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Abstract 

Hierarchical frameworks have traditionally been used by humans to 

organize their thoughts on complex problems. One application of artificial 

intelligence involves the creation of intelligent agents that break down 

challenging problems into layers of abstraction, simplifying the problem-

solving process. The Hierarchical Task Network (HTN) structure enables tasks 

to be effectively performed. 

In the context of autonomous robots operating in closed and 

deterministic environments, such as domestic environments, task planning is 

crucial for achieving a high level of accuracy. To address this, the HTN planner 

and descriptive action models were employed to determine the next state in the 

state transition system during the planning process for the generated plan. A 

formal representation for operational action models was introduced, and their 

effective utilization in conjunction with the Refinement Acting Engine (RAE) 

and the Dijkstra algorithm to determine optimal task approaches was explained 

for the execution of this plan. 

The integration planning and acting algorithm was designed to operate 

hierarchically, utilizing a transit tree and backtracking to handle the error for 

re-planning and execution in the event of execution errors. Careful attention 

was given to method implementation to avoid system failure or suboptimal 

performance. 

The methodology used in the text involves addressing the task planning 

challenges faced by autonomous robots operating in closed and deterministic 

environments, specifically domestic environments. To achieve a high level of 

accuracy in task execution, the Hierarchical Task Network (HTN) planner and 

descriptive action models were employed with representation for operational 

action models the Refinement Acting Engine (RAE), and the Dijkstra algorithm 

to determine optimal task approaches, The hierarchical structure and error 

handling mechanisms contribute to achieving accurate and efficient task 

completion while maintaining system reliability depending on The integration 
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planning and acting algorithm was designed to operate hierarchically, utilizing 

a transit tree and backtracking algorithm.   

Through experiments conducted using the Python language (Spyder), it 

was demonstrated that the algorithm developed outperforms the commonly 

used planning and acting approach, providing an optimal path within the 

system. The results showed a precision value of approximately 94.9%, a recall 

value of approximately 94.9%, and an F1-score of approximately 94.79%. 

These findings validate the effectiveness of the approach in improving the 

planning and acting process.  
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Chapter One                                                                      Introduction 

1.1 Overview 

Over time, one key area of interest in task planning has been 

advancing planning methods for robotic systems.  Intelligent autonomous 

mobile robots are being extended in numerous applications to handle 

complicated tasks. These jobs might be local household duties performed 

within human houses, on remote planets, and can even underwater.  To 

enable these robots to interact with their environment and carry out their 

assigned tasks, the environment should be intelligently discovered. This 

discovery will allow a robot to reason about its activities and available 

resources in a flexible and efficient manner. Planning and environment 

should also be integrated through the deliberation process because the 

knowledge base is crucial in expressing the organization of a robot's 

surroundings, as well as the relationships between entities (each an item 

and a task) and their properties [1]. 

Deliberation for acting includes selecting the actions to take and 

how to carry them out in order to attain a goal. It pertains to a thought 

process that takes place both prior to and during the execution of an action. 

It also deals with what will happen if an agent takes an action and which 

actions should an agent take, and how to perform this action to achieve 

this intended effect. The reasoning enables the agent to forecast, 

determine what to do and how to accomplish it, and integrate numerous 

acts that contribute to the goal. In Artificial Intelligence (AI), planning is 

studied as a deliberation process and performed computationally in the 

intellectual aspect of acting. This cognitive process is an explicit, abstract 

form of reasoning that involves selecting and organizing actions based on 

predictions of their outcomes[2].  
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The objective of this deliberation is to accomplish as many 

predefined goals as possible. The AI planning plan development part is 

mostly concerned with state transition difficulties. These issues have a 

starting state, the desired goal, and a collection of feasible actions to 

modify the state. A plan consists of activities that can be initiated from the 

starting condition and, when implemented, will change it into a state 

where the objective has been met. The most basic type of planning issue 

is the "classical planning problem refers to the general planning of 

restricted state-transition systems. This type of planning presupposes a 

deterministic, discrete, and non-temporal world model.  The problem is 

modeled in a language that tells what information about the world can be 

true at the time. The information that are relevant to the planning process 

are known as predicates or facts. Predicates provide us with details that 

may become important at a later stage of planning. These predicates 

together form the state, which represents the current state of the world at 

a specific point in time [3]. 

The Hierarchical Task Network (HTN) is a planning subfield in AI 

that organizes plans hierarchically. While HTN planning shares 

similarities with classical planning, as each world state is depicted by a 

sequence of atoms, there are certain distinct characteristics, particularly in 

terms of what they plan for and how they prepare for it, it differs from 

traditional planners. In the context of Hierarchical Task Network (HTN) 

planning, an environment's state is depicted as a set of atoms, with each 

action corresponding to a deterministic change in state. The primary aim 

of an HTN planner is not to accomplish a particular set of goals, but rather 

to complete a sequence of tasks[3]. 
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1.2 Motivation 

    The hierarchy is one of the most common frameworks used to 

comprehend and conceptualize the state of the world lies in its 

effectiveness and widespread applicability. The hierarchical structure 

allows for the organization and categorization of complex information in 

a systematic and manageable manner. 

Human beings naturally seek ways to make sense of the world 

around them, especially when faced with intricate and multifaceted 

phenomena. The hierarchy provides a clear and structured approach to 

understanding complex systems by breaking them down into smaller, 

more manageable components. 

By utilizing a hierarchical framework, individuals can identify 

relationships, dependencies, and patterns within a system. This allows for 

a better grasp of the overall structure and functioning of the subject matter 

under consideration. The hierarchical arrangement facilitates the 

classification and organization of information, enabling easier navigation 

and comprehension. 

Furthermore, hierarchy promotes a top-down approach, where 

overarching concepts or categories are defined first, followed by the 

subdivision of these concepts into more specific subcategories. This step-

by-step progression helps in building a comprehensive understanding of 

the subject matter and facilitates effective communication and knowledge 

sharing. 

 

Overall, the motivation behind using hierarchy as a framework for 

comprehending and conceptualizing the state of the world is rooted in its 

ability to provide structure, organization, and clarity to complex systems,  
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There by enhancing our understanding and enabling effective decision-

making and problem-solving.. HTN planners' use of an intuitive 

hierarchical architecture makes it very simple to integrate readily 

available expert information about a subject to drive the search process. 

Task networks record practical procedural control knowledge or 

instructions on how to carry out a task defined in terms of a breakdown 

into subtasks. There are several domain-independent HTN planners 

available (SHOP, SHOP2, O-PLAN, and O-PLAN2 [4][5][6][7]).  To 

create a plan in HTN planning, the process involves breaking down tasks 

into increasingly smaller subtasks until basic, executable tasks with 

constraints are obtained. Effective methods can assist an HTN planner in 

achieving desirable outcomes. Hence the inclusion of search control 

information can accelerate the HTN planning process beyond the speed 

of classical planning [3]. HTN planning has received a widespread 

application in robotics mission planning, as well as gaming AI creation 

[8], [9]. As demonstrated in Figure (1.1), AI planning and action models 

can be defined in two fundamental ways: through descriptive models and 

operational models [3]. Descriptive models are more abstract than 

operational models. Descriptive models abstract away the intricacies of 

an action and focus on the primary effects; they are appropriate at higher 

levels of a deliberative hierarchy. 
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Figure 1.1: Deliberative Architectures. 

At runtime, the actor typically deliberates on how to carry out the 

tasks it is currently undertaking. The deliberation continues incomplete 

until the actor achieves its goal, which may include flexible modifications 

to its plans and return results [2].  

In a state transition system, HTN planners rely on descriptive action 

models to effectively determine the next states. While this approach works 

well in a closed, static, and deterministic environment, it falls short in 

domains that are open, dynamic, and non-deterministic/probabilistic.  

These are commonly encountered in real-world scenarios. The planning 

domain rarely provides a completely accurate representation of the actor's 

environment, and executing plans may result in failure due to various 

reasons, such as action execution failures, unexpected events, or 

incomplete/incorrect knowledge during the planning stage [3].  
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1.3 Problem Statement 

1- Importance of effectively integrating planning and action in a 

unified hierarchical model. This integration is necessary to address the 

process of deliberation between planning and action, ensuring that plans 

align with the actions taken. 

2-  Selecting the optimal path or method when executing an action in 

an actor, particularly in the context of a refinement acting engine within a 

Hierarchical Task Network (HTN) planning framework. 

