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Abstract

The large-scale shell-model calculations have been officiated, including
several cores, to study the structure and some physical properties for '°B,
2C, and 'O nuclei using Nushell code. The shell model calculation
included three model p, psd, and spsdpf model space with the ckpot,
psdmwk, and wbhm interactions, respectively, for *°B, *2C nuclei, and zbme
model space with the rewile interaction for the *’O nucleus. The calculation
results that the inclusion of the core-polarization effects with a polarization
charge contribution and choosing the appropriate model space gave better
results to calculate inelastic and elastic form factors for the low-lying
excited state of these nuclei. In this work, different potentials were adopted
for single-particle radial wave function, namely Harmonic-Oscillator (HO),
Wood-Saxon (WS), and Skyrme (Ska) potentials in our calculations.
Calculations compared with experimental data have been performed by
using the large-basis spsdpf model space which includes 1Sy, 1ps»1lpise,
1ds/228101d3, 1F722p3115,2p1, Orbits these have been truncated to 2ha [
because the expansion to 4 and 64 [] couldn't significantly improve the
results, while the psd model space has included 1pszplpin, 1ds»251,1d3
orbits without any restrictions imposing on the valence nucleons outside the
core that gave acceptable results. The calculation results for both °B and
'2C nuclei with adopted the psd model space were in better agreement with
experimental data compared to the theoretical calculation for previous work
that used spsdpf expansions. For the 'O nucleus, the zbme model space
used which included the 1py;, 1ds,251/,1d3,, Orbits without any restrictions
gave good agreement with experimental data for Skyrme (ska) potential
compared with other (HO, WS) potentials.
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Chapter One
General Introduction



1.1 Introduction

In the history of nuclear structure research was one of the most
important identifying developments and most prominent and successful
nuclear models in which those nucleons occupy discrete orbitals, which
attitudinize shells. A shell model helps us to better understand the physical
properties of nuclei and is used in the study of the nuclear structure [1, 2].
The nucleon properties in this model can be described as properties and
behavior of valance electrons that exist out of a closed shell in the atom,
where valance nucleons (proton or neutron) in a nucleus are placed out of
close shells [3]. Studying the nuclear structure through electron scattering,
which is important because the nuclear matrix of the element depends on
the momentum transfer that gives information about both the ground and
the excited density states. The shell model can predict various observables
systematically and precisely. The Cohen-Kurath and psdmwk interactions
for the p and psd shells are “standard” effective interactions for light nuclei
[4, 5].

In the p-shell model space, the “He is supposed to be an inert core, as the

valence nucleons are distributed over the 1ps, 1p1, Orbits within the limits
of the Pauli principle. This model was unsuccessful to obtain results from
factors in agreement with experimental data unless taking into
consideration the higher configuration (core polarization) effects. Thus,
adding the core polarization effect gives a better result compared with the
experimental data. The expanded seed shell model has included two shells
(1p, 1d-2s) [6].



1.2 Shell Model

The shell model entered nuclear physics more than fifty years ago. This
model is the basic type for nuclear structure calculations in terms of
nucleons [7]. This model describes how the quantum numbers change and
how much energy to move nucleons is required in orbits (in the nucleus
each nucleon moves separately in a potential explicate that average
interaction a for the other nucleons in the nucleus). Also, that illustrates
some nuclear properties such as nuclear spectra, parity assignments, spin,
transition probabilities, and magnetic moment. The nucleons that
unconnected motion can realize specifically from a federation of the
weakness for the Pauli Exclusion Principle and the nuclear long-range

attraction [8].

When all the protons or neutrons in a nucleus are infilled shells, the
number of protons or neutrons is called a “magic number”, these nuclei
have exceptional stability and total angular momentum J equal to zero. The
J value of the new ground state is determined by adding valance nucleons.
When proton or neutron (singly or in a couple), are excited out of the
ground state its isospin projection quantum numbers and parity of the
nucleus and the angular momentum are changed [9].
1.3 Electron Scattering

The electron scattering method has provided important information
about the nuclear structure when the electron contains high energy (100
MeV greater than 100MeV) and interacts with the local charge and current
density in the target. If not, a point is expected to be a dimension of the
order of a few Fermis [10].

There are two kinds of electron scattering:



a-Elastic electron scattering

When the energy of the electron is unchanged it means that the electron
scattering leaves the nucleus at its ground state [11], this way studies
properties such as static distribution and magnetization of the ground state
energy [12].
b-Inelastic electron scattering

When an electron is scattering the amount of energy taken up by the
nucleus leaves the nucleus in a different excited state and has final energy
decreases from the initial state [11], which allows for studying the cross-
section of the electrical excitation (current densities and charge
distributions) [12].
In the scattering of electrons, the form factor of the nucleus multiplying the
Mott cross-section by a factor that depends on the current and charges
distribution and magnetization of the target nucleus. The form factor as a
function of the momentum transferred to the nucleus can be determined by
the energy of the incident and scattered electron and the scattering angle
[13]. The nucleus is inelastic with electrons described according to the
first-Born approximation as the interaction of the electromagnetic field via
its charge and current densities [14].
According to the first-Born approximation, the form factor is divided into
two main types of form factors:
1-Coulomb (longitudinal) form factors

The interaction of the electron with the charge distributions of the
nucleus is considered as an exchange of a virtual photon of angular
momentum zero along the direction of q known as “Coulomb or
Longitudinal form factors”, the electron, in this case, does not flip spin,
due to the conservation of angular momentum. Longitudinal scattering

gives information about the charge distribution of the nuclear system [14].



2- Transverse form factors

According to a first-Born approximation, in the nucleus interaction of the
electron with the current distributions and spin is considered as an
exchange of a virtual photon of angular momentum +1 along the direction
of q, this is known as “Transverse form factors”. Transverse scattering
gives information about the magnetization and current distribution in
nuclei. According to the angular momentum selection rules and parity the
transverse form factors can be divided into magnetic (M) and electric (E)

form factors [14].
1.4 Literature Review

Many attempts were made to explain the experimental data of
electron scattering and to understand the nature of nuclear force and the
structure of the nuclei in B, C, and O nuclei. Flanz et al. (1978) [15]
measured the inelastic transverse form factors of 4.439 MeV at 2* 0 and
16.17 MeV at 2* 1 for *C. Their results were with a contribution of
convection current remarkably at low momentum transfer for energy
4.439 MeV. And the magnetizations' current contribution gave good
results with experimental data to the transverse 16.17 MeV at high
momentum transfer.

Ansaldo et al. (1979) [16] measured the elastic transverse electrOon
scattering form factors at 1.74 0% and 5.17 2* MeV in B. Their results
transverse form factors were in agreement based on Cohen-Kurath and the
results of longitudinal form factors at 6.03 4° MeV state were in good
accord with the Hartree-Fock wave functions.

Hynes M. V et al. (1979) [17] calculated the elastic transverse form
factors of "O. The shell model with core polarization and meson
exchange calculations are not given good results but an enhancement of
the high g of the M5.

Manley D. M et al. (1987) [18] measured the inelastic electron
scattering form factors at 15 states with negative parity and positive

4



parity of ’O. The results were observed clearly for momentum transfer
between 0.8 and 2.6 fm™.

Peterson et al. (1988) [19] studied the transverse elastic form factors for
B and B. Where the radial shape of the 1ps;, single-particle wave
function is determined within a nuclear interior.

Amos and Steward (1990) [20] calculated the transverse and
longitudinal form factors for (**C, ®Ne, *Mg) at 2," and 4, states.
Their results using projected the Hartree-Fock wave functions were
compared with (the shell model) to show that momentum transfer
dependent corrections can be quite diverted.

Booten (1992) [21] studied the transverse form factors of nuclei (°Li, "Li,

%8, B, N, and *N) at 2a [0 model space. The results inclusion of MEC
in the first g-region was much better cloned in the 24 [ model space and at
high momentum transfer, MEC contribution enhancement the calculation
of electromagnetic properties of p-shell nuclei.

Amaro et al. (1994) [22] studied the transverse elastic form factors with
MEC for “C and “°Ca nuclei. The results with the effect of meson
exchange contribution in the 1plh response were negative and the
magnitude of the reduction of the peak increases with the momentum
transfer.

