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Abstract    
 

        An autonomous mobile robot system such as an autonomous vehicle requires 

high criteria of accuracy to track the desired speed profiles and predefined 

trajectory. Some challenges in the development of self-acting systems, like 

building a mathematical model, designing longitudinal and lateral control systems, 

and the optimization technique are still significant topics. 

        This thesis is concerned with constructing the (vehicle and bicycle) models 

which govern the motion of the autonomous vehicle in terms of the longitudinal 

dynamic vehicle model and both longitudinal, lateral motions for the kinematic 

bicycle model. To set the motion of the driverless vehicle, various control 

strategies are proposed. 

       The Proportional Integral Derivative (PID) controller was suggested to 

manipulate throttle/brake actuators of the longitudinal dynamic vehicle model to 

track various reference speeds. Besides, the proportional (P) controller was 

proposed for longitudinal motion while four controllers for lateral motion were 

proposed to steer the kinematic bicycle model at various speeds correctly which 

are: Path Tracking Modified Proportional Integral Derivative (PTMPID), PID, 

Stanley, and Modified Stanley (MS) controllers. The comparison between lateral 

controllers was accomplished to know which one is the best. 

       The parameters of the controllers are optimized with two new optimization 

methods: Hybrid Salp Swarm and Butterfly Optimization Algorithms 

(HSSABOA1 and HSSABOA2). However, to investigate the performance 

competence of the suggested algorithms, they have been compared with the basic 

algorithms: Butterfly Optimization Algorithm (BOA) and Salp Swarm Algorithm 

(SSA) in addition to commonly used algorithms; Genetic Algorithm (GA), Ant 
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Colony Optimization (ACO) algorithm, and Particle Swarm Optimization (PSO) 

algorithm. In these optimization techniques, the Integral Absolute Error (IAE) and 

Root Mean Square Error (RMSE) are used as objective functions to minimize 

tracing errors of the speed and steering, respectively. 

        The simulation results found that the PID controller based on HSSABOA1 for 

the dynamic vehicle model has the best solution to reduce the speed error with an 

improvement percentage of (8.6088%), (5.0226%), (2.5074%), (0.0306%), and 

(0.2295%) than PID based on GA, ACO, PSO, BOA, and SSA, in the order. 

Moreover, it also has traced various speed profiles successfully. 

        In contrast, the PTMPID based on HSSABOA1 has better performance; in the 

minimization of the lateral error beside a percentage enhancement by (10.523%), 

(19.456%), (83.276%), (18.263%), and (94.005%), than PTMPID-SSA, PTMPID-

BOA, Stanley-HSSABOA2, modified Stanley-HSSABOA2, and PID-HSSABOA1, 

respectively. In addition, it also managed to track the road maneuver with various 

longitudinal speeds without large vacillation. 
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Chapter One  

Introduction 

  1.1 Introduction    

  1.1.1 Background 

 The term “Autonomous mobile robot,” means a system that can navigate 

autonomously by itself from one place to other to achieve a set of actions or 

perform a task without assistance from external human operators [1-3]. 

Autonomous mobile robots can accomplish a range of locomotion techniques 

such as flying, swimming, crawling, walking, or rolling. Therefore, it is used in 

many fields such as factories, hospitals, and transportation [1]. This thesis 

focuses on one of the important applications of wheeled mobile robots which is 

autonomous driving cars (ADCs).  

  Autonomous cars (also called self-driving cars or driverless vehicles) are a 

complex system that introduces many services to society like reducing road 

accidents, increasing safety, and providing convenient transportation for 

passengers [4-6]. ADCs can reduce the influence of driver errors as the reason for 

car collisions. In addition, it can provide contrivances special mobility to persons 

who are incapable to drive as cause visual disability or physical [6]. 

         It is also contributed to limit the spread of infectious diseases such as 

Corona Virus Disease 2019 (COVID-19) by delivering food and medicine to the 

infected people and transporting the non-critical cases of patients infected with 

that disease to keep the health of the drivers [7]. 
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  1.1.2 Levels of Autonomous Vehicles 

       According to the Society of Automotive Engineers (SAE) J3016 standard, 

autonomous vehicles have been classified into five levels of autonomous as 

follows [6][8]:  

Level 0 (no automation): At that level, the driving is entirely done by the driver 

[6][8]. 

Level 1 (driver assistance): It includes one automated function such as adaptive 

cruise control [6][8][9]. 

Level 2 (partial automation): It contains several automated functions such as 

longitudinal or lateral control in addition to contingency braking [6][8].  

Level 3 (conditional automation): The vehicle can perform many automated 

functions under definite conditions, but the driver is necessary to perform control 

if the vehicle leaves the automated functions [6][8][9]. 

Level 4 (high automation): The vehicle accomplishes all driving functions 

under specific situations. As well, the driver is not necessary with that level 

[6][8][9]. 

Level 5 (full automation): At that level, the vehicle performs wholly driving 

functions in all conditions without driver [6][8][9]. 

 

  1.1.3 Architecture of an Autonomous Vehicle System  

     The architecture of an ADC system is divided into two groups: Hardware 

architecture and software architecture as shown in Figure (1.1) [10].  
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        Figure (1.1): Architecture of an ADC. 

 

       The hardware architecture can be categorized into three parts: The sensor 

devices, microcontroller, and actuation systems. On the other hand, the software 

architecture can be classified into three parts: Perception, planning, and control. 

Python software is utilized for microcontroller programming [10][11]. 

 

Perception: The perception part receives the information from the sensor devices; 

including the environmental perception, localization, and mapping [10][12][13]. 
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         The environmental perception collects information about the autonomous 

vehicle’s environment such as objects detection [10][12]. On the other hand, 

localization allows an ADC to locate itself inside a map of its surrounding 

environment. This requires stating its orientation inside the map. Localization 

depends mainly on sensor devices such as Inertial Measurement Units (IMUs), 

Global Navigation Satellite System (GNSS), odometry, cameras, or lidar [13]. 

        The mapping part of ADC is used to build a correct picture from the 

environment around it. This possibly depends on a global or local map. This map 

should be extremely accurate to enable an ADC to run safely [13].  

 

Planning: The planning functions are described by three layers: route planning, 

behavioral planning, and motion planning. At route planning, the ADC 

accomplishes the calculation for determining the best route to navigate from the 

current position to the target location based on the map information [13]. After 

finding a route plan, the ADC can navigate the specified route according to road 

rules and driving conventions. This action is accomplished chiefly by the behavior 

layer [6]. Motion planning is employed to generate the desired trajectory and speed 

that the control system must follow [6].  

 

Vehicle Control: The control system of an ADC is categorized into longitudinal 

and lateral control. Where the longitudinal control is used to manipulate the 

(throttle/brake) actuators. Besides, lateral control is employed to set the steering 

angle of the vehicle. The main function of the control system is to execute the 

decision provided by the planning part by sending commands to the actuators to 

drive the vehicle correctly in the environment [6][13]. 
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        This thesis focused on studying the control part of ADCs for tracking road’s 

speed and trajectory accurately in the environment. The accuracy of the control 

system is required to attain the purpose of safely and efficiently driving. That 

accuracy is achieved by finding the best gains of the controllers. The adjusting 

methods based on mathematical and trial and error are not guaranteed to reach best 

gains, therefore, the optimization techniques are employed to obtain the best gains.  

 

 1.1.4 Optimization Techniques 

        The optimization method has been employed in many various domains, like 

engineering applications, data mining, networks, energy, medicine, and economics 

[14]. 

         It is principally used to discover several best values to generate a solution 

that can solve the problem optimally [14].          

       The main objective of employing the optimization algorithms is to find the 

best problem solutions by optimizing (maximizing or minimizing) its Objective 

Function (OF) or fitness function. Optimization algorithms can be categorized into 

four main groups: continuous or discrete, constrained or unconstrained, single or 

multi-objective function, and dynamic or static [14].  

       The general classes of these techniques are displayed in Figure (1.2) [14]. 

Heuristic algorithms require special knowledge on the problem to be optimized. In 

contrast, the application of meta-heuristic does not require special knowledge 

related to the optimization problem, but it is used to state the idea of the general 

issue solving model [15]. 
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       The meta-heuristic techniques can be classified into the following categories 

[14]:  

1. Techniques based on swarm search,  

2. Techniques based on evolutionary search,  

3. Techniques based on local search.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure (1.2): General categories of optimization algorithms. 
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         The second class; is the evolutionary algorithms based on population strategy, 

which are a collection of randomly generated solutions. These solutions are mixed 

iteratively, until the best solution is reached, for getting on better and new solutions 

in means of its objective function. Examples involve genetic algorithms, firefly 

algorithms, and genetic programming [14]. 

         The third class; is the local algorithms which works by one potential solution, 

that will be iteratively developed (increase its objective function) until stopping 

criteria is reached. Examples include tabu search, hill climbing, and simulated 

annealing [14].   

 

1.2 Problem Statement 

         The problem of longitudinal and lateral control for an autonomous car is 

concentrated on adjusting the actuators (Throttle, brake, and steering angle) for 

tracking the desired speed profiles and path defined by the motion planning. In many 

cases, the researchers encountered a large challenge to find the best values of the 

controllers’ parameters. The classical adjusting methods based on mathematical 

functions or trial and error have been found inappropriate in many cases. To avoid 

this issue, optimization methods have been suggested lately for optimizing 

controllers’ gains. On the other hand, many researchers have faced a problem in 

steering the ADCs on the desired road at various speeds without large oscillation.        