 

3- Handling action failures during execution and proposing a solution 

by combining an HTN planner with an RAE to enable backtracking and 

re-planning when actions fail or unexpected events. 

1.4 The Aim of the Thesis  

1- Propose a hierarchical representation that unifies the descriptive and 

operational model, with actions ranging from abstracted levels to more 

detailed ones, commands. 

2-  Develop an algorithm that enables the planner and actor to work 

consistently using the unified representation. 
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1.5 Objectives  

1- Search the descriptive action models required for planning and the 

operational action models required for acting and maintaining 

consistency between them. 

2- Using artificial intelligent Algorithms Including 1- Hierarchal Task 

Network, 2- Refinement Acting Engine, 3- Dijkstra Algorithm, 4- 

Run-Lazy-Lookahead, and 5- backtrack algorithm.  

3- Develop a hierarchical system with integrated planning and acting 

algorithms that employ both descriptive and operational models. 

By maintaining the hierarchy within the planning solution, users 

are presented with a solution tree that includes the plan and a set of 

refinement techniques that provide different ways of handling tasks 

and responding to actions for closed-loop online decision-making.,  

as well as how to select the by using optimal path between methods 

in the operational models. 

4- A proposed development algorithm that integrates an HTN planner 

with an RAE, allowing for backtracking and re-planning when 

actions fail to execute as intended. 
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1.6 Thesis Organization 

The thesis is organized into five chapters, the remaining chapters of 

the thesis are outlined as follows: 

Chapter Two: presents the content and characteristics of robotics-

related approaches and the most commonly used methods, and explains 

their importance and limitations, and described some of the work 

associated with these techniques. 

Chapter Three: presents the methodology used, including the 

structure and related algorithms in detail. 

Chapter Fourth: presents the performance evaluation and results 

of the simulation. We describe the domain and tasks we used to conduct 

our experiments. 

Chapter Five: draws conclusions related to this research work and 

suggests future work that will help future researchers to improve the 

performance of (the hierarchical system). 
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Chapter Two                                                  Theoretical Background 

2.1 Overview  

 In this chapter, we have explained what robots are, their parts, and 

the various environments that deal with them, as well as described the 

deliberation process with its models, and planning system techniques. It 

also explained the most used approaches to solve planning tasks and 

described some of the work associated with these techniques. 

2.2 Robotics 

Robotics is a field of study that focuses on designing mechanical 

devices that are capable of autonomous movement. Its a multidisciplinary 

field of study that revolves around the design, development, and 

implementation of mechanical devices, known as robots, with the ability 

to perform tasks autonomously. It combines various branches of 

engineering, such as mechanical, electrical, and computer science, along 

with elements of mathematics and physics [10]. 

The primary objective of robotics is to create machines that can 

perceive their environment, make decisions, and manipulate objects or 

interact with their surroundings without continuous human intervention. 

These robots are typically equipped with sensors to gather information 

about their environment, processors to process that information, and 

actuators to execute physical actions based on the processed data [11]. 

The study of robotics encompasses various subfields, including 

robot kinematics and dynamics, control systems, perception and sensing, 

artificial intelligence, machine learning, and human-robot interaction. 

Researchers and engineers in robotics strive to develop robots that can 

perform a wide range of tasks efficiently and effectively, such as industrial 

automation, medical assistance, exploration of hazardous environments,  
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and even social interactions[10]. The objective of robotics is to create 

machines capable of aiding humans in diverse tasks. These machines are 

typically complex and can perform a variety of actions automatically, 

depending on computer programming. A robot that is capable of 

functioning independently without the need for human input or guidance 

is considered an intelligent machine. Such machines can complete tasks 

and operate effectively in a given environment. In many cases, robots that 

possess a high degree of autonomy can carry out tasks that would 

normally require human labor[12]. 

2.2.1 Planning  

The process of creating an action plan to complete a task is known 

as planning. In order to automate planning, a computer program must 

represent: 1- the world, 2- represent actions and their effects on the world, 

3- reason about the effects of sequences of such actions, 4- reason about 

the interaction of actions that are happening at the same time, 5- control 

the search process to find plans with a level of efficiency.  

A major challenge for artificial intelligence is the capacity for 

action-based reasoning. Common sense reasoning is often employed by 

individuals, whereas the reasoning function is an explicit and abstract 

process of deliberation that selects and organizes actions by anticipating 

their consequences[13]. The primary objective of this deliberation is to 

active the maximum number of predetermined goals possible. Several 

planning systems are available[11]: 

1. Motion and task planning 

2. Temporal planning  

3. Probabilistic planning 
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4. Planning in open domains 

The task planner was used in this thesis. A high-level plan is created 

through task planning[14]. The task planner has to be given a description 

of the manipulable items, the task environment, the robot, and the 

beginning and intended ultimate states of the environment. 

 

 The ultimate result has to be a robot software that can change the 

original condition into the required final state [12]. Classical planning and 

hierarchical planning are the most often used methods for addressing 

planning challenges. They typically rely on heuristic search, Nonetheless, 

traditional planning approaches are increasingly sophisticated, especially 

with regard to domain-independent heuristics.[15]. 

2.2.2 Acting 

This section discusses how robots must engage in planning tasks in 

order to operate effectively within their physical environment. As a result, 

the planner's actions will be decomposed into a sequence of actions that 

the robot system will execute. Throughout the execution process, the actor 

directs the designated system elements using commands [2].  

2.2.3 Planning versus Acting  

Creating a deliberative machine that integrates planning and acting tasks 

is a crucial challenge in design. Planning aims to generate a set of logical 

actions that can accomplish a specific task.  
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For example, you may do this by using a lookahead strategy,  that 

combines prediction phases Figure (2.1), while in the state (s), action (a) 

is anticipated to build a state (s') inside of a search through several sets of 

actions for a set that leads to the ideal target state. Refers lookahead to a 

technique used in decision-making processes to anticipate the potential 

outcomes of future actions. It involves simulating different future 

scenarios and evaluating their potential consequences before selecting the 

best course of action. Lookahead is particularly valuable in domains 

where decisions have long-term consequences and where the decision-

maker seeks to optimize outcomes based on a forward-looking 

perspective. The difficulty of planning is influenced by the types of tasks 

that require planning, the types of predictive models required, and the 

types of plans considered suitable. Specific planning techniques for 

particular types of problems have been developed to tackle different 

challenges in various domains [2].  

 

Figure 2.1: Planning as a process of searching and a succession of phased 

predictions [2]. 

The process of acting include selecting how to execute the actions 

that have been selected or decided upon while adjusting to the context in 

which the activity is taking place. This can be done with or without the 

assistance of a planner.  
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Each action is regarded as a general task that will undergo 

refinement into more specific actions or instructions based on the existing 

circumstances. Planning involves looking for projected states, whereas 

acting necessitates continuously comparing the current condition to 

predicted states and making adjustments as necessary. Acting, also entails 

responding to unanticipated changes and external occurrences. Depending 

on how straightforward planning is and how rapidly the environment 

changes, there are several methods to arrange the interaction between 

acting and planning. One straightforward sequence of steps is the linear 

progression of "plan then act" which does not accurately describe the 

relationship between planning and action. instead, it suggests that the 

relationship is more complex and dynamic. The section likely elaborates 

on the limitations of the linear progression model by highlighting factors 

such as feedback loops, ongoing adjustments, and the iterative nature of 

planning and action. 

 

It may discuss how planning and action interact with each other in 

a continuous cycle, rather than being distinct and separate stages. For 

example, during the execution of a plan, unforeseen circumstances or new 

information may arise, necessitating adjustments to the original plan. 

These adjustments can then inform subsequent actions, which in turn may 

require further planning modifications. This iterative process highlights 

the ongoing interplay between planning and action throughout the course 

of a task or project. 

 

By explaining the limitations of the linear "plan then act" model, 

the section emphasizes the importance of recognizing the dynamic nature 

of planning and action.  
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It highlights the need for flexible approaches that allow for 

adaptation, learning, and continuous improvement based on the feedback 

received during the execution of a plan. 

It's not always possible or necessary to seek a clear plan before 

taking action. When the environment is well-modeled and predictable, 

such as in a manufacturing production line. This approach is necessary 

when the cost or risk of acting is high and the actions are irreversible. In 

such applications, it is often necessary for the designer to minimize  the 

diversity of the environment beyond what can be modeled and predicted 

[2]. 