The transverse form factors for nuclei (°Li, °B, *'B, N, and N) were
calculated by Booten and van Hees (1994) [23]. Their shell model
calculations at 1p-shell and extended (0+2) A [] model space and the
inclusion of the meson exchange current improved the agreement of the
transverse form factor with experimental results.

Karataglidis et al. (1995) [24] calculated the transverse E2 electron
scattering form factors for (**C, N, Mg, and #Si). The results for all
three operators (standard electric multipole operators, invoking current
conservation and for arbitrary wavelength gave similar form factors in q <

3fm™.



Cichonki et al. (1995) [25] measured longitudinal and transverse form
factors of '°B and compared their result with the calculated 1p-shell model
including 1s, 2s1d, and 2pi1f configurations. They found that only 100
improvements were realized and found that the including of higher excited
configuration employing core polarization calculation was essential to

remove the remaining shortfall.

Radhi et al. (2001) [26] studied the Coulomb form factors of C2 transitions
for p-shell nuclei, including the core-polarization effects excited up to
67 [1. They found that the core-polarization effect is essential in both the
momentum transfer and transition strengths and their results were in good
agreement with no adjustable parameters.

The inelastic longitudinal C2 form factors for (°Li, 'Li, *°B, and *2C) in the
shell model were calculated by Zeina (2003) [27]. The calculation results
using the Tassie model with contribution core-polarization gave an
agreement result with the experimental data in momentum transfer q < 3
fm™.

The transverse and longitudinal form factors in some p-shell nuclei were
studied by Adie (2005) [8]. The calculations inclusion of the second-order
core-polarization effects enhancement the calculated results in a little
amount of longitudinal and transverse strength form factors.

Majeed et al. (2006) [28] studied the electroexcitations of all possible
T=1p-1h states of all allowed angular momenta for **C. The results with1f-
2p shell a major contribution gives a good fit to the experimental form
factors.

The elastic and inelastic electron scattering form factors in p-shell nuclei
(°Li, "Li, °Be, 1°B, B, *2C, *C, and *°N) calculated by Khalid (2007) [29].
The core-polarization calculations with the higher energy excitations from
1s-shell core orbits and 1p-shell to higher allowed orbits up to 24 (.
Their calculations using Cohen-Kurath interaction gave good agreement



with experimental data, especially the Coulomb scattering while the
magnetic form factors were less affected.

Radhi et al. (2014) [30] studied the effective charge and quadruple
momentums for B (A=8, 10, 11, 12, 13, 14, 15) and Li (A=7,8,9, 11) ona
p and large basis spsdpf-shell model spaces. The large-basis no-core
excited the particles to higher orbits at 6 A [ have been included and the
effective charge for the p-shell and sd-shell nuclei are obtained for the
neutron-rich B and Li isotopes which are smaller than the standard values.
Their calculated results agree very well with the experimentally observed
trends of the recent experimental data.

Ali A. Alzubadi et al. (2018) [31] calculated the transverse and
longitudinal electroexcitation of positive and negative parity states in 'O
using two different psdpn and zbme model spaces. The calculations have
adopted one-body potential in Hartree-Fock theory and given a good
agreement with experimental data form factors.

The transverse and longitudinal electron scattering form factors for ‘Li and
B nuclei were studied by Adie et al. (2019) [32]. Their calculation
included 1p-1h excitation up to 12A [1. The transverse and longitudinal
form factors and the behavior of the momentum transfer are described

exactly for Li compared with 6% [ energy.

1.5 Aim of the Present Work

The work aims to calculate the longitudinal, electrical and magnetic
transverse form factors for elastic and inelastic electron scattering of
several nuclei in the p- and sd-shell using different wave functions. The
model space has also been expanded by introducing a mixture of the
shell. Some interactions were also selected through which the best
results were obtained, which were in better agreement with the
experimental data from previous studies. The core-polarization

calculation using the NuShell code[33].



Chapter Two
Theoretical Bases



2.1 General Theory

An electron scattering method is a potent tool for descriptions and studying
nuclear charge density distributions. According to the first-Born approximation,
the wave functions connected with electron scattering are interpreted as an
exchange of a virtual photon carrying a momentum ¢ between the electron and
the nucleus. The Coulomb scattering of the electron with the charge distribution
of the nucleus is considered as an exchange of a virtual photon with zero angular
momentum along the direction of the momentum transfer q. Second hand, in the
nucleus the interaction of the electron with the spin and current distributions

gives rise to the transverse scattering.

The differential cross-section from a nucleus of charge Ze, mass M and solid

angle df2 in the plane-wave Born approximation, is given [V4]

d d 2

o= (d—;)Mottn %y|F;(q. )] (2.1)
do [ Zacos(8/2) 2

(E)Mott - [ZEisinZ(e/Z)] (2.2)

Where (d—c) is the Mott scattering cross-section, Z is the atomic number, 6
Mott

is the scattering angle, o = e?/hc = (1/137) is the scattering angle, and E; is
the incident electron’s energy [12, 35]. Where 1 is the nucleus recoil factor is
given by:

n=[1+ %isinz(e/Z)]_l (2.3)

where M is the mass of the target.

Electron scattering form factor (longitudinal and transverse) involving angular

momentum J and momentum transfer g, between initial and final nuclear shell

model state of spin J;¢ and isospin T;s is given by [36, 37]:



F@I = (2)" @I + [ + tan(0/2)] | @) (2.4

q? ~ 4E%q sinzg
The three and four-momentum transfers are the difference between the final and
initial are given by:

= Ef — E;

Qi = ¢* — (B — E))?
The transverse (T) and longitudinal (L) form factors are given by [39]:
FF@|” = Zpzol(@2 || (25)
T @] = Zpso {|FM@] + [FE@)] ]} (26)
where |FM(q)|” and |FE(q)|" are the magnetic and electric transverse form
factors, respectively. The angular momentum selection rule [3]:
Vi=Jel €T <Ji+ ]
myme = (—1)! for Coulomb (Electric) multiple
e = (—1)!*1 for magnetic multiple
The angular momentum J involving can be expressed in the electronic scattering

form factors as [23]:

FM|" =5 = (Wl T @) 2.7)

z2 2]j+1
Where A sclects the longitudinal or transverse form factors, T]A(q) is the
electron scattering multiply operator [39]. Accordingly, the longitudinal and

transverse form factor is defined as,

|FJL( )| Z]>0|(]f M]f|T]COUI(Q)|]I M]1>| (2.8)

z2 2]i+1

FF@|" = 2 5|(1e Mye|T' @ 1 Mps)|” + | ¢ My¢| ™8 (@) |); M) (2.9)

Where J; is the total angular momentum of the initial state and Js is the total

z2 2]j+1

angular momentum of the final state [39]. The multipole operator is defined by:

Teow(q) = [ dr j;(qr)YM (Q)p () (2.10)



T (@) = [ dr{V x [,y @)} (211)

T (q) = [ dr [j;(an)Y}} @] ]G (2.12)

Where (J(1)), (ﬁ(?)) are current and charge density operators for the target,
J:(qr) is the spherical Bessel function, and the Y]’yl Is spherical harmonics, given
by [40].

p(r) =8(r —1e (2.13)
J@) =60 — r)el-i Y (2.14)
Mr
Vi (Qr) = L Umm*/JM)T} (Q;) (2.15)
_ (147,D) M ) ) )
Where e; = Tthe nucleon charge, Y;" (Q,)is the spherical harmonics and

6 (r; — r) is the Dirac delta function.

2.2 Corrections to the Form Factor

Electron scattering form factors for light nuclei can be calculated with
confidence when corrections are scarred for the center of mass motion and finite
size. The first is from the center of mass correction divides out the form factor
due to the spurious motion which is ineradicable in the fixed center [10]. The

center of mass correction factor F, is given as [37]

2b2
Fem = exp(*-) (2. 16)

Where A is the mass number and b is the oscillator length parameter (or size

parameter) chosen to reproduce the nucleus.
The other correction that adds to the form factor calculations is the inclusion of

the finite nucleon size (F). This size correction is given by [41]

q 2172
The plane wave Born approximation (PWBA) is expected to characterize the
electron scattering data very well for nuclei in which aZ«1, except in the region

of the diffraction minima, where the PWBA goes to zero. The effect of the

10



Coulomb field is to raise the momentum transferred to the nucleus and an

effective momentum transfer (ges) is related to q by [39]:

3ze2]

Qer = |1+ e (2.18)

Where R, = (g)l/2 Rims and R, IS the root main square charge radius, Z is

the nuclear charge of the target nucleus and o is the fine structure constant. Ei
and q are the incident electron energy and the three-momentum transfer
respectively. And e? = ahic = 1.44 Mev fm.