 

1.3   Research Aim and Objectives 

          The goals of this thesis are organized as follows: 

1. Modeling the longitudinal dynamic vehicle and the kinematic bicycle to 

describe the longitudinal and lateral motion of an ADC, respectively.  
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2. Designing a combined PID controller with two powerful suggested 

optimization methods (HSSABOA1 and HSSABOA2) to the longitudinal 

dynamic vehicle model in order to trace different reference speeds efficiently.  

3. The comparison between PID controller based on GA, ACO, PSO, BOA, and 

SSA with PID controller based on HSSABOA1 or HSSABOA2 to examine 

the effectiveness of the proposed optimization algorithms to obtain best gains 

for the PID controller. 

4. Designing the proportional and PTMPID controllers based on the    

HSSABOA1 or HSSABOA2 to the kinematic bicycle model for tracing road 

maneuvers at various speeds without large oscillation. Where the P-

HSSABOA is used for controlling the throttle/brake of the ADC, while the 

PTMPID-HSSABOA is employed to set the ADC steering angle for reference 

path tracking correctly in the environment. In addition, exploring the 

performance effectiveness of the proposed lateral controller (PTMPID based 

on HSSABOA1/HSSABOA2) by comparing it with three other lateral 

controllers which are the PID-HSSABOA, Stanley-HSSABOA, and MS-

HSSABOA.  

 

1.4 Contributions 

          This thesis has the following contributions: 

1. Finding two forms of new and powerful optimization algorithms for the first 

time called the hybrid salp swarm algorithm with assistant of the butterfly 

optimization algorithm (HSSABOA1 and HSSABOA2) for optimizing the 

parameters of the longitudinal and lateral controllers. 
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2. Developing a new efficient controller called PTMPID for the first time based 

on HSSABOA1/HSSABOA2 to control the steering angle of the kinematic 

bicycle model.  

3. Design a controller for the kinematic bicycle model able to track the trajectory 

with speed equivalent or less than 20 m/s correctly without the needing to 

design an adaptive or predictive controller to solve that matter. 

 

1.5 Thesis Structure 

        The rest of this thesis is regulated as follows: 

Chapter Two: This chapter involves preview to the related works of this study. 

Chapter Three: This chapter presents the modeling, control, and optimization 

algorithms.                   

Chapter Four: This chapter presents the results and discussions of the applied 

methods in chapter three.     

Chapter Five: This chapter introduces the main conclusions, and   recommendations 

for future works that are related to this thesis. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter Two                              Review of the Related Literature 

 

Chapter Two 

Review of the Related Literature 

  

2.1 Introduction 

         Autonomous vehicles have been developed and studied by many 

researchers, study centers, and vehicle companies since the middle 1980s. Since 

then until today, the projects about autonomous vehicles are increasing day by day 

[4].                 

       In section 2.2 the related works about the control strategies of driverless 

vehicles are discussed.  

 

2.2 Related Works  

        In the previous studies, several kinds of algorithms were used for the 

trajectory tracking of ADCs. These studies included geometric methods which 

have used geometric properties for the car, kinematic/dynamic methods which 

have used a kinematic/dynamic model of the vehicle, classical methods such as 

PID, intelligent methods such as neural network and fuzzy controllers, sliding 

mode controllers and adaptive controller methods.        

        The geometric methods are flexible and simple to implement. Therefore, 

many researchers have proposed these methods for tracking the desired 

trajectories. The two commonly used geometric methods are pure pursuit and 

Stanley controllers that gave good results for tracking defined trajectory. In 

addition, they are better at disturbance elimination in general. But they are 

somewhat problematic at high speeds. To overtake this problem, the gain scaling 

or adaptive look-forward methods are proposed [16][17]. 
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        Dynamic, kinematic, nonlinear, and linear models are used in several works 

of literature. They are comparatively complicated compared to geometrical 

controllers. 

        To perform the longitudinal control for an ADC, the researchers were also 

found various algorithms for solving this matter including adaptive control, PID 

control, fuzzy control, sliding mode control, and Model Predictive Control (MPC). 

One of the commonly employed controllers applied in longitudinal control of the 

dynamic, kinematic models for the vehicle is the PID controller because of its 

simplicity and inexpensive computation.   

        The gains of the longitudinal and lateral controllers were improved using 

various types of optimizations techniques; the widespread methods are GA, PSO, 

ACO, SSA, and BOA. Some of the previous works relative to the longitudinal and 

lateral control of ADCs are arranged as the following: 

 

1. Ping et al., in 2012 [18]; have proposed a strategy for the control with a 

vehicle model containing 9 Degree of Freedom (9DOF). Where the heading 

angle error was reduced by an adaptive fuzzy logic controller and the 

crosstrack error is recompensed with a Proportional Integral (PI) controller. 

Simulation results showed that the suggested automatic directing control 

can minimize lateral trajectory error and enhancing lateral trajectory 

maneuver largely. 

2. Kong et al., in 2015 [19]; have published a study about kinematic and 

dynamic models for an autonomous vehicle. Through which, they applied 

the MPC for the kinematic and dynamic bicycle models. So, they found the 

kinematic model has better prediction errors when discretized at 200 ms 
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than to 100 ms. In addition, they proved the success of the proposed 

methodology at several speeds in windy ways. 

3. Dominguez et al., in 2016 [20]; have published a study that compares three 

lateral controllers (Pure pursuit, Stanley, and sliding mode controllers). 

Also, they have discussed the fourth one called the kinematic controller-

based lateral control. Thus, they have proved that the new method is the 

best one among other controls. On the other hand, they have applied all 

controllers on a real car as well its represented version on a simulator. They 

have pre-recorded the paths in a real-world environment using many 

Simultaneous Localization and Mapping (SLAM) maps systems. Also, they 

showed that Stanley method has little stability in high speed, low 

smoothness and it has good accuracy at low speed than the pursuit 

controller. 

4. Amer et al., in 2018 [21]; have designed the Stanley controller for an 

autonomous vehicle to track the reference path. They modified the basic 

Stanley controller and applied it to a non-linear, 7DOF armored vehicle 

model. The parameters of the controller are optimized using the PSO 

algorithm to select the best values. The performance of the controller was 

examined by comparing it with the original Stanley controller to guide the 

vehicle along several paths. It was found that the optimized controller is 

succeeded to improve the overall lateral error throughout the tests with 24% 

to 96% reduction in lateral error. 

5. Farag, in 2018 [22]; has designed the PID controller for ADCs maneuver 

tracking correctly. Three different methods are employed to tune the 

controller’s parameters. One of them is trial and error based technique that 
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is proposed in this research for this specific application. Extensive studies 

in complex paths with many sharp turns have been performed to evaluate 

the suggested controller at various speeds. The simulation results showed 

that the proposed technique overtook the other ones. 

6. Herlambang et al., in 2019 [23]; suggested the PID controller to control 

the Autonomous Underwater Vehicle (AUV). The gains of the PID 

controller are optimized by two meta-heuristic methods: the ACO and PSO. 

IAE is used as the fitness function by these optimization methods to find 

the best gains. Based on the results of the simulation, the responses found 

by the meta-heuristic methods have small values of the overshoot, settling 

time, and rise time. 

7. El Hajjami et al., in 2019 [24]; proposed the PID controller combined 

with the BOA for controlling the lateral dynamics of an ADC. The 

simulation results showed that the suggested controller gave good results in 

path tracking compared to the PID based on PSO and GA. 

 

8. Ma'ani et al., in 2020 [25]; employed the PID-controller for manipulating 

the throttle/brake of the KIA Soul autonomous vehicle to follow the desired 

speed profiles. They discussed two methods of tuning parameters of the 

longitudinal control which are Cohen Coon method and the genetic 

algorithm. The work outcomes proved that PID based on GA provides 

dynamic optimizing of PID gains and follows the desired speed. 

9. AbdElmoniem et al., in 2020 [26]; proposed a new approach based on a 

discrete prediction model called the predictive Stanley controller. They 

verified their proposed approach performance through some tests on the 

Virtual Robot Testation Platform (V-REP) simulator with various kinds of 
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maneuvers and a wide range of speeds. In addition, predictive Stanley 

controller was compared to the basic Stanley controller. The results of the 

suggested controller proved the benefit and the performance of the method 

in terms of reducing the lateral error and ensuring yaw stability by an 

average of 53% and 22%, respectively. 

 

10. Ma'ani et al., in 2020 [27]; have published a study about the optimization 

of PID parameters for controlling an ADC using a pollination algorithm 

based on a data-driven approach. They designed a PID controller for 

controlling the throttle of an autonomous vehicle. Thus, they concluded the 

proposed design can track the speed profiles acceptably in an anon-straight 

path. 

11. Chen et al., in 2020 [28]; discussed a coupled longitudinal and lateral 

control for an ADC to trace the reference speed and path. Where the PID 

controller is employed for the longitudinal control and the MPC is 

employed for the lateral control. The results of that work demonstrated that 

the suggested approach achieved good tracing for both defined path and 

speed. 

12. Gutiérrez et al., in 2020 [29]; have published a study about design a 

control system for an ADC for tracking the waypoints that output from the 

planning layer. They have proposed a controller that includes a cubic spline 

interpolator, for finding a smooth path and reduces the number of 

waypoints. Also, they added two improvements to the control system; the 

first one sets the linear speed according to the curvature of the trajectory. 

The second one corrects the instability due to delays in the measurement of 

car localization and the actuation systems by adding a delay compensator.  
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13. Samak et al., in 2021 [5]; have published a study about designing several 

controllers for an autonomous vehicle for tracking the defined path. They 

proposed Proximally Optimal Predictive (POP), PID, Stanley, and pure 

pursuit controllers for tracking the reference path. Moreover, they applied 

for their work by CARLA simulator and Python language. The simulation 

outcomes proved that the POP controller is the best for tracking for 

reference waypoints of the path among other controllers.   