2.3 Deliberation  

A set of components that are hierarchically arranged can carry out 

the decision-making process of the robot. A robotic system can be given 

more extensive, adaptable, and durable functions by using the current and 

significant study area of deliberation in robotics. The use of prediction 

models and the acquisition of these models are both necessary for 

deliberate action. An actor can also need to develop their ability to adjust 

to different roles and circumstances. Deliberate action cannot be boiled 

down to a single function; planning is merely the first step. Integrating 

many functions coherently is crucial. It requires the functions to be 

consistent with one. Another deliberation may necessitate several 

different functions. The robot's cognitive architecture involves five main 

components: Planning, Observing, Acting, Goal reasoning, Monitoring, 

and Learning. In this research, we focus on the processes of planning, 

acting, and integrating them. The relationship between planning and 

acting is fundamentally based on the idea of deliberation. Deliberation for 

acting entails selecting the actions to take and how to carry them out.  
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It takes one or more acts that are justified by the hierarchal 

sequences planned to achieve this goal. Deliberation refers to a process of 

reasoning that occurs both before and while acting. For instance [2]: 

 What will happen if an agent acts? 

 Which steps should an agent choose should adhere to in order to 

have the desired impact, and how should the agent go about doing so?  

Autonomy, or the ability to carry out one's intended tasks without 

being directly commanded by a human, is what drives agents with 

deliberative capacities. They assume that instructions, a collection of 

primitives that perform sensory-motor control, are used to carry out 

actions. The actor's actions are carried out by putting directives into 

action. It employs models of how these commands function to engage in 

deliberation. The process of planning comprises choosing and arranging 

the procedures required to achieve a certain objective. The steps that need 

to be followed are frequently known [2]. 

 

2.3.1 Deliberation Models  

To choose which acts to do and how to take them, an entity engaged 

in acting needs anticipatory models of its actions. Descriptive and 

operational models are used, respectively, to express these two forms of 

information. One can create both descriptive and operational models of 

activities by utilizing state variables that represent the state of an actor and 

its surroundings. 

 Descriptive action models define the state or collection of possible 

states that can occur as a result of completing an action. Plans produced 

using descriptive models operate effectively under the assumptions of a 

closed, unchanging, and deterministic reality (this plan).  
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 Operational models, on the other hand, define how to carry out an 

action involves determining the appropriate commands to perform in the 

current environment and organizing them in a way that achieves the 

desired outcome. A plan's action result in state transformations, which 

change the set of true facts in accordance with the effect of the action 

(execution of plan). 

Acting needs online planning and deliberation continual. As shown 

in Figure (2.2), an actor must break down their actions into smaller phases 

in order to access the necessary operators [16]. 

 

 

Figure 2.2: Continual online planning and acting. 

2.3.2 Knowledge Representations  

An agent must carefully plan and execute its actions, which 

requires models for organizing, monitoring, modifying, and adapting 

its strategies and plans. The agent also needs methods for breaking 

down its activities into manageable steps or assigning them to specific 

capabilities.  
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Descriptive models, which are essential for reasoning, address 

issues such as causes, consequences, motives, benefits, and costs of 

actions. In contrast, operational models, often referred to as task 

performance standards, deal with the "how" aspects of actions. Certain 

models might possess specifications for both operational and 

descriptive aspects [17]. 

 

The required knowledge representations for actors must facilitate 

the uniform and generic specification of both "know-what" and "know-

how" action models. It is important to note that the actor's environment 

must be taken into account in both types of models. The knowledge 

representations that actors are required to use should make it easier to 

specify both the "know-what" and "know-how" models of actions. They 

ought to support effective algorithms for deliberation [18].  

2.4 Planning Domain and Problem Representation 

The terms "planning domain" and "problem representation" denote 

the approach of encoding all relevant information about the robot's 

environment for all the tasks that carry out. The elements of the world that 

describe the problems are formalized in the resulting domain.  

Given that each style has a particular level of expressiveness and 

complexity, this formalization of knowledge representation plays a crucial 

role in determining the types of problems that can be represented and 

solved [19]. It goes without saying that a language can represent a wider 

range of issues the more expressive it is. As a result, complex systems and 

concepts encountered in the actual world may be represented more easily 

in expressive languages.  
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However, the intricacy of the language frequently increases the 

computational difficulty of the methods employed to solve the problem, 

which results in a longer processing time [20]. 

2.5 Techniques for Planning System 

Since the last years, the study of planning systems has been ongoing 

activity for study. And numerous methods, algorithms, and systems have 

been put forth. They are very different from one another in terms of how 

they model the world or how they approach problem-solving. 

2.5.1 STRIPS Model 

The Stanford Research Institute Problem Solver (STRIPS) planner 

is frequently cited as the first system to implement a dedicated planning 

algorithm, and its action modeling approach, which defines prerequisites, 

positive effects, and negative effects as sets of atomic facts, is still being 

utilized today[21]. The STRIPS style represents planning problems using 

the triplet "I, A, G," which includes the initial state (I), a list actions (A), 

as well as a list of goals (or desired end-states(G)). The states are 

represented as a collection of predicates based on first-order predicate 

logic[22].  

This type of planning was constantly changing states to achieve the 

desired state by using the heuristic and already-applied action details. 

2.5.1 Definition of the PDDL Language  

The Planning Domain Definition Language is an industry-standard 

language for creating STRIPS domains and problem sets (PDDL) (The 
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most basic subset of PDDL is referred to as "STRIPS")[21]. Most of the 

code can be written in PDDL using English words so that it can be easily 

read and understood. Simple AI planning problems can be written using 

this method fairly easily[23].  

The PDDL The definition of a planning problem can be divided 

into two components: the domain and the problem itself. The domain 

component specifies: the state variables and actions in a generic model of 

the relevant environment, while the problem describes a specific instance 

referring to the problem definition within the given domain, including the 

starting state and target condition. STRIPS and PDDL can be utilized to 

solve a variety of problems. If a limited number of actions, prerequisites, 

and effects is capable of illustrating the world domain, a PDDL domain 

and problem can be created to solve it [21]. 

2.6 Approaches Task Planning  

Two of the most common methods for completing planning tasks 

are classical planning and hierarchical planning. Solvers typically use 

heuristic search, while classical planning approaches are more 

sophisticated, especially with regard to domain-independent heuristics 

[7]. 

2.6.1 Classical planning  

The so-called "classical planning problem" is the most basic type 

of planning problem often discussed. It makes the assumption that the 

universe is predictable, discrete, and fundamentally non-temporal [21].  
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Classical planning involves finding a series of actions that 

transforms a starting state to a target condition, under the assumptions of 

a deterministic environment and actions. The primary computational 

difficulty is developing efficient methods for generating such action 

sequences, which are commonly referred to as plans [2]. Planning refers 

to the process of discovering a series of actions or steps  in a deterministic 

environment that transforms a starting state into a desired state. Task is to 

develop effective methods for obtaining such action sequences, 

commonly referred to as plans, which presents a computational challenge.  

A typical planning problem can be presented as a directed graph, where 

the nodes correspond to states, and the edges indicate the actions that 

change the state of the edge's source node to the state of its destination 

node. One way to express the problem is as a challenge of finding a path 

or sequence of actions. Hence, a plan can be considered as a path from the 

starting node in the graph to a node that represents one of the target states. 

[15]. The following is a formal model for a traditional planning issue: 

(Classical Planning Model) Definition. A planning model = [S, s0, 

SG, A, fi] is made up of the following elements [24]: 

 The state space is composed of an initial state s0 S, a finite and discrete 

collection of states' S, 

 A group of objective states SG S,  

 A sequence of acts 

 The appropriate A(s) A actions for each state's S, and (s). 

The outcome of an action, a, in a state, s', is f(s, a), often referred to as s[a]. 

The use of a series of activities to change a state may be characterized as  

                                                                                                      

                                                                                                        (2.1) 

 

S [a0 . . . an] = (s [a0 . . .  an−1]) [an] 
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2.6.2 Hierarchical Task Network 

The AI planning approach, one of type of planning is known as 

Hierarchical Task Network (HTN) planning, differs from traditional 

planning. The fundamental concept of this approach involves a 

specification of the initial states, a task network that serves as a set of 

achievable objectives, and the approach involves utilizing domain 

knowledge that encompasses networks of both simple and complex tasks. 

