divisions [21].

3. Reinforcement Learning

The area of machine learning is concerned with how software agents

ought to take action in an environment to maximize some notion of

cumulative reward [21].

1.6 Objectives

This research aims to design and analyze a below knew powered artificial

limb that can mimic the human ankle, and model the EMG signals

acquisition from the calf muscles group, in order to predict the ankle-foot

prosthesis response. The objective can be broke it into two procedures to

achieve that objective, Modeling and Prototyping.

1. Modelling

Modelling is done by collecting the activity of the muscles affecting the

ankle joint (EMG signals). Filtering the EMG signal has a significant
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impact on the purity of the signal; it is crucial in removing noise or

bypassing the effect of near muscles. A statistical model of muscle

activity and ankle angle is created; a synchronized acquisition system

must be designed to develop such a model. The system collects data on

muscle activity with an ankle angle simultaneously.

2. Prototyping

Prototyping is done by making a biomechanical analysis of the ankle

joint and trying to formulate a mathematical model of the ankle joint,

inducing the effect of engineering elements (actuator, transmitter,

springs....etc.). Applying standard gait cycle specification on the

pre-create ankle joint mathematical model is enough to find prosthetic

engineering elements, as shown in figure1.14.
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FIGURE 1.14: Objectives.

1.7 Research Contribution

This work introduces a new design of powered ankle-foot prosthesis with

its mathematical model and the variation between its design parameters.

The classification of the normal gait cycle is achieved with high accuracy.

Regression of the ankle joint angle based on EMG signals accompanied

with noise is modelled. A proposed hypothesis refined the EMG signals

accompanied with noise assumed that EMG signals can be modelled as a

Gaussian mixture model.
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1.8 Thesis Structure

This work analyses, designs, and manufactures powered ankle-foot

prostheses based on EMG signals. The layout of the thesis consists of:

• Chapter One

An introduction about the importance of artificial limbs and statistics

about the increment numbers of amputation cases. A brief introduction

about the gait cycle and lower limb movement is presented. A historical

introduction about artificial limbs and their parts and types is covered

as well in this chapter. Elelctromyographical signal is highlighted in

this chapter.

• Chapter Two

In this chapter, a research survey about the inability of the passive

prosthesis to replace the natural limb properly is explained. The

emergence of the powered prosthesis and its ability to mimic the intact

limb functionality and type of powered prosthesis is covered in this

chapter. Human gait cycle classification and ankle joint regression

literature are presented in this chapter.

• Chapter Three

The proposed design model with its mathematical model is explained

in this chapter. It contains the supervised classification algorithms

with several simple EMG filtering techniques . The regression

algorithms and their evaluation methods with their mathematical

background and their programming implementation are also covered

in this chapter. The Gaussian distribution and signal filtering in the

frequency domain with Lowpass, highpass, bandpass with Fourier
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transformation are described. The proposed method for optimizing the

EMG-angle regression process is highlighted in this chapter.

• Chapter Four

This chapter explains the ankle joint angle and the EMG data

acquisition system electronics, connection, installation, programming,

and computer interface. The proposed powered ankle-foot design is

modelled using SolidWorks software in this chapter. This chapter

explains regression experiments to model the ankle joint angle based

on the calf muscles group activity.

• Chapter Five

This chapter investigates the maximum linear force exerted by the

linear actuator of the proposed design. The result of using several

classification algorithms with a set of filtering techniques is illustrated

in this chapter. Ther regression algorithms performance with a group

of filtering configurations using the proposed optimization method is

also benchmarked.

• Chapter Six

The main conclusions and future intended research from this work are

listed in this chapter.
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Chapter 2

Literature Review

2.1 Introduction

Artificial limb marketing increased exponentially due to wars, catastrophes,

traumas, accidents, etc. As a result of humanity’s needs and the marketing

demands, the development of lower limbs became incredibly fast and hard

to catch, especially in the past three decades.

This chapter demonstrates the advantages of the powered prosthesis, the

adverse passive prosthesis, the available commercial powered prosthesis.

This chapter also presents the literature related to the ankle foot-powered

prosthesis, gait cycle classification, ankle-joint regression, powered angle

foot prosthesis control strategies.

2.2 Passive and Powered Prosthesis Comparison

Most of the available artificial lower limbs are passive; the following

studies show the inability of the passive prosthesis to replace the lower

limb’s function.

Winter and Sienko, 1988 [22] studied the moment and power for (8)

lower limb amputees, wearing five SACH feet, two uniaxial, and 1

Greissinger prostheses, a passive prosthesis manufactured by the Ottobock
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company. EMG was documented for 3 of the SACH foot amputees case.

Grissinger stores the highest energy, about 30%, to the push-off state. The

findings showed that the highest metabolic rate consumed in the case of a

passive prosthesis is because of the passive nature of its components and its

inability to provide adequate work during the stance period.

Bateni and Olney, 2002 [23] analyzed the differences in the gait cycle

kinematics and kinetic between the healthy and amputee subjects. The gait

cycle experiment parameters were measured using a force plate with a

motion capture system to measure the kinematics of subjects, linear

velocity, relative angle, net moment, power, and work at all measured at the

main lower limb joints. The intact joint limb of the amputees had a large

hip extension, knee flexion, and ankle dorsiflexion. They explained the

reason behind the most asymmetric walking pattern for amputees is

attributed to passive components. The passive components force the

amputee to lift the weight of the prosthesis instead of pushing the body up

forward. The amputees show a lower power generated at push-off

compared with the non-disabled. The deficiencies could be overcome in the

case of imposing active components.

Hansen et al., 2004 [24] investigated the change in the slope of the

curve moment versus ankle angle for various speeds. The ankle angle was

measured using a motion capture system, and the angle moment was

recorded using a force plate. 6HZ cut-off frequency for Butterworth

bi-directional filter used for filtering the markers trajectory of the motion

capture system. They collected their data from 24 natural limbs. They

concluded that a spring-damper system could replace the ankle joint for a

slow walking speed, while argument components should be used for

moderate to fast speeds. They also showed that positive work should be

exerted in the intact ankle joint, especially during the stance phase, and a
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passive component cannot do this, but an argument system should be used.

2.3 Development of Powered Ankle Prosthesis

2.3.1 Energy Storage and Return Prosthesis

Energy storage and return (ESR) prosthetic feet are the most common

energy storage and return prostheses in the market. It has a leaf spring foot

with a fixed ankle joint, mainly manufactured from a carbon fibre

composite material. The energy is stored during the heel strike and can be

exposed during the push-off state. Gardiner et al., 2016 [25] showed that

this prosthesis is considered a lightweight type and can be used with high

safety; it has a low price and is widespread in markets. ESR can be used for

various activities such as walking or even running. The difference between

these prostheses is the spring stiffness. This prosthesis is the active

component that produces positive work during the stance phase. Hence it is

irresponsible to rely on ESR feet to restore the natural activity of intact

limbs. They showed that COP(cost of transportation) in ESR is only 2.7%

higher than SACH foot which is not so high.

2.3.2 Semi-Active Below Knee prosthesis

In this type of prosthesis, the powered components do not directly affect the

ankle joint but affect the whole gait cycle. These types of prosthesis have

a considerably lower weight of 1.2-1.4 kg and have a higher comfortability

than passive prosthesis and significant battery life to be extended to more

than 24 hr [26].
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Chas A Blatchford & Sons Ltd. [27] developed Elan ankle. Elan angle

foot has a microprocessor controlling two micromotors that operate two

hydraulic cylinders with an adjustable damping ratio during DF and PF.

Ottobuck developed a semi-active ankle-foot prosthesis called Triton

smart foot [28]. In this prosthesis, the ankle joint rotation is locked or

released according to the gait cycle phase and incrementally. Brochure,

2017 [29] showed that the whole system could be controlled using an

embedded microprocessor, and the communication with the user can be

done wirelessly. The user can adjust the heel height and ankle joint lock

status.

Össur, 2006 [30] developed Propiro foot. The ankle in this type of

prosthesis is linked to an active actuator driven by a DC motor and

controlled by a microcontroller. The actuator can not provide enough power

to push the body forward during the stance phase. However, the semi-active

ankle is used to lift the foot during the start of the swing phase to improve

the amputee gait cycle and provide more safety and good appearance of the

walking cycle; also, it can work fine during stairs ascending/descending.

2.3.3 Active Ankle Foot Prosthesis with Series-elastic Actuator

Biomechatronics Group corporate with MIT media lab developed BIOM

powered ankle-foot prosthesis [31]. BIOM is the first commercially

available prosthesis that generates positive work during the stance phase.

The prosthesis uses a 200W DC brushless motor, with a timing belt and

ball screw transmission. BIOM is supplied with a rechargeable battery

which can ensure walking for 4-5 km.

Au and Herr, 2008 [32] ] Explained the series elastic actuator principle,

which for BIOM prosthesis, where the actuator is directly connected to a

leaf spring foot. They showed that the series elastic actuator principle saves
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the body from excessive strikes and protects the motor and the transmission

system from shocks They also studied the energetic cost of transport(COT)

amputee using BIOM and it was almost the same as health leg and performed

much better than passive prosthesis. BIOM is supplied with a rechargeable

battery which can ensure walking for 4-5 Km. They also showed that each

step using BIOM consumes 20 J from the battery. BIOM powered prosthesis

has the maximum ankle torque at 47% of the gait cycle and its value about

120 Nm.

Au, Weber, and Herr, 2009 [33] Studied the gait cycle for BIOM

prosthesis. They showed that the gait cycle is divided into six phases:

controlled plantarflexion at heel strike, controlled dorsiflexion at

midstance, powered plantarflexion at the terminal stance, and three

sub-phases for the swing phase.

They showed, the required phase is triggered by

recognition(classification) using four sensors; Force transducer at hell,

force transducer at the toe, an encoder to measure the ankle joint rotation,

and the ankle torque is measured by a potentiometer consisting of a linear

spring displacement and stiffness [33].

Ferris et al., 2012 [34] made a comparative evaluation of BIOM

powered prosthesis with a passive prosthesis and an intact limb. BIOM

shows a higher power generated at the terminal stance from a passive

prosthesis and even more than a healthy leg. The range of motion was more

extensive than passive but still lower than the non-amputee subject. The

step length in BIOM is more significant than a passive prosthesis, and the

asymmetry almost vanishes due to the high power.

Rouse et al., 2015 [35] had gone far from daily waking. BIOM is used

for an amputated dancer. The BIOM powered prosthesis has some

adjustments directed for dancing, such as a leg-to-leg interface. However,
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BIOM performs a good experience, but some challenges yield out. The

range of motion(ROM) is lower than the healthy leg specialized control

system, and step recognition for a dancing purpose is required. BIOM is

used to trigger a particular behaviour at a specific phase, such as Powered

Plantarflexion. Still, a model of muscle/s contraction and ankle joint angle

would make it more generalized and has more natural behavior .

2.4 Human Gait Cycle Classification

Classification is dividing a dataset according to a pre-feed labelled dataset.

Machine learning algorithms are used to achieve this task. In the case of a

powered prosthesis, it is crucial to recognize the state of the human body

during the gait cycle, which affects the behaviour of the prosthesis by

implicating the state of the control system. This work aims to find whether

the body is in the stance or swing phase based on the EMG signal of the

lower limb muscles and whether it is possible to combine it with the

regression model to have the optimal behaviour of the ankle-foot prosthesis.

Joshi, Lahiri, and Thakor, 2013 [36] studied the classification of eight

gait cycle steps. Eight gait cycles steps are Heel contact, loading response,

midstance, terminal stance, pre-swing, initial swing, mode swing, and

terminal swing. Electromyographical data and hip angular rotation are used

to find the pattern by which a classification process can be done. This work

is utilized in controlling exoskeleton orthotic devices. The

Electromyographical data was acquired for four muscles, namely:

Hamstring, Getrocnimus, Quadriceps, Tibialis anterior. A marker is

adhesive to the thigh to rack the flexion-extension of the hip joint and label

the EMG data with present gait phases. Linear discrimination analysis is

the algorithm used to classify the labelled data. The classification accuracy
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was tested with and without Bayesian Information Criteria as a

segmentation algorithm. The highest accuracy was concluded at the 8th

subjet’s gait cycle was about 53.5% before applying Bayesian information

criteria, and 84.16% after applying Bayesian information criteria. The

classification accuracy increased after applying the BIC segmentation

algorithm but still had a low accuracy compared with the demanding

accuracy of operating an artificial limb and avoiding a walking failure.

Ziegler, Gattringer, and Mueller, 2018 [37] invited a new method for

normalizing the EMG signal, called by the author by weighted signal

difference(WSD). However, the EMG signal ranges from micro-volt to

volts. Therefore, it is a great idea to normalize the signal. They highlighted

the classification of the human gait cycle into stance and swing phases

according to a labelled data of the EMG signal of seven lower limb muscles

of five subjects at average speed(2 m/s). They used the support vector

machine(SVM) to classify the dataset. The result data of SVM accuracy is

compared between the data of EMG resulted after applying the root mean

square filter(RMS) and weighted signal difference(WSD). WSD

normalization method yields a higher accuracy for all subjects, and the

training time is reduced to five times(faster training time). SVM is known

for its low accuracy and slow training time.

Derlatka and Bogdan, 2015 [38] used the ensembled K-nearest

neighbor (KNN) method to classify the human gait cycle into five phases

using the ground reaction force(GRF) data. The classified phases are initial

contact(IC), loading response(LR), mid-stance(Midst), terminal stance(Tst)

and pre-swing phase(pre-sw). The GRF was derived from 200

subjects(almost 3500 gait cycles). Ensemble learning is the process of

modelling using multiple algorithms of the same data or the same

algorithms with variable parameters. In regression, the ensembled
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regression uses regression such as linear regression, decision tree,

K-nearest neighbour, etc., with the same featured data and uses a

mathematical operator such as mean to find the best fitting model.

Classification is done by using votes to choose the correct classes(majority

voting). They showed that the ensemble learning gives more general

decisions, lower error, and less overfitting. Dynamic time wrapping

algorithm(DTW) was used to find the best alignment between the three

components of GRF calculated from the force plate(x, y, and z -

components). They tested a hypothesis weak classifiers can produce a high

classification quality using ensembled learning, and this was proved by

using KNN with multiple Kernal parameter values.

2.5 Ankle Joint Angle’s Regression and Control

Strategies

Lambrecht and Kazerooni, 2009 [26] used series of finite-state behavior

strategies to control the powered prosthesis. The designed prosthesis worked

passively with gait cycle phases and generated power when needed. The

gait cycle is divided into four modes: stance, pre-swing, swing flexion, and

swing extension. The classification between the modes mentioned above

was done using observed elementary criteria. The swing flexion to swing

extension transition was done when the knee angular speed had a negative

velocity. The transition from swing extension to stance was done when the

axial load passed a certain threshold, etc. A limitation of this work is that the

classification is done with specific criteria that may change for each amputee,

unlike the supervised learning approach, which creates a general model that

can operate with a wide range of amputees specifications.



2.5. Ankle Joint Angle’s Regression and Control Strategies 29

Huang, Kuiken, Lipschutz, et al., 2008 [39] used EMG signals to

classify several movements such as level-ground, ambulation, jump over an

obstacle, ascending and descending stairs. Each mode is divided into

sub-phases, such as the gait cycle is divided into heel strike and toe-off.

The powered prosthesis follows the trajectory based on the state of the

body, such as being in pre or post of toe-off or hell strike phases. The EMG

data were filtered by a high pass filter of 25HZ cut-off frequency to

eliminate the relative movement of the electrodes artefacts. A Confusion

matrix is used to evaluate the performance of the used algorithms. Simple

linear discriminate analysis(LDA) and artificial neural network classifiers

were used to classify the movement mode and phases. Both LDA and ANN

showed a low performance ranging from less than 10% at pre-toe off phase

and rise to a maximum of less than 60% at the full stride cycle phase.

Both Lambrecht and Kazerooni, 2009 [26] and Huang, Kuiken,

Lipschutz, et al., 2008 [39] use the finite state approach, and the prosthesis

follows a particular trajectory for a specific phase. The finite-state method

must be restricted from the pre-defined conditions, unlike the human joints

that act for uncounted states. Continuous control is the final approach to

emulating the human joints and remove the pre-defined state’s restriction to

perform a specific action.

Dey et al., 2019 [40] aim to find a continuous estimation of the ankle

joint angle and moment based on the angle and angular velocity of the knee

and hip joint with its corresponding ground reaction force(GRF). A motion

capture system was used to get the angle and angular speed of the hip and

knee joints. A low pass filter using the Butterworth filter was used with a 6

Hz cut-off frequency to smooth the data and remove high-frequency noise.

They used support vector regression(SVR) to build a statistical model that

predicts a continuous estimation of the ankle joint’s angle and moment. As
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mentioned before, hip and knee joint angles and angular velocities during

the gait cycle are input to the SVR algorithms. The corresponding ankle

joint’s angle and the moment are the target variables. The performance

using the coefficient of determination (R2) and the root mean square error

(RMSE) was calculated for all sequences. It is noted that the SVR

performance increased when the number of features increased, which

means that the ankle joint has a high correlation with these features. A

limitation of this work is the difficulty of using a motion capture system

with the real amputee-prosthesis case to get the input features, which makes

the EMG approach more feasible with the power ankle-foot prosthesis.

2.6 Concluding Remarks

As discussed before, a passive prosthesis has less ability to function similar

to the natural limb due to its inability to provide positive power. Several

powered prosthesis designs are reviewed in 2.3; This work proposes a new,

simple, more comfortable, affordable, and feasible powered ankle-foot

prosthesis design. Most of the implemented control strategies are based on

finite state control where the prosthetic joints follow a particular trajectory

according to a pre-defined mode, unlike the human joints that act for

uncounted states. This work could combine classification and ankle joint

angle regression to produce the optimal continuous control for a transtibial

powered prosthesis.
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Chapter 3

Theoretical Work and Modeling

3.1 Introduction

This chapter concerns the design of powered ankle-foot prostheses with

their mathematical models and validity. The powered-ankle foot prosthesis

mainly includes the following components: pylon, foot, ankle joint, motor,

and crank. This chapter investigates the amount of force that the linear

actuator should exert and the mathematical relationship between the ankle

and motor joints angle. The prototype design according to the selected

model and its parts will be explained here. Several simple

electromyographical filtering techniques will be described here as well.

EMG signal processing techniques are explained in detail with the

following sections: Fast Fourier transformation, Convolution theorem, and

digital filters. This chapter describes the classification algorithms applied to

estimate if the body is in stance or swing phase. It also illustrates the ankle

joint formulation and rotation matrix used in the angle measurements

sensors. Furthermore, this chapter describes the re-regression algorithms

used to build a statistical model of the ankle joint angle according to the

lower limb muscles activity. Finally, it demonstrates the Gaussian

distribution and its ability to optimize the regression process, which is

considered as an essential contribution of this work.
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3.2 Ankle Design and Mathematical Models

Deriving a mathematical model for the ankle joint is crucial since it directly

influences the parametric design dimensions and gives an excellent image

of how an extent may affect others. The mathematical model also plays a

valuable part in the design of the control system. Mathematical models can

influence other strategies such as material and suitable motor selection.

This work only deals with a single degree of freedom related to the main

two motions of the ankle joint, namely Plantarflexion and Dorsiflexion. The

calculations focus on the maximum linear displacement of a linear actuator

and its relationship with ankle angle. The relationship between the ankle

joint angle and motor joint angle was investigated. In addition, the force

exerted by the motor is calculated.

The following models show the trails to design and derive the suitable

ankle joint with a valid mechanism and clear mathematical model.

3.2.1 Model 1

This model is created as the first trail to illustrate the main components of

a below-knee prosthesis. The objective is to find an equation for the linear

actuator as the ankle joint angle function. As shown in Figure 3.1 variable y

must be seen as the ankle joint angle (θ).

The linear actuator can be easily derived for this linkages system and as

follows :

y = lsin(θ) (3.1)

ytotal = ydoris + yplanter (3.2)
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(A) (B)

FIGURE 3.1: Model 1.

where l : crank length.

θ : ankle joint angle.

y : linear actuator displacement.
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3.2.2 Model 2

After a focus on this model, it yields that the linear actuator is not

constrained vertically, and this result from the motion of the crank in a

circular path around the ankle joint, as shown in figure 3.2.

(A) (B)

FIGURE 3.2: Circular motion of a linear actuator tip

Since the linear actuator is not constrained along the vertical axis, a new

joint introduced, namely the motor joint, as shown in figure 3.3.

Now, parameters that must be derived is the linear actuator displacement

as a function of the ankle joint angle(θ) and the force that the linear actuator

must apply as a function of the ankle joint moment. The focus is on the ankle

joint angle and moment, since these parameters, are considered as knowns

and can be easily found from the gait cycle specification. The gait cycle

specification is normalised chiefly in terms of subject mass.

Figure 3.4 shows the linear actuator displacement can be easily found

using Cosine law.
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FIGURE 3.3: Model 2.

β = tan−1 l
J
= constant (3.3)

η = α + β + θ = constant (3.4)

η = 90 + cos−1 l
k

(3.5)

α = η − β− θ (3.6)

N2 = J2 + l2 = constant (3.7)
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FIGURE 3.4: Model 2.

y2 = N2 + k2− 2NK cos α (3.8)

y2 = N2 + k2− 2Nk cos (η − β− θ) (3.9)

where l : Crank length.

k : Ankle joint to motor joint distance.

j : Distance between ankle joint to crank joint in vertical direction.

y : Linear actuator displacement.