Including these corrections, the form factor can be written as [42],

T T T
Ereoa (=D (Lo ) T @l )

2

A 2 _ 41T
|FL.T(q)| = et X

|Ff.ch.m|2
(2.19)

2.3 Many-Particle Matrix Elements

In the microscopic theory, the core polarization effects can be explained as a
mixed shell-model wave function and configuration with higher energy as
particle-hole perturbation expansion. The reduced matrix element part of the
electron scattering operator T] in the p- and sd-shell can be formed by the
contribution of the core-polarization (CP) to the p- and sd-model spaces are
added together [11].
The initial and final wave function of the electron scattering operator is specified
as the adding over the one-body density matrix element-time the reduce single-
particle element and taken as
(¢ ||T6(Q)“ri> = (I¢ ||T6(q)”ri)ms + (T'¢ ||6T6(q)||ri>cp (2.20)
Where I;=J;T; is the inial state of the nucleus It+=JiT; is the final state of the
nucleus and 6=LT is the multipolarity of the transition. In the p-shell, the model
space matrix elements are indicated as the sum of the product single particle-

matrix elements times the one-body density matrix elements that define as [43]:

11



(I | Te(@|T5) = LF Fp OBDM(IIF, Fg ){F,|| Ts(@)|| Fp)
(2.21)
Where F, refer to the initial model space states, Fj refer to the final model space

states OBMD contains all the information about the transition of a given
multipolarity, the relation between these OBDM and the p/n OBDM is [43]:

T 0 T; _
OBDM(p/n) = (=1)¥7%%( f l)ﬁw
T, 1 T; _
(+/=)ez(=1r77(_] 1)y/6 2ERMAT=1) (2.22)

The multiparticle transition amplitudes are defined as:
OBDM(L,j, L, AT, j1, j2)

4T
|[an'-1]'3 ® @5, | JiTi) 2] +1
V2L + 1V2AT + 1
where j; = 1/2 for neutron and j; = —1/2 for a proton.

(JrTy
- (2.23)

In the single nucleon state (j, j3) the annihilation (&) remove a neutron or proton,
from the single nucleon state (j; js) the corrosion (a') generate a neutron or

proton.

2.4 The Harmonic-Oscillator Potential

The choice of the potential will impact the efficiency of the solution of a
many-body problem. The Hamiltonian divides into a mean-field (single-particle)

potential U plus a residual interaction W [44]:

H=— 2 pf + 2H UG + 2 w7 -7 (2-36)

The harmonic-oscillator potential can be done separately and analytically in the
private case:

Z? yHo (rl-)%mw2 Zfrf%mwz Z?piz + %szmR2 (2-37)

12



Thus, Hamiltonian separates into

H = Hin + HL, (2-38)
A
Hie =3 31 aF +5me? $1ot+ ) w(l5i~7) (2-39)
i<j

The center of mass must be in its lowest energy state of Os ground state is
referred to as the nonspurious state for the nucleus with mass A, in the potential

%AmeRZ, with a center of mass-energy [44]:

(W|HES ) == ho (2-40)

2.5 Woods-Saxon Potential

The Woods-Saxon potential is an appropriated phenomenological choice for
the one body in the Hartree-Fock theory. The woods-Saxon potential is a model
of the single-particle wave functions, properties in the continuum and bound
states so it is not dependent on a particular two-body interaction. The total
binding energy cannot be calculated by Saxon potential (or any other one-body
potential). The energies and radii of nuclear single particles are chosen to get
match better Woods=Saxon parameters [45].
V() = Vofo(r) + Veo (1.3 + V(1) (2.24)
Where V,(r) is the central potential:

Vo (r) = Vofo (1)

With a fermi shape

1

fo(T') = 1+[e(T_RSO)/aO] (225)

V., (r) is the spin-orbit potential:

1 dfso
Vso (T‘) = Vg - fdr(T) (2-26)
. 1
with  f5,(r) = 1+[e(—Rso)/ao] (2.27)

and the Coulomb potential for proton V,(r) specified by Coulomb potential for a

sphere with R:
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Ze?
V.(r) = — forr >R, (2.28)

and

3Ze?—vy r2Ze?
2R2, 2R:R?

V.(r) = [ ] forr <R, (2.29)

R is the sphere of radius, the radii R,,R,, and R, are usually expressed as:
Ri:T'iAl/g

The Woods-Saxon potential is written in terms of potential for our nucleus
determined by Z and A. The potential of the protons will feel greater than the
neutrons when the nuclei with a neutron increase. Thus, the average neutron-
neutron (or proton-proton) potential is less strong than the average proton-
neutron potential. Therefore, we take:

(N-Z)

Vop = Vo +—

V,  for protons (3.30)

WN-2)
A

Vo =V, — V., forneutrons (3.31)

Theoretically, R, and «a, differences for protons and neutrons in a nucleus by a
few N # f. As a consequence, the six parameters in the spin-independent
potential are possible. The strength V., for protons and neutrons could be
different for N # Z, but it exercises they are nearly the same. To provide a
detailed account of the observed data the values of these parameters have been
chosen [46].

2.6 The Skyrme Potential
The Skyrme force includes central, tensor and spin-orbit interaction, given by
[47]
Vskyrme = {Jcentral 4 {ytensor | {JLS (3.32)

The Skyrme interacts with the central two bodies [44]

14



yeentral(y 'y ) = %to(l + XoP;)8(ry —1y) + %tl(l + X, P;) [R’ZS(rl —r,) +
S(rlrz)ﬁz] +t(1+ Xzﬁc)f{’ - 8(r; — o)k + %tgl(l + X31P5)p2 (R) +
%tsz(l + X32’P\o)9g2 (R) (3.33)
where P, = %(1 + G,.0,) is the spin-exchange operator, p,(R) is the isoscalar
density at R = %(r1 -1,), k= %(V1 —V,) is the relative momentum operator

acting to the right and k’ is the complex conjugate acting to the left. The spin-
orbit part is given by [47]

ViS(ry,1,) = iw, (6, +6,) - k' x 8(r; — 1)k (2-34)
And the last term is the tensor part [48]:

Vtensor(rl’rz) — %te{[3(0'1.k')(0'2.k’) — (04 - cz)k'Z]S(rl —rp) +

8(r1r2)[3(01.K)(02.K) — (01 - 02)K?]} + 5 t{[3(01. K)8(ry — 1) (02.K) —
(01 - 02)K' - 6(ry — rp)K] + [3(0,.k")8(r; — 13)(01.k) — (07 - 05)k -

8(ry — rp)k'l}

(2.35)
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Chapter ThreeResults,

Discussion, and

Conclusion



3.1 Introduction

In the p-shell model, the nucleons are distributed over the 1ps», 1ps»
orbits. The large-basis of the psd shell model has included two shells (1p, 1d-
2s) while the large-basis no core spsdpf shell model has included four shells
(1s, 1p, 1d-2s, 1f-2p) [6]. The psd model space was calculated using the
psdmwk interaction. The large-basis no core spsdpf was calculated using the
wbm, while the p-shell used the ckpot interaction. Large scale calculations
were done using the single-particle of the radial wave function of Harmonic-
Oscillator (HO), Woods-Saxon (WS), and Skyrme (Ska) [49] potentials. The
core-polarization calculation using the NuShell code was included through

the Tessie model. The oscillator length parameter was chosen b = 1.76 fm™.
3.2 The Nucleus B

The Boron-10 nucleus is especially interesting because it is the second
oddest-odd nuclei in the p-shell region [21]. In this study, the longitudinal
form factors were calculated for the nucleus states which is excited from the
ground state (J* T=3" 0) to the positive parity states (J*T=1"0, 17 0, 27 0, 4" 0)
by the incident electron in this transition with excitation energy (Ex=0.718,
2.154, 3.587, 6.025) MeV. Also, the transverse form factors were calculated
for the nucleus states (J* T=3" 0, 0" 1) with energy (E,=0.00, 1.74) MeV.