  

        The comparison of this work with some literature is listed in Table 2.1. 

 

Table (2.1): The comparison of this work with some literature.  

 

In the next chapter, the methodology of the proposed work will be presented. 

 

  

Reference 
Longitudinal 

Control 

Lateral 

Control 

Tuning 

method 
Accuracy 

Longitudinal Lateral 

[21] Nan 
Modified 

Stanley 
PSO Nan 93 

[24] Nan PID BOA Nan 99.3521 

[25] PID Nan GA 98.09 Nan 

Proposed 

work 
PID PTMPID HSSABOA1 98.26 99.9628 
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Chapter Three                                             

Methodology 

 

3.1 Introduction 

      This chapter introduces the mathematical models for the vehicle motion 

(longitudinal dynamic vehicle model and kinematic model). The longitudinal 

dynamic vehicle is divided into vehicle coordinate system, longitudinal vehicle 

model, powertrain model, and longitudinal tire model. On the other hand, the 

kinematic model includes the basics of kinematic and coordinates in addition to the 

kinematic bicycle model. This chapter also includes the control strategies of the 

longitudinal and lateral motion for the vehicle. Where the PID controller is 

employed for adjusting the brake/throttle position. Besides, the Stanley, MS, PID, 

PTMPID are employed to set the steering angle. In addition, this chapter explains 

some optimization methods: GA, ACO, PSO, SSA, BOA, and HSSABOA in two 

forms (HSSABOA1 and HSSABOA2). As well to state objective functions that are 

used in these optimization techniques for adjusting controllers’ gains. 

 

3.2 Mathematical Modeling of Autonomous Vehicles   

       This thesis focuses on the analysis of the vehicle having four wheels. The 

front wheels of this car have the same steering angle. But the two rear wheels have 

zero steering angles. The mathematical models for representing an ADC are 

classified in this study according to the detailed diagram in Figure (3.1):
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Figure (3.1): Mathematical models categories of an ADC. 

 

3.2.1 Dynamic Vehicle Model (Longitudinal Motion)        

                 The dynamic model defines motion by considering all of forces and moments 

that are acting on a vehicle, and it has higher computational complexity than the 

kinematic model. It is employed when the speed of the vehicle increases and the 

no-slip hypothesis between the ground and tire becomes unacceptable. At this 

point, the use of the kinematic model will be inaccurate [6][30][31] 

 

 3.2.1.1 Vehicle Coordinate System  

                The coordinate system of the vehicle motion is selected according to the 

right-hand rules as offered in Figure (3.2). By SAE convention the coordinates are 

[42]:

Mathematical vehicle model 

Kinematic bicycle model 

Lateral 
motion 

Longitudinal 
motion 

Dynamic vehicle model 
(Longitudinal motion) 

Longitudinal vehicle 
model 

Powertrain model 

Longitudinal tire 
model 
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x - Longitudinal: Vehicle forward longitudinal motion, 

y - Lateral: Vehicle forward lateral motion, 

z - Vertical: Going down relative to the vehicle,  

p - Roll: Vehicle rotation around the x-axis, 

q - Pitch: Vehicle rotation around the y-axis, 

r - Yaw: Vehicle rotation around the z-axis. 

 

 

 

 

 
 
 

                                

                              

 

 

 

 

 

Figure (3.2): SAE Coordinate system [32]. 

 

        3.2.1.2 Longitudinal Vehicle Model 

              The longitudinal vehicle motion diagram of an autonomous vehicle is related 

to x-direction as displayed in Figure (3.3) [32]: 

  

 

 

 

            

 

 

Figure (3.3): Longitudinal vehicle dynamics [33]. 

𝝓 
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According to Newton’s second law the Equation (1) (Eq) gives [34]: 

   ̈                                 n                       (1)                                                          

Where,  

 : Mass of the vehicle (g), 

 ̈: Acceleration of the vehicle (m/s
2
),   

        : Front and rear tire forces (N), 

     : Drag force (N), 

       :  Front and rear rolling resistances (N), 

          : X-component of the gravitational force, where g is the acceleration 

of gravity (m/s
2
), and   is the incline angle (rad), 

The simplification of Equation (1) is as follows: 

The front and rear tire forces are represented by longitudinal force    and the front 

and rear rolling resistances are denoted by   . Therefore, Equation (1) becomes: 

   ̈                                                                         (2) 

The aerodynamic force       is given by Equation (3): 

                         (  )   
                                                                                         

(3)     

Where, 

  : Drag coefficient,  

 : Air density (g/cm
3
), 

 : Maximum vehicle cross-sectional area (m
2
), 

 : Vehicle speed (m/s). 

The total rolling resistances Rx is given by the Equation (4) [34]: 

                                                                                                                                         (4)  

 

Where,    is the rolling resistance coefficient. For more simplification of the 

Equation (2), aerodynamic force      , total rolling resistances Rx  and  the  x-
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component of  the  gravitational  force             are represented  by  the  

friction  forces      as in Equation (5) [34]: 

   ̈  (       )                                                                              (5) 

 

        3.2.1.3 Powertrain Model 

         Powertrain describes the transmission of the torque and speed from the 

engine to the vehicle’s wheels as displayed in Figure (3.4). The torque produced by 

the engine is transmitted to the transmission (gearbox) across the torque converter 

[35]. The automatic transmission has gearsets that match engine speed to desired 

road speed. The power passes from the transmission to the differential by the drive 

shaft. The differential turns power flow 90 degrees and allows one wheel to rotate 

faster from the other on curves. Finally, the axle shaft transmits power from the 

differential to the rear wheels [32]. 

 

               

                

 

Figure (3.4): Vehicle powertrain model [32]. 
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The Equations (6 to 8) of powertrain model can be calculated as follows [34][36]: 

    ̇                                                                                                              ( )                                                                                

                                                                                                              ( )                                             

                                                                                                                      ( )                                                           

Where, 

    : Inertia moment of engine (kg.m
2
), 

    ̇ : Change in engine angular speed (rad/s
2
),  

  : Engine torque (N.m), 

     : Friction torque (N.m), 

   : Gear ratio, 

   : Engine angular speed (rad/s), 

  :Wheel angular speed (rad/s), 

     : The radius of the wheel (m). 

       Figure (3.5) refers to the engine map, which represents the engine torque 

relative to engine rotation speed in the unit of rpm (Revolutions Per Minute) and 

the throttle opening percentage [34][36]. 

The engine rpm and engine torque are related in the form of a polynomial equation 

such as in Equation (9), where a0, a1, and a2 are constant values [34].  

       (        n  n   o    on  p        n  n   o    on  p    )  ( )        

                                             

The engine torque is a linear function of throttle opening, therefore the engine 

torque is written in Equation (10) as [36]: 

 

   = Throttle angle *        + (1-Throttle angle)*                                              (  )      

                                   

Where       and        denote the minimum and the maximum of the engine 

torque   , respectively. 
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Figure (3.5): Engine map (Engine RPM vs. Engine torque and % Throttle) [35]. 

 

        3.2.1.4 Longitudinal Tire Model 

        The main source to calculate the road forces acting on the vehicle is the tire 

model [35]. One of the famous models that are used extensively in vehicle 

dynamic modeling is the linear model as illustrated in Figure (3.6). Where it offers 

a combination of accurate force prediction and convenient computation. According 

to that model, the longitudinal force is described by Equation (11) [37]: 

                                                                                                                         (  )                                                                         

Where,  

  : Longitudinal stiffness of the tire (N), 

 : Longitudinal slip (percent). 

       The slip ratio is dissimilar in case of the vehicle is accelerating or braking, as 

given in Equation (12) [35]:         
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       During acceleration 

                               (12) 

 
            

 
       During braking    

 

 

 

 

 

 

Figure (3.6): Linear tire model. 

 

The block diagram of the longitudinal dynamic vehicle model is presented in 

Figure (3.7).       

          

 

 

 

  

                 

           Figure (3.7): Block diagram of longitudinal dynamic vehicle model. 

 

         Where,   ̇ ,    ̇  are the change in the longitudinal speed and longitudinal 

motion relative to the time, in the order. The parameters of the longitudinal 

dynamic vehicle employed for the simulation are specified in Table (A.1) of the 

Appendix.  

𝑆 = 

Longitudinal 

Dynamic 

Vehicle Model 

Throttle/Brake (a) 

Incline angle (𝜙) 

States: 

Linear speed (𝒗) 

Longitudinal motion (x) 

Engine angular speed ( 𝒘𝒆 ) 

  

Rate of change: 

 (𝒗 ̇ ,  𝒙 ̇  ,  𝒘𝒆 ̇ ) 
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3.2.2 Kinematic Model 

        The kinematic model describes the motion of a vehicle, neglecting the forces 

and moments acting on the vehicle. It is used for motion planning and control of 

maneuvers at low speeds [30].  

       3.2.2.1 Basics of Kinematic and Coordinates 

       The position of each robot in the actual world represents by its position (x, y, 

and z) and orientation (Pitch, Yaw, and Roll) along the three main axes of a 

cartesian coordinate system. The direction of these coordinate axes and rotation 

around them are selected according to the right-hand rules as shown in Figure (3.8) 

[38]. The kinematic model requires the concepts of coordinate frame 

transformations. The common coordinate frames of the robot are the global or 

inertial coordinate frame and the body or local frame. The body or local frame is 

related to the robot body itself. To move the system, the transformation variables 

from one coordinate frame to the other are required [39].   