A relationship between the linear actuator and the ankle joint was plotted
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to verify this equation using Matlab programming language, as shown in

figure 3.5(Appendix A.1). The plot shows a reasonable behaviour where

the linear actuator displacement decreases with the increment of the ankle

joint angle. Figure 3.5 can help determine the linear actuator’s right length;

if the rest dimensions are available, in 4.4, the rest of the dimensions are

calculated based on the available lead screw length.

FIGURE 3.5: Model 2 - Linear Actuator Displacement
Against Ankle Joint Angle Plot.

3.3 Proposed Model Force Calculations

The force exerted by the linear actuator is significant since it can specify the

required motor’s type and power. From figure 3.6 we could calculate the

force F as follows.

M = (F sin λ)Z + (F cos λ)l (3.10)
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FIGURE 3.6: Model 2 -Linear Actuator Force
Calculation.

F =
M

Z sin λ + l cos λ
(3.11)

As shown in the equation 3.11, F is changing with the Ankle joint

moment M and motor joint ankle λ.

Several trials were attempted to find the validity of equation 3.11. A

key point used to check the validity of this equation; this checkpoint is: both

ankle joint angle and motor joint angle should equal zero at a neutral position

(i.e. neither plantarflexion nor dorsiflexion). The importance of finding the

motor angle is that the maximum force that the motor must exert can be

calculated, and the motor angle only depends on the ankle joint angle. The

followings are trails for checking the validity of equation 3.11:
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3.3.0.1 Sine Law Trial

As shown in figure 3.6, N is assumed to be the ankle joint to crank joint

distance. A sine law can be applied to the triangle with the following sides;

N, Y, k, and as follows.

y
sin α

=
N

sin γ
(3.12)

γ = λ + sin−1 l
k

(3.13)

y
sin α

=
N

sin(λ + sin−1 l
k)

(3.14)

λ + sin−1 l
k
= sin−1 N sin α

y
(3.15)

λ = sin−1 N sin α

y
− sin−1 l

k
(3.16)

α = η − β− θ (3.17)

α = 90 + cos−1 l
k
− sin−1 l

N
− θ (3.18)

λ = sin−1 (
N
y

sin 90 + cos−1 l
k
− sin−1 l

N
− θ)− sin−1 l

k
(3.19)

To test the equation 3.19 λ should be equal zero when θ equals zero. A

plot between both λ and θ to illustrate the last equation.

As shown in figure 3.7 , the condition(θ and λ both must equal zero at

the start) which was not achieved from this trail.

3.3.0.2 Fixed Crank Distance Trial

This approach is more straightforward than the previous one(i.e. sine law)

and has more promising results.
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FIGURE 3.7: Model 2 -Ankle Joint Vs Motor Joint angle
variation.

From figure 3.6 we could find:

l = J sin θ + l cos θ − y sin λ (3.20)

y2 = K2 + N2− 2NK cos α (3.21)

where:

γ + α + β + θ = π (3.22)

α = π − γ− β− θ (3.23)

β = tan−1
l
J

(3.24)

K =
√

Z2 + l2 (3.25)

N =
√

J2 + l2 (3.26)

Now, λ can be easily found from equation 3.20 and as following

λ = sin−1 J sin θ + l cos θ − l
y

(3.27)
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Figure 3.8 shows the achievement of the condition i.e. θ and λ start at

zero (note, the code for this plot can be found in the appendix A.3)

FIGURE 3.8: Ankle Joint Vs Motor Joint angle
variation(Constant Crank Length Approach).

According to figure 1.7, the gait cycle specification, the ankle joint range

of motion varied from -27(plantarflexion) to 10(dorsiflexion). A plot shown

in the figure 3.9 illustrates the variation of the motor joint to ankle joint

angles in the actual range of motion(code in appendix A.4).

Maximum internal ankle joint moment can be estimated from figure 1.7

to less than 1.5 N.m/kg. Figure 3.10 shows the linear actuator’s force for

the ankle joint range of motion; as shown in figure 3.9, the range of motion

of the motor joint starts at -7 deg and ends at 2.3 deg. Figure 3.10 shows

that the maximum force that the linear actuator should exert is 900 N which

is considered a high force; this can be interpreted by observation figure 1.7.

Figure 1.7 shows that the ankle joint experience the highest power among

all lower limb joints.
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FIGURE 3.9: Natural range of Ankle Joint Vs Motor
Joint angle variation.

FIGURE 3.10: Maximum force exerted by the linear
actuator for the natural range of ankle joint angles.
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3.4 Gait Cycle Classification

Classification is the method of dividing an unsorted data set that is not yet

classified into a process called training based on previous examples from

a separate data set already labelled. Compared to regression, which gives

continuous output, classification generates a discrete output (labels).

Many classification techniques are available in the pattern recognition

field; four well-known classification algorithms were used in this work, as

outlined below. In machine learning literature [21], more information on

general statistical modelling and classification can be found.

3.4.1 Support Vector Machine(SVM)

SVM attempts to find the optimum line dividing data within separate labels

for a collection of training data D = {(x1, y1)...(xn, yn)} by minimizing

the distance between support vectors, the vectors separating the different

data labels. It is possible to formulate SVM as follows [37]:

minw,εi J(w, εi) =
1
2
||w||2 + C

N

∑
i=1

εi (3.28)

subject to

yi ϕ(wTxi) ≥ 1− εi (3.29)

Where the SVM parameters are w and εi and the constant vector is c. The

Lagrange classifier can be used to solve these equations.

3.4.2 K-Nearest Neighbor(KNN)

This method finds the closest point defined and averages the number of

classes there, then marks the unknown end under consideration over a

certain distance as the highest repeatable class. It’s possible to formulate
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K-NN as foolows [41]

ŷ =
1
k ∑

xi∈Nk(x)
yi (3.30)

The expected K-NN label is ŷ, Nk is a vector of the neighbouring points,

and the N vector is equal to k in length. It is then possible to add multiple

approaches to find the distances from the unknown point to its neighbouring

points, as follows [42]:

d(xi, xj) =

√√√√ k

∑
j=1,i 6=j

(xi − xj)2 Euclidean distance (3.31)

d(xi, xj) =
k

∑
j=1,i 6=j

|xi − xj| Manhattan distance (3.32)

d(xi, xj) = (
k

∑
j=1,i 6=j

(xi − xj)
p)

1
p Minkowski distance (3.33)

3.4.3 Logistic Regression

A linear model can be used for a data set as shown in Figure 3.11(A), where

the information is labelled either 0 for a specific range of x or 1 for a reset

range; however, the results should be either 1 or 0 for a binary classification

problem, and thus the upper and lower sections (marked with blue circles

in the figure) can be trimmed as shown in Figure 3.11(B). The governing

equations for logistic regression is as follows [43].

y = bo + b1x Line equation (3.34)

p =
1

1 + e−y Sigmoid Function (3.35)
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ln
p

1− p
= bo + b1x Logistic Regression (3.36)

The plot is shown in Figure 3.12 results in applying of the sigmoid

function to the linear model.

(A) (B)

FIGURE 3.11: Linear Model.

FIGURE 3.12: Logistic Regression Model.

Where p = prediction probability, permitting the setting of a threshold

(such as 0.5) where y is equal to 1, if p has crossed this point, and otherwise

it is equal to zero [44].

3.5 Ankle Joint Regression

Regression is a subset of supervised learning where it aims to predict one or

more of a continuous dependent variable (Target variable) based on
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D-dimensional input variables. The learning process is done by a set of

{xn} observations with their target variable set {tn}, and the objective is to

find the value of the target variable for a non-given input variable. This

work used regression to predict the ankle joint angle (which is considered a

target variable) based on the lower limb muscles activity. The prediction of

the ankle joint angle could mainly affect the manufactured powered

ankle-foot prosthesis response. The number of muscles under consideration

is four; therefore, the problem of building the required statistical model is

of 4th order. The following is an explanation of the used regression

algorithms:

3.5.1 Linear Regression

Linear Regression is as considered the a simplest regression type where you

fit a line to a set of input data and target vector observations. Consider we

have N observation of independent x variable such that x = {x1...xn}, and

their corresponding dependent target variable t such that t = {t1...tn}, as

shown in figure 3.13.

x

y

◦ ◦
◦

◦ ◦
◦

◦◦

◦

FIGURE 3.13: Scattered Points.
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The goal is to estimate (with a specific error) the value of predicted t̂ for

a new input x̂ data. The simple linear regression uses the equation of a line

(equation 3.37) to fit the given data set.

y(x) = w0 + w1x (3.37)

where w0 and w1 are constants.

The only unknown parameters in equation 3.37 are w0, and w1

coefficients. w0, and w1 parameters can be founded using the minimized

error function approach that measures the amount of the misfitting

between the target variable tn and the input data xn [45].

E2(F) =

√
1
n

n

∑
k=1

( f (xk)− yk)2 (3.38)

The following approach uses the root mean square error to obtain the

required coefficients. After Appling the error function for both the given

data set (Xk and yk) with the predicted value, we got equation 3.39.

E2(F) =
n

∑
k=1

( f (xk)− yk)
2 =

n

∑
k=1

(Axk + B− yk)
2 (3.39)

The minimal error function can be used by applying the local minima

approach; equation 3.39 is differentiated with respect to each coefficient, as

shown in the following derivation:

∂E
∂A

= 0 : ∑ 2(Axk + B− yk)(xk) = 0 (3.40)

∂E
∂B

= 0 : ∑ 2(Axk + B− yk)(1) = 0 (3.41)
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Reformulation of Equation 3.40, and 3.41 into equations 3.42, and 3.43

respectively.

A ∑ x2
k + B ∑ xk = ∑ ykxk (3.42)

A ∑ xk + Bn = ∑ yk (3.43)

equations 3.42, and 3.43 can be formed as in a matrix form.∑ x2
k ∑ xk

∑ xk n

A

B

 =

∑ ykxk

∑ yk

 (3.44)

Equation 3.44 can be solved as a system of equations using linear algebra.

Assume: C =

∑ x2
k ∑ xk

∑ Xk n

, D =

A

B

, E =

∑ ykxk

∑ yk

.

Therefore,

C× D = E (3.45)

As known that the multiplication of an array with its inverse, produce an

identity matrix.

I = C× C−1 =

1 0

0 1

 −→ IdentityMatrix (3.46)

Multiplying both sides of equation 3.45 with C−1.

I × D = E× C−1 (3.47)

Linear Regression is simply approached using programming language; in

python, the Sciket-learn library performs linear regression, as shown in

figure 3.14.
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FIGURE 3.14: Python Code for Linear Regression.

3.5.2 Polynomial Regression

The generalization of linear regression is a polynomial regression, where a

data set is fitted into a polynomial equation, as shown in equation 3.48 [21].

y(x) = w0 + w1x + w2x2 + ... + wmxm (3.48)

Where m is the order of the polynomial equation, equation 3.48 is related

to a linear model, where even the equation is a non-linear function of the

independent variable of x. However, it is still linear in terms of the unknown

coefficients. Similar to linear regression, the least square errors could be

used as the error function criteria to obtain the required coefficients with the

specified polynomial order, as shown in equation 3.49.

E(w) =
1
2

N

∑
n=1

(y(xn)− tn)
2 (3.49)

The order of the polynomial equation specifies how flexible the line is.

The illustration of least square error is as shown in figure 3.15.

Figure 3.16 shows an example of using a polynomial regression of the

same dataset with a different order m value.

Figure 3.16 shows that as the increment of m order, the fitting with the

training data set will give the least error when m = 1, 2 it gave a poor fitting,

as m = 3 the fitting get better, at the highest m = 9 the error goes to zero.
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FIGURE 3.15: Polynomial Regression Error
Function [21].

FIGURE 3.16: Polynomial Regression of Various
Orders [21].

However, as the order of the polynomial regression goes higher, the fitting

gets better. Still, on the other hand, a problem of overfitting is yielded,

where at M = 9 the error function gives the heights with the test set. This is

because the built model could not provide a general description of the data;
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the error for various orders for both training and testing sets is as shown in

figure 3.17.

FIGURE 3.17: Error Value for Various orders [21].

The generalization of linear regression and coefficient estimation using

the minimized error function for the polynomial regression is shown in the

following derivation:

y(x) = F(w0, w1, w2...wm) (3.50)

Where the error function is as follows:

E(w0, w1, w2...wn) = ∑(y(w0, w1, w2...wn)− yk)
2 (3.51)

Differentiation for each variable’s coefficient.

∂E
∂wj

= 0, wherej = 0, 1, 2, 3...M (3.52)

Assume a polynomial regression of second order M = 2.

y(x, w) = w0 + w1x + w2x2 (3.53)
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Therefore, the error function is as following:

E =
N

∑
k=1

(y(x, w)− yk)
2 =

N

∑
k=1

(w0 + w1x + w2x2− xk)
2 (3.54)

Where N is the number of the sample points. Differentiation concerning

ω0.
∂E

∂w0
=

N

∑
k=1

2(w0 + w1x + w2x2− yk)× 1 = 0 (3.55)

Differentiation with respect to ω1.

∂E
∂w1

=
N

∑
k=1

2(w0 + w1x + w2x2− yk)× x = 0 (3.56)

Differentiation with respect to ω2.

∂E
∂w2

=
N

∑
k=1

2(w0 + w1x + w2x2− yk)× x2 = 0 (3.57)

Equations 3.55, 3.56, and 3.57 can be rearranged into equations 3.58, 3.59,

and 3.60 respectively.

w2

N

∑
k=1

x2
k + w1

N

∑
k=1

xk + w0

N

∑
k=1

1 =
N

∑
k=1

yk (3.58)

w2

N

∑
k=1

x3
k + w1

N

∑
k=1

x2
k + w0

N

∑
k=1

xk =
N

∑
k=1

ykxk (3.59)

w2

N

∑
k=1

x4
k + w1

N

∑
k=1

x3
k + w0

N

∑
k=1

x2
k =

N

∑
k=1

ykx2
k (3.60)

Equations 3.58, 3.59, and 3.60 can be formulated in a matrix form.
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
∑ x2

k ∑ xk n

∑ x3
k ∑ x2

k ∑ xk

∑ x4
k ∑ x3

k ∑ x2
k




w2

w1

w0

 =


∑ yk

∑ ykxk

∑ ykx2
k

 (3.61)

Equation 3.61, can be solved using the same approach introduced in linear

regression. Figure 3.18 shows a python code to fit the learning set to a

polynomial regression and predict a test set.

FIGURE 3.18: Python Code for Polynomial Regression.

3.5.3 K-Nearest Neighbors Regression

K-Nearest Neighbors Regression is considered one of the simplest

regression algorithms to comprehend. K-Nearest Neighbors Regression has

high effectiveness. The K-Nearest Neighbors algorithm can be used for

supervised machine learning subsets (classification and regression). The

K-Nearest Neighbors Regression uses the average of the nearest points to

predict the point under consideration, as shown in the following

equation [46]:

y(x) =
1
N

N

∑
k=1

yk (3.62)

Where N is the number of neighbour points, the nearest points are the points

that have less distance to the unknown end. Several methods to measure the

distance between points, as shown in equations 3.31, 3.32 and 3.33.
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Factor k is the main parameter in the KNN algorithm, where the

increment of the k factor will increase the error function for the training set,

as shown in figure 3.19. the error rate at K=1 is always zero for the training

sample. This is because the closest point to any training data point is itself.

FIGURE 3.19: kNN Error Function of the Training Set.

On the other hand, a lower k-factor will produce an overfitting problem;

this can be seen by the error function of the test set, as shown in figure 3.20.

FIGURE 3.20: kNN Error Function of The Test Set.
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Therefore, the test’s optimal k can be measured ; k = 9 is considered the

best k-factor for the given data set. Figure 3.20 is known as the elbow curve,

which determines the best k-factor value. Figure 3.21 shows Python code to

perform KNN regression.

FIGURE 3.21: Python Implementation of KNN
Regression.

3.6 Regression Models Evaluation

The measurement of the regression algorithms performance is essential since

it indicates the ability of the algorithm under consideration to give the correct

prediction with the unseen dataset. The algorithm’s performance is used to

benchmark a set of regression algorithms and pick the highest version.

3.6.1 Mean Squared Error (MSE)

Mean squared error is used to measure the difference between the predicted

and actual data and as shown in equation [47].

MSE =
1
n

n

∑
i=1

(yai − ypi)
2 (3.63)

Where yai :Actual value.

ypi : Predicted value.

n : Sample size.

The square is used to prevent negative errors and inflate the minor errors.

Mean square error can be easily found in Sciket-learn python library as
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shown in figure 3.22. MSE was used to compare between models of the

same units.

FIGURE 3.22: Sciket Learn Man Square Error.

3.6.2 Root Mean Square Error

Root mean squared error used to measure the error rate of a regression model

and it can be calculated as shown in equation 3.64 [47]..

RMSE =

√
∑n

i=1 (yai − ypi)2

n
(3.64)

Where yai :Actual value.

ypi : Predicted value.

n : Sample size.

RMSE compares models whose errors are measured in the same units.

The same library can be used as a mean squared error to find this metric but

with setting square to false in the parameters, as shown in figure 3.23 [47]..

FIGURE 3.23: Sciket learns Root Mean Square Error.
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3.6.3 Relative Squared Error (RSE)

Unlike RMSE, the relative squared error (RSE) can be compared between

models whose errors are measured in different units [47]..

RSE =
∑n

i=1 (yai − ypi)
2

∑n
i=1 (yai − ȳ)2 (3.65)

Where yai :Actual value.

ypi : Predicted value.

n : Sample size.

ȳ = ∑n
i=1 yi
n

3.6.4 Coefficient of Determination

This method is used to find the percentage (accuracy) of variation not

described by the regression line. The coefficient of Determination(r2)

equals the total variation that is not represented by the regression line(i.e.

squared error) over the total variation of the target variable and as shown in

equation 3.66, and can be applied in python as shown in figure 3.24 [47]..

r2 = 1−
∑n

i=1 (yai − ypi)
2

∑n
i=1 (yai − ȳ)2 (3.66)

Where yai :Actual value.

ypi : Predicted value.

n : Sample size.

ȳ = ∑n
i=1 yi
n
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FIGURE 3.24: Coefficient of Determination in python.

3.7 Feature Selection

Feature selection is a preprocessing step in the machine learning field.

Feature selection reduces the number of features required to build the

statistical model and get the most valuable features on the built model.

Reducing the redundant features will increase the created model

performance, and the time required to produce the statistical model will be

reduced. Feature selection is broadly divided into three approaches:

wrapper model [48], filter model [49], and hybrid model [50]. The wrapper

model uses all possible feature elimination cases and measures the

performance with each case; the case of features with the highest model

performance is considered the best feature to build the model. The wrapper

model is a time-consuming process, and it is increased drastically with the

increment of the dataset. The filter method reduces the number of features

independently from the chosen model based on several criteria such as

distance, consistency, and information. The linear correlation method is

used in this work to select the best-correlated features. Correlation is a

known measure that measures how well the used variables are reduced. The

correlation coefficient equals ±1 if the used variables are fully correlated

and 0 if the used variables are not connected. The correlation coefficient for

the two variables is as shown in equation 3.67 [51].

r =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
[n ∑n

i=1 x2
i − (∑n

i=1 xi)2][n ∑n
i=1 y2

i − (∑n
i=1 yi)2]

(3.67)
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To have a good understanding of what the correlation coefficient value

means? Consider a linear function such as y(x) = x. Such a function has

a correlation coefficient equal to a positive one where y has a fully positive

correlation with x, as shown in figure 3.25(A).

Thus, fully negative correlation if y(x) = −x, as shown in

figure 3.25(B). If y(x) = c, a zero correlation between y and x variables, as

shown in figure 3.25(C).

(A) (B)

(C)

FIGURE 3.25: Correlation Cases.
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3.8 Ankle Joint Angle Formulation

The ankle joint angle is produced by the movement of the shank and the

foot. In this work, the angle’s sign defines whether the joint state is in

plantarflexion or dorsiflexion. Therefore, if the sign is positive, the ankle

joint state is considered dorsiflexion, and if it is negative, it is considered

plantarflexion. The limb’s sensors are installed, as shown in figure 3.26(A).

(A) (B)

FIGURE 3.26: The Two IMUs Installation.

Both sensors should measure a zero angle at the normal standing

position. The sensors in figure 3.26(A) are positioned to measure zero

angles. Therefore, the relative ankle joint angle can be calculated by

subtracting the foot from the shank angle as shown in equation 3.68.

θankle = θ f oot − θshank (3.68)

Equation 3.68 will give a zero degree at the start and negative when the foot
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is in plantarflexion as shown in figure 3.26(B) and positive when the foot is

in dorsiflexion.

The movement shown in figure 3.27 gives zero ankle joint angle since

only the knee joint is flexed and both the foot and shank have the same angle,

therefore according to equation 3.68, the ankle joint angle will be zero.

FIGURE 3.27: Zero Angle Joint Angle.

3.9 Orientation Measurement

The ankle joint angle is essential since it represents the target variable in the

regression operation. The ankle joint angle is measured using double IMUs,

one adhesive to the foot and the other adhesive to the shank. IMUs measure

both the linear acceleration and angular velocity in 3 directions. The rotation

measures the IMU’s orientation based on the linear acceleration.
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3.9.1 Rotation Matrix

Rotation matrix elements represent the projection of the new frame axes onto

the old one. For a two-dimensional rotation case, the rotation matrix is as

follows.