3.2.1 The Longitudinal Form Factors for (1,0) State at (0.718 MeV)

The longitudinal inelastic (C2) form factors are calculated at E4=0.718
MeV state using Harmonic-Oscillator (HO) potential as shown in figure (3-1).
The p-shell (dashed line) calculation results are compared with the large-basis
psd (solid line) model space and spsdpf (dashed-dot line) model space
truncation up to 2Aa [J. The results of psd model space form factors with
default effective charge (0.35, 0.35) were in good agreement with

experimental data except the region 1 > q < 2 fm~*. While the results of p-

16



shell and spsdpf-shell were underestimating the experimental data at g <
2.5 fm™1.

The longitudinal inelastic (C2) form factors are calculated for the J* T =
1* 0 using Woods-Saxon (WS) potential is displayed in figure (3-2), while
the calculation with Skyrme (Ska) potential is shown in figure (3-3). The
calculating results with WS potential were closer to the experimental data
than the Harmonic-Oscillator calculations. The calculating form factors with
Skyrme (Ska) potential give remarkable agreement with experimental results

at all momentum transfers.

The calculating longitudinal inelastic (C2) form factors for the J* T = 1+ 0
truncated up to 2A [ using all potentials for the psd model are displayed in
figures (3-4). The results of Ska potential form factors were in agreement with
experimental data for lower momentum transfer values g < 1.2 fm~1. But
the results of higher momentum transfer values are incompatible with
experimental -data and fall rapidly. The One-Body Density Matrix (OBDM)
element values for transition (C2) calculated using psd model space are
displayed in a table (3.1).

Table (3.1): The calculated C2 inelastic transition OBDM element values for

J*T =170 (E, = 0.718 MeV)in °B nucleus.

B C2
Ji Jr OBDM (AT=0)
1ps /2 1ps /2 0.01045
1ps3 /2 1py /2 -0.02702
1py /2 1ps3/; 0.08352
1ds,; 1ds ), -0.00552
1ds,, 1d;/, -0.01677
1ds ), 251/, -0.01683
1d;); 1ds), 0.05685
1ds5,, 1ds5,, 0.01844
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1ds,, 251 /2 0.16883
281/2 1d5/2 '001773
251/2 1d3/2 '018997
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Fig. (3-1): The longitudinal inelastic (C2) form factors for the transition to the
1" (0.718 MeV) state in *°B calculated using HO potential for different models

space. The experimental data are taken from reference [24]
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Fig. (3-2): The longitudinal inelastic (C2) form factors for the transition to the
1" (0.718 MeV) state in *°B calculated using WS potential for different models
space. The experimental data are taken from reference [24]
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Fig. (3-3): The longitudinal inelastic (C2) form factors for the transition to the
1" (0.718 MeV) state in '°B calculated using Ska potentials for different
models space. The experimental data are taken from reference [24]
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Fig. (3-4): The longitudinal inelastic (C2) form factors for the transition to the
1" (0.718 MeV) state in “°B calculated using psd models space truncation at
2h [ for different potentials. The experimental data are taken from reference
[24]

3.2.2 The Longitudinal Form Factors for (1,0) State at (2.154 MeV)

The psd model calculation for the longitudinal inelastic (C2) form factors at
E,=2.154 MeV state using HO potential is plotted in figure (3-5). The
calculating results with effective charge (0.1, 0.1) for proton and neutron
respectively overestimate the experimental data shape at ¢ > 2.4 fm™!.
While the other calculation with p-shell and spsdpf-shell truncation up to 24 [

underestimates the experimental data in all momentum transfers.

The longitudinal inelastic (C2) form factors were calculated for the J* T =
1* 0 at E, = 2.154 MeV state using WS potential is displayed in figure (3-6),
while the calculation with Skyrme (Ska) potential is shown in figure (3-7). The
calculating results for the psd model space with the contribution of the
effective charge agree well and reproduce the shape of the experimental data.
The calculation results of the psd and spsdpf models space using WS and Ska
potentials give a good agreement and are closer than the results of the p model
ing < 1.5 fm~!.. The One-Body Density Matrix (OBDM) element values
for (C2) calculated using psd model space are displayed in tables (3.2).

Table (3.2): the calculated C2 inelastic transition OBDM element values for
J*T =1% 0 (E, =2.154 MeV) in *°B nucleus.

B C2
Ji Jr OBDM (AT=0)
1ps /2 1ps/ -0.34014
1ps3 /2 1py /2 -0.13950
1p1,2 1ps,; 0.06995
1ds,; 1ds; 0.00395
1ds,, 1d;,, 0.00297
1ds ), 251/, -0.00420
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1ds, 1ds), -0.00326
1d,/, 1d;), 0.00921
251 /2 1ds), -0.00466
25112 1d;), -0.02120
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Fig. (3-5): The longitudinal inelastic (C2) form factor for the transition to the
1" (2.154 MeV) state calculated using HO for different models space
truncation at 24 []. The experimental data are taken from reference [24]
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Fig. (3-6): The longitudinal inelastic (C2) form factors for the transition to the
1" (2.154 MeV) state calculated using p, psd, and spsdpf models space. The
experimental data are taken from reference [24]

0.001

0.0001

F ()P

0B, 1* 0 (2.154 MeV)
Ska, C2

-==-p

psd

— - -spsdpf

® ® oLExp.data

1E-005

1E-006

o 1 2

q(fm-)

W

Fig. (3-7): The longitudinal inelastic (C2) form factors for the transition to the
1" (2.154 MeV) state calculated using Ska for different models space. The
experimental data are taken from reference [24]
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3.2.3 The Longitudinal Form Factors for (2, 0) State at (3.587 MeV)

The calculation of longitudinal inelastic (C2) form factors of the | T =
27 0 states at E, = 3.587 MeV state using HO potential is displayed in
figure (3-8). The calculation results using the psd model space without
effective charge (1, 0) give good agreement with experimental data, especially
at higher momentum transfer values.

The longitudinal inelastic (C2) form factors are calculated using WS potential
displayed in figure (3-9) and using Skyrme (Ska) potentials in figure (3-10).
The p calculation results are compared with the large-basis psd and spsdpf
models. The calculations results with the large-basis psd model with WS
potential agree well with experimental data at all momentum transfer values
and give better results than another potential. While the results of p-shell were
incompatible with experimental data at ¢ > 2.2 fm~1. The calculation
results with the large-basis spsdpf model slightly underestimated the
experimental data at all momentum transfer values. The One-Body Density
Matrix element values for this transition (C2) calculated using psd model

space are shown in tables (3.3).

Table (3.3): The calculated C2 transition OBDM element values for J T =
2% 0 (E, = 3.587 MeV) in B nucleus

B C2
ji Js OBDM (AT=0)
1ps, 1p3/2 -0.00932
1p3 /2 1p1/2 -0.01358
1p1/2 1p3/2 -0.00009
1ds ), 1ds), 0.45211
1ds,, 1d;,, 0.00571
1d5/2 2S1/2 -0.00531
1d; /), 1ds ), -0.03385
1d;), 1d;,, 0.03018
1d;,, 2s1)2 -0.07931
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251/2 1d5/2 -0.00940
251/2 1d3/2 -0.01209
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Fig. (3-8): The longitudinal inelastic (C2) form factors for the transition to the
2" (3.587 MeV) state in 1°B calculated using HO potential for different models
space. experimental data are taken from reference [24]
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Fig. (3-9): The longitudinal inelastic (C2) form factors for the transition to the
2" (3.587 MeV) state calculated using WS potential for different models space.
The experimental data are taken from reference [24]
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Fig. (3-10): The longitudinal inelastic (C2) form factors for the transition to the
2" (3.587 MeV) state calculated using Ska potential for different models space.
The experimental data are taken from reference [24]

3.2.4 The Longitudinal Form Factors for (4, 0) State at (6.025 MeV)
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The longitudinal inelastic (C2) form factors for the J T = 4% 0 state at
E, = 6.025 MeV calculated by using Harmonic-Oscillator (HO) potential
displayed in figure (3-11). The p-shell calculation results are compared with
the large-basis psd and spsdpf models with effective charge values equal to
(0.9, 0.5) for proton and neutron respectively. The calculating results for psd
model space with the contribution of the effective charge are given a good
agreement with experimental dataatg < 1.5 fm™1. .