Each task that can be performed is represented in a hierarchical manner in 

a task network or decomposed into more detailed subtasks if the task is 

primitive [25]. The planning process commences by decomposing the 

primary task network and continues until all composite tasks have been 

decomposed, which denotes the finding of a solution. This approach 

consists of a series of fundamental steps that apply to the world's initial 

condition and carried out with the aid of the planning operators. Creating 

problem-solving "recipes" that mimic the problem-solving approaches of 

a human expert in a particular domain. Approach a planning challenge is 

made simple with HTN approaches. The plan is usually represented as a 

symbol[11].  

Definition from transition state (s; a), Figure (2.3), which depicts 

what happens when a state undergoes an action, explains the outcome and 

uses the same concept as traditional planning. To define a planning 

problem and its solutions, the language on the other hand contains tasks, 

methodologies, and task networks[2]. 
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Figure 2.3: A planning domain is viewed as a system in which states change. 

 The words "problem representation" and "planning domain" refer to the 

methodical coding of all pertinent information about the robot world for 

all of the tasks the robot does. The aspects of the world that will be utilized 

to define issues are formalized in the resultant problem. The theoretical 

framework is made up of tasks, operators, task networks, techniques, a 

planning issue, and a solution. The planning system's input consists of a 

number of operators and techniques, each of which describes how to break 

down a task into a number of smaller tasks (smaller tasks)[26]. Planning 

progresses by constantly breaking down non-primitive tasks this task 

decomposed into increasingly smaller subtasks using the methods 

employed until it approaches Primitive tasks are tasks that can be directly 

handled by the planning operators [8].  

The planning problem is the set of beliefs the actor has about the 

world, divided to 4-part: 

The problem definition S0 issue is broken down into:  

 

                                                                                                (2.2) 

 Initial state by enumerating all the right data in that state, the (init) 

section defines the starting state used to represent the issue. These details 

are referred to as facts or predicates.  

 

P= (S0, W, O, M) 
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Before adding any action to convert the robot site to another, for 

instance, while creating the work environment, the initial condition of the 

robot site is a basic fact. 

 A task network is composed of a set of task nodes, denoted as U, 

and a set of constraints denoted as C. These constraints define conditions 

over U that must be satisfied during the planning process and by the 

resulting HTN solution [27] and planning domain:- 

 

                                                                                                             (2.3) 

 An acting domain's specification we simulate a 4-tuple for method 

Using: 

 

                                                                                                            (2.4) 

 

 Name (m): One of the unique features of the approach is to ensure 

that no two methods in the planning domain can have the same method 

symbol. The names of the methods enable us to refer to them without 

explicitly specifying the preconditions and effects when replacing method 

instances. 

 Task (m): non-primitive job, divides u into smaller tasks (m). A 

task network consists of (Subtasks (m), Constraint (m)). A task may have 

numerous ways, each reflecting a distinct approach of refining that work. 

 An action is a process that converts the state of the robot. This includes 

perceiving and learning about its environment. The hierarchy of 

abstraction comprises multiple levels, where each level represents a 

different degree of abstraction It is possible to observe an activity. It is 

primitive at some levels and compound at others.  

 

D = (M, O) 

m = (name (m), task (m), subtasks (m), constr (m)) 
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For example, opening (a door) is an abstract basic action and a 

compound job that may be developed into a set of actual actions when 

necessary. At the bottom of the hierarchy, the most fundamental action is 

a command. The robot platform can execute commands instantly. A three-

tuple action is: 

 

                                                                                (2.5)

  

Before the action is performed, the state S must fulfill the precondition 

(a), and after the action is completed, the state must satisfy the effects (a).  

 A name: which may include arguments. 

 A precondition list: is a set of facts that must be true in order for an 

action to be carried out.  

 An effect: list of facts made true by executing the action.All these 

sequences of action are depending on the heuristic system. We can see 

in Figure (2.4) Task network visualizations [27]. 

 

  

a = (name (a), precond (a), effects (a)) 
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Can describe this chart as a simple example in Figure (2.5). We 

divide the Travel task from more abstract task access more detailed 

commands. 
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Figure 2.5: example for travel task 

This example illustrated that there are two methods for completing 

a travel task: either by taxi or on foot. Based on factors like our location, 

our financial situation, and other factors like the state of the world, we can 

select the best method. 

A task is considered primitive if one of its symbols is a symbol for an 

operator; otherwise, it is non-primitive. 

The method symbol, which represents a method's name, is the second new 

symbol. A method exists for non-primitive activities. 

There is a way for decomposing an abstract task into less abstract tasks, 

primitive tasks, or a combination of both for non-primitive activities. 

A method has the following components: 

1- Name of method for example, travel by taxi. 

2- Task for example, travel, a task that it can solve. 

3- Preconditions: the world's current condition determines whether the 

approach is still applicable. 

4- task network (or subtasks) a task network used for visualizing more 

tasks in networks [2]. 
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2.7 Refinement Acting Engine 

Hierarchical Task Networks (HTNs) are commonly used in robot 

planning to represent complex tasks and their dependencies. To execute 

an actor-dependent HTN in planning a robot, you need to define the HTN  

Structure: This involves breaking down the complex task into smaller sub-

tasks and organizing them hierarchically based on their dependencies, 

Define actor: Actors refer to the agents that are responsible for completing 

the tasks. 

In this case, the robots will be the actors, assign tasks to the actor: 

Based on the dependencies defined in the HTN structure, you need to 

assign the tasks to a robot, Monitor progress: As the robots start working 

on the assigned tasks, you need to monitor their progress and ensure that 

they are following the correct sequence defined in the HTN. In a 

summary, executing an actor-dependent HTN in planning a robot requires 

careful planning, organization, monitoring, and optimization to guarantee 

the effective accomplishment of the intricate task [28]. We propose an 

action technique called Refinement Acting Engine RAE incorporates the 

necessary techniques for performing actions using this representation. 

Describes an operational model formalism based on refining techniques. 

This method describes how to carry out a task (an abstract task of some 

kind) by breaking it down into more concrete tasks. RAE uses a variety 

of refinement methods. To provide commands for the execution platform, 

abstract activities are iteratively refined into less abstract ones [29]. 

The Refinement Action Engine (RAE), which has the capability to 

test approaches in making judgments, offers the procedures necessary to 

deal with this representation. To manage the acts that the actor must do 

and new events to which he must respond, RAE employs a library of 

methods called M. RAE receives the following inputs: 



 

28 

Chapter Two                                                    Theoretical Background 

 

 A collection factual information representing the world as it is 

right now. 

 Collection task that need accomplished. 

 A series events indicating external occurrences the performer 

might have to respond.  

Task-defining sources, such as planners or users are where tasks 

originate. RAE chooses a pertinent method m and builds a LIFO stack for 

each task in the input stream to keep track of the refinement's status. If m 

doesn't work, RAE will try an alternate strategy that is appropriate right 

now and hasn't been used before. 

The last-in, first-out (LIFO) list known as a refinement stack is 

composed of tuples with the following format: (T; m; I, tried) [30] I is a 

reference to body of m[30], and it is initially set to 1, tried is a collection 

of refining method executions for T that have already been attempted but 

failed. The standard push, pop, and top operations are used to manage a 

stack [30]. 

In a stack, progressing means going up one step at a time [30]. If 

this part is a command, RAE sends it to the execution platforms; if it is a 

task, RAE chooses an appropriate method and places it at the top of the 

stack; and if this step is to exit from m, RAE removes m from the stack. 

2.8 Dijkstra Algorithm 

There are many algorithms that deal with calculating distances and 

choosing the most appropriate path based on system characteristics and 

employing them for this work, such The Dijkstra algorithm, named after 

its inventor E.W. Dijkstra, is used to compute the shortest path between a 

starting point (the source) and a destination in a graph [31].  
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As the Dijkstra algorithm in 2.1 can compute the shortest paths 

from a single source to all nodes in a graph simultaneously. This issue is 

also known as the single-source shortest paths problem.  GPS technology 

employ this algorithm to one can determine the most optimal path from 

the current location to the destination by finding the shortest route, It has 

many industrial uses, particularly in fields where modeling networks is 

necessary 

Dijkstra's Algorithm Fundamentals: 

  The Dijkstra's Algorithm begins by selecting a starting node (also 

known as the source node) and then evaluates the graph to identify the 

shortest possible path from that particular node to every other node 

present in the network.  

 After identifying the shortest path between the source node and the 

second node, the algorithm marks the second node as "visited" and adds 

it to the path. 