FIGURE 3.28: Two-dimensional rotation case.

R =

a

b


The same approach can be applied with a three-dimensional frame; the

rotation matrix represents the projection of the new frame over the old

frame. Suppose frame 1 is a rotation of frame 0 around the z-axis with θ as

shown in both figure 3.29 and figure 3.30. the rotation matrix for frame 1

rotated relative to frame 0 is called "Z-Rotation Matrix" as long the rotation

is around Z-axis.
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R0
1 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


The above matrix will inform us of all the projections for any angle θ rotated

around Z-axis.

FIGURE 3.29: Frame o and 1 illustration.

Now, we can find all rotation matrices around global axes using the same

approach.

Rx =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ



Ry =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


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FIGURE 3.30: Rotation of frame 1 around frame o’s
z-axis with θ angle.

Rz =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


Now, suppose frame one is returned around x 1 with angle φ as shown

in figure 3.31, in such case, the rotation of frame two with respect to frame

zero can be found using the Euler angles equation and as follows.

R0
n = R0

1.R1
2.R2

3....Rn−1
2 (3.69)

The rotation matrix helps determine the tilting angle of an accelerometer

and as explained in 4.2.3.
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FIGURE 3.31: Rotation of frame 1 around x-axis with φ
angle.

3.9.2 Single IMU’s Orientation Measurement

As mentioned earlier in section 4.2.1, the ESP32 can be programmed as an

access point. This section explains how ESP32 is programmed and

connected to MPU6050 to obtain the ankle joint angle. As mentioned

before in section 4.2.2, MPU6050 can measure both the linear acceleration

via the accelerometer and the angular speed via gyroscope over x,y, and z.

MPU6050 tilting can be calculated from the gyroscope by applying a single

integration with respect to time.

θ =
∫ dθ

dt
dt (3.70)

In programming, this is done by multiplying the gyroscope between every

two loops of measurement(∆t). The gyroscope measures the angular time

change rate; since the gyroscope measures the angular speed, the angle
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difference between the current reading and previous reading will be added.

θ2(t + δt) = θ1(t) + ∆θ (3.71)

∆θ = θ.δt (3.72)

Suppose this approach is used to collect the sensor’s tilting. In that case, a

problem is occurring primarily. If there is a small error or deviation during

each reading, this error will accumulate and give far away readings. In

addition, the gyroscope does not have a fixed reference frame.

MPU6050’s accelerometer measures the linear acceleration in terms of

gravity, where if it is set horizontally, it will calculate the acceleration as (0,

0) and 1g for all x, y, and axes, respectively. Will be redistributed between

other axes. The resultant vector generally will have 1g along the gravity

vector. The three-dimensional acceleration concerning the earth frame can

be expressed as follows.

a = R.g (3.73)

Where R is a rotation matrix and as explained in section 3.9.1, g is the

gravitational acceleration in all three axes

g =


0

0

1


The rotation matrix could yield six rotation possibilities Rxyz, Ryxz, Rxzy,

Ryzx, Rzxy, and Rzyx. Only the first two possibilities Rxyz, and Ryxz can be

used, since the rest possibilities have three unknowns θx, θy, and θz, unlike

Rxyz, and Ryxz which include only θx, and θy as unknown when multiplied
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by gravitational acceleration vector and as follows
ax

ay

az

 = RxRyRz


0

0

1

 (3.74)


ax

ay

az

 =


1 0 0

0 cos θx − sin θx

0 sin θx cos θx




cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy




cos θz − sin θz 0

sin θz cos θz 0

0 0 1




0

0

1


(3.75)


ax

ay

az

 =


cos θy cos θz cos θy sin θz

cos θz sin θy sin θx − cos θx sin θz cos θx cos θz + sin θy sin θx sin θz

cos θx cos θz sin θy + sin θx sin θz cos θx sin θy sin θz − cos θz sin θx

−sinθy

cos θy sin θx

cos θy cos θx




0

0

1


(3.76)


ax

ay

az

 =


− sin θy

cos θy sin θx

cos θy cos θx

 (3.77)

Therefore roll can be easily found as following

ax√
a2

y + a2
z

=
sin θy

cos θy
(3.78)

θy = tan−1 ax√
a2

y + a2
z

(3.79)
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The above procedure used Rxyz possibility to obtain a roll. Now, let us try

the Ryxz possibility. 
ax

ay

az

 = RyRxRz


0

0

1

 (3.80)


ax

ay

az

 =


cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy




cos θz − sin θz 0

sin θz cos θz 0

0 0 1




1 0 0

0 cos θx − sin θx

0 sin θx cos θx




0

0

1


(3.81)


ax

ay

az

 =


cos θz cos θy − sin θy sin θx sin θz sin θz cos θy + sin θy sin θx cos θz

− cos θx sin θz cos θx cos θz

cos θy sin θx sin θz − cos θz cos θy sin θx + sin θz sin θy

− sin θy cos θx

sin θz

cos θy cos θx




0

0

1


(3.82)


ax

ay

az

 =


− sin θy cos θx

sin θx

cos θy cos θx

 (3.83)

Therefore pitch can be easily found as following

ay√
a2

x + a2
z
=

sin θx

cos θx
(3.84)

θx = tan−1 ay√
a2

x + a2
z

(3.85)
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This work is only dealing with planterflexion and dorsiflexion movements.

Therefore, one angular calculation will be needed(either roll or pitch), and

this will be decided according to the MPU6050 enclosure design, which is

discussed in section 4.2.5.

3.10 EMG Signal Processing

Electromyography (EMG) is an experimental application for enhancing,

recording, and inspecting myoelectric signals generated by the variation of

the membrane of physiological muscle fibers excited by a single or

multi-motor unit [17]. These EMG signals are used in several applications

and techniques, including medical research, recovery, and sports science.

They have also been described as providing a potential source of artificial

limb control, especially about lower limb prostheses. Their human motion

classification and regression usage can also be crucial in developing

prostheses and orthosis. Raw EMG signals, however, are usually distorted

by noise. This noise primarily results from surrounding muscle action,

causing "cross-talk" and ECG bursts, or relative electrode movement

concerning the muscle under consideration; external noise sources are also

a concern.

Noisy signals may lead to undesirable output in a prosthesis,

electromechanical delay, or poor classification and regression. Thus, EMG

signals should be refined by applying physical or mathematical filtering

techniques. Using two filtering methods, the Median filter and Root Mean

Square (RMS) filter, this study aims to obtain a better signal and distinguish

between them based on analyzing the output of different classification

algorithms.
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FIGURE 3.32: EMG Signal Processing.

Figure 3.32 shows the stages for processing the EMG signals. Firstly, an

instrumental amplifier is used to increase the amplitude of the EMG signal

to a specific gain (such as 100), which gives a big single that is easier to

analyze and understand. Anti-aliasing is done by using a lowpass filter

(analogue) to remove the effect of any unwanted potential signals; this

process is implemented in hardware. Analog to digital converter is done

using a microcontroller for sampling the signal; a 16-bit or 8-bit sample

frequency is used to convert the signal into digital form, to make it easily

processed using programing languages. Fast Fourier transformation (FFT)

converts the data from time-domain to frequency-domain to digital filtering.

The bandpass filter removes the high frequencies yielding from the sensors’

imperfection and low-frequency noise generated from electrodes shifting

on the patient muscles. Inverse fast Fourier transformation converts back

the filter data into time-domain. The Full-Wave Rectifier stage rectifies the

negative signal values. The rectification is done by taking the absolute

value of each sample point. Smoothing and moving average are done using

a moving window operation as explained in 3.10.1.
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3.10.1 Median Filter

Random nature of the noise applied to EMG signals. The median filter is a

type of non-linear filter most commonly used for image filtering to deal

with scattered light applied to an image from various environmental

sources. It uses a travelling filter window, where the filter is added around

the point under consideration for a certain range (in images, pixels are

considered the points in question). For instance, if we have a set of

s = {1, 2, 3, 4, 5}, the median is the middle value of a set, then the

median of s is 3. the window size could be formulated as follows [52]:

N = 2k + 1 (3.86)

k is the number of samples around the consideration point, N should always

be odd to ensure that the discussion point remains an actual number in the

middle. To add a median to a sample of 20 points with a window size of

7,N = 7, and to apply the equation 3.86, k = 3, let’s consider a signal of

100 simple points. In Python, with the Medfilt method, can be implemented

FIGURE 3.33: Suitable Interval of a signal for Median
Filter.

using a single class in a scipy library. Therefore, the mean filter was used

to spread the overshoot over all the windows specified, whereas the median

filter was used to eliminate this overshoot [53].
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3.10.2 Root Mean Square Filter

For the same median filter window size as in equation 3.86, the root mean

square can be formulated as follows [52]:

RMS =

√√√√ 1
N

n+k

∑
i=n−k

x2
i (3.87)

Where n = 0 . . . final sample, and N is the window size. Unfortunately,

RMS filter for the raw EMG signal, as seen in Figure 3.34 is not natively

available in the Python signal library. A Python function was thus developed

for this work, as shown in Appendix A.7.

FIGURE 3.34: Raw EMG with RMS of EMG signal..

3.10.3 Fast Fourier Transform

Fourier series takes any periodic function in time and decomposes it into a

constant (a0) and a sum of a series of sinusoids; each sinusoid can is defined
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by its frequency(k) and as shown in equation 3.88 [54].

f (t) =
1
2

ao +
∞

∑
k=1

ak cos 2πkt + bk sin 2πkt (3.88)

The method of finding the Fourier series coefficient is by using the Fourier

transform. Fourier transform represents a function (i.e. input data) in the

frequency domain spatial. On the contrary, inverse Fourier transform is used

to express a frequency-domain function into ordinary measurement spatial,

such as time domain, Fourier transform, and its inverse can be described as

follows [54].

F(ω) =
∫ ∞

−∞
f (x)e−iωxdx (3.89)

f (x) =
1

2π

∫ ∞

−∞
f (ω)e−iωxdω (3.90)

where i =
√
−1 and e(iθ) = cos θ + i sin θ

Amplitude or Phase can be plotted at every frequency or across the

entire spectrum, and it can be called the frequency domain representation of

a signal, as shown in figure 3.35.

In practice, it is impossible to apply an integration within an infinite

range, and the analogue to digital converter (ADC) can not handle a

continuous function. Currently, no sensor can measure with zero time

in-between records. Therefore it is reasonable to take samples of discrete

points on a function (signal) running from zero time to time = N. signal

sampling can be imagined as shown in figure 3.36.

To conduct Fourier transform on a discrete set of samples we have to use

a discrete Fourier transform, as shown in equation 3.92.



74 Chapter 3. Theoretical Work and Modeling

FIGURE 3.35: amplitude and phase in frequency
domain [55].

FIGURE 3.36: Signal sampling [56].

F(ω) =
∫ ∞

−∞
f (x)e−iωxdx Continous (3.91)
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Fk = Ak =
N−1

∑
n=0

ane
−i2πKn

N Discrete (3.92)

Ak =
N−1

∑
n=0

anWkn
N (3.93)

where WN = e
−2πi

N

an = is sample value at index n

N = Sample size

K = 0....N − 1

Inverse discrete Fourier transform an can be represented as follows

An =
1
N

N−1

∑
n=0

AKW−kn
N (3.94)

An example of applying a DFT for two points is as follows

N = 2, W2 = e( − iπ) = −1

Ak = ∑1
n=0 an.(−1)kn = a0(−1)k.0 + a1(−1)k.1

Ak = a0 + (−1)ka1

A0 = a0 + a1

A1 = a0− a1

For four sample points DFT is as follows

N = 4, W4 = e
−iπ

2 = −i

Ak = ∑3
n=0 an.(−i)kn =

(−i)k(0)a0 + (−i)k(1)a1 + (−i)k(2)a2 + (−i)k(3)a3

Ak = a0 + (−i)ka1 + (−i)2ka2 + (−i)3ka3

Ak = a0 + (−i)ka1 + (−1)ka2 + (i)ka3

note : (−i)2 = (−1)2.(i)2 = −1, while− (i)2 = 1
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A0 = a0 + a1 + a2 + a3

A1 = a0− ia1− a2 + ia3

A2 = a0− a1 + a2− a3

A3 = a0 + ia1− a2− ia3

The upper equations can be expressed in a matrix form
A0

A1

A2

A3

 =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i




a0

a1

a2

a3

 (3.95)

Another expression can be formulated as follows

A0 = (a0 + a2) + (a1 + a3)

A1 = (a0− a2)− i(a1− a3)

A2 = (a0 + a2)− (a1 + a3)

A3 = (a0− a2) + i(a1− a3)

If we consider the addition of two arrows in the following flow graph is

as follows

FIGURE 3.37: Two Points flow graph.

4-points DFT can be expressed as follows

In general, the DFT matrix should look like the following matrix:
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FIGURE 3.38: 4-Points DFT Representation in The
Flow Graph.



A0

A1

A2

.

.

.

A(N − 1)


=



1 1 1 1 . . . 1

1 WN W2
N W3

N . . . WN−1
N

1 . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

1 WN−1
N . . . . . WN−12

N





a0

a1

a2

.

.

.

a(N − 1)


(3.96)

For a discrete Fourier transform, the number of complex multiplications

that should be applied equals N2 and N(N − 1) complex additions, which

is considered big and takes a long time for large sample points. Fast Fourier

transform(FFT) is an algorithm used to reduce the number of operations by

reusing the pre-calculated operations, as shown in the following derivation.

Several FFT algorithms were developed; one of the methods is called

decimation in time(DIT) [57], as shown in the following. Recall

equation 3.93, iteration index n can be divided into odd and even as
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follows:

n = 2r (even)

n = 2r + 1 (odd)

where r = 1, 2, 3...,
N
2
− 1

Ak =

N
2 −1

∑
r=0

a2re
−2πik(2r)

N +

N
2 −1

∑
r=0

a2r+1e
−2πik(2r+1)

N (3.97)

since WN = e
−2πi

N

Ak =

N
2 −1

∑
r=0

a2rW
k(2r)
N +

N
2 −1

∑
r=0

a2r+1Wk(2r+1)
N (3.98)

Ak =

N
2 −1

∑
r=0

a2rW
k(2r)
N + Wk

N

N
2 −1

∑
r=0

a2r+1Wk(2r)
N (3.99)

Equation 3.99 showed that each frequency domain amplitude could be

computed using two DFT of half range (N/2). This is done by adding the odd

and even indexes results and multiplying the odd results by Wk
N, the twiddle

factor. This method is called radix-2 decimation in the time algorithm, where

the data is divided into two groups. For 8 points (DIT) can be formulated as

shown in figure 3.39 flow graph. The computation cost of DIT algorithm is

as follows

2(
N
2
)2 + N =

N2

2
complex multiplies (3.100)
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FIGURE 3.39: 8-Points FFT Representation in The Flow
Graph using decimation in time method[58].

3.10.4 Convolution Theorem

The output for specific input and system can be calculated using the

convolution theorem for any linear time-invariant system. The convolution

theorem for a continuous system can be expressed in equation 3.101,

where the output is the integration of the multiplication of the input signal

and the system [59].

Convolution : ( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(y− τ)dτ (3.101)

For a digital system, the output is the sum of the whole domain of the

multiplication of the input signal and the system, as shown in equation 3.102.

y(n) =
∞

∑
−∞

x(k)h(n− k) (3.102)

Mathematically, convolution produces an output function of two input

functions affected by all previous input values. Convolution theorem is
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used for several applications such as signal processing, image processing,

statistics, and differential equations.

Convolution theorem utilized with digital filters, where both the signal

and the filter transfer function are in the frequency domain. The signal is

originally in the time domain, but it should be transformed into a frequency

domain. The digital filters are originally represented in the frequency

domain. Using Convolution theorem, the filtered signal is simply a product

of the multiplication of the original signal and the digital filter transfer

function.

The following is an example of using the convolution theorem to apply

an impulse system to a digital signal :

k = −2 −1 0 1 2

x(k) = x−1 x0 x1 x2

h(k) = h−2 h−1 h0 h1

h(−k) = h1 h0 h−1 h−2

y(0) = x−1h1 + x0h0 + x1h−1 + x2h−2

Note that the sum of the signal (x(k)) and the system (h(k)) orders,

should be equal to n order. To find y(1), h(10k) should be founded.

k = −2 −1 0 1 2

x(k) = x−1 x0 x1 x2

h(1− k) = h1 h0 h−1

y(1) = x0h1 + x1h0 + x2h−1

Now, to find y(−1) then h(−1− k) should be founded and as shown in

following:
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k = −2 −1 0 1 2

x(k) = x−1 x0 x1 x2

h(k) = h−2 h−1 h0 h1

h(−1− k) = h1 h0 h−1 h−2

y(−1) = x−1h0 + x0h−1 + x1h−2

The number of sample points for the output signal is

(N = N1 + N2 − 1), therefore, for the upper x signal the possible output

signal is seven, namely {y(−3), y(−2), y(−1), y(0), y(1), y(2), y(3)}.

3.10.5 Digital Filters

In signal processing, filters are used to remove unwanted parts such as noise

or extract valuable components of a signal.

FIGURE 3.40: Signal Filtering.

3.10.6 Butterworth Filter

Butterworth is an electrical engineer who came with two transfer functions

that would suitably describe the behavior of a particular filter. Several digital

Butterworth filters such as low pass filter, high pass filter, the band-pass

filter, notch filter will be attended in this work.

Low pass filter (LPF) attenuates frequencies above a certain chosen

cut-off frequency(stopband) and passes the frequencies below the cut-off

frequency(passband). LPF is mostly applied before the analogue to the

digital conversion process in EMG signals to remove the sampling errors.
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High pass filter (HPF) attenuate frequencies below a specifically chosen

cut-off frequency (stopband) and pass the frequencies above the cut-off

frequency (passband), HPF is used to remove slow changes such as those

errors due to motion artefacts.

Butterworth described both LPF and HPF as shown in the

equations 3.103 & 3.104 respectively [60].

|H(ω)| =
√

Ao

1 + (ωo
ω )2n (3.103)

|H(ω)| =
√

Ao

1 + ( ω
ωo
)2n (3.104)

where H(ω) is Filter gain(Normalized)

Ao is the Max gain in the passband

ωo is the lower cut-off frequency (HPF) or upper cut-off frequency

(LPF)

ω is the angular frequency of the input signal

n is Butterworth’s filter order (integer)

Both Bandpass( PBF) and Notch filters are combinations of LPF &

HPF. Bandpass and Notch filters have upper and lower cut-off frequencies.

PBF is used to pass frequencies at a specific range and attenuate the rest,

unlike notch filter where it removes filters at a typical annoying narrow

band, figure 3.41 shows all the aformentioned filters.

The slope steepness determines the filter quality in transition from the

stopband to the passband. Slope steepness is measured in Decibel(dB) per

octave. Octave is the distance between the cut-off frequency( fc) and its

double value(2 fc) in LPF and (1
2 fc) in HPF, all in the frequency domain.

Increasing the Butterworth filter order increases the steepness of the filter.
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FIGURE 3.41: Low Pass, Bandpass, High Pass, Notch
Filters Represented in frequency domain [60].

Therefore, a cascade filter may need to be used by connecting multiple

filters in series. The Butterworth filter’s order (n) defines the steepness of

the transition between stope and passbands. The increment of n increases

the steepness of the transition in the frequency domain, as shown in

figure 3.42.

Figure 3.43 shows the effect of LPF and HPF on EMG signals with

different cut-off frequencies.

3.10.7 Gaussian Smoothing Filter

Gaussian smoothing filter(GSF) can be described by impulse response, as

shown in equation 3.105 [61].

g(x(t)) =
e
−x(t)2√

2πσ2

√
2πσ2

(3.105)
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FIGURE 3.42: Butterworth LPF variation with order.

x(t) is a signal sample point, and σ is the standard deviation. As discussed

in 3.10.4, the convolution theorem can find the filtered signal utilizing the

Gaussian function, as shown in equation 3.106.

ˆx(t) = x(t) ∗ g(x(t)) (3.106)

Where * donates the convolution operator and ˆx(t) is the output signal. The

discrete Gaussian kernel is used by applying a convolution operator with

fixed window size, as shown in equation 3.107.

ˆx(n) =
m

∑
k=−m

x(n)g(n− k) (3.107)
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FIGURE 3.43: EMG Signal Filtered with Different
Frequencies using HPF & LPFn [60].

where 2m is the window size.

Gaussian smoothing filters can minimize rises and falls. Gaussian smoothing

filter is considered the ideal time-domain filer. Figure 3.44 shows a Gaussian

smoothing filter(GSF).

The Gaussian smoothing filter is almost like the mean filter, but here a
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FIGURE 3.44: impulse response of a GSF having σ = 1.

wight is multiplied by the adjacent points, and the wight is reduced as the

points get farther, wherein the mean filter, the distribution is assumed as

uniform.

3.11 Ankle Joint Regression Optimization

One of the primary goals of this work is to find the model that governs the

relationship between the ankle joint angle and the muscles contractions

assuming there is a correlation between the two variables. Due to the data

acquisition error, noise introduction, and human non-perfect movement in

the regression experiments may give a random muscle contraction within a

specific range for each ankle joint angle. In this work, the randomness was

solved by assuming that the muscle contractions have a Gaussian

distribution at each ankle joint angle(using a probability distribution due to

the randomness). Therefore this problem can be overcome by finding the

distribution parameters. The expectation(C.14) is used to find the most

frequently received muscle contraction at a certain angle. The

variance(C.18) would measure the uncertainty value of the estimated

muscle contraction value. Figure 3.45 shows the Solus muscles

contractions at 10 ankle joint angles for one regression experiment.
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Figure 3.45 proves that the muscles contractions have a Gaussian

distribution.