The longitudinal inelastic (C2) form factors calculated using WS and Skyrme
(Ska) potential are displayed in Figures (3-12), and (3-13), respectively. The
calculation results using WS potential for psd model space in agreement for
lower momentum transfer q < 0.9 fm™. While the results of form factors fall
rapidly at higher momentum transfer. The calculating results with the
contribution of the effective charge using Ska potential are given a good
agreement with experimental data at g < 1.5 fm~1. The One-Body Density
Matrix element values for this transition (C2) calculated using psd model
space are given in tables (3.4).

Table (3.4): The calculated C2 transition OBDM element values for | *T =
4* 0 (E, = 6.025 MeV) in '°B nucleus

B C2
ji Jr OBDM (AT=0)
1ps /)2 1ps3,, -0.00174
1ps)2 1p1,2 0.00101
1p1,2 1ps3), 0.0.3204
1ds ), 1ds ), 0.08327
1ds,, 1d;), 0.00207
1ds ), 251/, -0.10938
1d;,, 1ds), 0.01766
1d;), 1d;), 0.09765
1d3,, 2512 0.00158
2512 1ds ), 0.06036
2512 1d;), -0.05188
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Fig. (3-11): The longitudinal inelastic (C2) form factors for the transition to the
4*(6.025 MeV) state in *°B calculated using HO potential for different models
space. The experimental data are taken from reference [24]
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Fig. (3-12): The longitudinal inelastic (C2) form factors for the transition to the
4" (6.025 MeV) state in °B calculated using WS potential for different models
space. The experimental data are taken from reference [24]
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Fig. (3-13): The longitudinal inelastic (C2) form factors for the transition to the
4" (6.025 MeV) state in '°B calculated using Ska potential for different models
space. The experimental data are taken from reference [24]

3.2.5 The Transverse Form Factors for (3, 0) State at (0.00 MeV)

The transverse elastic form factors for M1, M3, and total (M1+M3) for the
3% calculated using HO potential are shown in Figures (3-14). The M1 (dash
line) component dominates the transition to 2" at g < 2 fm™! after then, the
M3 (dash-double-dotted line) contribution becomes dominant in the
transition. The exchange of influence between M1 and M3 indicates that the
one-body values were well computed in this model space.

Figure (3-15) shows the total elastic transverse (M1+M3) calculated form
factors of the J™ T = 3% 0 states in °B using HO potential. The p-shell
calculation results are compared with the large-basis psd and spsdpf models at
(0+2) A L. The results of the calculations using Skyrme (ska) potential for the
psd model space with default effective charge agree well with experimental
dataat 0.7 > q < 1.5 fm™1. .

The transverse elastic form factors contribute M1, M3, and the total (M1+M3)

for the 3" transition using WS and Ska potentials shown in Figure (3-16), (3-
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18). The calculated results for all potential (HO, WS, and Skyrme) have the
same results.
The form factors of elastic magnetic mixed multipolarity (M1+M3) were
calculated using WS and Ska potentials for all models displayed in figure (3-
17), (3-19). The p-shell calculation results are compared with the large-basis
psd and spsdpf models at (0+2) A [J. The calculation results using the psd
model space with default effective charge give a good description of the
experimental data best from the p and spsdpf models.
The total transverse form factor for (M1+M3) was calculated using HO, WS,
and Ska potential displayed in figure (3-20). The calculation results using psd
truncation at 2a [ acceptable with experimental data at lower momentum
transfer than being after that fall rapidly for higher values of momentum
transfer at ¢ =2 fm~1. The form factors of elastic magnetic mixed
multipolarity (M1+M3) calculated using all potentials are shown in figure (3-
21). The calculation results using psd model space truncation at 4a [
compatible with the experimental data in the momentum transfers region at
0.7 >q < 1.5 fm~!. Whereas, the psd model space using Skyrme (ska)
potential truncated to (0+2) A [] gave better results. The One-Body Density
Matrix element values for this transition (M1 and M3) calculated using psd
model space are shown in tables (3.5), and (3.6) respectively.
Table (3.5): The calculated M1 transition OBDM element values for | * T =
3* 0 (E, = 0.00 MeV) in '°B nucleus.

B M1
Ji Jr OBDM (AT=0)
1ps3,, 1ps3), 0.66179
1ps3/; 1p1)2 0.23454
1p1/2 1ps,, -0.23454
1p1)2 1p1)2 0.09020
1ds,, 1ds,; 0.03837
1ds), 1d3), 0.06883
1d;3,, 1ds,, -0.6883
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1d3/2 1d3/2 1.14126
1d3/2 251/2 0.22886
231/2 251/2 -0.54704

Table (3.6): The calculated M3 transition OBDM element values for ] * T =
3* 0 (E, = 0.00 MeV) in B nucleus.

B M3
ji Jr OBDM (AT=0)
1ps3,; 1p3)2 -0.09113
1ds); 1ds, 0.00557
1ds,, 1d; 0.04175
1ds), 2512 -0.01307
1d;) 1ds,, -0.01475
1ds,, 1ds,, -0.30892
2512 1ds; -0.01307
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Fig. (3-14): The total transverse elastic (M1+M3) form factors for the
transition to the 2* (0.00 MeV) state in °B calculated using HO potential for
psd model space truncation at (0+2) A []. The experimental data are taken from
reference [22]
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Fig. (3-15): The total transverse (M1+M3) form factors for the transition 3"
(0.00 MeV) state calculated using HO potential for different models space
truncation at (0+2) f [1. The experimental data are taken from reference [22]
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Fig. (3-16): The total transverse (M1+M3) form factors for the transition 3"
(0.00 MeV) state calculated using WS potential for psd model space
truncation at (0+2) A []. The experimental data are taken from reference [22]
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Fig. (3-17): The total transverse (M1+M3) form factors for the transition 3"
(0.00 MeV) state calculated using Ska potential for different model's space
truncation at (0+2) A 1. The experimental data are taken from reference [22]
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Fig. (3-18): The total transverse (M1+M3) form factors for the transition 3*
(0.00 MeV) state calculated using Ska potential for psd model space
truncation at (0+2) A []. The experimental data are taken from reference [22]
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Fig. (3-19): The total transverse (M1+M3) form factor for the transition 3"
(0.00 MeV) state calculated using Ska potential for different model's space
truncation at (0+2) A 1. The experimental data are taken from reference [22]
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Fig. (3-20): The total transverse (M1+M3) form factors for the transition 3"
(0.00 MeV) state calculated using psd model space truncation at 2A [ for
different potentials. The experimental data are taken from reference [22]
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Fig. (3-21): The total transverse (M1+M3) form factors for the transition 3"
(0.00 MeV) state calculated using psd model space truncation at 4a [ for
different potentials. The experimental data are taken from reference [22]

3.2.6 The Transverse Form Factors for (0, 1) State at (Ex=1.74 MeV)

The pure M3 of inelastic magnetic form factors of the J™T =0%1
transition at E,, = 1.74 MeV states calculated using HO potential. The p-shell
calculation results are compared with the large-basis psd and spsdpf models at
(0+2) n [0 displayed in Figures (3-22). The calculation results give good
agreement at first maximum then after that begins to deviate and show a
decline in values in the second part.

The inelastic magnetic form factors for the M3 transition of the J T = 0* 1
at E, = 1.74 MeV state were calculated using WS and Ska potentials shown
in figures (3-23), and (3-24), respectively. The calculation results using psd
model space truncation up to (0+2) A [l give good agreement with the
experimental data at lower values of momentum transfer q > 2 fm™. Whereas,

the calculation results
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are in falling below the experimental data at high momentum transfer. The
consistency of the psd model space is seen to be good and shape agreement
with experimental data, but the p and spsdpf models space are
underestimated.The calculation form factors for all potential in this transition
produced the same output shape. The One-Body Density Matrix element
value values for this transition (M3) calculated using psd model space are
shown in table (3.7).
Table (3.7): The calculated M3 transition OBDM element value for J * T =
0*1 (E, = 1.74 MeV) in °B nucleus.