This process continues until all nodes in the graph are included in 

the path, connecting the source node to every other node through the 

shortest route. At each iteration, the algorithm updates the distances 

between adjacent nodes and selects the node with the shortest distance to 

the source node as the next one to be processed [32]. 

Algorithm 3.1: Dijkstra algorithm. 

1.  Initialize-single-source(S,G) 

2.  S ≠ 0          //first-method-using- in-actor        

3.  Q ← V [G]     //combine-other-node 

4.  While Q ≠ Ø     //multiple-method-using 

5.  Do u ← extract-min (Q)   // a linear search through all of Q's vertices 

6.  Return ← u 
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2.9 Related Work  

This section covers the different aspects of work that are related to 

the planning system and its integration with the acting system. 

2.9.1 Planning system 

In the past years, there are plentiful published works on the 

planning primitives, which reduced the acting function.  J. Orkin, at el. 

[33] (GOAP) Goal-Oriented Action Planning is a simple method of action 

planning. R. E. Fikes and N. J. Nilsson, [22] STRIPS is a planning system 

designed primarily for controlling the conduct of autonomous characters 

in video games in real time. Real-time planning grants AI characters the 

ability to think. Think about the difference between planning and 

predefining state transitions. Real-time planning enables you to simulate 

the impact of different variables on logic and modify behavior 

accordingly. More recent games have included HTN planning after [33] 

showed that real-time planning is a workable approach for the current 

generation of games. There are numerous HTN planners available. 

Some of the Interactive Planning and Execution System ken Currie 

and Custin Tate, [4] O-Plan (Open Planning Architecture) is the design 

and execution of a more flexible system targeted at assisting planning 

research and development, allowing for planning approaches, and 

allowing for powerful search controlling heuristics. A. Tate, at el. in A. 

Tate, B. Drabble, and R. Kirby [5] O-Plan2  A key contribution of this 

study to it is the comprehensive conceptualization of a planning and 

control system that is modular and adaptive. 
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In D. YueCao AmnonLotem Hector Muftoz-Avila, SHOP [6] as 

well as SHOP2's successor, and D. Nau, et al. [7] SHOP3, R. P. Goldman 

and U. Kuter [34]designed for video game AI planning. Shivashankar et 

al.[35] Create a task semantics for planning that was simply 

corresponding to the goal semantics for classical planning. 

2.9.2 Planning and Acting System 

Researchers sought to integrate acting and planning, so an actor 

may use a Refinement Acting Engine (RAE). S. Patra, et al. in this 

context[36] [37] To complete tasks in constantly changing contexts in a 

dynamic environment an RAE leverages hierarchical operational models 

in the planning procedure, as well as planning and learning algorithms, 

The experimental findings suggest that employing two separate 

measurements, specifically learning techniques considerably increases 

RAE performance based on its efficiency and success. Creating and 

advancing a cohesive acting-and-planning system that utilizes identical 

operational models for both components for the actor and make use of a 

hierarchical task-oriented language with cutting-edge Control structures 

designed for making decisions in real-time within a closed-loop system. 

F.Fklix Ingrand,et al. [38] The PRS system motivates the action [9], and 

it may seek guidance from the planner. 

 The RAEplan planning algorithm generates plans by simulating 

the actions of the actor operational models using Monte Carlo rollout  

simulations. RAEplan also use proper refining techniques to determine 

how to alter activities or occurrences.  

Experiments demonstrate how much more effective the acting and 

planning systems are. The operational models used by the actor in the  
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system appear to be used in both acting and planning [37]. To demonstrate 

acting-and-planning, the APE algorithm is employed, which leverages 

hierarchical operational models based by the PRS system. In contrast to 

the reactive PRS method, APE makes decisions the planner, RAEplan, 

generates plans by utilizing Monte Carlo sampling to simulate executions 

of the actor's operational models.  

APE-plan executes a subset of the available refinement techniques 

each time APE is to choose the method for refining a job, subtask, or 

event. When a refining technique is utilized, a command to the execution 

platform is issued at each site. The investigation contains a number of 

exciting realistic domain aspects, For example, factors such as 

dynamicity, real-time sensing requirements, information gathering, 

collaboration, and simultaneous operations.in S. Patra, et al [39]. To 

distinguish between domains with and without dead ends, the researchers 

utilized three distinct Metrics for evaluating performance include the 

success ratio, retry ratio, and speed of achieving success. 

In D. S. Nau,at el. [40] The discrepancy between the descriptive 

action models needed for planning was the main emphasis of this work 

Acting requires operational action models, It should be addressed the 

difference between the descriptive action models needed for acting and 

the operational action models needed for planning.  

Patra, et al.[16] [25] Using the actor's operational models, APE and 

UPOM integrate acting with planning. In V. Alcázar, at el. [41] RRT 

structures and search algorithms were created for use in continuous path 

planning issues as a search method for automated planning, with RRTs 

adapted for implicit and discrete search spaces. In D. J. Musliner, at el. 

[42] integration of  planning and acting was performed by having the  
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planner synthesise a new plan, which can take a long time: the old plan 

was thus performed continuously in a loop, with the new plan only 

installed once planning was complete. 

 A. Menif et al. [43] Domain compilation and procedural task 

application/decomposition techniques are combined in the SHPE 

methodology.  

 It is designed to give video games quick planning capabilities. In 

Amanda Coles, at el. [44] COLIN is a forward-chaining heuristic search 

planner that reasons using Continuous Linear numeric change as well as 

accessing the full temporal semantics of PDDL to utilise classical 

planning and organise time. Simone Fratini, at el.[45] Organize time by 

offering knowledge representation the system describes a new controller 

composed uses the APSI-timeline-based TRF methodology to model and 

solve planning challenges. 

M. Colledanchise [10] applied behaviour trees (BT) were applied 

for online planning and acting, which allowing the old plan to be run in a 

loop while the planner generates a new plan hence, the new plan is not 

installed until the planning is completed. BT can also react to unexpected 

events, though no refinement techniques (a mechanism to express several 

alternative refinements of jobs) were offered. 

In R. Lallement,at el. [46] demonstrate the use of HTN planning in 

robots. The authors J. Wolfe, at el. [47]discuss how they used an HTN 

strategy to integrate task and motion planning. Motion primitives are 

evaluated for cost and feasibility using a specific solver and sampling.  

Ron Alford, at el. [27] makes a contribution by formalizing GTN 

planning, a hybrid formalism that makes task and goal breakdown easier 

by using Goal-Task Network (GTN) planning, a method that integrates 

goal and task planning. Yuan, at el. [48] Use SHOP HTN Task modifiers  
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concept was introduced and how to improve the planning algorithm so 

that it can take advantage of the task modifier and give it goal reasoning 

abilities.  

Table 2.1: Summary of previous works. 

Authors  Years  
Method 

used 
Result 

Simone Fratini, 

et al. [45] 
(2011) 

based on 

ESA APSI 

technology 

Explains a brand-new 

planning module that 

models and resolves 

planning issues using a 

timeline-based 

methodology. 

Amanda Coles, 

et al. [44] 

 

(2012) 

Linear 

program 

(LP) 

Time managing 

Integrated planning and 

outcomes 

representation of 

knowledge. 

Shivashankar, 

et al. [35] 
(2012) HGN 

Provide task semantics 

that easily matched the 

goal semantics of classical 

planning and that, when 

used in the domains of 

classical planning, offered 

higher soundness 

guarantees. 

Dana S, 

et al. [16] 
(2015) RAE 

The discrepancy between 

operational action models, 

which are needed for 

action, and descriptive 

action models, which are 

needed for planning. 

 

Ron Alford, 

et al. [27] 
(2016) GTN 

Through the use of goal 

and task planning 
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combined in a method 

called Goal-Task Network 

(GTN) planning. 

Contributions included 

formalizing Both task and 

goal decomposition are 

supported by a hybrid 

formalism known as GTN 

planning. 

Xenija Neufeld, 

et al. [49] 
(2017) HTN 

This paper summarizes 

and analyses the planner 

implementations used in 

several of these games in 

light of the various planner 

components. 

Sunandita Patra, 

et al. [37] 

 

(2018) 
RAE & 

APE-plan 

 Operational models make 

it possible to deal with a 

range of situations and 

react to unanticipated 

results and occurrences in 

a constantly shifting 

environment, Performance 

is based on its efficiency 

and success. 

Sunandita Patra, 

et al. [25] 
(2020) 

APE,UPOM 

and learning 

strategies 

It was suggested to 

integrate acting and 

planning using the actor's 

operational models. The 

speed to success metric 

was used to evaluate the 

overall time required for 

planning and executing, 

including the failure cases. 