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure (3.8): The direction of coordinate axes to the robot system [38]. 
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        3.2.2.2 Kinematic Bicycle Model 

         The kinematic bicycle model as illustrated in Figure (3.9) is commonly 

employed to represent the driverless car motion at low speed. According to a 

transformation from the local coordinate frame to the global reference frame, the 

Equations (13 to 18) of the kinematic bicycle model are represented as follows 

[30][40]: 

 

 

 

 

 

 

 

 

 

  

 

 

Figure (3.9): Kinematic bicycle model. 

 

                     ̇    o (   )                                                                 (  )                                                          

  ̇       (   )                                                                (  )                                                                                                

 ̇  
     

 
                                                                      (  ) 

                     ̇                                                                                 (16) 

                           ( 
   

 
      )                                                  (17) 

                     ̇                                                                                 (18) 
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Where,  

  ,   : Vehicle coordinates in the global frame (m),  

 : Vehicle yaw angle (rad), 

v: The magnitude of the speed vector from the bicycle center (rad/s), 

  : Vehicle side slip angle (rad), 

 : Steering angle (rad), 

a: Vehicle acceleration (rad/s), 

  : Distance from the bicycle center to the center of the front wheel (m), 

     Distance from the bicycle center to the center of the rear wheel (m), 

   Wheelbase (m) and it is equal to the collection of       
and     , 

   Steering rate (rad/s). 

 

The state space model of the kinematic bicycle model is represented in Equation 

(19) 

 

  

 

 

The parameters of the kinematic bicycle model employed for the simulation are 

expressed in Table (A.2) of the Appendix: 

 

The block chart of the kinematic bicycle model is offered in Figure (3.10). 

 

 

 

= 

 o (𝛳  𝛽)

  n(𝛳  𝛽)

𝑐𝑜𝑠  (𝛽  𝐿) 𝑡𝑎𝑛 𝛿
 
 

 𝑣 + 

 
 
 
 
 

 

 

𝜑 

 𝑥𝑐̇
𝑦𝑐̇
𝛳̇
𝛿̇
𝑣̇

 (19) 
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Figure (3.10): Block chart of the kinematic bicycle model. 

 

Where, the (  ̇   ̇  ̇   ̇    ̇ ) are the change of these states ( ,    ,  ,  ) with 

relative to the time, respectively. 

 

3.3 Control Strategies 

        The control system is an important part of an ADC to execute the reference 

path and desired speed generated by the motion planning processes [10]. The 

control of autonomous vehicles can be separated into two parts: Longitudinal and 

lateral control as given in Figure (3.11). 

 

 

 

 

 

 

  

 

 

 

  

 

  

Figure (3.11): Control system diagram.     
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3.3.1 Longitudinal Control 

       The common controller that is employed in many applications is the feedback 

controller. It can reduce the bad effects of parameters changes, errors, and 

measurement disturbances between the desired and observed measurements [10].   

         One of the common kinds of feedback controllers that employed for the 

longitudinal control of an ADC is the PID controller. The PID controller contains 

three items; proportional, integral, and derivative. The speed profile of the 

longitudinal autonomous vehicle control involves throttle and brake values. For the 

driverless car to follow the speed profiles, a longitudinal controller is used to 

minimize the error between current and target values of the throttle and brake. The 

PID controller can be represented as in Equation (20) [35][36]: 

 

 ( )      ( )     
  ( )

  
    ∫  ( )                                            (20) 

Where,  

  : The proportional gain of the PID controller,  

   and   : Integral and derivative gains of the PID controller, respectively, 

e(t): The error between current and target measurements. 

        The control input is employed for regulatory the throttle and brake positions 

and in that test, the throttle values are limited between (-1 and 1), as the block 

diagram of the PID controller is presented in Figure (3.12). 
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Figure (3.12): Block diagram of the PID controller. 

 

        The proportional component can correct the proportional response by 

multiplying the error by proportional gain   , and it produces an output value that 

is proportional to the current error value. It reduces the steady-state error and 

increases the response speed. When the P gain is high enough, the system becomes 

unstable. In contrast, if the proportional gain is too low, the response to system 

disturbances may be very small [41][42]. 

          The advantage of using the integral component is to minimize the steady-

state error by multiplying the accumulated error by the integral gain   . On the 

other hand, the basic function of the derivative term is to put-out the overshoot by 

multiplying the slope of the error by differential gain   . Moreover, the differential 

component reduces the speed of the system, and it makes small changes on the 

steady-state error [41][42]. 

        The effects of the   ,   , and    on the system response have explained as in 

the Table (3.1) [42]: 

 

𝐤𝐩  𝐞(𝐭) 

𝐤𝐝  𝐝𝐞(𝐭) 𝐝𝐭 

𝐤𝐢   𝐞(𝐭) 𝐝𝐭 

 ⬚

Reference 

Speed 

Current 

Speed 

Plant 
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Table (3.1): Effects of PID controller parameters. 

Controller 

parameter 

Closed loop system response 

R      m  

 (  ) 

Ov   hoo  

 (OS) 

S   l n    m  

(   ) 

Steady state 

error (SSE) 

    Diminution Increasing 
Slight 

changing 
Decreasing 

    Diminution Increasing Increasing Remove 

    
Slight 

changing 
Diminution Diminution 

Slight 

changing 

 

3.3.2 Lateral Control      

           This section discusses two kinds of controllers: geometric and feedback 

controllers. 

        3.3.2.1 Geometric controller 

        To set a steering angle for the kinematic bicycle model; geometric path 

tracking algorithms are used to form simple relations. These algorithms use 

lookahead distance to measure the error in front of the vehicle and their complexity 

range from simple circular arc calculations to much more complicated geometric 

methods. There are two common geometric controller algorithms are pure pursuit 

and Stanley controllers [10]. This thesis focuses on the Stanley controller where 

two types of Stanley controller are stated in this section as follow: 

 

A) Stanley Controller  

        One of the common geometric control methods used to steer a vehicle is a 

Stanley controller, as presented in Figure (3.13). This controller computes the 

crosstrack error       from the front wheel center to the reference path at point P. 
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Moreover, this method calculates the heading error between the orientation of the 

vehicle and the reference yaw angle    as in the Equation (21) [10]:  

 

 

 

 

 

 

 

 

 

Figure (3.13): Steering geometry of Stanley method. 

 

                                                                                                        (21) 

The steering angle of the Stanley controller is described by the Equation (22) [10]: 

 

          (
          

 

 
)                                                  (  ) 

 

Where, K is the gain of the Stanley controller. 

 

B) Modified Stanley Controller (MS) 

         The modified Stanley controller is proposed by Amer, et al.[21]. In this 

controller, the steering angle of the Stanley controller is modified by adding one 

item and three gains as, specified by Equation (23): 

              (
           

 

   
)    ( ̇   ̇   )                         (  ) 

 

 

P 

𝑒𝑐𝑡𝑒 
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Where          , and    are the controller’s gains,  ̇ and  ̇    are the vehicle’s 

yaw rate and path’s yaw rate, respectively. 

        3.3.2.2 Feedback Controller   

       In this section, two kinds of controllers are identified: 

 

A) PID controller   

     It’s a kind of feedback controllers that can be used in lateral control. The 

crosstrack error is used as an input to the PID controller as in Equation (24) [22]: 

 

               
     

  
    ∫                                             (  )                              

 

B) Path Tracking Based on Modified PID controller (PTMPID) 

To make the PID controller efficient to trace the trajectories at different speeds 

without large oscillation, the PID controller has been modified in this work. So that 

the vehicle speed is embedded with the PID controller formula, therefore, the 

steering angle is altered as in Equation (25): 

   (           
     

  
    ∫       ) (   )                     (  )          

   

3.4 Optimizing Techniques 

         The algorithms that have been employed in this work to tune the gains of the 

longitudinal and lateral controllers are presented in the following subsections: 
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3.4.1 Genetic Algorithm (GA) 

           GA is one of the evolutionary algorithms that depend on genetics, it was 

proposed by Holland in 1975 [43]. In GA the individuals (chromosomes) are 

evolved by objective or fitness function value. Then according to the objective 

function, the selection is performed on the chromosomes for reproduction. On the 

selected chromosomes the crossover and mutation are implemented to create 

children or offspring which forms the population of the following generation. This 

process is looped until reaches the maximum iteration [44][45]. The main problem 

of the GA is that the best solution is very hard to obtain because it easily falls into 

premature convergence [46]. The parameters of the GA algorithm are stated in 

Table (3.2). 

 

Table (3.2): The parameters of GA algorithm. 

   Description  Value 

Crossover type Multipoint crossover 

Crossover rate 1 

Mutation rate                          0.01 

Selection strategy Roulette wheel selection 

 

3.4.2 Ant Colony Optimization (ACO) 

        ACO algorithm is introduced by Marco Dorigo and colleagues in the early 

1990s for solving optimization problems. This algorithm is inspired by the 

behavior of ants for collecting food. It is a probabilistic algorithm used for finding 

the shortest way in graphs. When ants search for food, they take several paths and 

put down pheromone to the surface. So the shortest path has the greatest density of 

pheromones. In this algorithm three different main stages are followed: 
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initialization, constructing ant solution, and updating pheromone [47-49]. The 

mathematic expression of the pheromone     is updated by the Equations (26) and 

(27): 

    (   )      ∑     
  

                                                                         (26)                                                             

                  
 

  
                        (   )                 

                               

 

Where: 

i, j: The edge connection nodes, 

 : The evaporation rate for pheromone quantity, 

    
 : The pheromone quantity, 

n: The number of ants, 

 : Constant, 

  : The length of the round generated by ant k, 

The probability   to move from node i to node j is calculated by the Equations (28) 

and (29): 

                      
   
     

 

∑    
     

 
     (  )

          (  )   

                               

    
 

   
                                                                                                       (29) 

 

  : The partial solution, 

 (  ): The set of nodes, 

   : The heuristic information, 

  and  : The pheromone and the heuristic exponent in the order, 

𝛥𝜏𝑖𝑗
𝑘  

    

(27) 

𝜌𝑖𝑗
𝑘  

    

(28) 
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   : A distance from nodes i to the joined node j. 