FIGURE 3.45: Solus Muscle Contractions at 10 deg
Plantarflexion of Ankle Joint.
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Chapter 4

Experimental Work

4.1 Introduction

In this chapter, the model proposed in chapter 3 is further investigated. A

CAD design of model 2 3.2.2 was modelled using solid work, and an

explanation of each part was introduced. Furthermore, the CAD design is

manufactured as a prototype using a 3D printer to test the required control

strategy in the future work. The data acquisition system for building the

muscle activity and ankle joint regression model are explained in detail in

this chapter. This chapter also explains connecting the data acquisition

electronics and their programming methodology in detail. The last sections

of this chapter presents the regression experiments and the used method for

synchronizing the EMG-angle dataset. A video is attached with the

electronic copy of the thesis to illustrate the designed CAD model and the

regression experiments.

4.2 Data Acquisition System

The following Components and tools are used in the regression process

require the measurement of the ankle joint and corresponding lower limb
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muscle activity. Biosensing is also used as a main component in the created

powered prosthesis.

4.2.1 NodeMCU

The NodeMCU ESP-32S is one of the production boards that NodeMcu

generated to test the ESP-WROOM-32 module. It is based on a single chip

of the ESP32 microcontroller that supports Wifi, Bluetooth, Ethernet and

Low Power. NodeMCU ESP-32s has 28 digital input/output pins, and 8

FIGURE 4.1: NodeMCU ESP-32S GPIO Pins [62].

Analog Input Pins with 2 Analog Outputs Pins. Power is supplied to the

NodeMCU ESP-32S via the USB Micro B on-board adapter or directly

through the ’VIN’ pin. Automatically, the power source is chosen. Power is

supplied to the NodeMCU ESP-32S via the USB Micro B on-board adapter

or directly through the ’VIN’ pin. Automatically, the power source is

chosen. The system can run on a 6 to 20 volt external supply. The voltage
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regulator can overheat and harm the system if more than 12V is used. 7 to

12 volts is the recommended range. The NodeMCU ESP-32S sold with a

serial-to-USB chip on board that enables programming. It is possible to

program NodeMcu-32s using various languages: Lua, Python, Java, Ruby,

etc. In this work, NodeMcu-32s are programmed using the Arduino-C

programming language. In this work, NodeMcu-32s is programmed to be a

local server and access point to send data to a personal computer, as shown

in figure 4.2. Over air Transmission(OTA) was enabled to program

NodeMCU-32s wirelessly. Code for programming NodeMcu-32s as a local

server, access point with Enabling OTA can be found in B.1.

FIGURE 4.2: NodeMCU ESP-32S Access point usage.

4.2.2 IMU (MPU6050)

IMU is a type of equipment that responds to or detects parameters of

physical motion, including acceleration, rotation, or shift of location [63].

IMUs mainly include accelerometers to measure linear acceleration and

gyroscopes to measure angular speed. IMUs may include, in some cases, a

magnetometer. The MPU6050 consists of a three-axis accelerometer and a

three-axis gyroscope and is a micro-electro-mechanical device (MEMS). It
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allows one to calculate the speed, orientation, inertia, displacement and

other characteristics of motion [64]. This board uses I2C protocol for the

Arduino interface. The key advantage of the MPU6050 is that it can

conveniently be combined the accelerometer and gyro. MPU6050 includes

eight pinouts as shown in figure 4.3. MPU6050’s pins function is as shown

in table 4.1. This board is used to measure the orientation of the ankle joint

and will be explained in ankle joint angle measurement 4.2.3.

FIGURE 4.3: MPU6050 Pins.

TABLE 4.1: MPU6050 pinout discription

Pin Pin Name Description
1 VCC Supply Voltage(3-5V)
2 GND Ground
3 SCL I2C Serial Clock pulse
4 SDA I2C Serial Data transfer
5 XDA other interfaced other I2C (Auxiliary Serial Data)
6 XCL the interfaced other I2C (Auxiliary Serial Clock)
7 AD0 Gives new I2C address for more than one MPU6050
8 int Indicate if data is available(interrupt)

4.2.3 Ankle Joint Angle Orientation Measurement

The ankle joint angle is essential since it represents the target variable in the

regression operation. The ankle joint angle is measured using double IMUs,

one adhesive to the foot and the other adhesive to the shank. IMUs measure
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both the linear acceleration and angular velocity in 3 directions. The rotation

measures the IMU’s orientation based on the linear acceleration.

The MPU6050 should be connected with NodeMcu-32s as shown in

figure 4.4.

FIGURE 4.4: NodeMcu-32s with MPU6050
Connection.

NodeMcu-32s programmed to collect IMU’s orientation using

accelerometer data and according to equations 3.79 and 3.85. The result is

as shown in figure 4.5. The result is more accurate than the gyro results,

since the accelerometer work according to gravity acceleration reference.

The orientation measurement was accurate using an accelerometer, but it

was shaky due to low accelerometer frequency.

Therefore, a new approach should be used to obtain better results. A
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FIGURE 4.5: MPU6050 Enclosure.

combination of accelerometer and gyroscope is used to get a better result, as

shown in figure 4.6. A complementary filter is used in this case to combine

the reading from both the accelerometer and gyroscope with a factor k.

It is essential to calibrate the sensor before operating a task. The

NodeMcu-32 is programmed to process a procedure to eliminate offset in

all six readings. This procedure is done by putting the MPU6050 horizontal

at the awake time, and then the program will automatically collect 500

readings for both accelerometer and gyroscope in all three axes. These 500

readings are considered as offsets. The final code for ESP32 Appendix B.2

makes NodeMcu-32s function as an access point and a local server while
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FIGURE 4.6: MPU6050 Enclosure[65].

enabling and as shown in figures 4.7, 4.8, 4.9, and 4.10, . The code used the

MPU6050_light library for collecting sensor orientation, which gave

reasonable results with a single MPU6050, but it requires some .cpp course

code adjustment when using double MPU6050.

FIGURE 4.7: MPU6050 and NodeMcu-32s Connection.
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FIGURE 4.8: Power Bank.

FIGURE 4.9: NodeMcu-32s as Access point.

4.2.3.1 Double IMUs’ Orientation Measurement

Two IMU’s needed to calculate the relative angle between the two sensors

to measure the ankle joint angle. The first sensor should be situated inside a

shoe to obtain the foot orientation, and the second one should be positioned

on the shank to measure its orientation. The IMU installed inside the shoe is
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FIGURE 4.10: Orientation Illustration.

shown in figure 4.11.

The second MPU6050 should be installed on the shank using the

predesigned enclosure model as shown in figure 4.24. The first attempt has

done by connecting both MPU6050s a long one line for both SDA and SCL

pins and using I2c protocol as shown in figure 4.12. Using the AD0 pin for

powering up the second MPU6050 will make its address equal 0x69, but

the reading acquisition is still using the same line(same SDA and SCL).

The code used for such connection is as shown in the appendix B.3. The

code is done by creating a new Arduino library which is the same as the

MPU6050_light library but with a different address. As shown in

figure 4.13, both IMUs connected via a single line. Therefore, it was

observed that the second MPU6050 readings are affecting the first one. A

new trial approach should be attempted in such a case since the second

MPU6050 reading is affecting the first one. Therefore the connection

between the two MPU6050 and NodeMcu-32s was done across multiple

lines, as shown in figure 4.14.
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(A) (B)

(C)

FIGURE 4.11: MPU6050’s Installation inside a shoe.

4.2.3.2 Ankle Joint Angle Visualization.

As mentioned in section 3.9.2 the NodeMcu-32s is programmed to work as

a TCP server. Therefore, the data should be received to be visualized in a

specific form. Unity3D [66] is a free application used for game
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FIGURE 4.12: Two MPU6050’s Connection with
NodeMcu-32s.

FIGURE 4.13: Two MPU6050s Illustration.

development, 2D and 3d Visualization and environment simulation. Unity

3D was used to visualize the ankle joint angle movement. Unity 3D is

programmed using the C# programming language. Solid primitives or 3D

models can be created/imported into unity3D. C# script is attached to 3D
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FIGURE 4.14: Two MPU6050’s Connection with
NodeMcu-32s.

models to perform a specific action. Primitives/3D models can be saved in a

Unity 3D scene. Prefabs are saved objects with specific attached

components such as mesh, script, material, animation, rigid body

component, collider...etc. The created scene is a simple scene contacting 2

Cuboids representing the shank and foot with some lighting and

post-processing effect, as shown in figure 4.15.

Unity 3D project has two scripts, InputController.cs and manager.cs .

The InputController.cs script used to collect data from NodeNcu-32s

TCP server socket and cast it to a suitable variable type to be understood

my Unity3D(Data transferred across the network as a bucket, therefore it

needs to be cast into float variable). The C# manager.cs script

(Appendix B.5) is used to receive data from the InputController.cs. The
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FIGURE 4.15: Unity3D UI - Angle Joint Angle
Visualization Project.

manager.cs takes only the orientation around the y-axis and applies it to

cuboid primitives, representing the foot and shank. In figure 4.15 text fields

are added to show the orientation around all three axes. The whole unity 3D

illustration project is uploaded to the GitHub platform and downloaded

from [67] directory. Figure 4.16 shows the 3D printed model for the data

FIGURE 4.16: Data Acquisition Setup.
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acquisition system enclosure. The enclosure functions as a case for

OpenBCI, NodeMcu-32s, and the power bank for operating NodeMcu-32s.

Two IMUs are wired to the NodeMcu-32s includes rubber for binding it

around the shank, and one will be positioned inside a shoe, as shown in

figure 4.17. The illustration of the physical change of the ankle joint inside

FIGURE 4.17: Foot’s IMU Setup.

Unity3D is as shown in Figures 4.18, 4.19, and 4.20.

4.2.4 OpenBCI

OpenBCI stands for open-source brain-computer interface. The OpenBCI

goal is to provide anyone with the computer tools necessary to sample the

electrical activities of their body. OpenBCI includes several products for

measuring biosignals. The signals that can be measured are

EEG(Electroencephalography), Electromyography(EMG), and

ECG(Electrocardiogram). OpenBCI has an accelerometer as an additional

tool for decoding movement. This type of board can be selected according

to the number of electrodes wanted to analyze data. Ganglion board(which

is used in this work) has four channels, as shown in figure 4.21.
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FIGURE 4.18: Ankle Joint Angle Visualization.

Cyton has eight input channels. The data is sent over Bluetooth Adapter

in the case of windows and Linux operating systems. Open-BCI comes with

its own GUI as shown in figure 4.22.

4.2.5 Enclosures Designs

The following models are used as enclosure components for the data

acquisition system. The objective of the data acquisition system is to get

the Electromyographical data of the calf muscle group corresponding to its

ankle joint angle for building a statistical regression model. All the

following models are designed using Solidworks 2020.

The philosophical core of this work is that if one can measure the EMG

signal of several muscles corresponding to ankle joint angle(Regression
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FIGURE 4.19: Ankle Joint Angle Visualization.

FIGURE 4.20: Data Acquisition system Installation.
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FIGURE 4.21: Open-BCi Ganglion board.

FIGURE 4.22: Open-BIC GUI.

model) for several intact limbs(several subjects), is it possible to apply this

pattern to an amputated limb as future work? And if it is not, what is the

deviation factor between intact and amputated limbs in the pre-created
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statistical model.

The model shown in figure 4.23 is used as an enclosure for OpenBCI

board(which is used to collect EMG signals of the Calf muscle group),

ESP32(used to send the ankle joint angle data to a computer), and a power

bank. A belt accompanies this model to bind it to a subject thigh. This

model is designed to make the whole data acquisition system operate

wirelessly. The model shown in figure 4.24 used as an enclosure for

FIGURE 4.23: Data Acquisition Enclosure.

MPU6050 and it also accompanied by a belt to be bound on a subject

shank.
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FIGURE 4.24: MPU6050 Enclosure.

4.3 Powered Ankle-Foot Prosthesis Modelling and

Prototype Manufacturing

A powered ankle-foot is modelled based on the derived mathematical

model in section 3.2. The modelling is implemented using Solidworks

2020. Solidworks is considered as an industry-leading application in

mechanical design and simulation. The model is manufactured as a

prototype using a 3D printer machine.

3D printing is an additive method that involves building up layers of

material to produce a three-dimensional object. 3D printing is also suitable

for quick prototyping since it allows for the development of complicated,

customized designs. Thermoplastics, such as acrylonitrile butadiene styrene

(ABS), metals (including powders), resins, and ceramics are among the

materials used in 3D printing [68]. 3D printers are used in several

applications such as aerospace, automotive, medical, robotic, etc.

3D printers are used in several applications such as aerospace,

automotive, medical, robotic, etc. 3D printers are available in several sizes

and speeds. Endure 5 plus printer is used to manufacture the prototype
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parts. Endure 5, as shown in figure 4.25. ABS filament is used as the

filament material. ABS is known for its high hardness and temperature

resistance than PLA filament.

FIGURE 4.25: MPU6050 Enclosure.

4.4 Below Knee Prosthetic Design

The final design was modelled using Solidworks 2020, and it includes the

following parts:

• Motor Case

The motor case used to hold the used motor and rotated with the

rotation of the motor joint. The motor case is as shown in figure 4.26.

Figure 4.26 shows the i Nema 17 stepper motor installation inside the

motor case.

• Motor Pulley

GT pulley of 20 teeth and 5 φmm diameter is used to link the motor to

the rest of the device, the pulley and its place in the device is as shown

in figure 4.27 (A), and 4.27 (B) respectively.
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(A) (B)

FIGURE 4.26: Motor Case.

(A) (B)

FIGURE 4.27: Motor Pulley.

• Lead Screw

T8 Lead Screw of 8 mm diameter is used to transmit the motion to the

designed ankle-foot prosthesis, as shown in figure ??

• Lead Screw Pulley

A modified GT pulley with a larger height and diameter is increased

to hold the lead screw. The modified pulley has a couple of grooves to

make the pulley holden inside the motor case and hold a bearing; the

modified pulley is as shown in figure 4.28. Modified pulley, lead screw,
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and the motor case can be assembled as shown in figure 4.28. A belt is

used to like both pulleys(motor pulley and lead screw pulley).

(A) (B)

FIGURE 4.28: Lead Screw Pulley with Motor Case.

• Motor Cap

A motor cap is used to link the motor case with the device. The motor

cap is considered as a part of the motor joint(discussed in 3.2.2). The

motor cap has a slot to like it to the motor joint axle and keep the

motor case rotating with the ankle joint rotation. The motor cap and

its assembly with the rest parts are shown in figures 4.29 and 4.29,

respectively.

• Motor Joint Axle

The motor joint axle is considered one of the main parts of the motor

joint and links the motor case to the pylon of the powered prosthesis.



4.4. Below Knee Prosthetic Design 111

(A) (B)

FIGURE 4.29: Motor Cap with Motor Case.

The motor joint axle is designed to have a key to make it farmly

concentrated with the motion of the whole motor joint. Motor joint

axle and its assemble as shown in figures 4.30 and 4.30, respectively.

• Pylon

A pylon is a part that links the foot or the ankle joint with the socket;

figure 4.31 show the pylon designed with a key-space to make the

motor joint axle be able to through the pylon. The designed pylon also

works as a shield for the motor, and it directly connects with the motor

joint axle, as shown in figure 4.32.

• Connector

The connector links the pylon with the ankle joint, constructing a part

of the ankle joint. The connector is connected with the pylon using a
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(A) (B)

FIGURE 4.30: Motor Joint Axle with Motor Case.

(A) (B)

FIGURE 4.31: Designed Pylon.

threaded screw, and it has an inner hole channel for a space of the used

electronics wires, as shown in figure 4.33.

• Foot

The foot is designed to have an ankle joint and has a joint a crank joint

to link with the motor joint. The foot is designed to be a compact,

simple, and sophisticated look. The foot is designed to hold a bearing
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FIGURE 4.32: Assembled Pylon.

(A) (B)

FIGURE 4.33: Connector.

inside and carry the foot during the ankle joint rotation, as shown in

figure 4.34. The foot is designed to have a rectangular hole that holds

the orientation sensor. The orientation sensor works as a feedback

system that compares the rotation of the foot with the natural intact

foot. The foot also includes a circular hole channel penetrate the

whole foot to install the sensor wires, as shown in figure 4.35. The
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foot has a fingers hold for cosmetics purposes.

(A) (B)

FIGURE 4.34: Prosthetic Foot.

FIGURE 4.35: Prosthetic Foot.

• Ankle joint axle

The ankle joint axle is almost working, similar to the motor joint axle,

and it works to link the connector to the foot and directly penetrate the

bearings through the inner ring. The ankle joint axle is as shown in

figure 4.36.
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(A) (B)

FIGURE 4.36: Ankle Joint Axle.

• Lead Screw Holder

the lead screw holder links the crank joint to the lead screw, as shown

in figure 4.37.

(A) (B)

FIGURE 4.37: Lead Screw Holder.
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• Bearing

SKF ball bearings are used to concentrate the motion of the joints into

only a radial motion. Two SKF ball bearings were used: 6804 for the

ankle joint and 6802 for the motor joint and hold the modified pulley,

as shown in figures 4.38, and 4.39.

(A) (B)

FIGURE 4.38: Ball Bearings.

FIGURE 4.39: Ankle Joint Ball Bearing.

• Electronics Enclosure

The Electronics encloser is linked with the pylon via bolt-nut. All

electronics that operate the designed artificial limb, such as the
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mainboard, battery, accelerometer ... etc, are placed inside the

electronics enclosure, as shown in figure 4.40.

FIGURE 4.40: Electronics Enclosure.

• Nuts

Two nuts are used to hold the ball bearings and keep joints compact.

A nut with extrusion at one side is designed to keep pressure onto the

bearings. The nuts are used in the ankle joint and motor joint, as shown

in figure 4.41.

The final design modelled using Solidworks 2020 and as shown in

figure 4.42. The Mechanism of ankle joint movement started from the
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(A) (B)

FIGURE 4.41: Nuts.

motor and moved to the lead screw using a belt. The lead screw moves the

ankle joint using a crew and nut. The whole system device is of a single

degree of freedom since it only depends on the ankle joint angle. The

powered ankle-foot motion is as illustrated in video [72]. All parts with the

complete model assembly can be downloaded from [73].
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FIGURE 4.42: SolidWorks Design Model.

4.5 3D Printed Powered Ankle-Foot Prosthetic

prototype

A powered ankle-foot prosthesis prototype is manufactured using a 3D

printer, as shown in figures 4.43, 4.44, 4.45, and 4.46.

The prototype tests the generated statistical model using the regression

and control systems. The designed model by SolidWorks (4.4) was printed

using ABS 3D printer filament. ABS filament endures higher pressure, heat,

and strength than PLA filament. ABS is more flexible than PLA filament

and has higher temperature resistance.

The manufactured prototype was used to test any theoretical work and
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(A) (B)

FIGURE 4.43: 3D Printed Powered Ankle-Foot
Prosthesis.

(A) (B)

FIGURE 4.44: 3D Printed Powered Ankle-Foot
Prosthesis.
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(A) (B)

FIGURE 4.45: 3D Printed Powered Ankle-Foot
Prosthesis.

measure how-2el deviated the prosthesis’s behavior for both intact

amputated limbs.
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(A) (B)

FIGURE 4.46: 3D Printed Powered Ankle-Foot
Prosthesis.

4.6 Regression Experiments

Regression experiments aim to build a statistical model that can predict the

response of the ankle joint relying on the leg muscles contraction. Four

muscle activities (Tibialis Anterior, Medial Gestrocnimis, Lateral

Gestrocnimies, and Soleus) were recorded with the measurement of the

ankle angle explained in section 4.2.3.2. Before electrode installation, the

skin should be cleaned, and leg hair should be shaved for all subjects in
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order to prevent any separation that may cause any distortion in the

muscles’ activity signal. The electrodes were installed along the

longitudinal centre of the muscle and at the belly of the muscle with 2 cm

between the two electrodes to get the highest muscle activity signal

amplitude [69]. The location of the electrodes can drastically affect the

signal shape, as shown in figure 4.47. Appendix C.1 is a reference map for

the placement of the electrodes for the major muscles. A ground electrode

is used to normalize the signal acquisition from each muscle, the ground

electrode placed on the knee bone in these experiments. The goal of using

two electrodes is to compare the activity between each electrode and

remove the noise.

FIGURE 4.47: EMG Signal Shape Variation Due to
Electrodes Location [69].

All electronics were mounted on the thigh, and wires are used to connect

the electrodes to OpenBCI and to connect the two IMUs to the Nodemcu-32s

and as shown in figure 4.48. The data is transmitted wirelessly either by
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TABLE 4.2: Subjects Aspects

Subject Gender Age Height(cm) Weight(kg) Origin Date
1 Male 25 187 87 Iraqi 2021/4/17
2 Male 22 178 65 Iraqi 2021/4/17
3 Male 20 180 75 Iraqi 2021/4/17
4 Male 20 190 90 Iraqi 2021/4/17
5 Male 17 183 86 Iraqi 2021/4/17
6 Male 15 178 90 Iraqi 2021/4/17

Bluetooth in the case of OpenBCI or across wifi using node MCU-32s. As

explained in section 4.2.3.2, the author developed a c# based application

to visualize the ankle angle. The c# application is further developed to

visualize and save the muscles contraction and the ankle angle, as shown in

figure 4.49. The application can display and store the ankle angle and the

data transmitted from OpenBCI for four channels. The full version of the

application with its source code can be downloaded from GitHub [67]. The

experiment’s recorded data is stored in two .csv files, one for the muscle

contractions and the ankle angle. Figures 4.50 and 4.51 show a sample of

the two saved experiments files.