B M3
ji Jf OBDM (AT=1)
1ps3,» 1p3), -0.08321
1ds,, 1ds, -0.0074
1ds, 1d;), -0.01568
1ds), 25/, 0.00539
1ds,, 1ds, 0.04903
1ds,, 1d;, 0.24606
254, 1ds), -0.00831
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Fig. (3-22): The transverse inelastic (M3) form factors for the 0" (1.74 MeV)
state calculated using HO potential for different models space. The
experimental data are taken from ref. [22]
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Fig. (3-23): The transverse inelastic (M3) form factors for the transition 0
(1.74 MeV) state calculated using WS potential for different models space.
The experimental data are taken from reference [23]
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Fig. (3-24): The transverse inelastic (M3) form factors for the transition 0"
(1.74 MeV) state calculated using Ska potential for different models space.
The experimental data are taken from reference [22]

3.2.7 The Transverse Form Factors for (3, 0) State at (Ex=0.00 MeV)

The transverse elastic form factor for the M1 transition of the ] T = 37 0
in °B was calculated using the HO potential displayed in figure (3-25). The
p-shell calculation results are compared with the large-basis psd and spsdpf
truncation at 24 [ models. The calculating results very well atg > 1 fm™!
and the diffraction minimum is shifting to higher momentum transfer.

The transverse elastic form factor for M1 transition was calculated using WS
and Ska potentials shown in Figures (3-26), and (3-27), respectively. The
calculation results with default effective charge are done to produce an
appropriate characterization of the experimental data for the momentum
transfer region using models (p, psd, and spsdpf), especially at momentum
transfer g < 1.2 fm~1. It is noticed HO potential results gave better results.
The psd model space truncation up to 24 [ calculation form factors using all
potentials (HO, WS, and Ska) as shown in the figure (3-28). The calculation
results using psd model space with default effective charge were close to the
experimental data at overall momentum transfer regions.

The form factor was calculated for psd model space at 44 [] by using all
potentials displayed in figure (3-29). The calculation results in some
momentum transfer regions g < 2 fm~?! in qualitative agreement with the

experimental data.
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Fig. (3-25): The transverse elastic (M1) form factors for the transition to the 3
(0.00 MeV) state calculated using HO potential for different models space. The
experimental data are taken from reference [24]
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Fig. (3-26): The transverse elastic (M1) form factors for the transition 3" (0.00
MeV) state calculated using WS potential for different models space. The
experimental data are taken from reference [24]
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Fig. (3-27): The transverse elastic (M1) form factors for the transition 3" (0.00
MeV) state calculated using Ska potential for different models space. The
experimental data are taken from reference [24]
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Fig. (3-28): The transverse elastic (M1) form factors for the transition 3" (0.00
MeV) state calculated using psd model space truncation at 24 [ for different
potentials. The experimental data are taken from reference [24]
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Fig. (3-29): The transverse elastic (M1) form factors for the transition 3" (0.00
MeV) state calculated using psd model space truncation at 4a [ for different
potentials. The experimental data are taken from reference [24]

3.3 The Nucleus **C

The longitudinal electron scattering form factors for the C2 transition from
the ground state (J* T = 0* 0) to the (J* T = 2% 0) states at E,, = 4.439 MeV
calculated by using (HO) potential is displayed in figure (3-30). The p-shell
calculation results are compared with the large-basis psd and spsdpf models.
The calculation form factors with p-shell model space give the best results for
different potentials. Also, the same results were obtained when using WS and
Ska potentials which are shown in figures (3-31), and (3-32) respectively. The
One-Body Density Matrix element values for this transition C2 calculated

using psd model space are shown in table (3.8).
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Table (3.8): The calculated C2 transition OBDM element values for J* T =
2% 0 (E, = 4.439 MeV) in **C nucleus.

c C2
Ji Js OBDM (AT=0)
1ps); 1ps); -0.80976
1ps3); 1p1; -0.10946
1pq,2 1p3), 0.00987
1ds); 1ds); 0.42198
1ds), 1d;), 0.00096
1ds), 251/ -0.0655
1d;,; 1ds); 0.04430
1d;); 1d;); 0.93215
1d;); 2512 0.00097
251 1ds); 0.77510
2512 1d;,; -0.00512
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Fig. (3-30): The longitudinal inelastic (C2) form factors for the transition 2*
(4.439 MeV) state calculated using HO potential for different models space.
experimental data are taken from reference [15]
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Fig. (3-31): The longitudinal inelastic (C2) form factors for the transition 2"
(4.439 MeV) calculated using WS potential for different models space. The
experimental data are taken from reference [15]
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Fig. (3-32): The longitudinal inelastic (C2) form factors for the transition 2
(4.439 MeV) state calculated using Ska potential for different models space.
The experimental data are taken from reference [15]

3.4 The Nucleus 'O

42




The incident electron in this transition excited the 'O nucleus from the
ground state J*T =5/2%1/2 to the
1/2%(0.870 MeV), 1/2" (7.956 MeV), 7/2" (7.576 MeV), 5/2°
(8.402 MeV), 5/27 (6.862 MeV), 3/2" (5.084MeV), 5/2" (0.870 MeV) .
Also, inelastic scattering is allowed for the transverse multiples M1, M3, and
M5, and the longitudinal multipoles CO, C2, and C4. The calculations of these
multipoles included using the zbme model space with the rewile interaction. In
the zbme model space, the nucleons are distributed over the 1py», 1ds,. The
oscillator length parameter was chosen b = 1.76 fm™1.

3.4.1 The Longitudinal Form Factors for (1/2%,1/2) State at (0.870 MeV)

The inelastic longitudinal Coulomb C2 form factors for the 1/2" state of the
0 at E, = 0.870 MeV are calculated using zbme model space are plotted in
figure (3-33). The calculation results using all potentials (HO, WS, Ska, and
Bsk9 [52]) with default effective charge are in good agreement with the
experimental data in all regions of momentum transfer. Also, it illustrates that
the results are best by using potentials (ska and WS). The One-Body Density
Matrix element values for this transition (C2) calculated using zbme model
space are shown in table (3.9).

Table (3.9): The calculated C2 transition OBDM element values for 1/2°

(E, = 0.870 MeV) in 'O nucleus

o C2
ji Js OBDM(T=0) OBDM(T=1)
1ds), 1ds), 0.06497 -0.02773
1ds); 251/ 0.00650 -0.02564
251 1ds), 0.96292 0.92851
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Fig. (3-33): The longitudinal inelastic (C2) form factors for the transition 1/2°
(0.870 MeV) state calculated using zbme model space for different potentials.
The experimental data are taken from reference [31]

3.4.2 The Longitudinal Form Factors for (1/2%, 1/2) state at (7.956 MeV)
The longitudinal C2 form factors for the 1/2* state for the 'O at E, =
7.956 MeV calculated using zbme model space are shown in figure (3-34).
The form factors calculation results using HO, WS, Ska, and Bsk9 potentials
with default effective charge a give good agreement atg < 1.8 fm~1. And
then show the minimum diffraction, and start deviating from the experimental
data values. The calculation form factors for all potentials appear to be similar
but the best of them is the Skyrme(ska) potentials. The One-Body Density
Matrix element values for this transition (C2) calculated using zbme model

space are shown in table (3.10).
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Table (3.10) The calculated C2 transition OBDM element values for 1/2*
(E, = 7.956 MeV ) in 'O nucleus

o) C2
ji Jy OBDM (AT=0) OBDM (AT=1)
1ds), 1ds), 0.07583 -0.03093
1ds); 254 0.00186 -0.01712
251/ 1ds), -0.05839 -0.17391
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Fig. (3-34): The longitudinal inelastic (C2) form factors for the transition 1/2°
(7.956 MeV) state calculated using zbme model space for different potentials.
The experimental data are taken from reference [31]

3.4.3 The Longitudinal Form Factors for (7/2",1/2) State at (7.576 MeV)
Figure (3-35) shows the inelastic longitudinal C2 form factors for the 7/2*
at E, = 7.576 MeV calculated using the zbme model space for all potentials
(HO, WS, Ska, Bsk9). The calculating results using the zbme model space
with default effective charge using Skyrme (ska) potential exhibit qualitative
similarity to the shape of the experimental data ing < 1.6 fm~! and give the

best result compared with another potential. The One-Body Density Matrix
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element values for this transition (C2) calculated using zbme model space are
shown in table (3.11).