 

              The disadvantage of the ACO algorithm is be able to fall easily into the trap 

of local optimum [46]. The parameters of ACO algorithm are specified in Table 

(3.3). 

 

Table (3.3): The parameters of ACO algorithm. 

   Description  Value 

Pheromone exponent ( ) 0.6 

Heuristic exponent ( ) 0.2 

Pheromone evaporation factor 0.7 

Number of nodes 10000 

 

3.4.3 Particle Swarm Optimization (PSO) 

              PSO technique is the optimization method which has been proposed in 1995 

by Kennedy and Eberhart. It is described according to the social behavior of fishes 

or birds. In this technique, initially, a random group of particles is created. Each 

particle expressed a solution and the individuals in each group of particles are 

assigned a speed and position. The particles are used to generate many solutions 

for the fitness function at every iteration. For each generation, the objective 

function is evaluated to find the particle best (pbest) and the global best (gbest). 

The pbest provides the best solution of each particle. On the other hand, the gbest 

represents the best solution of all generations. The pbest and gbest are updated at 

each iteration and they are used to calculate the new speed and position according 

to Equations (30 to 32) [45][50][51][52]: 
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 )      (  
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                                                                                (  ) 

    
      

     
                                                                                        (  )    

Here, 

 : Iterations number,  

n: Number of the particles, 

   and   : Cognitive and social learning factors, respectively, 

 : Inertia weight, 

   and   : Random values inside the range (0,1), 

   : The best position of the particles,  

   : The best particle between members of the group. 

 N: Maximum iteration, 

      and     : The minimum and maximum values of inertia weight. 

 

          These steps are repeated until the maximum iteration is reached. The major 

drawback of the PSO algorithm is the likelihood of falling all particles at a local 

minimum in the search space. Thus, they cannot find the exit way from the trap 

with their own [45, 51]. The limitations of the PSO algorithm are given in Table 

(3.4). 

 

Table (3.4): The limitations of PSO algorithm. 

   Description  Value 

The minimum and maximum of inertia weight 0.2 and 0.9 

Cognitive learning factor 2 

Social learning factor 2 

Maximum speed 6 
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3.4.4 Salp Swarm Algorithm (SSA) 

                   The SSA is a new method of the meta-heuristic algorithms which was 

suggested by Mirjalili et al. in 2017 [53]. The idea inspiration of SSA is back to 

behavior the swarm of salps in seas [54][55]. The swarm of salps is composed of 

the leader and the followers. The leader searches for food while the followers track 

the leader sequentially [56][57].  

The SSA has unique features that are not found by the other methods of 

optimization, such as Gray Wolf Optimization (GWO), Gravitational Search 

Algorithm (GSA), and PSO technique. It is flexible, easy to understand, simple 

construction, and it avoids the problem of being stuck in local optimum [14][54]. 

The population of salps can be defined by an (M × N) dimensional matrix and the 

mathematical expressions of the salp swarm algorithm are represented by the 

Equations (33 to 35) [53][54]: 

 

  
         ((        )        )                                        (  ) 

  
         ((        )        )                                        (  ) 

      p (      )                                                                                      (  ) 

Here, 

   
 : The position leader in the     dimension, 

    : The position's food source in the    dimension, 

    and    : Upper and lower bound of the     dimension, respectively, 

    and   : The random numbers between 0 to 1 and it indicates the step size to 

select the next position in the     dimension should be towards positive or negative 

infinity, 

  : The main coefficient gives a balance between the exploration and exploitation, 

   Current iteration. 
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The position of the followers should be updated according to Equation (36) [53]: 

  
  

 

 
(   

    
   )                                                                               (  ) 

This technique is not requiring any limitations like other methods. 

 

3.4.5 Butterfly Optimization Algorithm (BOA) 

         The BOA is a recent meta-heuristic technique which was invented by Singh 

and Arora in 2018 [58]. It is inspired by butterflies’ natural behavior in the search 

for food.  This technique is dependent on two matters, which are the fragrance 

function formulation and the difference in fragrance intensity. The formulation of 

the fragrance function can be represented according to Equation (37) [58][59]: 

                                                                                            (37)  

Where:  

  : The perceived magnitude for the fragrance, 

  : The sensory modality, 

    The stimulus intensity, 

  : The power exponent attached to modality, 

The sensory modality c can be updated as in Equation (38) [60]: 

 

        
     

      
                                                                      (38) 

 

        When the butterfly senses the scent emanating from another butterfly, it will 

move towards it, and it is identified as the global search. In contrast, when the 

butterfly is unable to sense the scent emanating from any other butterfly, it will 

transfer randomly and this is called the local search. The global and local searches 

are formulated according to Equations (39) and (40), respectively [59]:      
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  (        
 )                                                     (39) 

  
      

  (     
    

 )                                                     (40) 

Where: 

    The best solution found, 

r: A random number between the interval 0 and 1, 

        The mode to change between global and local search is named a switch 

probability and indicated the symbol P. The bounds of the BOA that were used in 

that work are stated in Table (3.5). 

 

Table (3.5): The parameters of BOA algorithm. 

   Description  Value 

Switch probability (P) 0.2 

Power exponent (𝛕) 0.1 

Sensory modality (c) 0.02 

 

 

3.4.6 Hybrid Salp Swarm Algorithm and Butterfly Optimization Algorithm  

         (HSSABOA)   

           

         Hybridization between two optimization algorithms provides a better solution 

to several problems of optimization and it leads to faster convergence. In this 

thesis, SSA is merged with the BOA in two forms to improve the performance of 

SSA. At each iteration, the comparison between fitness values of both methods is 

evaluated and the best solution was considered. Then half number of agents of the 

method that gave the best solution from the other way are copied to the half 

number of agents of another method before its updating. Two forms of that 

hybridization have found in this work as follows: 
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        3.4.6.1 HSSABOA1  

        The basic idea in that form of hybridization is that, in each generation, if the 

fitness value of the BOA is better than SSA, half the number of agents of the BOA 

is copied to the half number of agents of SSA before its updating. In that form, we 

avoid the replacing of the agent leader as it is updated through the best solutions. 

         3.4.6.2 HSSABOA2  

         That form of hybridization includes reversing the suggested idea in 

HSSABOA1. Where, in case been the fitness value of the SSA better than BOA, 

half the number of agents of the SSA is copied to a half number of agents of BOA 

before it updated.  

         HSSABOA1/HSSABOA2 algorithms are used the same parameters stated in 

Table (3.5).       

         The common parameters for all algorithms are defined in Table (3.6). As 

well, the bounds of the upper, lower, and the length of each agent for the 

optimization techniques of the longitudinal and lateral controllers are signified in 

Tables (3.7) and (3.8), respectively. 

 

Table (3.6): The common parameters in all algorithms. 

   Description  Value 

Number of agents (n) 20 

 Maximum iteration (N) 300 

 

Table (3.7): The parameters of longitudinal control. 

Controller 

type 

Lower  bounds 

(lb) 

Upper bounds 

(ub) 

Length of each 

agent (dim) 

PID 0.000001, 0.000001, 0.000001 10, 10, 10 3 

P 0.1 30 1 
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Table (3.8): The parameters of lateral control. 

Controller 

type 

Lower bounds 

(lb) 

Upper 

bounds (ub) 

Length of each 

agent (dim) 

Stanley 0.1 20 1 

PID 0.001, 0.001, 0.001 20, 20, 20 3 

PTMPID 0.001, 0.001, 0.001 20, 20, 20 3 

Modified 

Stanley 

0.0000001, 0.0000001, 0.0000001, 

0.0000001 
10, 10, 10, 10 4 

 

3.4.7 Objective Function (OF) 

          The solution to most of the optimization problems is dependent on the 

representation of the OF.  

The most widely used error integrating fitness functions in literature are the IAE, 

Integral Square Error (ISE), Integral Time Absolute Error (ITAE), Integral Time 

Square Error (ITSE) or Mean Square Error (MSE), and RMSE. These objective 

functions can be expressed as in Equations (41 to 45) [21][22][61][62]: 

        | ( )|                                                                                          (  ) 

          ( )                                                                                           (  ) 

         | ( )|                                                                                        (  ) 

          ( )                                                                                         (  ) 

     √    (    ( ))
                                                                            (  ) 

Where T is the maximum number of the time steps. 
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          The certain objective functions in the proposed algorithms are the IAE and 

RMSE. Where the IAE is employed for minimizing the speed error; while the 

RMSE is used to reduce the lateral error.  

         The IAE is used to minimize the speed error in this study instead of ITAE, 

ISE, and MSE as a reason, it has less overshoot and minimum value of the Steady 

State Error (SSE) as clarified in Tables (A.3), (A.4) and Figure (A.1) of the 

Appendix. In addition, the RMSE is also a good choice for employing for 

performance evaluation of path tracking. 

        The flowcharts of BOA and SSA for optimization controllers’ gains are 

offered in Figures (3.14) and (3.15), respectively. On the other hand, the 

hybridization approach of SSA and BOA is expressed by the two flowcharts as 

presented in Figures (3.16) and (3.17). 