A sampling frequency rate mist-matching problem between the two

sensors emerged. OpenBCI sends data at a rate of 200 Hz, wheres Node

Mcu-32s sends data at a rate of 80-50 Hz. Both data frames should have the

same size to fit it and build the required statistical model(regressor). As

shown in figures 4.50 and 4.51, both data have a timestamp in

epoch/UNIX(Measure the seconds for 1st January 1970, with microseconds

as a decimal). OpenBCI data were downsampled using a custom python

code, where the timestamp variable was used as crucial to match both data.

Data matching and cutting the redundant and saving the matched data into a

new .CSV file was done using code shown in appendix A.9. Six subjects

were involved in the experiment and had the aspect shown in table 4.1.

In this experiment, the subjects were ordered to perform a body rise and
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fall over the ankle joint plantarflexion and record the four aforementioned

muscles with the ankle angle as shown in figures 4.54, 4.52, and 4.53. The

entire experiment was recorded using a smartphone camera, with the record

of the developed application screen for observing the start and the end of

each experiment.

a published video [70] on YouTube by author, shows the entire

experiment. The EMG data are downsampled to be matching the

orientation data using the timestamp variable. The start and the end time of

each experiment is recorded manually. Therefore all data before and after

the experiment’s movement are trimmed using a custom-made python code

(Appendix A.10). The new matched and trimmed data that includes all four

muscle activities with shank, foot, and ankle angle, ready to perform any

digital or statistical modeling process, is exported into the .csv data frame.

The newly created data frame can be downloaded from [71]. Figure 4.55

shows a sample of the final processed dataset. The ankle joint Ankle angle

calculation from shank and foot rotation records were calculated according

to the formulation in equation 3.8.

The whole data were visualized with respect to time, and the EMG data

are plotted with respect to the ankle angle to observe a possible pattern. A

simple linear regression was applied with the raw data, and the coefficient

of determination(r2) was used as a metric to evaluate the regressor

performance. A feature scaling was performed on the EMG data to prevent

any bias in any dimension; the python code for the above work(data

plotting, linear regression and feature scaling) (Appendix A.11).

The EMG for the four-channel was plotted in the frequency domain

using Fast Fourier Transformation. To find the signal’s spectrum and the

noise frequency range, the code for plotting the EMG signals in the

frequency domain is shown in appendix A.12. Linear and Polynomial
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regressions are used after applying a Low-pass filter of a specific cut-off

frequency to get the best regression performance. The lowpass filter

python’s code (Appendix A.13).

Correlation Matrix with Heat-map and Information gain - mutual

information methods for feature selection were used to get the most

inflecting muscle on the ankle joint plantarflexion movement. Python code

for applies the aforementioned feature above selection methods

(Appendix A.14).

The proposed method 3.11 was used to optimize the ankle joint

regression. The Gaussian distribution’s mean(µ) is used to get the angle

sample point representing multiple muscle contractions. The variance(σ2)

is used to estimate the uncertainty of the used mean sample point value.

Python code for getting the mean of a set of muscle contractions at a certain

angle (Appendix A.15). The new optimized data was modelled using linear

regression, polynomial regression, K-nearest neighbour regression with a

low-pass filter and Gaussian smoothing filter to get the best regression

accuracy(r2). Python code for the upper operations (Appendix A.16).
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(A) (B)

(C) (D)

FIGURE 4.48: EMG Electrodes Placement and
Electronics Enclosure Position.
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FIGURE 4.49: Developed Application for Experiments
Management.

FIGURE 4.50: Ankle Joint Saved File Sample.

FIGURE 4.51: OpenBCI EMG Saved File Sample.
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FIGURE 4.52: Standing.

FIGURE 4.53: Rising.



130 Chapter 4. Experimental Work

FIGURE 4.54: Electrodes Placement.

FIGURE 4.55: Down-sampled Raw Data.
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Chapter 5

Results and Discussions

5.1 Introduction

This chapter will present and discuss the theoretical and experimental

results. The proposed mathematical model of the powered ankle-foot

prosthesis will be discussed with its implications here. The following

sections will discuss human Gait cycle classification based on EMG signals

using multiple classification algorithms and multiple filtering tech- niques

results. Features selection of Huamin Gait cycle classification based on

EMG signals to get the most effective muscle in the classification process,

and its methodology is exposed. Ankle joint plantarflexion experiment data

and plots are also illustrated in this chapter. The ankle joint regression with

multiple algorithms and multiple filtering techniques that could improve the

regression performance results is discussed in this chapter. The best

parameter for each filter approach result is obtained based on supervised

machine learning. Ankle joint regression feature selection using linear

correlation results is exposed. The final section shows the results of the

optimization of ankle joint regression using Gaussian distribution and its

ability to improve the performance of the regression process.
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5.2 Human Gait Cycle Classification Results

In this section, the results of multiple classification techniques(described in

3.4) with multiple filtering techniques(explained in 3.10.1) are used to

classify a human gait cycle(defined in 1.2.1) into stance and swing phases

based on supervised machine learning.

Human Gait cycle classification is essential in pre-disease diagnosis,

operating a lower limb prosthesis, and a better understanding of the

biomechanics of muscles.

As explained in 3.4, classification is the process of labelling an unsorted

dataset based on pre-labelled data through a process called training. As

discussed in3.4, classification deals with a discrete dataset, unlike

regression, which produces continuous predictions of the dataset. The

performance between five classification algorithms, namely: Support

Vector Machine(SVM), Logistic Regression(LR), K-Nearest

Neighbors(KNN), Decision Tree(DT), and Random Forest(RF), has

measured(i.e., performance) to get the best algorithm for that deal with

such case(i.e., human gait cycle classification).

Figure 5.1 shows the Soleus muscle activity for both stance and swing

phases, respectively.

Binary classification is applied to classify signals shown in figure 5.1 in

the context of a signal having both stance and swing phases, as shown in

equation 5.1.

yphase(t) =

1 x(t) in stance phase

0 x(t) in swing phase
(5.1)

where x(t) is the activity of the selected muscle, thus yphase(y) ∈ Rn,

where n is the number of the independent variables (i.e. recorded muscles).
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(A)

(B)

FIGURE 5.1: Stance phase (A) and Swing phase (B) for
a single cycle.
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In this work, seven lower limb muscles are used in the classification

process; the recorded muscles are the Soleus muscle, Tibialis anterior

muscle, Gastrocnemius Lateralis muscle, and Vastus Lateralis Rectus

Femoris muscle, Biceps Femoris muscle, and Gluteus Maximus muscle.

All of the datasets utilized in this work are obtained from the HuMoD

database [74] is an open database dedicated to analysing and recording

human motion dynamics, which provides well-organized and documented

datasets mainly about the lower limbs. The database contains

three-dimensional motion tracking data collected using sophisticated

cameras and markers attached to a participant jogging on a treadmill with a

force plate beneath it recording the ground response force at 1,000 Hz. It

also captures all lower limb contact events, recording 1 if the limb is in

touch with the ground and 0 otherwise, providing an effective technique of

labelling the data for classification purposes. Seven electromyography

sensors are also placed on each leg muscle to record muscle activity.

Participants conduct needed activities such as straight walking at various

speeds, straight running, sideways walking, and kicking a soft football. The

raw and filtered EMG data are provided, with the latter being produced

using a root Mean square filter with a window size of 100. The Soleus

muscle, Tib- ialis anterior muscle, Gastrocnemius Lateralis muscle, Vastus

Lateralis muscle, Rectus Femoris muscle, Biceps Femoris muscle, and

Gluteus Maximus muscle all provide EMG data. The data in this study is

based on a female participant walking straight at 1.0 m/s (age 27, 161 cm

tall, and 57.3 kg in mass). Mat format is used to store the data. One issue

with this data set is that the EMG recording frequency (frame rate) is 2,000

Hz.

In contrast, the force plate operates at 1,000 Hz, necessitating data

pre-processing to ensure that both sets of observations have similar reading
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rates. This paper’s pre-processing and subsequent categorization are done

with Python. The information was then supplied not these zero vectors with

even indices (Python starts with 0 indexing), forcing each in-between

empty odd cell to its primary cell.

Electromyographical signals are mostly accompanied by noise, which

leads to poor classification and incorrect prosthesis response. Median(x)

and root mean square filters(x) filters were used to refine the EMG signals

accompanied with noise to get a higher classification performance. A 60

gait cycle data of HuMoD databases is fed into the Sciket learning

library(includes most machine learning algorithms). The classification and

programming operations are done using Spyder IDE with a Core i7

processor of 2.40 GH CPU speed and 32GB RAM laptop using windows

ten as an operating system.

The confusion matrix is used to measure the performance of the

classification algorithms. The confusion matrix is based on the dataset’s

true and false predicted samples. The classification performance is

calculated for the raw data set and after applying median and root mean

square filters. The performance is shown in figure 5.2.

Figure 5.2 shows the classification performance for the Support Vector

Machine, Logistic Regression, K-Nearest Neighbors(KNN), Decision Tree,

and Random Forest classification algorithm. Figure 5.2 shows that the

performance of all algorithms had increased with the application of filters.

Median filters show the upper hand over the RMS filter since it removes

outliers that may produce due to noise. K-Nearest Neighbors(KNN)

performs better than other algorithms despite the used filter; this interprets

that each phase’s data has separated and clustered together.
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FIGURE 5.2: Classification technique performance for
Raw EMG, EMG with Median filter, and EMG with

RMS filter.

5.3 Human Gait Cycle Classification Features Selection

As discussed in section 3.7, feature selection selects the most influential

variable on the build classification model. In this work, feature selection

refers to the best muscle that can be used to extinguish between the stance

and swing phases. Machine learning literature has several approaches to

obtain this high influential variable. In this work, a simple graphical

method is used in the feature selection topic. The used approach(graphical

method) is made by plotting both the stance and swing phases of the seven

recorded muscles and giving a different color for each phase; the muscle

that has the highest activity separation between the classes is considered as

the best muscle that can be used to distinguish between the gait cycle

phases. Figure 5.4 shows the muscle activity for each phase.

Figure 5.4 shows muscle contraction and the maximum to the minimum
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TABLE 5.1: Muscles Abbreviations

Abbreviation Full muscle name
SOL Soleus muscle
TIA Tibialis Anterior muscle
GLS Gastrocnemius Lateralis muscle
VSL Vastus Lateralis muscle
RCF Rectus Femoris muscle
BCF Biceps Femoris muscle
GLX Gluteus Maximus muscle

activities for both stance and swing phases, the abbreviations represent the

muscles under consideration and shown in table 5.1.

The Rectus Femoris muscles show the highest separation between the

two classes. The Rectus Femoris muscle mainly affects the knee joint

extension, and it works in swing phases while rising the whole limb. Thus,

it has a higher swing phase activity, making it the best variable to

discriminate the gait cycle phases.
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(A)

(B)

(C)

FIGURE 5.3: Recorded Lower Limb Muscles Activity
for Both Stance and Swing Phases.
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(A)

(B)

(C)
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(A)

FIGURE 5.4: Recorded Lower Limb Muscles Activity
for Both Stance and Swing Phases.
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5.4 Ankle Joint Regression Based on

Electromyographical Signals

Ankle joint regression is considered the essence of this work. As discussed

in section 3.5, the ankle joint regression aims to find the optimal model to

predict the response of the powered ankle-foot prosthesis. The

electromyographical signals majorly drive the imaged powered ankle-foot

prosthesis, and it operates mainly based on the regression model built in

this section.

Figure 5.5 shows a plot of the whole data acquisition in the regression

experiment (4.6). The x-axis for all sub-figures is the time in seconds. The

y-axis in figure 5.5 represents the ankle joint orientation, Tibialis Anterior

muscle, Medial Gestrocnimis muscle, Lateral Gestrocnimis muscle, and

Solus muscle activities for eleven plantarflexion movements shown in the

first segment of video [70].

The negative ankle joint angle shown in figure 5.5 represents the

plantarflexion movement. In contrast, the negative signal sample points in

muscle contraction do not have meaning, and a reverse installation of

electrodes causes them. The negative sign of muscles contractions can be

overcome using a root mean square rectification by applying equation 3.87

for all sample points, as shown in figure 5.6.

Figure 5.6 shows, the root mean square filter tends to smooth signals. The

linear regression, polynomial regression, KNN regression performances for

rectified EMG signals by RMS is as shown in figure 5.7.

The regression performance for all regression algorithms is still low; even

RMS rectifier is applied; this means that the noise is still affecting the proper

building of the statistical model, note that the performance is measured based

on the r-square score(explained in 3.6.4). The best performance for KNN
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(A)

(B)

(C)

(D)

FIGURE 5.5: Ankle Joint Regression Experiment(Row
data).

(E)

FIGURE 5.5: Ankle Joint Regression Experiment(Raw
data).
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(A)

(B)

(C)

FIGURE 5.6: Muscles Contractions with RMS
Rectification.

(D)

FIGURE 5.6: Muscles Contractions with RMS
Rectification.

regression was recorded at k-value = 4 after the rectification process.

The regressor performance is measured by applying the test set of

independent variables and comparing the predicted results with the

dependent variable in the test set. Figure 5.8 shows the actual and the

predicted values of the ankle joint angle for four muscles activities.

Figure 5.8 shows, most predicted angles are incorrect with a certain
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FIGURE 5.7: Regression technique performance for
Raw EMG and Rectified Dataset with RMS Filter.

FIGURE 5.8: Actual-Predicted Ankle Joint Angles.

distance from the actual angle. The actual angles have an overshooting for

an angle value that is more than 80 deg, which is unreasonable since the

movement is a plantarflexion movement and the ankle joint angle should

always be negative; a fault may cause this artifact in the data transmission

of the sample across the wireless system(WIFI) of the data acquisition

system. The row data of the dependent variable is refined furthermore by
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removing the overshoots and replace the overshoot sample point with an

average value of the neighbours’ sample point(a window of 10 sample

points is considered)

For better understanding of the signal, it is convenient to convert the

signal into the frequency domain. As explained in section 3.10.3, discrete

Fourier transformation converts the underlying signal into the frequency

domain. The fast Fourier transformation(FFT) is the most efficient

algorithm for converting the time domain signal into the frequency domain.

A signal is represented in the frequency domain by the frequency spectrum,

where its amplitude in the time domain represents each frequency.

Figure 5.9 shows the Tibialis Anterior muscle activity both in the time

domain and frequency domain. As shown in the time domain, the signal

has a clear waveform with small distortions all over the signal, which

certainly represents the noise. As shown in the time domain, the noise has a

low amplitude with a high fluctuation, which occurs at high frequency.

FIGURE 5.9: Tibialis Anterior muscle activity both in
the time domain and frequency domain.

Figure 5.9 shows, the noise is occurring within the high frequencies

range. Thus it is reasonable to use the lowpass filter. Lowpass Filter(LPF)

passes the frequencies lower than a certain cut-off frequency and bands the
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rest of the upper frequencies. As explained in section 3.10.6, the

parameters that control the Lowpass filter(LPF) are the cut-off frequency

and the order that controls the transition at the cut-off frequency, as shown

in figure 3.42. Figure 5.9 shows the last peak takes place at frequency 2HZ.

Therefore, it is reasonable to choose it as the cut-off frequency. Figure 5.10

shows the application of the lowpass filter(LPF) at a cut-off frequency of

2HZ and having an order of 2 for all recorded muscles.

(A)

(B)

FIGURE 5.10: LPF with fc = 2HZ, and n = 2 for all
recorded muscles.

Figure5.10 shows that the LPF removes the distortions in muscles activity

signals and produces a more smooth and refined signal. Now it is convenient

to apply the RMS rectification into the muscles activity signals in order to

remove the negative sample points, as shown in figure 5.11.

Figure 5.12 shows the performance of linear, polynomial, and KNN

regression algorithms with all Raw, RMS rectified, LP filtered, and LP

filtered, then RMS rectified datasets. Figure 5.12 shows a small

enhancement in the performance of all algorithms after the application of

the LPF and removing the high-frequency noise as compared with the raw

dataset. The LP filtered dataset is still having a lower performance than the



5.4. Ankle Joint Regression Based on Electromyographical Signals 147

(C)

(D)

FIGURE 5.10: Application of LPF with fc = 2HZ, and
n = 2 for all recorded muscles.

(A)

(B)

(C)

FIGURE 5.11: LPF with fc = 2HZ, and n = 2, with
RMS Rectification of 10 Window Size for All Recorded

Muscles.
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(D)

FIGURE 5.11: Application of LPF with fc = 2HZ, and
n = 2, with RMS Rectification of 10 Window Size for

All Recorded Muscles.
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FIGURE 5.12: Regression technique performance for
Raw EMG and Rectified Dataset with RMS Filter.

RMS rectified dataset due to the negative side of the signal. After applying

the RMS rectification for the LP filtered dataset, a nature enhancement

occurs. The performance is increased after applying both LPF and RMS

rectification, but it is still around 50%, which means that the prediction has

a probability of 50% being false. Therefore, a new methodology must be

applied to get a higher performance, resulting in a higher accurate powered

ankle-foot prosthesis response.
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5.5 Ankle Joint Regression Optimization

As shown in figure 5.5 the high correlation between the ankle joint

angle(dependent variable) and the muscles contractions(independent

variable) is obvious. Therefore, a high regression performance should be

produced. Figure 5.13 shows the muscle contractions after applying LPS

and RMS rectification with the ankle angle for a single cycle. Figure 5.13

illustrates that the pattern of the correlation between the muscles

contraction and the ankle joint ankle is still unclear.

The noise and the unobserved error sources might still affect the original

signal and do not produce a clear pattern. The proposed method in

section 3.11 is applied, this hypothesis assumes that the sample point for a

single ankle joint angle has a Gaussian distribution of the muscles

contractions and the distribution expectation is the most accurate record,

and the rest points are affected by the noise and the noise increases as the

distance between the point and the expectation is increase. The proposed

method can be simply imagined by plotting a horizontal line at a certain

ankle joint ankle and project the intersections with ankle wave onto the

muscles wave, then finding Gaussian expectation(mean) at these muscles

records, this is illustrated in figure 5.14.

Figure 5.15 shows the application of the proposed method onto the raw

EMG dataset of the four recorded muscles activity. Figure 5.16 shows, the

muscles activity has a repeated pattern with plantarflexion movements after

applying the proposed method.

The proposed method produced a more precise pattern of muscles

contractions with the plantarflexion movements. It still, has a more rough

signal, but this problem is overcome using traditional filters(discussed in

section 5.4). Figures 5.16, and 5.17 show the application of LPF and LPF
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(A) (B)

(C) (D)

FIGURE 5.13: Recorded Muscles Contractions with
Corresponding Ankle Joint Angles.

with RMS rectification with the Gaussian averaged dataset, respectively.

Figure 5.18 shows the performance of the regression above algorithms

with different datasets; the proposed method for processing the EMG

signals produced the highest performance among all types of processing

methods. The performance increased drastically with this method, as

shown in figure 5.18. The performance of the polynomial regression for the

proposed method raised to 84.157%.

Figure 5.19 shows the polynomial regression fitting for the four recorded
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FIGURE 5.14: Proposed Method Illustration.

muscles after applying the proposed method. A clear pattern of the muscles

contractions and the ankle joint angle correlation could be observed from

figure 5.19.

Gaussian smoothing filter is considered as one of the most effecting

filters in reducing distortion in the considered signal. It is tried in this work

to compare it with LPF, then choose the one with the highest regression

performance.

Figures 5.20, and 5.21 show the application of the Gaussian smoothing

filter of the standard deviation of 5 with Gaussian averaged dataset then
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(A)

(B)

(C)

(D)

FIGURE 5.15: Application of The Proposed Method
with The Raw Dataset.

(A)

FIGURE 5.16: Application LPF with The Proposed
Method.
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(B)

(C)

(D)

FIGURE 5.16: Application LPF with The Proposed
Method.

(A)

(B)

FIGURE 5.17: Application LPF Then RMS
Rectification with The Proposed Method.
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(C)

(D)

FIGURE 5.17: Application LPF Then RMS
Rectification with The Proposed Method.
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FIGURE 5.18: Regression technique performance for
Raw EMG and Rectified Dataset with RMS Filter.

application of RMS rectification, respectively. Figure 5.21 shows that the

RMS rectified dataset after the application of the Gaussian smoothing filter is
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(A) (B)

(C) (D)

FIGURE 5.19: Recorded Muscles Contractions with Its
corresponding Ankle Joint Angles.

(A)

FIGURE 5.20: Gaussian smoothing(σ = 5) Filter
Application with Gaussian Averaged Dataset.

identical with the dataset that is only processed using a gaussian smoothing

filter. GSF is smoothing the underlying signal, which produces a similar

signal after applying the RMS rectification. GSF is still producing a negative

part of the signal, which does not have any meaning in the EMG signal, and

here is the benefit of the RMS rectifier, which removes the negative parts of
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(B)

(C)

(D)

FIGURE 5.20: Gaussian Smoothing(σ = 5) Filter
Application with Gaussian Averaged Dataset.

the signal, as shown in figure 5.21.