Table (3.11): The calculated C2 transition OBDM element values for 7/2°
(E, = 7.576 MeV) in O nucleus

Yo C2
ji Js OBDM (AT=0) OBDM (AT=1)
1ds), 1ds), 0.09860 -0.04386
1ds), 251/ 0.15039 0.00790
251/ 1ds,, 0.38911 0.10313
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Fig. (3-35): The longitudinal inelastic (C2) form factors for the transition 7/2*
(7.576 MeV) state calculated using zbme model space for different potentials.
The experimental data are taken from reference [31]

3.4.4. The Longitudinal Form Factors for (5/2%, 1/2) State at (8.402 MeV)
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The longitudinal C2 form factors were calculated using all potentials for the
5/27 state (8.402 MeV) shown in figure (3-36). The calculation results using
the zbme model space with an effective charge (0.8, 0.5) for proton and
neutron respectively. In this transition, all potential give acceptable results
compared with experimental data at g = 1.5 fm™1, then that falls off slightly
less rapidly. The One-Body Density Matrix element values for this transition
(C2) calculated using zbme model space are shown in table (3.12)

Table (3.12): The calculated C2 transition OBDM element values for 5/2*

(E, = 8.402 MeV) in 'O nucleus

Yo C2
ji Js OBDM (AT=0) OBDM (AT=1)
1ds), 1ds); -0.12890 -0.06878
1ds), 251/ -0.00304 -0.00436
251/ 1ds); -0.00890 -0.02998
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Fig. (3-36): The longitudinal inelastic (C2) form factor for the transition 5/2*
(8.402 MeV) state calculated using zbme model space for different potentials.
The experimental data are taken from reference [31]

3.4.5 The Longitudinal Form Factors for (5/2", 1/2) State at (6.862 MeV)
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The inelastic longitudinal CO and C2 form factors calculated for the 5/2" at
6.862 MeV state using HO potential is shown in figure (3-37). The total
(C0+C2) form factors using zbme model space with an effective charge value
equal to (2.1, 1.4) for proton and neutron respectively is produced in the shape
and agree well of the experimental data form factors, especially at higher
momentum transfer.

The total longitudinal (C0+C2) form factor and their individual contributions
were calculated at 6.862 MeV for the 5/2" state using WS potential with an
effective charge value equal to (1.6, 0.8) for proton and neutron respectively,
while with using Ska potential was effective charge value equal to (2.4, 1.4)
for proton and neutron respectively are shown in figure (3-38), (3-39). Also,
the effective charge value using Bsk9 potential is equal to (1.8, 0.8) for proton
and neutron respectively as shown in figure (3-40). The calculated results
using Skyrme (ska) potential with effective charge contribution are in good
agreement with experimental data at ¢ = 1.4 fm™1.

The zbme model calculation for the total longitudinal inelastic (C0+C2) form
factors of the 5/2" at E,, = 6.862 MeV state with effective charge shown in
figure (3-41). The calculation results well agree and can produce the form
factors that match the experimental data shape at high transfers momentum.
The One-Body Density Matrix element values for this transition (CO and C2)
calculated using zbme model space are shown in tables (3.13), and (3.14).

Fig. (3.13): The calculated CO transition OBDM element values for 5/2*
(E, = 6.862 MeV) in 'O nucleus

i{e) CO
7 ir OBDM (AT=0) OBDM (AT=1)
1ds,, 1ds,, 20.33302 20.03811
251/, 2512 -0.34359 20.0036
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Table (3.14): The calculated C2 transition OBDM element values for 5/2*

(E, = 6.862 MeV) in O nucleus

0 C2
7, ir OBDM (AT=0) OBDM (AT=1)
1ds), 1ds), 0.11178 0.09531
1d5/2 251/2 -0.01417 0.00192
251/, 1ds,, -0.01951 0.00008

F (@)l

0.0001

1E-005 —

1E-006

170, 5/2% (6.862 MeV)
zbme model space, HO
CO

+—+—+C2
Total(C0+C2)

® @ eExp.data
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Fig. (3-37): The total longitudinal inelastic (CO+C2) form factors for the
transition 5/2" (6.862 MeV) state calculated using HO potential for zbme

model space. The experimental data are taken from reference [31]
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Fig. (3-38): The total longitudinal inelastic (CO+C2) form factors for the
transition 5/2" (6.862 MeV) state calculated using WS potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-39): The total longitudinal inelastic (C0+C2) form factors for the
transition 5/2" (6.862 MeV) state calculated using Ska potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-40): The total longitudinal inelastic (CO+C2) form factors for the
transition 5/2* (6.862 MeV) state calculated using Bsk9 potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-41): The total longitudinal inelastic (C0+C2) form factors for the
transition 5/2" (6.862 MeV) state calculated using zbme model space for
different potentials. The experimental data are taken from reference [31]

3.4.6 The Longitudinal Form Factors for (3/2, 1/2) State at (5.084 MeV)
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The total longitudinal (C2+C4) and their individual contributions form
factors calculated for the 3/2" at E, = 5.084 MeV state using HO, WS, and
Ska potentials with default effective charge are shown in figures (3-42), (3-
43), and (3-44) respectively. All results in figures for this state using zbme
model space are in good agreement with the experimental data in q < 1.7 fm™,
but the best one is the Skyrme (Bsk9) potential. The One-Body Density
Matrix element values for this transfer (C2 and C4) calculated using zbme

model space are shown in tables (3.15), and (3.16).

Table (3.15): The calculated C2 transition OBDM element value for 3/2°
(E, = 5.084 MeV) in O nucleus

Yo C2
ji Js OBDM (AT=0) OBDM (AT=1)
1ds), 1ds), 0.96321 0.96321
1ds,, 2512 0.01710 0.01710
251/ 1ds,, 0.10432 0.10432

Table (3.16): The calculated C4 transition OBDM element value for 3/2*
(E, = 5.084 MeV) in O nucleus

Yo C4

Ji Jr OBDM (AT=0) OBDM (AT=1)

1ds,, 1ds, -0.08321 0.01704
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Fig. (3-42): The total longitudinal inelastic (C2+C4) form factors for the
transition 3/2" (5.084 MeV) state calculated using HO potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-43): The total longitudinal inelastic (C2+C4) form factors for the
transition 3/2" (5.084 MeV) state calculated using WS potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-44): The total longitudinal inelastic (C2+C4) form factors for the
transition 3/2" (5.084 MeV) state calculated using Bsk9 potentials for zbme
model space. The experimental data are taken from reference [31]

3.4.7 The Transverse Form Factors for (1/2%, 1/2) State at (0.870 MeV)
The inelastic transverse (M3) form factors for the transition 1/2* (E, =
0.870 MeV) the state was calculated using HO, WS, Ska, and Bsk9 potentials
with default effective charge as shown in figure (3-45). The results using
zbme model space calculation using Skyrme (ska) potential give good
agreement with experimental data at lower values of momentum transfer q <
1.5 fm™, after which the calculation results are less than the value of the
experimental data at higher values of momentum transfer. The One-Body
Density Matrix element values for this transition (M3) calculated using zbme

model space are shown in table (3.17)

Table (3.17): The calculated M3 transition OBDM element values for 1/2*
(E, = 0.870 MeV) in O nucleus
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o M3
ji Jy OBDM (AT=0) OBDM (AT=1)
1ds); 1ds), 0.00291 -0.02189
1ds); 254 0.04098 -0.00313
251 1ds), 0.92791 0.93939

0.0001

170, 1/2* (0.870 MeV)
zbme model space, M3
HO

\WAS
Bsk9

® ® eExp.data

1E-005

F(a)l

1E-006

1E-007 | . i

qa(fm-1)

Fig. (3-45): The transverse inelastic (M3) form factors for the transition 1/2*
(0.870 MeV) state calculated using zbme model space for different potentials.
The experimental data are taken from reference [31]

3.4.8 The Transverse Form Factors for (1/2°, 1/2) State at (0.870 MeV)
The M3 and E2 (dash-dash-dotted line) multipoles contribution form
factors for the transition 1/2" at E, = 0.870 MeV state calculated using HO
potential are shown in figure (3-46). The results calculation using zbme model
space gives good agreement with experimental data overall momentum
transfer regions.
The total transverse inelastic (M3+ E2) and their individual contributions form
factors for the transition 1/2" at E, = 0.870 MeV was calculated using WS
and Bsk9 potentials displayed in figures (3-47), and (3-48) respectively. The

55




results of the calculations using of zbme model space with default effective
charge agree well with experimental data at g > 1.3 fm™1.