        The block diagrams of algorithms for optimizing the controller’s parameters 

of the (longitudinal dynamic vehicle and kinematic bicycle) models are also 

illustrated in Figures (3.18) and (3.19), respectively. 
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Figure (3.14): Controller based 

                     on BOA flowchart. 

 

Figure (3.15): Controller based 

                     on SSA flowchart. 
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Figure (3.16): Controller based on HSSABOA1 flowchart. 
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 Figure (3.17): Controller based on HSSABOA2 flowchart. 
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Figure (3.18): Block diagram for optimizing PID parameters. 

   

 

 

  

 

 

 

    

 

 

  
    

  

 

 
   

Figure (3.19): Bicycle model diagram to optimize its controller’s gains.   
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            In the following chapter, the results and discussions of the tests related to 

the modeling, control strategies and optimization techniques that have been 

introduced in this chapter will be presented. 
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Chapter Four 

Results and Discussion 

 

4.1 Introduction 

In this chapter, the outcomes of tests that were performed are presented and 

discussed to evaluate the performance effectiveness of the controllers and 

optimization algorithms mentioned in chapter three. These simulation 

methodologies are executed in a computer with the following 

specifications:  (Processor AMD PRO A10, RAM 8 GB, Storage 500 GB, Freq. 

1.8 GHz), Operating System (Windows 10, 64 bit), and Programming 

Language (Python 3.6). 

 

4.2 Longitudinal Dynamic Vehicle Model 

4.2.1 Speed Generation by Longitudinal Dynamic Vehicle Model  

         Initially, the parameters effect of the longitudinal dynamic vehicle model, 

on the speed generation have been tested several times before performing the 

techniques of control and optimization.             

        In the first test, constant values of throttle position (0.2, 0.5, 0.7, and 0.9), 

have been taken one by one individually. The simulation results are shown in 

Figure (4.1). 

          In the second test, various values for throttle are set at the same time. Then, 

the simulation output of that test is illustrated in Figure (4.2). 

         The results in Figure (4.1) indicate that when the throttle is set to a constant 

value then, the speed approaches a certain constant value according to the throttle 

value. In another word, there is a direct relationship between the speed and throttle 
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values. But, the outcome in Figure (4.2) explains that, when the throttle input 

values changed, the speed curve has changed according to these values. 

                        Figure (4.1): Speed vs time with constant values of throttle. 

Figure (4.2): Speed vs time with variable values of throttle. 
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4.2.2 Longitudinal Control of Dynamic Vehicle Model  

      The tests in this section are divided into three tests: In the first test, the 

longitudinal control system of the dynamic vehicle was provided with a constant 

reference speed of 30 m/s. Then, the gains of the PID controller were optimized 

using: GA, ACO, PSO, BOA, SSA, HSSABOA1, and HSSABOA2 algorithms to 

solve the issue of desired speed tracing. The convergence curve of the objective 

functions for these algorithms is presented graphically in Figure (4.3). In that 

Figure, the HSSABOA1, and HSSABOA2 algorithms were converged faster than 

other optimization algorithms, which indicates the efficiency of the proposed 

algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

Figure (4.3): Convergence curve for PID based on optimization algorithms. 
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        The results of Table (4.1) contain the best controllers' parameters and 

minimum fitness function values provided by the optimization algorithms. 

According to the outcomes of that table, the PID-HSSABOA1, and PID-

HSSABOA2 included the best fitness values compared to the PID based on other 

algorithms. 

Table (4.1): Best values of PID gains at the best IAE value. 

Type of Optimized 

  PID Controller 
                IAE (m/s) 

PID-GA 7.37609 0.00826 9.65858 190.99628 

PID-ACO 4.97145 0.00009 6.23189 183.78443 

PID-PSO 5.59039 0.000001 1 179.04310 

PID-BOA 1.73070 0.00179 3.26505 174.60714 

PID-SSA 5.60605 0.00181 9.90603 174.95530 

PID-HSSABOA1 3.69088 0.00179 6.99794 174.55376 

PID-HSSABOA2 2.24379 0.00179 4.21653 174.56332 

    

         On the other hand, Figure (4.4) proved that the PID-BOA, PID-HSSABOA1, 

and PID-HSSABOA2 have provided a faster and smoother response than the PID-

GA, PID-ACO, PID-PSO, and PID-SSA. Table (4.2) includes the specifications of 

the optimized PID response represented in standards of steady-state error, and 

overshoot (OS). The results in the table indicated that PID-HSSABOA1 has less 

SSE compared to other controllers; further to maintain a smaller value of the 

overshoot.   
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       Figure (4.4): The response of the PID based on various optimization methods. 

 

 

Table (4.2): The specifications of the optimized PID response. 

Type of Optimized 

  PID Controller 
  OS (%) SSE )m/s) 

PID-GA 4.43316 0.13123 

PID-ACO 4.58772 0.05946 

PID-PSO 0.87617 0.05564 

PID-BOA 0.0 0.00005 

PID-SSA 1.07573 0.0000002 

PID-HSSABOA1 0.10108 1*10^-12 

PID-HSSABOA2 0.05819 0.0000002 
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          In the second test, the longitudinal control system of the dynamic vehicle 

was tested with a constant reference speed of 40 m/s and 50 m/s. The response of 

the PID-HSSABOA1 was depicted in Figures (4.5) and (4.6), respectively. From 

the simulation results, the SSE and the OS were extracted into Table (4.3). 

           Figures (4.5) and (4.6) demonstrate that the PID-HSSABOA1 response was 

following the constant reference speed correctly. This result indicates the 

efficiency of the optimized gains. 

          As noticed in Table (4.3), the PID-HSSABOA1 response has improved 

values of the SSE and overshoot.     

 

 Figure (4.5): The response of the PID-HSSABOA1 at 40 m/s. 
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Figure (4.6): The response of the PID-HSSABOA1 at 50 m/s. 

 

     Table (4.3): The specifications of the PID-HSSABOA1 response at various  

                           speeds.  

Speed   (%) OS SSE (m/s) 

40 m/s 0 0.003062484818102007 

50 m/s 0 0.014044063259547102 

   

 

4.3 Kinematic Bicycle Model  

4.3.1 Path Generation by Kinematic Bicycle Model 

        Before testing the control and optimization on the kinematic bicycle model, 

several tests were tested initially to discover the effects of the parameters of this 

model on the trajectories generation.  
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        The first test is generating a circular path of radius 10 m in 20 seconds by the 

kinematic bicycle model. Where the test reflects the effect of slip angle on that 

path. The steering angle has been directly set to 0.1988 rad and the linear speed has 

been computed from the relationship as in Equations (41) and (42):  

       v = 2*𝞹*radius / total sample time,                                             (41) 

       v =2*𝞹*10/20 = 𝞹 rad/s.                                                                    (42) 

This test involves two cases and the results are shown in Figures (4.7) and (4.8), 

respectively. 

Case 1 (  = 0) 

   

           

 

 

 

 

 
 

           Figure (4.7): Negligibly slip angle: (a) Slip angle, (b) Circular path. 

 

Case 2 (  ≠ 0) 

 

 

 

 

 

 

             

                         Figure (4.8): Effect slip angle: (a) Slip angle, (b) Circular path. 

           (a)                                                          (b) 
 

    (a)                                                              (b) 
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         As observed in Figures (4.7) and (4.8) when a vehicle moves with the 

steering is fixed at a particular angle then it will generate a circular arc. In addition 

by setting β to zero, the circle was centered at (0, 10). But, when the β doesn’t set 

zero, the path was slightly shifted. This clarifies that the sideslip angle makes slight 

changes in the vehicle direction through the maneuver. 

       The result in Figure (4.7, a) shows that the slip angle has been set relative to 

the steering angle value. At the starting point, the steering angle was set to zero, as 

a result, the slip angle has automatically set to zero because it depends on the value 

of the steering angle. But, after one sample time, the steering angle has changed to 

a particular angle during the simulation; therefore, the slip angle changed 

according to this value.  

         The second test is generating a square path. The kinematic bicycle model has 

been provided with a linear speed of 4 m/s.  Also, the angular rate has been 

adjusted at corners only but, in other cases; it has been set to zero. The model 

completed the path in a sample time of 60 seconds; the results of this test are 

shown in Figures (4.9) and (4.10).   

   

          

 

 

 

 

    Figure (4.9): Steering angle. 
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   Figure (4.10): Square path. 

 

        The outcomes in Figure (4.9) show the steering angle vs time, where the 

angular rate and the initial value of the steering angle when set to zero, the steering 

angle also becomes zero, because it is dependent on the angular rate. In another 

word, when the angular rate is set to a positive or negative practical value, the 

steering angle is changed according to that value. 

 

        The third test is to generate the wave path. This test shows the effects of the 

initial value of yaw angle on the generated trajectory. At the starting, the kinematic 

bicycle model has been provided with a linear speed of 4 m/s. The angular rate has 

been adjusted with an alternating square wave input with amplitude one. After 

running the simulation, the model had completed the path in a sample time of 60 s. 

In this test, three cases of the initial value of the yaw angle have been tried, and the 

test results are presented in Figure (4.11). 
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       Figure (4.11): Effect initial value of yaw angle: (a, c, e) yaw angle, (b, d, f) 

                               the wave path.    