(A)

FIGURE 5.21: The Gaussian Smoothing(σ = 5) Filtered
Dataset the RMS Rectified.

Figure 5.22 shows the regression algorithms performance for the

Gaussian averaged dataset processed with the Gaussian smoothing

filter(GSF). GSF produces a higher performance for all regression

algorithms and even higher than the dataset processed with both LPF and
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(B)

(C)

(D)

FIGURE 5.21: The Gaussian Smoothing(σ = 5) Filtered
Dataset the RMS Rectified.

RMS rectifier. GSF shows an equal performance in KNN with the averaged

dataset processed with LPF and RMS rectifier; this means that GSF could

be a reliable process that gives higher performance than both LPF and RMS

rectification in a compilation.

Figure 5.23 shows the regression algorithms performance for the

gaussian averaged dataset processed with both GSF then RMS rectifier,

which removes the negative side of the EMG signal. Figure 5.23 shows the

last configuration of the process(Gaussian average then GSF, then RMS

rectification) gives the highest performance for all algorithms. KNN shows

the highest performance, which reached 94.88%. The highest performance

for KNN was observed at k=80, which was 95.51%; for Polynomial

regression, the highest regression is 87.92% at a degree of 4.
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FIGURE 5.22: Regression technique performance for
GSF of The Averaged Dataset.

The high regression performance is sensitive in predicting the response of

the powered prosthesis for the given signals. The accuracy of the proposed

method can be increased if reinforcement learning is used where the training

data will be increased for longer gait cycle trails, which may produce a more

accurate Gaussian mean.
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FIGURE 5.23: Regression technique performance for
GSF and RMS Rectification of The Averaged Dataset.

5.6 Ankle Joint Regression Feature Selection

As explained in section 3.7, feature selection reduces the number of

redundant features and gets the most compelling feature on the de- pendent

variable. The linear correlation coefficient is used in this work to gain the

most effective muscle on the regression of the ankle joint in terms of

plantarflexion and dorsiflexion movements. Figure 5.24 shows the

correlation coefficient of the four recorded muscles with the ankle joint

angle regression. The symbols shown in figure 5.24 are interpreted in

table 5.2.

Both the Lateral Gastrocnemius muscle and Medial Gastrocnemius

muscle showed the highest correlation with the ankle joint angle. Medial

and Lateral Gastrocnemius muscles are the main planter-flexors muscles.
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FIGURE 5.24: Correlation Coefficient of Four Muscles
Contractions With Ankle Joint Angle.

TABLE 5.2: Muscles Symbols Interpretations

Symbol Full muscle name
S Soleus muscle
MG Medial Gestrocnimis
LG Lateral Gestrocnimi
TA Tibials Antirior

The plantarflexion movement is used to lift the whole body. Therefore,

these muscles exert the highest activity force, as shown in figure 5.25.

Figure 5.26 shows the enhancement in the regression performance by

the use of the Lateral Gastrocnemius muscle and compares it with the

performance done by four muscles. Feature selection increases the

performance and will direct us to few muscles that can operate the powered

prosthesis instead of recording the leg muscles. A consequence of recoding

fewer muscles is the need for less complicated-expensive data acquisition

devices, such as single or double EMG sensor channels instead of

four-sixteen channels.
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FIGURE 5.25: Gastrocnemius Muscle.
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FIGURE 5.26: Regression performance for GSF and
RMS Rectification of The Averaged Dataset of Lateral

Gestrocnimis Muscle and The Four Muscles.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

This work aims to investigate, design, and build a suitably powered

ankle-foot prosthesis. The following points are concluded from this work:

1. The linear actuator should exert a force almost equal or higher to the

amputee’s weight to lift and push his body forward.

2. Complementary filters produce the most smooth and accurate records

using data acquisition devices of two sensors.

3. The timestamp is considered an essential variable in synchronising two

datasets with different sampling frequencies.

4. The median filter produced a higher gait cycle classification based on

EMG signals than the RMS filter. The median filter is known for

removing the outlier produced by the noises, which could be why its

high ability in noise filtering.

5. K-Nearest Neighbors(KNN) classification algorithm produced the

highest performance, and this was caused due to the increased

separation between the dataset for each case.
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6. The Rectus Femoris muscle showed the highest separation between gait

cycle phases(stance and swing phases). Therefore, it is considered the

best parameter to distinguish between the phases. The Rectus Femoris

muscle functions during the knee flexion movement. Consequently, it

has produced the highest activity during the swing phase.

7. RMS filter shows a decent improvement in the regression performance

due to its ability to remove the negative signals side, which does not

have any meaning in EMG singles, and they could be considered

noises.

8. EMG is mainly corrupted with noise falls in the high-frequency band.

Therefore, a low pass filter will be optimal to filter this noise.

9. A hypothesis proposed in this work stated that a correlated signal

corrupted with noise should have a Gaussian distribution for each

dependent variable point and the most accurate value located at the

Gaussian distribution expectation. This process produced a noticeable

and drastic improvement in the regression performance. This process

also produced a more precise pattern(i.e the performance rise to

80-95% according to the modelling algorithm).

10. Gaussian smoothing filter(GSF) showed a maximum effect over the

low pass filter regarding noise movement and the smoothing of the

EMG signals.

11. Both Lateral and Medial Gastrocnemius muscles produce the highest

correlation coefficient with the ankle joint angle(70%, 74%), and

indeed, the regression for this muscle will deliver higher performance.

Regression feature selection will improve the regression performance,
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but it will require less complicated and less expensive EMG sensors

for operating the powered prosthesis.

6.2 Recommendations for Future Work

1. Classification in the frequency domain to find the noise band.

2. Design the optimal control system that operates the powered ankle-foot

prosthesis.

3. Ankle joint regression based on above-knee muscles contractions for

above-knee amputees.

4. Ankle joint angle regression deviation between the intact and

amputated limbs

5. The mechanical analysis includes finite element analysis and material

selection for the proposed powered ankle-foot prosthetic CAD mode.
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Appendix A

Matlab and Python Code for

Theoretical Work

A.1 Linear Actuator Displacement Against Ankle Joint

Angle Matlab Plot Code

1 clear; clc;

2 l = 22; j = 11, k = 80;

3 eta = 90 + acosd(l/k);

4 beta = atand(l/j);

5 n = (l^2 + j^2)^(0.5);

6 x = [0 : 0.5 : 90];

7

8 d = sqrt(n^2 + k^2 - 2* n * cosd(eta - beta - x));

9

10 plot(x, d);

11 title(’Linear Actuator Displacement Against Ankle Joint Angle’)

12

13 xlabel(’Ankle Joint Angle’)

14 ylabel(’Linear Actuator Displacement’)

A.2 Ankle Joint Vs Motor Joint angle variation Matlab

Plot Code

1 clear; clc;
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2 clear; clc;

3 l = 22; j = 11, k = 80;

4 eta = 90 + acosd(l/k);

5 beta = atand(l/j);

6 n = (l^2 + j^2)^(0.5);

7 x = [0 : 0.5 : 90];

8

9 d = sqrt(n^2 + k^2 - 2* n * cosd(eta - beta - x));

10

11 for i = 1:90;

12 lamda = asind((n/d(i)) * sind(90 + acosd(l/k) - asind(l/n) - x)) - asind(l/k);

13 end

14

15 plot(x, lamda)

16 title(’Ankle Joint Vs Motor Joint angle variation’)

17

18 xlabel(’Ankle Joint Angle’)

19 ylabel(’Motor Joint angle’)

A.3 Ankle Joint Vs Motor Joint angle variation Matlab

Plot Code(Constant Crank Length Approach)

1 % This program used to make a relation between ankle angle(x) and motor

2 % angle(lamda)

3 clear; clc;

4 close all

5 l = 68; q = 262; j = 83;

6 % l is the crank length

7 % q is vertical distance between ankle joint to motor joint

8 % j vertical distance between ankle joint to crank joint

9

10 omega = atand(l/q);

11 beta = atand(l/j); gama = atand(l/q);

12 n = sqrt(l^2 + j^2); k = sqrt(l^2 + q^2);

13 x = [0 : 90];

14 d = sqrt(k^2 + n^2 - 2* n * k * cosd(180 - gama - beta - x));
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15

16 for i=1:91;

17 lambda = asind((j * sind(x) + l* cosd(x) - 1)/d(i));

18 end

19 plot(x, lambda)

20 title(’Ankle Joint Vs Motor Joint angle variation’)

21

22 xlabel(’Ankle Joint Angle’)

23 ylabel(’Motor Joint angle’)

A.4 the natural range of Ankle Joint Vs Motor Joint

angle variation Matlab Plot Code.

1 %Applying real Ankle Joint Angles

2 % This program used to make a relation between ankle angle(x) and motor

3 % angle(lamda)

4 clear; clc;

5 close all

6 l = 68; q = 262; j = 83;

7 % l is the crank length

8 % q is vertical distance between ankle joint to motor joint

9 % j vertical distance between ankle joint to crank joint

10

11 omega = atand(l/q);

12 beta = atand(l/j); gama = atand(l/q);

13 n = sqrt(l^2 + j^2); k = sqrt(l^2 + q^2);

14 x = [-27 : 10];

15 d = sqrt(k^2 + n^2 - 2* n * k * cosd(180 - gama - beta - x));

16

17 for i=1:38;

18 lambda = asind((j * sind(x) + l* cosd(x) - 1)/d(i));

19 end

20 plot(x, lambda)

21 title(’Ankle Joint Vs Motor Joint angle variation’)

22

23 xlabel(’Ankle Joint Angle’)
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24 ylabel(’Motor Joint angle’)

A.5 the maximum force exerted by the linear actuator

for the natural range of ankle joint angles.n Matlab

Plot Code.

1 %Anke angle VS Max force

2 % DrSalah Analysis

3 % Applying read ankle angles

4 % This program used to make a relation between ankle angle(x) and motor

5 % angle(lamda)

6 clear

7 clc

8 close all

9 l = 68; q = 262; j = 83;

10 % l is the crack length

11 % q is vertical distance between ankle joint to motor joint

12 % j vertical distance between ankle joint to crank joint

13

14 omega = atand(l/q);

15

16 beta = atand(l/j); gama = atand(l/q);

17 n = sqrt(l^2 + j^2); k = sqrt(l^2 + q^2);

18 x = [-27 : 10];

19 d = sqrt(k^2 + n^2 -2 * n * k * cosd(180 - gama - beta - x));

20

21 for i = 1:38

22 lamda = asind((j*sind(x) + l*cosd(x)-l)/d(i));

23 end

24

25 maximumMomentInNmPerKg = 1.5*1000;

26 mass = 75;

27 maximumMoment = maximumMomentInNmPerKg * mass;

28 for i = 1:38

29 maxForce(i) = maximumMoment/(q*sin(lamda(i) + l*cos(lamda(i))));
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30 end

31 plot(x,maxForce)

32 title(’maxForce vs ankle angle for mass of 75kg’)

33 xlabel(’Ankle angle(deg)’)

34 ylabel(’max force(N)’)

35 grid on

36 m = max(maxForce)

A.6 Lead screw length variation with the change of Z

dimension( vertical distance from ankle joint to

motor joint) given J = 36.65, l = 60.14. python Plot

Code.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # this program is used to find the variation of Q(i.e. vertical distance

5 # between motor joint to ankle joint) with vairation of dt(lead screw movement)

6

7 # q variable

8 l = 60.14

9 j = 36.65

10 q = np.arange(1, 1000)

11 gama = np.zeros(999)

12 beta = np.zeros(999)

13 k = np.zeros(999)

14 n = np.zeros(999)

15 dtq = np.zeros(999)

16 # l is the crank length

17 # q is vertical distance between ankel joint to motor joint

18 # j is vertical distance between ankle joint to crank joint

19 x = np.arange(-27, 10) # ankle joint angle

20 for i in range(1, 1000):

21 beta[i-1] = np.degrees(np.arctan(l/j))
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22 gama[i-1] = np.degrees(np.arctan(l/i))

23

24 n[i-1] = np.sqrt(np.square(j) + np.square(l))

25 k[i-1] = np.sqrt(np.square(i) + np.square(l))

26

27 for i in range(0, 999):

28 d = np.sqrt(np.square(k[i]) + np.square(n[i]) - 2*n[i]*k[i]*np.cos(np.radians(180-gama[i]-beta[i]-x)))

29 dtq[i] = d[0] - d[len(d)-1]

30

31 plt.plot(q, dtq, color = ’blue’, label = ’Ankle angles Vs Lead screw linear motion, maxLinearMovement = 35.0911’)

32 plt.grid()

33 plt.title(’Lead screw length variation with the change of Z\n dimension( vertical distance from ankle joint to motor joint)\n given J = 36.65 & l = 60.14’)

34 plt.xlabel(’Z dimension( vertical distance from ankle joint to motor joint in mm)’)

35 plt.ylabel(’lead screw length in mm’)

36 plt.show()

A.7 RMS python function..

1 1. def RMS(signal, windowsize):

2 2. import math

3 3. q = windowsize

4 4. a = lst

5 5. c = [None] * len(lst)

6 6. for j in range(0, len(lst)):

7 7. print(j)

8 8. b = 0

9 9. for i in range(j - int(q/2), j + int(q/2) + 1):

10 10. if(i < 0 or i > len(lst)):

11 11. a[i] = 0

12 12. if(i >= len(lst)):

13 13. a = np.append(a, 0)

14 14. b = b + (a[i])**2

15 15.

16 16. b = b/(q+1)

17 17. b = math.sqrt(b)

18 18. c[j] = b

19 19. return c
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A.8 Low Pass Filter with Butterworth’s order variation

to plot figure 3.42

1 # -*- coding: utf-8 -*-

2 """

3 Created on Tue Jun 8 13:51:10 2021

4

5 @author: AG

6

7 this code is used to text butterworth low pass fitler equatoin

8 """

9

10

11 #importing the ibraries

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import pandas as pd

15 import time

16 import datetime

17 from scipy import signal

18 import math

19

20 w = np.arange(start=0, stop=1000, step=1)

21 vector = np.vectorize(np.int)

22 w = vector(w)

23 h = np.zeros(1000)

24

25 w_o = 500

26 a_o = 1

27

28 aa = w+1

29 h[0] = 1

30

31 n = 1

32

33 def plotLPF(nn):
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34 for i in range(len(w)):

35 h[i] = math.sqrt((a_o)/(1+math.pow(w[i]/w_o, 2*nn)))

36

37 plt.plot(w,h, label = "n = "+ str(nn))

38 plt.title(’Low pass Filter’)

39 plt.xlabel(’Frequency(Hz)’)

40 plt.ylabel(’H(w)’)

41 plt.legend()

42 plt.show()

43

44

45 plotLPF(1)

46 plotLPF(5)

47 plotLPF(20)

48 plotLPF(100)

A.9 Data Matching Python Code

1

2 """

3 Date : 2021/04/20

4 This code is a trial to syncronized the Ankle joint angle data with EMG singal data

5 I’ll used a linear interpolation for upsampling the ankle joint angle dataset

6 F:\Prosthetic\my work\footages\7.Regression Experiments(2021.4.2)\2021.4.17 me\data\experiment 1(rise & fall)

7 """

8 #importing the ibraries

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import pandas as pd

12 import time

13 import datetime

14 from scipy import signal

15

16 # Importing the data set

17 df_angle = pd.read_csv(’ESP32 2021-04-17-16-33-13.csv’, delimiter = ",")

18 df_EMG = pd.read_csv(’OpenBCI-RAW-2021-04-17_16-33-24.csv’, delimiter = ";")

19
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20 #for downsampled emg data

21 emg = df_EMG.iloc[:, [1, 2, 3, 4, 5]].values

22 # for non downsampled emg data

23 emg = df_EMG.iloc[4:, [1, 2, 3, 4, 13]].values

24

25 # Convert string numpy array to float

26 emg = emg.astype(np.float)

27

28 angle = df_angle.iloc[:, [3, 4, 5]].values

29

30

31 start_time = datetime.datetime(2021, 4, 17, 16, 33, 33)

32

33 end_time = datetime.datetime(2021, 4, 17, 16, 34, 37)

34

35 emg = TrimEMG(emg, start_time, end_time)

36 angle = TrimAngle(angle, start_time, end_time)

37

38 # delete all data before the start time of recording

39

40

41 emg[:, [0, 1, 2, 3, 4]] = emg[:, [4, 0, 1, 2, 3]] # put timestampe at first colomn

42

43 dataset = np.zeros([angle[:, 0].size, emg[0, :].size + angle[0, :].size + 3]);

44

45 for i in range(angle[:, 0].size - 1):

46 ind = closest(emg[:, 0], angle[i, 0])

47 print(’i : ’, i)

48 print(’angle : ’ , angle[i, 0])

49 print(’ind : ’, ind)

50 dataset[i, 0] = emg[ind, 0]

51 dataset[i, 1] = angle[i, 0]

52 dataset[i, 2] = emg[ind, 1]

53 dataset[i, 3] = emg[ind, 2]

54 dataset[i, 4] = emg[ind, 3]

55 dataset[i, 5] = emg[ind, 4]

56 dataset[i, 6] = angle[i, 1]



188 Appendix A. Matlab and Python Code for Theoretical Work

57 dataset[i, 7] = angle[i, 2]

58 emg = np.delete(emg, ind, 0)

59

60 dataset[:, 8] = dataset[:, 7] - 90

61 dataset[:, 9] = dataset[:, 6] - dataset[:, 8]

62 dataset[:, 10] = np.arange(start=0, stop=dataset[:, 0].size, step=1)

63

64 df = pd.DataFrame(data=dataset, columns=["emg timestamp", "esp timestamp", "ch_1", "ch_2", "ch_3", "ch_4", "foot angle", "shank angle", "shank-90", "ankle ankle", "index"])

65 df.to_csv("Prosthetic/my work/EMG Regression/refined data/1.standing planterflexion(mohammed fahad, 2021.4.17).csv") # save the dataset to csv filer

66

67 def closest(lst, K):

68 lst = np.asarray(lst)

69 idx = (np.abs(lst - K)).argmin()

70 return idx

71

72 def TrimEMG(emg, start_time, end_time):

73 start_time_unix = time.mktime(start_time.timetuple())

74 end_time_unix = time.mktime(end_time.timetuple())

75

76 index_1 = np.where(emg[:, 4] >= start_time_unix)[0]

77 index_1 = index_1[0]

78

79 index_2 = np.where(emg[:, 4] >= end_time_unix)[0]

80 index_2 = index_2[0]

81 emg = emg[index_1:index_2, :]

82 return emg

83

84 def TrimAngle(angle, start_time, end_time):

85 start_time_unix = time.mktime(start_time.timetuple())

86 end_time_unix = time.mktime(end_time.timetuple())

87

88 index_1 = np.where(angle[:, 0] >= start_time_unix)[0]

89 index_1 = index_1[0]

90

91 index_2 = np.where(angle[:, 0] >= end_time_unix)[0]

92 index_2 = index_2[0]

93 angle = angle[index_1:index_2, :]
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94 return angle

A.10 Data Trimming

1 def TrimEMG(emg, start_time, end_time):

2 start_time_unix = time.mktime(start_time.timetuple())

3 end_time_unix = time.mktime(end_time.timetuple())

4

5 index_1 = np.where(emg[:, 4] >= start_time_unix)[0]

6 index_1 = index_1[0]

7

8 index_2 = np.where(emg[:, 4] >= end_time_unix)[0]

9 index_2 = index_2[0]

10 emg = emg[index_1:index_2, :]

11 return emg

12

13 def TrimAngle(angle, start_time, end_time):

14 start_time_unix = time.mktime(start_time.timetuple())

15 end_time_unix = time.mktime(end_time.timetuple())

16

17 index_1 = np.where(angle[:, 0] >= start_time_unix)[0]

18 index_1 = index_1[0]

19

20 index_2 = np.where(angle[:, 0] >= end_time_unix)[0]

21 index_2 = index_2[0]

22 angle = angle[index_1:index_2, :]

23 return angle

A.11 Data Visualization Linear Regression and Feature

Scaling

1

2

3 #2021.4.20 Visualizing data over time

4 plt.plot(dataset[:, 10],dataset[:, 2], label = "EMG Tibials Antirior")

5 plt.plot(dataset[:, 10],dataset[:, 3], label = "EMG Medial Gestrocnimis")
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6 plt.plot(dataset[:, 10],dataset[:, 4], label = "EMG Lateral Gestrocnimis")

7 plt.plot(dataset[:, 10],dataset[:, 5], label = "EMG Soleus")

8 plt.plot(dataset[:, 10],dataset[:, 9], label = "Ankle Joint angle")

9 plt.title(’Planter-Flexion While Standing’)

10 plt.xlabel(’Unix timestampe’)

11 plt.ylabel(’EMG, Ankle angle’)

12 plt.legend()

13 plt.show()

14

15 #2021.4.20 Visualizing data over ankle angle

16 plt.scatter(dataset[:, 9],dataset[:, 2], label = "EMG Tibials Antirior")

17 plt.scatter(dataset[:, 9],dataset[:, 3], label = "EMG Medial Gestrocnimis")

18 plt.scatter(dataset[:, 9],dataset[:, 4], label = "EMG Lateral Gestrocnimis")

19 plt.scatter(dataset[:, 9],dataset[:, 5], label = "EMG Soleus")

20 plt.title(’Planter-Flexion While Standing’)