The total transverse inelastic (M3+ E2) form factors 1/2* were calculated at
E, = 0.870 MeV state using HO, WS, and Bsk9 potentials displayed in figure
(3-49). The calculating results using zbme model space using WS potential
give remarkable agreement with experimental data. The One-Body Density
Matrix element values for this transition (E2) calculated using zbme model

space are shown in table (3.18).

Table (3.18): The calculated E2 transition OBDM element values for 1/2*
(E, = 0.870 MeV) in O nucleus

'O E2
ji Js OBDM (AT=0) OBDM (AT=1)
1ds), 1ds), 0.06497 -0.02773
1d5/2 231/2 0.00650 -0.02564
251 1ds), 0.96292 0.92851
0.0001 — ‘ ‘
- 70, 1/2* (0.870 MeV)
B zbme model space, HO B
— — - M3
- — — E2
- Total(M3+E2)
® ® eLExp.data |
1E-005 —|
7 ~ e
= Mo NN
—_— — i / \ . \
g \N .
1E-006 75 I/ N\
] . V)
| | \
— , —
1E-007 ' ‘ . ‘
(0] 1 2 3
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Fig. (3-46): The total transverse inelastic (M3+E2) form factors for the
transition 1/2° (0.870 MeV) state calculated using HO potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-47): The total transverse inelastic (M3+E2) form factors for the
transition 1/2° (0.870 MeV) state calculated using WS potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-48): The total transverse inelastic (M3+E2) form factors for the
transition 1/2* (0.870 MeV) state calculated using Bsk9 potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-49): The total transverse inelastic (M3+E2) form factors for the
transition 1/2° (0.870 MeV) state calculated using zbme model space for
different potentials. The experimental data are taken from reference [31]

3.4.9 The Transverse Form Factors for (5/2%, 1/2) State at (0.870 MeV)
The total transverse inelastic M1, M3, and M5 (dash-dot-dot-dotted line)
form factors and their individual contributions for the transition 5/2° at
E, = 0.870 MeV state calculated using HO, WS, and Bsk9 potentials
displayed in figures (3-50), (3-51), and (3-52), respectively. The results
calculated using the zbme model space with default effective charge showed
good agreement with the experimental data in some transfer momentum
regions.
Figure (3-53) shows the comparison between HO, WS, and Bsk9 potentials
using zbme model space to calculate the total transverse inelastic
(M1+M3+M5) form factors. The calculation results were good with
experimental data in all transfer momentum regions for all potential. The One-
Body Density Matrix element values for this transition (M1, M3, and M5)
calculated using zbme model space are shown in tables (3.19), (3.20), and
(3.21) respectively.
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Table (3.19): The calculated M1 transition OBDM element values for 5/2*
(E, = 0.870 MeV) in O nucleus

Yo M1
ji Js OBDM (AT=0) OBDM (AT=1)
1p1; 1p1, 0.00677 -0.02241
1ds), 1ds); 0.99783 0.93012
251/ 2552 0.00608 -0.00343

Table (3.20): The calculated M3 transition OBDM element values for 5/2*
(E, = 0.870 MeV) in YO nucleus

0 M3
Ji jf OBDM (ATZO) OBDM (AT=1)
1ds 1ds 0.97796 0.95020
1d5/2 251/2 0.00005 -0.01566
2512 1ds), 20.00005 -0.01566

Table (3.21): The calculated M5 transition OBDM element values for 5/2*
(E, = 0.870 MeV) in O nucleus

o M5

Ji I OBDM (AT=0) OBDM (AT=1)

1ds, 1ds,, 0.97300 0.94847
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Fig. (3-50): The total transverse inelastic (M1+M3+M5) form factors for the
transition 5/2" (0.870 MeV) state calculated using HO potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-51): The total transverse inelastic (M1+M3+M5) form factors in the
transition 5/2" (0.870 MeV) state calculated using WS potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-52): The total transverse inelastic (M1+M3+M5) form factors in the
transition 5/2* (0.870 MeV) state calculated using Bsk9 potential for zbme
model space. The experimental data are taken from reference [31]
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Fig. (3-53): The total transverse inelastic (M1+M3+M5) form factors in the
transition 5/2% (0.870 MeV) state calculated using zbme model space for
different potentials. The experimental data are taken from reference [31].
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3.5 Conclusions
In this work, we have described the nuclear properties of the B, **C, and 'O

in the framework of the nuclear shell model with the psd, spsdpf models space
with different potentials ( HO, WS, Skyrme).

1- B nucleus

The calculated results without effective charge are in good agreement with
experimental data, especially at higher momentum transfer values for the
first (1" )and second (Y*) transitions. While the third transition (4") state, gave
good results with an effective charge (0.8, 0.4) for proton and neutron
respectively. The transverse elastic form factors for M1, M3, and total
(M1+M3) for the 3* 0 calculated form factors with psd model space for all
potentials (HO, WS, and Ska) have the same results. The calculated transverse
inelastic (M3) form factor for the transition 0" (1.74 MeV) state using p, psd,
and spsdpf models space are in good agreement at first maximum then after
that begins to deviate and show decline values at the second part. The
transverse elastic form factor for M1 transition was calculated using different
models (p, psd, and spsdpf) with default effective charge to yield an adequate
description of the experimental data for all potentials ( HO, WS, and Ska).
The Skyrme potential seems the best one to give a better description of the
form factors with the psd model space.
2- 2C nucleus

The calculation form factor with p-shell model space gives the best results

for different potentials.

3- 0 nucleus

The inelastic longitudinal Coulomb C2 form factor for the 1/2" state of the
O at E, = 0.870 MeV are calculated using zbme model space using
different potentials (HO, WS, Ska, and Bsk9) with default effective charges
are in good agreement with the experimental data in all regions of momentum

transfer. While the transition 1/2" (7.956 MeV) and 7/2" (7.576 MeV) states
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with default effective charge give considerably overestimate the shape of the
experimental data at ¢ < 1.8 fm~1. The transition 5/2" (8.402 MeV) state
calculation results using the zbme model space with a default effective charge
for this transition are in good agreement with experimental data at g >
1.5 fm™1, then that fall off slightly less rapidly of the all potentials. The
inelastic longitudinal CO and C2 form factors were calculated for the 5/27 at
6.862 MeV state using (HO, WS, Ska, and Bsk9) potentials in good
agreement and were able to produce the form factors that match the
experimental data shape with high transfers momentum. The total
longitudinal C2 and C4 form factors calculated for the 3/2" at E, =
5.084 MeV/ state using HO, WS, and Ska potentials at default effective
charge, in general, are in agreement with the experimental data for all g
dependence regions. The inelastic transverse (M3) form factors for the
transition 1/2" (E, = 0.870 MeV) the state was calculated using HO, WS,
Ska, and Bsk9 potentials with default effective giving good agreement with
the experimental data at lower values of momentum transfer than being after
that underestimate the experimental data at higher values of momentum
transfer. The total transverse inelastic (M3+ E2) form factors for the
transition 1/2" were calculated at E, = 0.870 MeV using WS and Bsk9
potentials using of zbme model space with default effective charge agree well
with experimental data at all momentum transfer regions. The form factor
calculation for most results gives better agreement with experimental data

using Skyrme (ska) potential.
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3.6 Future works

1- Extension of the work presented in this thesis to be applied to the other

nuclei in the sd-shell.

2- Adopting other interactions in the model space for these nuclei understudy
to obtain better results for the transitions in which we did not obtain

acceptable results.
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