Sunandita Patra, 

et al. [36] 

 

(2020) RAE , 
UPOM and 
learning 
strategies 

Used hierarchical 

refinement operational 

models to provide a novel 

system for integrating 

action and planning. 
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Results reveal that UPOM 

and the learning 

techniques greatly raise 

RAE's performance using 

the following two metrics: 

success and effectiveness 

Weihang Yuan, 

et at. [48] 
(2021) THN 

Task modifiers concept 

was introduced and How 

to improve the SHOP 

HTN planning algorithm 

so that it can take 

advantage of the task 

modifier and give it goal 

reasoning abilities. A task 

modifier modifies the task 

list in response to 

unexpected observations 

in the environment. 
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3.1 Overview 

In this chapter, we define the HTN planning formulation 3.1 after 

defining some of the fundamental words and representations. In Section 

3.2, we define the environment in which this system operates. 3.3 Discuss 

the actor and their handling of the refinement process during the execution 

of operations. The refining approach is dealt with in 3.4 by employing an 

optimal path, along with the actor definition and how to connect with the 

planner. Finally, in 3.4, how to determine whether a plan is valid.  

3.2 HTN PLanner  

We adhere to the HTN formulation described in [3] which is 

presented in further detail in chapter two. Terms, literals, operators, 

actions, and plans used by us  from traditional planning. A Hierarchical 

Task Network (HTN) is an action-planning approach that employs the 

hierarchical decomposition of network operations to address problems at 

different levels of abstraction [50]. A Task network is entered into a 

planning system together with the problem that has to be solved, or the 

task planning's objective. The task network consists set of tasks that define 

additional tasks. Planning operates by recursively decomposing non-

primitive tasks into smaller sub-tasks until primitive tasks are reached that 

can be executed directly using planning operators. 

We demonstrate how to convert HTN domain descriptions into 

PDDL so that traditional planners can use them (provided they comply 

with certain requirements). Our approach may considerably enhance the 

performance of a classical planner when arranging data in accordance 

with the hierarchical system's requirements into PDDL [51].  
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The planning domain and problem have been formalized by using 

planning domain and definition language (PDDL) which refers to all 

environmental data relevant to the robot's activities that are done for its 

surroundings. The PDDL has used the STRIPS model to represent the 

main components of the structure PDDL has. The concept a planning 

problem is separated into two components: The beginning state and goal 

condition are specified by the problem However in accordance with the 

hierarchical system's structure, the goal takes the shape of a collection of 

tasks sequential.        

                                    

                                         Corresponding domain 

 

                                          Objects 

Problem   

                                      Initial state            

 

                                       Goal state                 

Figure 3.1: The problem representation in planning domain definition language. 

Every element of the world's first state that is pertinent to the 

problem must be explicitly stated in the initial state. Both static and 

dynamic data can be stored in the initial state. For instance, item f, a 

refrigerator, is an illustration of static information since it is assumed to 

remain constant throughout the action planning process. A further 

example of dynamic information is the condition in which I might propose 

that r is a robot that begins at location 1, as it is expected that it would 

move about while action planning is underway[52]. The G objective is to 

carry out a series of tasks in order to accomplish the ultimate objective.  
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For instance, the first task's objective is for the robot to conduct 

navigation, and the second task's objective is for the robot to fetch a 

particular object. Up until the robot reaches the desired destination, the 

work is sequential [8]. 

Domain planning: Planning consists of two steps: establishing the 

domain, which offers a broad representation of a broad representation of 

the pertinent components of the world, and identifying the issue, which is 

a particular instance within the domain that identifies the beginning point 

and the desired outcome. According to the problem definition: 

 

                                       Requirement 

  

                                       Predict                             parameter 

 

                                       Action                            Precondition 

 

                                                                              Effect 

Figure 3.2: The domain representation in planning domain definition language. 

Requirement: - It is made up of every object and predicate-argument that 

should be displayed with their type in domains where the corresponding 

constraints are given as (: types). 

Predicates: One part of the domain definition is the section that includes 

the list of state variables in the model. These variables are binary and 

represent fact either true / false. 

Actions: A knowledge base is a collection of facts and predictions that 

may either be true or false. 

  

Domain 
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According to PDDL, the parts of the problem and domain can be 

clarified, as in the simple example: 

 

Procedure problem(): 

    Domain: domestic_env 

    Objects: robot 

    Init: 

        in?(robot, base) 

    Goal: 

        in?(robot, Location1) 

 

Procedure domain(domestic_env) 

 

Requirement: navigation task 

 

Prediction: 

    in?(robot, base) 

    not in?(robot, location1) 

 

Precondition: 

    not in?(robot, location1) 

    in?(robot, base) 

 

Action Search: 

    Effect: 

        found?(robot, Location1)) 

The problem contains the initial state, the desired goal, and the 

things to do with their domain, as shown in the example, depending on 

the name of the domain in the field of "domestic environment". 

Requirements to do "task navigation" And the initial facts before 

the action effect that is the initial location of the robot before moving. 
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The name of the action that the robot performs according to the 

precondition and the desired effect as shown, in the beginning. One of the 

facts of the robot is in location 1(r.loc1 is true), after implementing the 

required effects to this action (is navigating to another location) the results 

will be different from the initial fact (r.loc1 is false).  

3.3 Deterministic environment  

To model the architecture for continuous online planning and 

acting, we employed deterministic environments. This framework 

consists of the software creating the robot's "plan" by identifying a series 

of simple actions that allow the robot to move from the beginning state to 

the end state after receiving descriptions of the starting state and final 

state. This sequence may correspond to the actions that the robot must do.  

Mainly, we use an autonomous robot that is employed largely for 

domestic chores is referred to as a domestic robot. 

We assume that the robot performs the navigation and fetching 

tasks in the order of a deterministic environment. 

The following is how the tasks are arranged in the hierarchical 

system as Figure (3.3): 
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Making a list of activities and objectives for the system that will be 

carried out in the same order as anticipated is a part of the planning 

process. If the initial state of the tasks to be scheduled has a full order, 

when the initial tasks are fully ordered, we may use the W instead of a 

sequence of tasks using graph notation for the task network w = (U, C),  

where W = t1, t2,..., tk. The task in the first node of the U graph is 

represented by t1, the job in the second node by t2, and so on. Even if the 

jobs are fully ordered, we refine them using a tree generation/transit 

technique. Instead of being shown as a series of tasks, as initially 

suggested in the HTN planner formulation, they are shown as a task 

network in an acyclic digraph form. The task network-handling planner's 

variable definitions state that U is a collection of task nodes, which are 

handled as follows: 

 Task (u) specifies the task (t1,...tk) associated with u. 

 The node that has been refined is represented by refined (u). 

 If task t were a simple task (primitive task), operator (u) would 

represent the operator that would be relevant to the task. 

 Whether a node has been visited is indicated by the variable visited (u) 

(true, false). 

 State (u) depicts the node's state at the time it was first visited. 

 Methods (u) refers to the techniques employed for refining that are 

appropriate for task t. 
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Planning: To utilize the Hierarchical System Algorithm for planning, the 

planning problem is segmented into two components: the domain and the 

problem definition. The domain definition entails specifying the current 

variables (facts that can be true or false) and actions. On the other hand, 

the problem definition focuses on determining the initial, objective state 

(task) to formulate a plan. Uses a descriptive model to predict what the 

actions will do. Comparative to operational models, descriptive models 

are more abstract. Planning can be difficult because building extremely 

comprehensive prediction models is frequently too complex. Descriptive 

models are useful at higher levels of a deliberative hierarchy because they 

abstract away the details and focus on an action's fundamental impacts.  

Additionally, since these models need information that was not known at 

the time of planning, abstraction is required. Furthermore, reasoning with 

intricate models is extremely computationally challenging. 

3.4 Refinement Acting Engine 

Actors refer to the agents that are responsible for completing the 

tasks. Based on the dependencies defined in the HTN planner structure by 

the refinement, RAE assumes always methods prioritizing the refinement 

of tasks using the first method over the others. However, if this method 

fails, it can be replaced by the following methods, depending on the 

priorities and their order. It is possible that the other methods are superior 

to the first one.  
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As a solution, we proposed incorporating the Dijkstra algorithm 

along with the refinement engine in the operational model to evaluate the 

available methods and select the best suited for the given tasks. One 

distinguishing feature of this Dijkstra algorithm enable to identify the 

source node (i.e., the first method associated with the task) and compare 

it to other nodes to determine the best among them.  For instance, when 

moving from one location to another, there may be multiple safe routes to 

reach a specific point to accomplish the task. However, by incorporating 

this algorithm, it selects the most efficient path among them. Figure (3.4) 

below demonstrates that there are multiple methods to access the same 

procedure and to choose the best of these. 