21 plt.xlabel(’Ankle joint angle’)

22 plt.ylabel(’EMG’)

23 plt.legend()

24 plt.show()

25

26

27

28 #2021.4.20 Trying regression for the first time

29 x = dataset[:, [2, 3, 4, 5]]

30 y = dataset[:, 9]

31

32 # Splitting the dataset into the Training set and Test set

33 from sklearn.model_selection import train_test_split

34 X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)

35

36 # Fitting Multiple Linear Regression to the Training set

37 from sklearn.linear_model import LinearRegression

38 regressor = LinearRegression()

39 regressor.fit(X_train, y_train)

40

41 # Predicting the Test set results

42 y_pred = regressor.predict(X_test)
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43

44 # Building the optimal model using Backward Elimination

45 import statsmodels.formula.api as sm

46

47 # Testing the regressor performance

48 from sklearn.metrics import mean_squared_error

49 test_set_rmse_Row = np.sqrt(mean_squared_error(y_test, y_pred))

50 from sklearn.metrics import r2_score

51 test_set_r2_Row = r2_score(y_test, y_pred)

52

53 # ploting y_test, and y_pred

54 yy =np.zeros([y_pred.size, 3])

55 yy[:, 0] = np.arange(start=0, stop=yy[:, 0].size, step=1)

56 yy[:, 1] = y_test

57 yy[:, 2] = y_pred

58 plt.plot(yy[:, 0], yy[:, 1], label = "Actual angle")

59 plt.plot(yy[:, 0], yy[:, 2], label = "Predicted angle")

60 plt.title(’Actual-Predicted ankle joint angle’)

61 plt.xlabel(’o’)

62 plt.ylabel(’ankle angle’)

63 plt.legend()

64 plt.show()

65 #------------------------------------------------------

66 #2021.4.22 Feature scaling

67 from sklearn.preprocessing import StandardScaler

68 sc_X = StandardScaler()

69 dataset[:, [2, 3, 4, 5]] = sc_X.fit_transform(dataset[:, [2, 3, 4, 5]])

70 # Feature Scalling did not increase the regressor performance

A.12 Plotting EMG data in Frequency Domian Using

FFT

1 #2021.6.20 Plot FFT

2 dataset = dataset[:-1, :] # remove last zero row

3 dt = (dataset[-1, 1] - dataset[0, 1])/(len(dataset[:, 0]) - 1) # Sampling time (time step(sample/sec))

4 t = np.arange(0, dataset[-1, 1] - dataset[0, 1] + dt, dt) # time
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5

6 plt.plot(t, dataset[:, 2],LineWidth = 1.5, label = "Row Tibials antirior activity while rise up and down over toe tip")

7 plt.xlim(t[0], t[-1])

8 plt.legend()

9

10 n = len(t)

11 fhat = np.fft.fft(dataset[:, 2], n) #Compute the FFT

12 PSD = fhat *np.conj(fhat) / n #Power Spectrum (Power per frequency)

13 freq = (1/(dt*n)) * np.arange(n) #Create x-axis frequencies

14 L = np.arange(1, np.floor(n/2), dtype=’int’) #Only plot the first half

15

16 fig,axs = plt.subplots(2)

17

18

19 axs[0].plot(t, dataset[:, 2], color=’b’, LineWidth = 1.5, label = "Row Tibials antirior activity while rise up and down over toe tip")

20 #axs[0].xlim(t[0], t[-1])

21 axs[0].legend()

22

23 axs[1].plot(freq[L], PSD[L], color=’c’, LineWidth = 2, Label = ’Above singal in frequency domain representation’)

24 #axs[1].xlim(freq[L[0]], freq[L[-1]])

25 axs[1].legend()

A.13 LowPass Filter

1 def butter_lowpass_filter(data, cutoff, fs, order):

2 normal_cutoff = cutoff / nyq

3 # Get the filter coefficients

4 b, a = butter(order, normal_cutoff, btype=’low’, analog=False)

5 y = filtfilt(b, a, data)

6 return y

A.14 Feature Selection Using Correlation Matrix with

Heatmap and Information gain - mutual

information
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1 #2021.7.1 Correlation Matrix with Heatmap Feature selection

2

3 import seaborn as sns

4 #get correlations of each features in dataset

5 corrmat = dataset.corr()

6 top_corr_features = corrmat.index

7 plt.figure(figsize=(20,20))

8 #plot heat map

9 g=sns.heatmap(dataset[top_corr_features].corr(),annot=True,cmap="RdYlGn")

10

11 #--------------------------

12 # Results: I got channel channel_4 as the highest impact on ankle angle

13 #--------------------------

14 #--------------------------------------------------------------------------------------

15 #2021.7.3 Feature Selection-Information gain - mutual information In Regression

16 dataset.info()

17 dataset = dataset.drop(["Unnamed: 0", "emg timestamp", "esp timestamp", "foot angle", "shank angle", "shank-90", "index"] , axis = 1)

18

19

20 ### It is always a good practice to split train and test data to avoid

21 #overfitting

22 from sklearn.model_selection import train_test_split

23 X_train,X_test,y_train,y_test=train_test_split(dataset.drop(labels=[’ankle ankle’], axis=1),

24 dataset[’ankle ankle’],

25 test_size=0.3,

26 random_state=0)

27

28

29 from sklearn.feature_selection import mutual_info_regression

30 # determine the mutual information

31 mutual_info = mutual_info_regression(X_train.fillna(0), y_train)

32 mutual_info

33

34 mutual_info = pd.Series(mutual_info)

35 mutual_info.index = X_train.columns

36 mutual_info.sort_values(ascending=False)

37
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38 mutual_info.sort_values(ascending=False).plot.bar(figsize=(15,5))

39 #--------------------------

40 # Results: I got channel channel_3 is the most matual data for perfroming regresion

41 #--------------------------

A.15 Gaussian Distribution Mean of a Set of Data

1 def Averaging(X, y):

2 ave = np.zeros([len(X[:, 0]), len(X[0, :])])

3 for j in range(len(X[0, :])):

4 for i in np.arange(min(y), max(y)+1, 0.01):

5 lst = np.where(y == round(i, 3))

6 ave[lst, j] = np.average(X[lst, j])

7 return ave

A.16 Optimized Data Regressions

1 def Medianing(X, y):

2 ave = np.zeros([len(X[:, 0]), len(X[0, :])])

3 for j in range(len(X[0, :])):

4 for i in np.arange(min(y), max(y)+1, 0.01):

5 lst = np.where(y == round(i, 3))

6 ave[lst, j] = np.median(X[lst, j])

7 return ave

8

9 def Moding(X, y):

10 from scipy import stats

11 ave = np.zeros([len(X[:, 0]), len(X[0, :])])

12 for j in range(len(X[0, :])):

13 for i in np.arange(min(y), max(y)+1, 0.01):

14 lst = np.where(y == round(i, 3))

15 ave[lst, j] = stats.mode(X[lst, j])[0]

16 return ave

17

18 def GaussianMean(X, y):

19 from sklearn.mixture import GaussianMixture

20 from scipy import stats
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21 ave = np.zeros([len(X[:, 0]), len(X[0, :])])

22 for j in range(len(X[0, :])):

23 for i in np.arange(min(y), max(y)+1, 0.01):

24 lst = np.where(y == round(i, 3))

25 if(np.size(X[lst, j]) > 0):

26 gm = GaussianMixture(n_components=1, random_state=0).fit(X[lst, j].reshape(-1, 1))

27 ave[lst, j] = gm.means_[0][0]

28 return ave

29

30 #2021.7.5 Finding Mean EMG at certain angle

31

32 emg = dataset.iloc[:, 3:7].values

33 emg = np.absolute(emg)

34 angle = dataset.iloc[:, 10].values

35 angle = np.absolute(angle)

36 angle = np.around(angle, decimals=2)

37 time = dataset.iloc[:, 1].values

38 time = time[:] - time[0]

39

40 emgAve = np.zeros([len(emg[:, 3]), 4])

41

42 for j in range(4):

43 for i in np.arange(0, 40, 0.01):

44 lst = np.where(angle == round(i, 3))

45

46

47

48

49

50 fig, axs = plt.subplots(5)

51 plt.xticks(np.arange(0, 70, 1))

52 fig.suptitle("All Row Data Plots with Averaged emg values at each angle x axis in seconds and y axis either in deg or microvolt")

53 axs[0].plot(time, angle)

54 axs[0].set_ylabel(’Ankle Angle’)

55 axs[0].set_xticks(np.arange(0, 70, 1))

56 axs[1].plot(time, emg[:, 0])

57 axs[1].plot(time, emgAve[:, 0])
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58 axs[1].set_ylabel(’Tibials Antirior’)

59 axs[2].plot(time, emg[:, 1])

60 axs[2].plot(time, emgAve[:, 1])

61 axs[2].set_ylabel(’Medial Gestrocnimis’)

62 axs[3].plot(time, emg[:, 2])

63 axs[3].plot(time, emgAve[:, 2])

64 axs[3].set_ylabel(’Lateral Gestrocnimis’)

65 axs[4].plot(time, emg[:, 3])

66 axs[4].plot(time, emgAve[:, 3])

67 axs[4].set_ylabel(’Solus’)

68

69 # Cross Validation with Linear Regression

70 from sklearn.model_selection import cross_val_score

71 from sklearn.linear_model import LinearRegression

72 from sklearn.metrics import r2_score

73 regressor = LinearRegression()

74 r2_CV_Scores = cross_val_score(regressor, emgAve, angle, cv = 11, scoring = "r2")

75

76 # Predicting the Test set results

77 y_pred = regressor.predict(X_test)

78

79 from sklearn.metrics import r2_score

80 test_set_r2 = r2_score(y_test, y_pred)

81

82

83 # 2021.7.6 Ave data with cross validation and polynomial regression

84

85

86 from sklearn.preprocessing import PolynomialFeatures

87 poly_features = PolynomialFeatures(degree=4)

88 X_poly = poly_features.fit_transform(butter_lowpass_filter(emgAve[:, 2],cutoff, fs, order, nyq).reshape(-1, 1))

89 poly = LinearRegression()

90 r2_CV_Scores_poly = cross_val_score(poly, X_poly, angle, cv=11, scoring = "r2")

91

92 x_grid = np.arange(min(butter_lowpass_filter(emgAve[:, 2],cutoff, fs, order, nyq)), max(butter_lowpass_filter(emgAve[:, 2],cutoff, fs, order, nyq)), 10)

93 x_grid = x_grid.reshape(len(x_grid), 1)

94 plt.scatter(butter_lowpass_filter(emgAve[:, 2],cutoff, fs, order, nyq), angle, color = ’red’)
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95 plt.plot(x_grid, LinearRegression.predict(poly_features.fit_transform(x_grid)), color = ’blue’)

96 plt.title(’LPF of Averaged data’)

97 plt.xlabel(’Lateral Gestrocnimis’)

98 plt.ylabel(’Ankle Angle(deg)’)

99 plt.show()

100

101 #----------------------------------------------------

102 #Result : I got a greate r2 accurcy from averaged data, LPF and polynomial regression

103 #-----------------------------------------------------

104

105 #2021.7.7 Segmentation of the expermint

106

107 segments = [0, 6, 11, 19, 24, 29, 35, 40, 46, 51, 56, 61]

108

109 # 2021.7.10 Plotting All muscles with segments to get the best figure for illustration

110 def plot(muscleInd, segment, degree):

111 start = np.where(np.trunc(time) == segments[segment])[0][0]

112 end = np.where(np.trunc(time) == segments[segment+1])[0][0]

113

114 angle1 = angle[start:end]

115 emg1 = emgAve[start:end, muscleInd]

116

117 # Fitting Linear Regression to the dataset

118 from sklearn.linear_model import LinearRegression

119 # Fitting Polynomial Regression to the dataset

120 x = emg1.reshape(-1, 1)

121 y = angle1

122 from sklearn.preprocessing import PolynomialFeatures

123 poly_reg = PolynomialFeatures(degree=degree)

124 X_poly = poly_reg.fit_transform(x)

125 pol_reg = LinearRegression()

126 pol_reg.fit(X_poly, y)

127

128 step = (max(x) - min(x))/len(x)

129 xx = np.arange(min(x), max(x), step).reshape(-1, 1)

130

131 # Visualizing the Polymonial Regression results
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132 plt.scatter(x, y, color=’red’)

133 plt.plot(xx, pol_reg.predict(poly_reg.fit_transform(xx)), color=’blue’)

134 plt.title(’EMG-Ankle Angle Polynomial Regression\n order = ’ + str(degree) + ’ , muscle index ’ + str(muscleInd) + ’, segment ’ + str(segment))

135 plt.xlabel(’EMG’)

136 plt.ylabel(’Ankle Angle’)

137 #plt.show()

138 dirName = ’C:/Users/AG/Desktop/regression/’

139 name = dirName + ’muscle ’ + str(muscleInd) + ’ segment ’ + str(segment) +’.png’

140 plt.savefig(name)

141 plt.clf()

142 print(’muscle ’ + str(muscleInd) + ’ segment ’ + str(segment))

143

144

145

146 for i in range(0, 4):

147 for j in range(0, 11):

148 plot(muscleInd = i, segment = j, degree = 3)

149

150 #----------------------------

151 #Result : I got the best illustration in muscle order 2 segment 1

152 #----------------------------

153

154

155 #2021.7.11 Trying KNN regression

156

157

158 ave = Averaging(emg, angle)

159

160 # 2021.7.1 Ave data with cross validation and KNN regression

161 from sklearn import neighbors

162 from sklearn.model_selection import cross_val_score

163 from sklearn.metrics import r2_score

164 for k in range(10, 200, 10):

165 model = neighbors.KNeighborsRegressor(n_neighbors = k)

166 model.fit(butter_lowpass_filter(ave[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle)

167 r2_CV_Scores_poly = cross_val_score(model, butter_lowpass_filter(ave[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle, cv=11, scoring = "r2")

168 print (k)
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169 print(r2_CV_Scores_poly[1])

170 print(’----------------------’)

171

172 #-----------------------

173 # Result : I got r2 score = .89 at k = 70

174 #-----------------------

175

176 # Random Forest Regression

177 from sklearn.ensemble import RandomForestRegressor

178 regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)

179 regressor.fit(butter_lowpass_filter(ave[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle)

180 r2_CV_Scores_poly = cross_val_score(regressor, butter_lowpass_filter(ave[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle, cv=11, scoring = "r2")

181 #-----------------------

182 # Result : I got r2 score = .78

183 #-----------------------

184

185 #-------------------------------------------------------

186 #2021.7.11 Trying medianing

187 med = Medianing(emg, angle)

188

189 #Polynomial

190 from sklearn.preprocessing import PolynomialFeatures

191 from sklearn.model_selection import cross_val_score

192 from sklearn.linear_model import LinearRegression

193 from sklearn.metrics import r2_score

194 poly_features = PolynomialFeatures(degree=4)

195 X_poly = poly_features.fit_transform(butter_lowpass_filter(med[:, 2],cutoff, fs, order, nyq).reshape(-1, 1))

196 poly = LinearRegression()

197 r2_CV_Scores_poly = cross_val_score(poly, X_poly, angle, cv=11, scoring = "r2")

198

199 #KNN

200 from sklearn import neighbors

201 from sklearn.model_selection import cross_val_score

202 from sklearn.metrics import r2_score

203 for k in range(10, 200, 10):

204 model = neighbors.KNeighborsRegressor(n_neighbors = k)

205 model.fit(butter_lowpass_filter(med[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle)
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206 r2_CV_Scores_poly = cross_val_score(model, butter_lowpass_filter(ave[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle, cv=11, scoring = "r2")

207 print (k)

208 print(max(r2_CV_Scores_poly))

209 print(’----------------------’)

210

211

212 #-----------------------------------------------

213 #2021.7.11 Trying mode

214

215 mode = Moding(emg, angle)

216 #Polynomial

217 from sklearn.preprocessing import PolynomialFeatures

218 from sklearn.model_selection import cross_val_score

219 from sklearn.linear_model import LinearRegression

220 from sklearn.metrics import r2_score

221 poly_features = PolynomialFeatures(degree=4)

222 X_poly = poly_features.fit_transform(butter_lowpass_filter(mode[:, 2],cutoff, fs, order, nyq).reshape(-1, 1))

223 poly = LinearRegression()

224 r2_CV_Scores_poly = cross_val_score(poly, X_poly, angle, cv=11, scoring = "r2")

225 print(max(r2_CV_Scores_poly))

226 #KNN

227 from sklearn import neighbors

228 from sklearn.model_selection import cross_val_score

229 from sklearn.metrics import r2_score

230 for k in range(10, 200, 10):

231 model = neighbors.KNeighborsRegressor(n_neighbors = k)

232 model.fit(butter_lowpass_filter(med[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle)

233 r2_CV_Scores_poly = cross_val_score(model, butter_lowpass_filter(ave[:, 2],cutoff, fs, order, nyq).reshape(-1, 1), angle, cv=11, scoring = "r2")

234 print (k)

235 print(max(r2_CV_Scores_poly))

236 print(’----------------------’)

237

238 #--------------------------------------------

239

240 #2021.7.12 Trying Gaussian smoothing fitler

241 from scipy.ndimage import gaussian_filter1d

242 g = gaussian_filter1d(emg[:, 2], 1)
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243

244 sigma = 5

245

246 fig, axs = plt.subplots(5)

247 plt.xticks(np.arange(0, 70, 1))

248 fig.suptitle()

249 axs[0].plot(time, angle)

250 axs[0].set_ylabel(’Ankle Angle’)

251 axs[0].set_xticks(np.arange(0, 70, 1))

252

253 axs[1].plot(time, emg[:, 0])

254 axs[1].plot(time, gaussian_filter1d(emg[:, 0], sigma))

255 axs[1].set_ylabel(’Tibials Antirior’)

256 axs[2].plot(time, emg[:, 1])

257 axs[2].plot(time, gaussian_filter1d(emg[:, 1], sigma))

258 axs[2].set_ylabel(’Medial Gestrocnimis’)

259 axs[3].plot(time, emg[:, 2])

260 axs[3].plot(time, gaussian_filter1d(emg[:, 2], sigma))

261 axs[3].set_ylabel(’Lateral Gestrocnimis’)

262 axs[4].plot(time, emg[:, 3])

263 axs[4].plot(time, gaussian_filter1d(emg[:, 3], sigma))

264 axs[4].set_ylabel(’Solus’)

265

266

267 for sigma in range(1, 50):

268 #Polynomial

269 from sklearn.preprocessing import PolynomialFeatures

270 from sklearn.model_selection import cross_val_score

271 from sklearn.linear_model import LinearRegression

272 from sklearn.metrics import r2_score

273 poly_features = PolynomialFeatures(degree=4)

274 X_poly = poly_features.fit_transform(gaussian_filter1d(ave[:, 2], sigma).reshape(-1, 1))

275 poly = LinearRegression()

276 r2_CV_Scores_poly = cross_val_score(poly, X_poly, angle, cv=11, scoring = "r2")

277 print(max(r2_CV_Scores_poly))

278 print(sigma)

279 print(’-----------------------------------------------’)
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280

281 #KNN

282 from sklearn import neighbors

283 from sklearn.model_selection import cross_val_score

284 from sklearn.metrics import r2_score

285 for k in range(10, 200, 10):

286 model = neighbors.KNeighborsRegressor(n_neighbors = k)

287 model.fit(gaussian_filter1d(ave[:, 2], sigma).reshape(-1, 1).reshape(-1, 1), angle)

288 r2_CV_Scores_poly = cross_val_score(model, gaussian_filter1d(ave[:, 2], sigma).reshape(-1, 1).reshape(-1, 1), angle, cv=11, scoring = "r2")

289 print (k)

290 print(max(r2_CV_Scores_poly))

291 print(’----------------------’)

292

293 #-----------------------------------------------------------------------------------

294 # Using the mean of a single gaussian mixer for each emg sample at the same angle

295 Gmean = GaussianMean(emg, angle)

296

297 def GaussianMean(X, y):

298 from sklearn.mixture import GaussianMixture

299 from scipy import stats

300 ave = np.zeros([len(X[:, 0]), len(X[0, :])])

301 for j in range(len(X[0, :])):

302 for i in np.arange(min(y), max(y)+1, 0.01):

303 lst = np.where(y == round(i, 3))

304 if(np.size(X[lst, j]) > 1):

305 gm = GaussianMixture(n_components=1, random_state=0).fit(X[lst, j].reshape(-1, 1))

306 ave[lst, j] = gm.means_[0][0]

307 return ave

308

309 fig, axs = plt.subplots(5)

310 plt.xticks(np.arange(0, 70, 1))

311 fig.suptitle()

312 axs[0].plot(time, angle)

313 axs[0].set_ylabel(’Ankle Angle’)

314 axs[0].set_xticks(np.arange(0, 70, 1))

315

316 axs[1].plot(time, emg[:, 0])
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317 axs[1].plot(time, Gmean[:, 0])

318 axs[1].set_ylabel(’Tibials Antirior’)

319 axs[2].plot(time, emg[:, 1])

320 axs[2].plot(time, Gmean[:, 1])

321 axs[2].set_ylabel(’Medial Gestrocnimis’)

322 axs[3].plot(time, emg[:, 2])

323 axs[3].plot(time, Gmean[:, 2])

324 axs[3].set_ylabel(’Lateral Gestrocnimis’)

325 axs[4].plot(time, emg[:, 3])

326 axs[4].plot(time, Gmean[:, 3])

327 axs[4].set_ylabel(’Solus’)

328

329 from sklearn.model_selection import cross_val_score

330 from sklearn.linear_model import LinearRegression

331 from sklearn.metrics import r2_score

332 regressor = LinearRegression()

333 from sklearn.preprocessing import PolynomialFeatures

334 poly_features = PolynomialFeatures(degree=4)

335 X_poly = poly_features.fit_transform(butter_lowpass_filter(Gmean[:, 2],cutoff, fs, order, nyq).reshape(-1, 1))

336 poly = LinearRegression()

337 r2_CV_Scores_poly = cross_val_score(poly, X_poly, angle, cv=11, scoring = "r2")

338

339 #--------------------------------

340 # Result : I got the same results of using the average method

341 #------------------------------

342

343 # 2021.7.15 Tring to get the highest accuracy using median value of all emg data at the same

344 # ankle angle and using the Gaussian smoothing fitler

345 med = Medianing(emg, angle)

346

347 #Polynomial

348 from sklearn.preprocessing import PolynomialFeatures

349 from sklearn.model_selection import cross_val_score

350 from sklearn.linear_model import LinearRegression

351 from sklearn.metrics import r2_score

352 from scipy.ndimage import gaussian_filter1d

353 poly_features = PolynomialFeatures(degree=4)
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354 X_poly = poly_features.fit_transform(gaussian_filter1d(med[:, 2], 3).reshape(-1, 1))

355 poly = LinearRegression()

356 r2_CV_Scores_poly = cross_val_score(poly, X_poly, angle, cv=11, scoring = "r2")

357 print(max(r2_CV_Scores_poly))
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Appendix B

Arduino for Experimental Work

B.1 Programming NodeMcu-32s to be Server, Access

Point with OTA

1 //#include "WiFi.h"

2 #include <WiFi.h>

3 #include <WiFiClient.h>

4 #include <WiFiAP.h>

5 #include <ESPmDNS.h>

6 #include <WiFiUdp.h>

7 #include <ArduinoOTA.h>

8

9 const char* ssid = "ESP";

10

11 WiFiServer wifiServer(80);

12

13 void setup() {

14

15 Serial.begin(115200);

16 Serial.println("------------------------------------------------------");

17 delay(1000);

18

19 Serial.println("Configuring access point...");

20

21 // You can remove the password parameter if you want the AP to be open.