  Case 2: ϴ = 0.483 radian 

         (c)                                                        (d) 

  Case 3: ϴ = 0.897 radian  

        (e)                                                        (f) 

  Case 1: ϴ = 0 radian 

radian 

         (a)                                                      (b) 
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         The results of Figure (4.10) show that when yaw angle equals zero as in case 

one, the trajectory for the bicycle model is guided in the original direction. But in 

cases two and three, the outcomes have showed that the initial value of the yaw 

angle causes shifting in the guiding direction of the path. 

         The fourth test is to create a spiral path. In this test, the bicycle model has 

been set to a linear speed of 4 m/s. Then, the angular rate has been set, from a high 

positive to a small negative rate and the model has completed the path with a 

sample time of 60 s. Five cases of positive 𝞅 were taken, but the negative rate for 

each case has been set to 0.01. The test results are depicted in Figure (4.12). 

 

 

 

 

 

 

 

 

 
 
 

 

 

       

          

 

 

 

 

 

          Figure (4.12): (a), (b), (c), (d), and (e) Spiral path. 

  Case 1: 𝞅 = 1   Case 2: 𝞅 = 0.9 

  Case 4: 𝞅 = 0.7   Case 5: 𝞅 = 0.6 

(a)                                              (b)                                               (c) 

  (d)                                                              (e)                                                
(c) 

  Case 2: 𝞅 = 0.8 
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         Figure (4.12) shows that the bicycle model has followed a spiral trajectory 

with decreasing radius of the curvature. It started from the zero position and 

continues to follow a spiral trajectory until the sample time has finished. On 

another side, the steering angle values have increased gradually according to 

angular rate values. This proves that when the angular rate is set to a positive large 

value, the path includes many spiral trajectories compared to the small positive 

value. 

 

4.3.2 Longitudinal Control of Kinematic Bicycle Model 

          At starting, the bicycle model was provided by the linear input speed of 20 

m/s. Then, the BOA, SSA, HSSABOA1, and HSSABOA2 algorithms were used to 

improve the gain of the proportional controller.  

         Table (4.4) involves the best controller's parameters and minimum fitness 

function values provided by the optimization algorithms. According to the results 

of that table, P-BOA, P-SSA, P-HSSABOA1, and P-HSSABOA2 included the 

same fitness function value due to the linearity of the speed equation of the bicycle 

model. 

 

             Table (4.4): Best values of P controller gain at the best IAE value 

    Optimization  

 Method 
                    IAE (m/s) 

BOA 21.95726 201.00000000000028 

SSA 16.43888 201.00000000000028 

HSSABOA1 10 201.00000000000028 

HSSABOA2 10 201.00000000000028 
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           One of the gains related to HSSABOA in Table (4.4) is applied for the P 

controller to manipulate the throttle/brake of the kinematic bicycle model. The, 

response of the P controller based on HSSABOA1/HSSABOA2 is displayed in 

Figure (4.13). The simulation outcome in Figure (4.13) illustrated that the response 

of the optimized controller by the proposed algorithm has achieved good tracing 

for the desired speed.  

           Figure (4.14) includes the optimized P controller response to follow target 

speed profiles of 15 m/s, 10 m/s, and 5 m/s. The outcome in Figure (4.14) clarifies 

that the improved longitudinal controller could match the required speed correctly, 

which refers to robust the optimized controller gain. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure (4.13): Speed curve of the P controller based on HSSABOA1 at 20 m/s. 
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 (a)  (b) 

               

    (c)    

Figure (4.14): Speed curve of the P controller based on HSSABOA1 at: (a) 15 

m/s, (b) 10 m/s, and (c) 5 m/s         
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4.3.3 Lateral Control of Kinematic Bicycle Model  

        After finishing the longitudinal control optimization of the kinematic bicycle 

model; the lateral control was adjusted by the BOA, SSA, and the proposed 

algorithms. So, in this section, four tests were performed, in the first test, the 

Stanley, MS, PID, and PTMPID controllers are tuned by the BOA, SSA, 

HSSABOA1, and HSSABOA2 algorithms. The comparisons between these 

controllers are performed by representing the convergence curve as shown in 

Figure (4.15). 

 

 
                       (a) 
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       (b) 

 

    (c)              



Chapter Four                                                                          Results and Discussion 

 65 

         (d)          

Figure (4.15): Convergence curve of the: (a) Stanley, (b) MS, (c) PID, and (d)     

                        PTMPID controllers based on optimization algorithms.    

  

 

          Figure (4.15) indicated that the controllers based on the proposed algorithms 

are converged faster compared to the original algorithms. The results of the 

improved gains that it obtained at the lowest value of the fitness function are 

written in Tables (4.5 to 4.8). 

 

Table (4.5): Best gains of Stanley controller.  

Optimization   

method 
   K            RMSE (m) 

BOA 15.49408234 0.22316268389806113 

SSA 15.49310536 0.22316122296204102 

HSSABOA1 15.49310538 0.2231612229837286 

HSSABOA2 15.49310534 0.2231612229245861 
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Table (4.6): Best gains of MS controller. 

 Optimization  

Method  
                    RMSE (m) 

BOA   1*10^-7 3.86419 2.84269 0.12377 0.05725 

SSA 0.03207 4.43253 1.329 0.03313 0.06929 

HSSABOA1 0.10878 6.58594 2.36279 0.15505 0.04935 

HSSABOA2 0.07345 3.43565 6.79116 0.23099 0.04566 

 

Table (4.7): Best gains of PID controller. 

  Optimization  

Method  
                      RMSE (m) 

BOA 9.19209 1.34555 1.33993 0.64791 

SSA 13.38832 2.28402 10.72765 0.64239 

HSSABOA1 11.52305 0.06096 2.06341 0.62256 

HSSABOA2 12.24485 7.88071 2.63422 0.63389 

 

Table (4.8): Best gains of PTMPID controller. 

Optimization  

     Method 
                  RMSE (m) 

BOA 3.420327 9.40376 0.64390 0.046336 

SSA 3.653217 12.97717 0.66948 0.04171 

HSSABOA1 4.63956 7.51872 0.70629 0.037321 

HSSABOA2 4.57061 6.92445 0.51407 0.037925 

         

        Tables (4.5 to 4.8) have demonstrated that the PTMPID based on 

HSSABOA1/ HSSABOA2 offered the best value of the objective function among 

other controllers.   



Chapter Four                                                                          Results and Discussion 

 67 

           In the second test, the best improved parameters of each controller which 

are stated in Tables (4.5 to 4.8) have been applied to the lateral controller to set the 

steering angle of the kinematic bicycle model. The responses of the four controls 

are illustrated in Figure (4.16). 

     (a)      (b) 

      (c)    (d) 

     Figure (4.16): The response of trajectory tracking by: (a) Stanely-HSSABOA2,                     

                              (b) MS-HSSABOA2, (c) PID-HSSABOA1, and (d) PTMPID-                 

                              HSSABOA1.                   
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        As observed in Figure (4.16) that the MS-HSSABOA2 and PTMPID-

HSSABOA1 have tracked the desired trajectory with more accuracy than that with 

the Stanely-HSSABOA2, and PID-HSSABOA1.   

          Moreover, the result of Figure (4.16) demonstrated that the response of the 

PID-HSSABOA1 to follow the target trajectory has more oscillation than 

optimized other controllers.  In contrast, the PID-HSSABOA1 has achieved good 

performance to track the desired path at a very low speed as shown in Figure 

(4.17).  

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure (4.17): The response of PID-HSSABOA1 at 5 m/s. 

 

         The reason for that is the formula of the PID controller is not related to the 

vehicle's speed. The better solution to that matter is the optimized PTMPID, where 

it managed to track the desired path correctly at different speeds without large 

oscillation. 

          Figure (4.18) shows the steering angle of path tracking controllers to 

estimate the stability of each controller. In contrast, Figure (4.19) clarified the yaw 
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or heading angle of path tracking controllers to evaluate the stability of each 

controller. 

 

     (a)                (b) 

       (c)     (d) 

 

    Figure (4.18): The response of steering angle by: (a) Stanley-HSSABOA2,                     

                            (b)  MS-HSSABOA2,  (c)  PID-HSSABOA1, and (d) PTMPID- 

                             HSSABOA1.    
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      (a) 

    (c) 

      (b) 
 

           (d)  

   Figure (4.19): The response of heading angle by: (a) Stanley-HSSABOA2,                     

                           (b) MS-HSSABOA2,  (c) PID-HSSABOA1, and (d) PTMPID- 

                           HSSABOA1.    

         Figure (4.20) shows the crosstrack error of path tracking controllers. Where 

the result showed that PTMPID-HSSABOA1 offers a smaller crosstrack error than 

other controllers. 
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              (a)      (b) 

   

                                 (c)                                                                (d) 

Figure (4.20): The response of crosstrack error by: (a) Stanley-HSSABOA2,                     

                        (b) MS-HSSABOA2,  (c) PID-HSSABOA1, and (d) PTMPID- 

                        HSSABOA1.   

  

         In the third test, PTMPID-HSSABOA1 was examined with speeds of 15 m/s, 

10 m/s, and 5 m/s. The outcomes of that test are presented in Figure (4.21).  
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(a) 

    (b) 
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        Figure (4.21) showed that the ADC can follow the trajectory at different 

speeds very well without any large oscillation.   

 

        In the fourth test, the PTMPID was tuned by HSSABOA1 with a longitudinal 

reference speed of 10 m/s, the obtained response of this test is shown in Figure 

(4.22). After optimizing PTMPID gains, the desired speed was adjusted to 20 m/s 

and the output response is depicted in Figure (4.23). The simulation result of 

Figure (4.22) clarified that the response of the PTMPID-HSSABOA1 was good but 

it has started to oscillate when set the reference speed to 20 m/s as presented in 

Figure (4.23). This led to conclude important point that the lateral control can trace 

the predefined path at various desired speeds without large oscillation only if it is 

tuned at the maximum target speed.   