 

Figure 3.4: Refinement tree for task using differ methods. 
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3.5 Integration planning and acting 

In order to effectively utilize planning algorithms, actors must 

cooperate with planners. It is important to recognize that an actor's 

environment may not be fully captured by a planning domain. Therefore, 

even if a planning algorithm forecasts that a plan would be successful in 

achieving a target, there may be unforeseen problems that arise during 

execution, such as execution failures, unexpected events, incorrect 

information, or partial information. Actors must therefore have the ability 

to modify their plans in response to such problems. 

To address these issues, an online planning algorithm called Run-

lazy-Lookahead can be used to facilitate interaction between planning and 

acting. In this approach, (Σ, s, g) represents a planning problem, and the 

algorithm incorporates modifications to enable actors to modify their 

plans when necessary [53]. 

The run-lazy-lookahead algorithm involves calling Lookahead and 

then executing the plan as far as possible. Its Simulate function is 

responsible for testing whether the remainder of the plan can be executed  
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correctly. It can either simply compute γ(s, π) or perform a more detailed 

analysis. 

However, this algorithm has some potential issues, such as waiting 

too long to re-plan if execution fails or missing opportunities to replace 

the plan with a better one[54]. 

We have made some modifications to the algorithm. As mentioned 

earlier, the run-lazy-Lookahead planner's signature is (∑; s; g), whereas 

the HTN planners' signatures are (S; W; O; M). In the case of hierarchical 

systems, ∑ represents the planning domain, and goal g is presented in a 

hierarchical task network as shown in algorithm 3.2, rather than in 

sequential tasks. Hierarchical action implementation has its advantages, 

as each task and its associated actions can be defined hierarchically. When 

errors occur in the implementation phase of a specific procedure, it is 

possible to track this procedure using the tracking algorithm and deal with 

the sub-tree associated with it. 

Algorithm 3.1: Refinement Algorithm. 

1. I                    simplified the observed state. 

2.          N                  refine (∑, I, N)     //N is task network 

3.          If N =fail 

4.                      Return fails 

5.           π                  accessibility to simple activities (actions) by DFS (N). 

6.          while π  != empty and simulate (∑, I, N)  != fail do  

7.       a                 pop-first-action in π 

8.       execute(a) 

9.                                  I                  simplified the observed state. 

10.       If π != empty  then 

11.    N                 Un-refine (N, a)  

12.               N, a                  backtrack  (N, a) 

13.    Else 

14.    Break 

https://www.google.com/search?lei=aGtnZOWyKo6pxc8Plo6b4Ac&q=%E2%88%91%20%D9%85%D8%B9%D9%86%D9%89&ved=2ahUKEwjlhrn1sIH_AhWOVPEDHRbHBnwQsKwBKAF6BAhKEAI
https://www.google.com/search?lei=aGtnZOWyKo6pxc8Plo6b4Ac&q=%E2%88%91%20%D9%85%D8%B9%D9%86%D9%89&ved=2ahUKEwjlhrn1sIH_AhWOVPEDHRbHBnwQsKwBKAF6BAhKEAI
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The Refinement algorithm outlines a refinement process for hierarchical 

task networks (HTNs) in the context of planning and task execution. 

Here's an explanation of the steps involved: 

 

1: Simplify the observed state (I): This step involves reducing the 

complexity of the current observed state to a more manageable 

representation. It helps in focusing on the relevant information for 

planning and decision-making. 

 

2: Refine (∑, I, N): The algorithm takes as input the refined HTN (N), the 

simplified observed state (I), and the initial state (∑). The refinement 

process aims to decompose the high-level tasks in the HTN into more 

detailed sub-tasks. 

 

3: If N = fail: If the refinement of the HTN fails, indicating that the task 

cannot be further decomposed or refined, the algorithm returns a failure. 

 

4: Return fails: If the refinement fails, the algorithm terminates and reports 

failure. 

 

5: Accessibility to simple activities (actions) by DFS (N): This step 

determines the accessibility of simple activities or actions within the 

refined HTN. It employs a depth-first search (DFS) to traverse the HTN 

and identify the available actions that can be executed. 

 

6: While Π is not empty and simulate (∑, I, N) is not fail do: This loop 

executes as long as there are remaining actions (π) and simulating the 

execution of the HTN (simulate (∑, I, N)) does not result in failure. 
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7: Pop the first action in Π (a): The algorithm selects and removes the first 

action from the list of remaining actions (π). 

 

8: Execute(a): The selected action (a) is executed, potentially involving 

interactions with the environment or other agents. 

9: Simplify the observed state (I): After executing the action, the observed 

state is simplified to reflect any changes resulting from the action 

execution. 

 

10: If π is not empty then: If there are remaining actions (π) in the list, 

indicating more tasks to be executed. 

 

11: Un-refine (N, a): This step involves undoing the refinement of the 

HTN (N) related to the executed action (a), reverting the task structure to 

a previous state. 

 

12: Backtrack (N, a): The algorithm backtracks to a previous point in the 

HTN (N) where the executed action (a) was selected, potentially exploring 

alternative paths or options. 

 

13: Else: If there are no remaining actions in π, indicating that all tasks 

have been completed. 

 

14: Break: The algorithm breaks out of the loop, indicating successful 

completion of the refined HTN and task execution. 

 

Overall, this algorithm iteratively refines and executes an HTN, handling 

failures, and making use of simplified observed states to guide the  
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planning and execution process. It employs a depth-first search for 

accessibility analysis and backtracking to explore different execution 

paths when necessary. 

 

The re-planning process is limited only to the failed action and 

method associated with the task, and it is modified instead of re-planning 

the entire plan. When performing tasks in a sequential manner, as is the 

case in run-lazy-Lookaheads, all procedures will be sequential and re-

planning the plan, when a problem occurs in one of the procedures, the 

tasks are tracked from actions last to the problem that occurs. This 

procedure will be costly from the computational point of view. However, 

depending on the task tree, the actions associated with this task can be 

determined faster, as shown in Figure (3.5). 

 

 

Figure 3.5: instance method for refinement. 

The refinement algorithm runs each plan as far as possible and only 

runs refinement again when a plan simulator shows that the plan will not 

work as intended.  
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An example in Figure (3.5) shows that opening a door depends on 

whether the door turns or slides. If the simulation of the plan reveals that 

it will not work correctly, the simulator should return a failure.  

When the plan cannot be carried out as anticipated, the Backtrack 

algorithm of an HTN planner is used to retrace the steps as utilized in (3.3) 

[52]. 

Algorithm 3.2: Backtracking Algorithm. 

1-   Backtracking (N, a) 

2-   Mp                 parent of(a)     //method connect actions 

3-   Np  preorder DFs(Mp) 

4-   for each v reverse (Np) do  //access root of sub-tree 

5-            Refine (v)                  false 

6-            If v is non primitive then 

7-        Nv               Successors(v) 

8-    n               n/N            

9-                  return n, v 

10-   return root(n)  

 

The procedure named "backtrack (N, a)" is utilized to update the 

task network in case the refinement of node u fails. Backtracking in 

reverse is thoroughly explained in the context of backtracking (preorder 

DFS) of the task network . Figure (3.6) represents our workflow hierarchy.  
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3.6 Plan validation  

The validation plan is a strategy that should specify what needs to 

be done. It is written at the beginning of the validation project before being 

created plan. In the checking stage, the actual state (calculated from the 

database in system) is compared to the expected state. This comparison 

aims to see if there is a contradiction between the two states that might 

point to an unexpected situation. The expected state is written and 

compared to what is performed by the planner from creating a plan. 

Expected state = [(a_search_for_loc1), (a_move_from_base_to_loc1), 

(a_localize_gate_in_loc1)] in this example the expected state is written 

based on the task tree in the system in Figure (3.3) when compared to the 

Plan case to see the validity and purpose of the plan: Find out if there is a 

contradiction between results and expectations. 