22 WiFi.softAP(ssid);
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23 IPAddress myIP = WiFi.softAPIP();

24 Serial.print("AP IP address: ");

25 Serial.println(myIP);

26 // Start OTA

27

28 ArduinoOTA

29 .onStart([]() {

30 String type;

31 if (ArduinoOTA.getCommand() == U_FLASH)

32 type = "sketch";

33 else // U_SPIFFS

34 type = "filesystem";

35

36 // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end()

37 Serial.println("Start updating " + type);

38 })

39 .onEnd([]() {

40 Serial.println("\nEnd");

41 })

42 .onProgress([](unsigned int progress, unsigned int total) {

43 Serial.printf("Progress: %u%%\r", (progress / (total / 100)));

44 })

45 .onError([](ota_error_t error) {

46 Serial.printf("Error[%u]: ", error);

47 if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");

48 else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");

49 else if (error == OTA_CONNECT_ERROR) Serial.println("Connect Failed");

50 else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive Failed");

51 else if (error == OTA_END_ERROR) Serial.println("End Failed");

52 });

53

54 ArduinoOTA.begin();

55 // OTA End

56 wifiServer.begin();

57 }

58

59 void loop() {
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60 ArduinoOTA.handle();

61 WiFiClient client = wifiServer.available();

62

63 if (client) {

64 Serial.println("Client Connected ... 1");

65 while (client.connected()) {

66 while (client.available()>0) {

67 char c = client.read();

68 Serial.write(c);

69 }

70

71 while(Serial.available()>0){

72 char c = Serial.read();

73 Serial.print(c);

74 client.print(c);

75 }

76 client.println("Hello World");

77 delay(500);

78 }

79

80

81 client.stop();

82 Serial.println("Client disconnected");

83

84 }

85

86 }

B.2 Arduion Program for Collecting a Single MPU6050

Orientation While enabling Access Point, Local

Server and OTA

1 //#include "WiFi.h"

2 #include <WiFi.h>

3 #include <WiFiClient.h>
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4 #include <WiFiAP.h>

5 #include <ESPmDNS.h>

6 #include <WiFiUdp.h>

7 #include <ArduinoOTA.h>

8

9 #include "Wire.h"

10 #include <MPU6050_light.h>

11

12 MPU6050 mpu(Wire);

13 unsigned long timer = 0;

14

15 const char* ssid = "ESP";

16

17 WiFiServer wifiServer(80);

18

19 void setup() {

20

21 Serial.begin(115200);

22 // MPU6050 start

23 Wire.begin();

24

25 byte status = mpu.begin();

26 Serial.print(F("MPU6050 status: "));

27 Serial.println(status);

28 while(status!=0){ } // stop everything if could not connect to MPU6050

29

30 Serial.println(F("Calculating offsets, do not move MPU6050"));

31 mpu.calcOffsets(); // gyro and accelero

32 Serial.println("Done!\n");

33 // MPU6050 end

34 Serial.println("------------------------------------------------------");

35

36

37 Serial.println("Configuring access point...");

38

39 // You can remove the password parameter if you want the AP to be open.

40 WiFi.softAP(ssid);
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41 IPAddress myIP = WiFi.softAPIP();

42 Serial.print("AP IP address: ");

43 Serial.println(myIP);

44 // Start OTA

45

46 ArduinoOTA

47 .onStart([]() {

48 String type;

49 if (ArduinoOTA.getCommand() == U_FLASH)

50 type = "sketch";

51 else // U_SPIFFS

52 type = "filesystem";

53

54 // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end()

55 Serial.println("Start updating " + type);

56 })

57 .onEnd([]() {

58 Serial.println("\nEnd");

59 })

60 .onProgress([](unsigned int progress, unsigned int total) {

61 Serial.printf("Progress: %u%%\r", (progress / (total / 100)));

62 })

63 .onError([](ota_error_t error) {

64 Serial.printf("Error[%u]: ", error);

65 if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");

66 else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");

67 else if (error == OTA_CONNECT_ERROR) Serial.println("Connect Failed");

68 else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive Failed");

69 else if (error == OTA_END_ERROR) Serial.println("End Failed");

70 });

71

72 ArduinoOTA.begin();

73 // OTA End

74 wifiServer.begin();

75 }

76

77 void loop() {
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78 ArduinoOTA.handle();

79 WiFiClient client = wifiServer.available();

80 if (client) {

81 Serial.println("Client Connected ... 1");

82 while (client.connected()) {

83 mpu.update();

84 if((millis()-timer)>10){ // print data every 10ms

85 client.print(mpu.getAngleX());

86 client.print("/");

87 client.print(mpu.getAngleY());

88 client.print("/");

89 client.println(mpu.getAngleZ());

90 timer = millis();

91 }

92 }

93 client.stop();

94 Serial.println("Client disconnected");

95

96 }

97 }

B.3 Arduion Program for Collecting a Multiple

MPU6050 Orientation While enabling Access Point,

Local Server and OTA Using Single Line

Connection

1 //#include "WiFi.h"

2 #include <WiFi.h>

3 #include <WiFiClient.h>

4 #include <WiFiAP.h>

5 #include <ESPmDNS.h>

6 #include <WiFiUdp.h>

7 #include <ArduinoOTA.h>

8
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9 #include "Wire.h"

10 #include <MPU6050_light.h>

11 MPU6050 mpu(Wire);

12

13 #include <MMPU.h>

14 MMPU mmpu(Wire);

15

16 unsigned long timer = 0;

17

18 const char* ssid = "ESP";

19

20 WiFiServer wifiServer(80);

21

22 void setup() {

23

24 Serial.begin(115200);

25 // MPU6050_1 start

26 Wire.begin();

27

28 byte status = mpu.begin();

29 Serial.print(F("MPU6050 status: "));

30 Serial.println(status);

31 while(status!=0){ } // stop everything if could not connect to MPU6050

32

33 Serial.println(F("Calculating offsets, do not move MPU6050"));

34 mpu.calcOffsets(); // gyro and accelero

35 Serial.println("Done!\n");

36 // MPU6050_1 end

37

38 Serial.println("------------------------------------------------------");

39

40 // MPU6050_2 start

41 byte status_1 = mmpu.begin();

42 Serial.print(F("Second MPU6050 status: "));

43 Serial.println(status_1);

44 while(status_1!=0){ } // stop everything if could not connect to MPU6050

45
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46 Serial.println(F("Calculating offsets, do not move Second MPU6050"));

47 delay(1000);

48 mmpu.calcOffsets(); // gyro and accelero

49 Serial.println("Done!\n");

50 // MPU6050_2 end

51 Serial.println("------------------------------------------------------");

52 Serial.println("Configuring access point...");

53

54 // You can remove the password parameter if you want the AP to be open.

55 WiFi.softAP(ssid);

56 IPAddress myIP = WiFi.softAPIP();

57 Serial.print("AP IP address: ");

58 Serial.println(myIP);

59 // Start OTA

60

61 ArduinoOTA

62 .onStart([]() {

63 String type;

64 if (ArduinoOTA.getCommand() == U_FLASH)

65 type = "sketch";

66 else // U_SPIFFS

67 type = "filesystem";

68

69 // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end()

70 Serial.println("Start updating " + type);

71 })

72 .onEnd([]() {

73 Serial.println("\nEnd");

74 })

75 .onProgress([](unsigned int progress, unsigned int total) {

76 Serial.printf("Progress: %u%%\r", (progress / (total / 100)));

77 })

78 .onError([](ota_error_t error) {

79 Serial.printf("Error[%u]: ", error);

80 if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");

81 else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");

82 else if (error == OTA_CONNECT_ERROR) Serial.println("Connect Failed");
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83 else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive Failed");

84 else if (error == OTA_END_ERROR) Serial.println("End Failed");

85 });

86

87 ArduinoOTA.begin();

88 // OTA End

89 wifiServer.begin();

90 }

91

92 void loop() {

93 ArduinoOTA.handle();

94 WiFiClient client = wifiServer.available();

95 if (client) {

96 Serial.println("Client Connected ... 1");

97 while (client.connected()) {

98 mpu.update();

99 mmpu.update();

100 if((millis()-timer)>10){ // print data every 10ms

101 client.print(mpu.getAngleX());

102 client.print("/");

103 client.print(mpu.getAngleY());

104 client.print("/");

105 client.print(mpu.getAngleZ());

106 client.print("|");

107 client.print(mmpu.getAngleX());

108 client.print("/");

109 client.print(mmpu.getAngleY());

110 client.print("/");

111 client.println(mmpu.getAngleZ());

112 timer = millis();

113 }

114 }

115

116

117 client.stop();

118 Serial.println("Client disconnected");

119
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120 }

121 }

B.4 Unity3D Input Controller Script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using System.Net.Sockets;

5 using System.IO;

6 using System.Runtime.InteropServices;

7 using System.Text;

8 using System.Threading;

9

10 public class InputController_Double : MonoBehaviour

11 {

12 public float x_1, y_1, z_1, x_2, y_2, z_2, Arangle;

13 public bool StateClient;

14

15 public void Begin(string ipAddress, int port)

16 {

17 //Give the network stuff its own special thread

18 var thread = new Thread(() =>

19 {

20 //This class makes it super easy to do network stuff

21 var client = new TcpClient();

22 //Change this to your real device address

23 client.Connect(ipAddress, port);

24 var stream = new StreamReader(client.GetStream());

25 //We’ll read values and buffer them up in here

26 var buffer = new List<byte>();

27 StateClient = client.Connected;

28 print("StateClient : " + StateClient);

29 while (client.Connected)

30 {

31 //Read the next byte

32 var read = stream.Read();
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33 //We split readings with a carriage return, so check for it

34 if (read == 13)

35 {

36 //Once we have a reading, convert our buffer to a string, since the values are comming as strings

37 var str = Encoding.ASCII.GetString(buffer.ToArray());

38 string[] MPUs = str.Split(’,’);

39 // print("MPUs.Length : " + MPUs.Length);

40 // string[] MPU_1 = MPUs[0].Split(’/’);

41 //print("MPU_1.length : " + MPU_1.Length);

42 // string[] MPU_2 = MPUs[1].Split(’/’);

43 //print("MPU_2.Length : " + MPU_2.Length);

44 //x_1 = float.Parse(MPU_1[0]);

45 y_1 = float.Parse(MPUs[1]);

46 //z_1 = float.Parse(MPU_1[2]);

47

48 //x_2 = float.Parse(MPU_2[0]);

49 y_2 = float.Parse(MPUs[2]);

50 //z_2 = float.Parse(MPU_2[2]);

51 Arangle = float.Parse(MPUs[3]);

52

53

54 //Clear the buffer ready for another reading

55 buffer.Clear();

56 }

57 else

58 //if this was not the end of a reading, then just add this new byte to our buffer

59 buffer.Add((byte)read);

60 }

61 print("DisConnected");

62 });

63

64 thread.Start();

65 }

66 }

B.5 Unity3D Manager Script
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1 using System;

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using UnityEngine.UI;

6

7 public class Manager_Double : MonoBehaviour

8 {

9 InputController_Double inputController;

10 [SerializeField] private Text MPU_1_text;

11 [SerializeField] private Text MPU_2_text;

12 [SerializeField] private Text Connection;

13 [SerializeField] private Text angle;

14 [SerializeField] private Text angleA;

15 [SerializeField] private GameObject MPU_1;

16 [SerializeField] private GameObject MPU_2;

17

18 private float x_1, y_1, z_1, x_2, y_2, z_2, Arangle;

19 void Start()

20 {

21 //This will do the network stuff

22 inputController = new InputController_Double();

23 inputController.Begin("192.168.4.1", 80);

24 Connection.text = "Connection : " + inputController.StateClient;

25 }

26

27 void Update()

28 {

29 x_1 = (float)Math.Round(inputController.x_1, 1);

30 y_1 = (float)Math.Round(inputController.y_1, 1);

31 z_1 = (float)Math.Round(inputController.z_1, 1);

32

33 x_2 = (float)Math.Round(inputController.x_2, 1);

34 y_2 = (float)Math.Round(inputController.y_2, 1);

35 z_2 = (float)Math.Round(inputController.z_2, 1);

36 Arangle = (float)Math.Round(inputController.Arangle, 1);

37



B.5. Unity3D Manager Script 217

38 // print("Foot Anlge : " + x_1);

39 // print("Shank Anlge : " + x_2);

40 MPU_1_text.text = "MPU_1 // "+" x : " + x_1.ToString() + "\ty : " + y_1.ToString() + "\tz : " + z_1.ToString();

41 //MPU_1.transform.rotation = Quaternion.Euler(y_1, 0, x_1); // Activate this line if you want to get the rotation about 2 axes

42 MPU_1.transform.rotation = Quaternion.Euler(0, 0, y_1);

43 MPU_2_text.text = "MPU_2 // "+" x : " + x_2.ToString() + "\ty : " + y_2.ToString() + "\tz : " + z_2.ToString();

44 //MPU_2.transform.rotation = Quaternion.Euler(y_2, 0, x_2); // Activate this line if you want to get the rotation about 2 axes

45 MPU_2.transform.rotation = Quaternion.Euler(0, 0, 90 + y_2 );

46 angle.text = "Angle : " + (y_2 - y_1).ToString();

47 angleA.text = "Angle A : " + Arangle;

48 }

49

50

51 }
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C.1 Surface EMG Appropriate Installation Position for

Both Sagittal and Frontal Plans
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FIGURE C.1: Surface EMG Appropriate Installation
Position for The Frontal Plan [17].
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FIGURE C.2: Surface EMG Appropriate Installation
Position for The Sagittal Plan [17].
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C.2 Surface EMG Appropriate Installation Position for

Both Sagittal and Frontal Plans

The maximum likelihood of the normal distribution is used to find the

optimal value ofµ and σ to give some data x. The peak in the likelihood

graphs can be determined where the slope of the curve is equaled to zero.

As known that the likelihood of the vector of variables is equal to the

multiplication of each likelihood, as shown in equation C.1.

L(µ, σ|x, ...xn) = L(µ, σ|x1)× · · · × L(µ, σ|xn) (C.1)

L(µ, σ|x, ...xn) =
e
−(x1−µ)2

2σ2

(2πσ2)
1
2
× · · · × e

−(x2−µ)2

2σ2

(2πσ2)
1
2

(C.2)

To find the maximum likelihood, we should differentiate L two times, first

with respect to µ and considering σ as Constant, then with respect to σ and

considering µ as constant and as shown in the following derivation(equation

X2 - Xn)

ln[L(µ, σ|x, ...xn)] = ln[L(µ, σ|x1)× · · · × L(µ, σ|xn)] (C.3)

ln L(µ, σ|x1) = ln
e
−(x1−µ)2

2σ2

(2πσ2)
1
2
= ln

1√
2πσ2

+ ln e
−(x1−µ)

2σ2 (C.4)

ln L(µ, σ|x1) = ln(2πσ2)
−1
2 − (x1− µ)2

2σ2 (C.5)
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ln L(µ, σ|x1) =
−1
2
× ln(2πσ2)− (x1− µ)2

2σ2 (C.6)

ln L(µ, σ|x1) =
−1
2

ln(2π)− −1
2

ln(σ2)− (x1− µ)2

2σ2 (C.7)

ln L(µ, σ|x1) =
−1
2

ln(2π)− ln(σ)− (x1− µ)2

2σ2 (C.8)

ln L(µ, σ|xn) =
−1
2

ln(2π)− ln(σ)− (xn − µ)2

2σ2 (C.9)

ln[L(µ, σ|x, ...xn)] =
−1
2

ln(2π)− ln(σ)− (x1− µ)2

2σ2 + · · ·

+
−1
2

ln(2π)− ln(σ)− (xn − µ)2

2σ2

(C.10)

∂ ln(L)
∂µ

=
1

2σ2 (x1− µ) + · · ·+ 1
2σ2 (xn − µ) (C.11)

∂ ln(L)
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=
1

2σ2 (x1− µ) + · · ·+ 1
2σ2 (xn − µ) (C.12)

∂ ln(L)
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=
1

2σ2 (
n

∑
1

x− nµ) (C.13)

∂ ln(L)
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∑n

1 x
n

(C.14)

∂

∂σ
(ln(L)) =

−n
σ

+
(x1− µ)2

σ3 + · · ·+ (xn − µ)2

σ3 (C.15)
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∂

∂σ
(ln(L)) =

−n
σ

+
1
σ3 [(x1− µ)2 + · · ·+ (xn − µ)2] (C.16)

∂

∂σ
(ln(L)) = 0←→ n =

1
σ2 [(x1− µ)2 + · · ·+ (xn − µ)2] (C.17)

σ =

√
∑n

1(x− µ)2

n
(C.18)



 الخلاصة

تعد الأطراف الأصطناعية من الأجهزة الضرورية في حياة المبتورين. بسبب أزدياد الحروب 

و الكوارث و الأمراض زاد الطلب على الأطراف الأصطناعية بشكل ملحوظ. تجاريا تعد 

الأطراف غير المحركة من أكثر الأنواع أنتشارا, ولكن من مشاكلها انها لا تضيف طاقة أثناء 

في الأطراف السليمة التي تضيف طاقة نتيجة تقلصات العضلات. من مشاكل الحركة كما هو 

الأطراف فير المتحركة حدوث مشاكل على مستوى العمود القري مثل الأنزلاق و عدم 

أنسيابية المشي. في هذا العمل تم البحث عن النموذج الرياضي الأمثل و أعلى قوة واجب 

 الحركة في مفصل الكاحل.حرك الخطي لأستدامة مبل القتنفيذها من 

تم الأعتماد على موجات تقلصات العضلات للسيطرة على الطرف الأصطناعي. كما هو 

لية غالبا ما تكون مصحوبة بتشوشات, لذلك تم أستعمال نموذج ضمعروف أن الموجات الع

كاوسين لأجل تحسين أداء هذه الموجات. تم أستخادم نموذج أحصائي مستمر لأجل التنبؤ 

أفضل تجابة المناسبة للطرف الأصطناعي. في هذا البحث تم التحقيق في أيجاد بالأس

خوارزمية و أفضل مرشح موجات رياضي قادر على نمذجة موجات تقلصات العضلات, 

للحصول على أفضل أستجابة للطرف الاصطناعي. تمكن نموذج كاوسين من رفع أداء 

تعمال كل من مرشح الموجات سمع أ %82الى  %55النموذج الأحصائي المتستمر من 

الممر للترددات الواطئى و المعدل التربيعي للجذر مع خوارزمية الذكاء الأصطناعي متعددة 

 الحدود.

فلسفة العمل هو في حال أيجاد النودج الأحصائي الأمثل لأستجابة الطرف الأصطناعي من 

نموذج لذوي البتور خلال تدريب النموذج على أشخاص سليمين, هل من الوارد نقل نفس ال

 و ماهي نسبة التعديل.

تم أستخدام معامل الأرتباط الخطي لأيجاد العضلة الأكثر تأثيرا في حركتي الأنثناء الخمصي 

و العطف الظهري في مفصل الكاحل. تم التوصل الى أن عضلتي الكاستروكنيميس الوسطى 

 و الجانبية هي أكثر العظلات تأثيرا على المفصل
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