  (c) 
 

          Figure (4.21): PTMPID-HSSABOA1 response at: (a) 15 m/s,  

                                                (b) 10 m/s, (c) 5 m/s. 
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         In the next chapter, the main conclusions and recommendations for future 

work will be presented. 

                   Figure (4.22): The response of PTMPID-HSSABOA1 at 10 m/s. 

Figure (4.23): The response of PTMPID-HSSABOA1 at 20 m/s. 
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Chapter Five 

Conclusions and Recommendations 

 

5.1 Introduction 

         In this chapter, the conclusions of this work will be introduced. In addition to 

provide some suggestions and recommendations for future work. 

 

5.2 Conclusions 

       There are set of important conclusions that have been extracted from the 

results of performing tests are scheduled below: 

1. When the throttle and brake input values change, the speed curve has changed 

according to those values. 

2. The sideslip of the kinematic bicycle model causes a slight shift in the vehicle 

direction through the maneuver. 

3. The optimization techniques (SSA and BOA) have a better performance than 

GA, ACO algorithm, and PSO algorithm. On the other hand, HSSABOA1 and 

HSSABOA2 have faster convergence and are more guaranteed to get the best 

controller’s gains compared to the original techniques (SSA and BOA). 

4. The PTMPID based on HSSABOA1 and HSSABOA2 has a better performance 

in reducing lateral control error for the kinematic bicycle model than Stanley-

HSSABOA, MS-HSSABOA, and PID-HSSABOA. 

5. When the lateral control is optimized at the maximum road speed, the output 

response can trace the desired path at various road speeds correctly without large 

oscillation.
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5.3 Recommendations for Future Work 

          In this section, some of suggestions to develop the current work in future are 

listed as follows: 

1. Adding a feedforward controller to the PID controller or designing an 

adaptive PID controller for solving some of the problems such as delay 

response to errors and the response to the disturbances. 

2. Embedded PTMPID design with the (HSSABOA1 and HSSABOA2) 

optimization algorithms for the dynamic bicycle model to examine 

maneuvers tracking at high speeds. 

3. To verify the effectiveness of proposed work, simulation experiments will be 

conducted for longitudinal and lateral controls on the prototype real vehicle 

in order to examine path tracking at various speeds. 
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Table (A.1): The parameters of longitudinal dynamic vehicle model. 

Symbol Description Value 

       n     Constants used in vehicle engine 

second order polynomial equation 

400, 0.1, and 

- 0.0002 

GR Gear ratio 0.35 

      Effective radius 0.3 m 

    Inertia of engine 10 kg.m
2
 

  Mass 2000 g 

  Gravitational acceleration 9.81 m/s
2
 

       and    Drag and rolling coefficients 1.36, and 0.01 

   Longitudinal stiffness of the tire 10000 

     Maximum tire force 10000 N 

T  Sample time 0.1 s 

  Incline angle 0 rad 

Limitation of the 

throttle 
-1 to 1 Percentage 

 

Table (A.2): The parameters of the kinematic bicycle model. 

   Description  Value      Unit 

Wheelbase 2 m 

Distance from the bicycle center to the 

center of the rear wheel 

1.2 m 

Limitation of the steering angle -1 to 1 rad 

Limitation of the steering rate -1.22 to 1.22   rad/s 

Limitation of the throttle -1 to 1 percentage 

 



 

 

 

 الخلاصت
 

ذقخ نززجع يهفبد رعشٌف انسشعخ ان عبنٍخانًسزقهخ يعبٌٍش جخانًشك يثمانًسزقم  زُقمٌزطهت انشٔثٕد انً  

ثعض انزسذٌبد فً رطٌٕش أَظًخ انزًثٍم انزارً، يثم ثُبء ًَٕرج سٌبضً، انًطهٕثخ ٔانًسبس انًسذد يسجق ب. 

 .رصًٍى أَظًخ انزسكى انطٕنٍخ ٔاندبَجٍخ، ٔرقٍُخ انزسسٍٍ لا رضال يٕاضٍع يًٓخ

انزي ٌسكى زشكخ انسٍبسح انًسزقهخ يٍ زٍث ًَٕرج انسٍبسح  رٓزى ْزِ الأطشٔزخ ثجُبء ًَٕرج انسٍبسح ٔانذساخخ 

 انذٌُبيٍكً انطٕنً ٔانسشكخ انطٕنٍخ ٔاندبَجٍخ نًُٕرج انذساخخ انسشكٍخ. نضجظ زشكخ انسٍبسح رارٍخ انقٍبدح ،

 اقزشاذ اسزشارٍدٍبد رسكى يخزهفخ. ٌزى

شغلاد انخبَق / انفشايم نًُٕرج انسٍبسح ( نهزعبيم يع يPIDانًشزق ) انًزكبيم رى اقزشاذ خٓبص انزسكى انُسجً 

( Pرى اقزشاذ ٔزذح انزسكى انزُبسجٍخ ) ،علأح عهى رنك انذٌُبيٍكً انطٕنً نززجع انسشعبد انًشخعٍخ انًخزهفخ. 

 للحركة الطولية بينما اقترح أربع وحدات تحكم للحركة الجانبية لتوجيه نموذج الدراجات الحركية بسرعات

، ٔ  PID( ، ٔ PTMPIDانًشزق انًزكبيم انُسجً انًعذل نزعقت انًسبس ) :هي مختلفة بشكل صحيح

Stanley  ٔٔزذاد رسكى ،Stanley ( انًعذنخMS).  اندبَجٍخ نًعشفخ رى إخشاء انًقبسَخ ثٍٍ أخٓضح انزسكى

  الأفضم.

 Hybrid Salp رسسٍٍ خٕاسصيٍبد رى رسسٍٍ يعهًبد ٔزذاد انزسكى ثطشٌقزٍٍ خذٌذرٍٍ نهزسسٍٍ ًْب 

Swarm   ٔالButterfly (HSSABOA1  ٔHSSABOA2 ٔيع رنك ، نهزسقق يٍ كفبءح أداء .)

( ٔ BOAانخٕاسصيٍبد انًقزشزخ ، رًذ يقبسَزٓب ثبنخٕاسصيٍبد الأسبسٍخ: خٕاسصيٍخ رسسٍٍ انفشاشخ )

ٍُخ ثبلإضبفخ إنى انخٕاسصيٍبد انشبئعخ الاسزخذاو ، ًْٔ انخٕاسصيٍخ اندٍSalp(SSA ) خٕاسصيٍخ رسسٍٍ 

(GAٔخٕاسصيٍبد ، ) ( رسسٍٍ يسزعًشح انًُم (ACOٔ ، رسسٍٍ سشة اندسًٍبد ((PSO فً رقٍُبد .

نزقهٍم أخطبء رزجع انسشعخ ٔانزٕخٍّ عهى ْذف  ٔالذ( كRMSE)ٔ  (IAE)انزسسٍٍ ْزِ ، ٌزى اسزخذاو 

 انزٕانً.

انسٍبسح انذٌُبيٍكً نذٌّ انسم  ًُٕرجن HSSABOA1عهى  قبئىان PIDٔخذد َزبئح انًسبكبح أٌ انًزسكى 

ٔ  ,٪( 6.6060) ,٪( 2.66.2) ,٪( 6.6220) ,٪( 8.0688الأفضم نزقهٍم خطأ انسشعخ ثُسجخ رسسٍ )

ثبنزشرٍت. علأح عهى رنك ،  GA)  ٔACO  ٔPSO  ٔBOA  ٔ(SSAعهى  انقبئى PID٪( يٍ 6.22.6)



 

 

 

ب يهفبد رعشٌف  عهى  قبئىان PTMPIDبثم ، فإٌ فً انًق .ُدبذًخزهفخ ثانسشعخ انفقذ رزجع أٌض 

HSSABOA1 ثُسجخ نذٌّ أداء أفضم ، فً رقهٍم انخطأ اندبَجً إنى خبَت صٌبدح انُسجخ انًئٌٕخ 

  PTMPID-SSA٪(  يٍ 2.666.ٔ ) ,٪( 38.200) ,٪( 80.2.0) ,٪( 260..3) ,٪( 36.620)

PTMPID-BOA,   2Stanley-HSSABOA    2و  Stanley-HSSABOA   انًعذل  ٔPID- 

HSSABOA1  .ًثبلإضبفخ إنى رنك ، رًكُذ يٍ رزجع يُبٔسح انطشٌق ثسشعبد طٕنٍخ يخزهفخ  عهى انزٕان

 .كجٍش زثزةدٌٔ ر

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  جوهىريت العراق

 وزارة التعلين العالي والبحث العلوي

 جاهعت كربلاء / كليت الهنذست

كهربائيت والالكترونيتقسن الهنذست ال  

 

الوسار لنظام روبىث هتنقل راتي الحركتتحسين تعقب   

   رسالت                              

 جاهعت كربلاء,  والالكترونيت لكهربائيتاقسن الهنذست  هقذهت الى

 (MSC)وھي جسء هن هتطلباث نيل درجت الواجستير

 لكهربائيت االهنذست  ىمفي عل

 

 هن قبل 

 غٍذاء ْبدي صبنر

  (2۰41الكهربائيت والالكترونيت / جاهعت كربلاء )بكالىريىش ھنذست 

  بإشراف 

 أ.و.د. أزًذ عجذ انٓبدي أزًذ

 أ.و.د. زٍذس خهٍم كبيم
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