Is there a lack of information related to the results of the plan or 

missing information?  It is possible that if there is a deficiency, this 

information resulting from the validation can be used for re-planning [50]. 
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4.1 Overview 

The preceding chapters have provided a comprehensive overview 

of the hierarchical system, delving into its intricacies and functionalities. 

In the present chapter, we shift our focus towards the evaluation of the 

system's performance and the outcomes obtained through simulations. In 

this chapter, we present the results of our experiments with a system. 

Sections 4.2 and 4.3 delve into the domain and tasks employed for our 

experimental setup, while Section 4.4 is dedicated to the thorough 

evaluation of the system. 

4.2 Domestic Environment  

This thesis deals with an autonomous robot intended for use in a 

domestic environment, which is a type of robot designed to perform 

various tasks within a household setting. These robots are capable of 

navigating through the home, identifying objects, and interacting with 

them. We have designed a domestic environment that includes a living 

room, kitchen, bedroom, and sitting room utilization in Figure (4.1). 

 

Figure 4.1: Domestic Environment. 
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4.3Domain environment   

The fundamental goal of the system is to demonstrate its autonomy 

by interacting with the first task and progressing to the subsequent tasks 

until all tasks are completed. 

4.3.1Tasks Robot 

 The Navigation Task 

Within the field of robotics, the process of moving a robot from one 

location to another within a predefined area is an essential task. To 

accomplish this, the robot must possess the ability to determine its own 

position, utilize a map or have awareness of its surroundings, and make 

informed decisions regarding the optimal path to the desired destination. 

 

 Localization plays a crucial role in the capabilities of an autonomous robot 

as it forms the foundation for effective decision-making. It involves 

accurately determining the robot's position and orientation in relation to 

its surroundings, utilizing a combination of mapping and knowledge base. 

Without precise localization, the robot's ability to plan and execute tasks 

effectively would be compromised. 

 The move action, which includes physically moving the robot from one 

place to another after taking a sequence of steps in the environment, is an 

essential part of the navigation process. For the robot to get where it's 

going, the move action must be completed successfully [55]. 
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  A search task in robotics is the process of locating a certain object 

or position within an environment. The robot may take extra steps 

to finish the job after examining the surroundings to locate the 

target. A search task's principal goal is to locate a certain target 

within the supplied context. Despite the fact that they have different 

focuses, search and localization activities can both be accomplished 

by robots. While search tasks are concentrated on locating a specific 

target within the environment, localization tasks require identifying 

the robot's location within the environment[56]. 

 Fetching Task 

  Robotics fetching jobs include a variety of actions in which the 

robot collects, transports, and delivers objects to a predetermined 

location. By utilizing its gripper to pick up the things, moving them to 

their intended place, and setting them down appropriately, the robot 

must be able to plan, carry out, and interact with its environment [57]. 

         In robotics, a pickup job comprises a robot using a gripper to grab 

or capture an item. In order to pick up an object, the robot may need to 

execute a number of smaller tasks, including object detection, 

localization, grasp planning, and grip execution. 

         Additionally, touching can be a crucial component of the fetching 

process since it allows the robot to detect the existence or characteristics 

of an object [58]. 

The sequential completion of the following tasks is required by the 

automated system: 

1- The robot is assigned a set of tasks and starts from the entry hall, 

with the first one being to navigate to the kitchen. This task is divided  
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into sub-tasks, starting with searching for the kitchen using the "search" 

instruction. Once the location of the kitchen is known, the robot uses the 

"move" instruction to reach it, 

2- Utilizing "localization" techniques to ascertain the robot's position, 

the Dijkstra algorithm was employed to calculate the optimal path, 

specifically the shortest distance route from the entry hall to kitchen. If 

the distance to the kitchen is 3 meters and the distance to an alternative 

location is 6 meters, the optimal path" to cross gate "between the two is 

chosen. The other part of the task is to locate the refrigerator, which is 

done using "localization" after the robot arrives in the kitchen, A sequence 

of procedures is then performed, beginning with the "open" instruction to 

open the refrigerator door, followed by "localization" to identify the 

location of the mug, and finally "fetch process" through "pick up" actions 

to take the mug using the robot arm. This completes the first task.  

3- To navigate to the second location, the robot executes the "search" 

command to determine the location. It then uses the existing knowledge 

base and house map to navigate to the living room, which it does by 

executing a series of sub-tasks. Once the robot arrives at the living room 

by "move" instruction, it inspects the door and determines the type of lock 

it "slid" or "turn". It then searches for the table food by executing the 

"localization" procedure and places the mug on the table by executing the 

"drop" command, thus completing its second task. The robot uses the 

Dijkstra algorithm to find the optimal path to access the living room. 

4- Following the completion of the second task, the robot proceeds to 

the next task by searching for the bedroom and moving towards it using 

the "search" and "move" commands based on a Dijkstra algorithm that 

determines the optimal path. Upon reaching the bedroom, the robot 
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This study employed a planning domain that involved 20 primitive 

task operators and 23 task refining techniques for dealing with 16 non-

primitive, which allowed us to obtain an integrated plan in our system 

Figure (4.2) is used to display the results. 

 

Figure 4.2: system implementation result. 

4.4 Feature HTN Planning 

We compared the system with the previous system in order to 

assess its limitations and advantages: 

GTPyhop is a Python-based automated planning system that 

utilizes hierarchical planning techniques to generate action plans for tasks 

and goals[59]. It extends Pyhop to encompass goal planning in addition to 

task planning, incorporating aspects of HTN planning from Pyhop and 

SHOP[6]. 
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The GTPyhop software combines planning and acting algorithms 

from the Run-Lazy-Lookahead actor, but its use of recursion poses two 

limitations for successful re-planning:   

 Firstly, the use of recursion prevents the code from being re-

entered, meaning the only recourse for re-planning in the event of an action 

failure is to reconstruct the plan by re-running the system, which may lead 

to inaccurate results.  

 Secondly, GTPyhop only returns the plan and not the 

refinement tree, which is necessary for accurate re-planning. 

Unlike HTN planners that use schema-specific languages, this 

system does not have prior knowledge of the preconditions and subtasks 

of its methods. It instead invokes the method directly via Python code[59]. 

Our experiments show that the new algorithm we developed can 

improve upon the common planning and acting approach by modifying the 

integration of planning and acting with the Run-Lazy-Lookahead 

algorithm in two ways: 

 The algorithm uses an iterative transfer tree procedure for 

task refinement, with tree traversal algorithms handling refinement and 

backtracking. This provides greater control over how the algorithm refines 

tasks. The algorithm can process a partial task tree and provide a complete 

solution task network, enabling hierarchical knowledge inclusion in the re-

planning process. 

4.4 Evaluation system  

Numerous tests are run in a controlled setting as part of the thesis 

review to assess the effectiveness of the system is one of the assessment 

metrics employed. Precision, recall, and F1-score are computed using 

these numbers, giving information about the system's performance. 
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Precision a performance indicator called precision is used to assess how 

accurately a model can identify instances of success that is 

determined[60]. Precision can be expressed mathematically as: 

Precision = TP / (TP + FP) 

Recall, is a parameter that quantifies the completeness of a model's 

positive predictions[60][61]. The mathematical formula for the recall is: 

 

F1-score is a statistic that, by combining accuracy and recall, the formula 

for calculating the F1-score is: 

 

F1-score = 2* (Precision* Recall) / (Precision+ Recall) 

 

calculate precision, recall, and the F1-score, we utilize The values 

representing true, false positive, and true,  false negative as They can be 

briefly described as: 

 

(TP) The number of elements in the intersection between the set of 

occurrences where a certain action appears in the robot output and the 

set of instances where the same action appears in the expected plan is 

measured by the TP metric.  

 

To understand this metric, let's break down its components: 

 

1. Set of occurrences where a certain action appears in the robot's 

output: This set consists of the instances or occurrences where a 

specific action is detected or identified by the robot or the system 

being evaluated. It represents the actions that the robot outputs or 

recognizes during its operation. 
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2. Set of instances where the same action appears in the expected 

plan: This set represents the instances or occurrences where the 

same action is expected or intended to occur according to the 

predefined or expected plan. It is a reference set that defines the 

correct actions that should be performed. (Depending on the initial 

environment) 

The TP metric then measures the number of elements (occurrences) that 

are common or shared between these two sets. In other words, it counts 

how many times the robot's detected actions align with the expected 

actions. 

The TP metric is useful for assessing the accuracy or correctness of 

action recognition or planning algorithms.  

By comparing the TP metric with other evaluation metrics like False 

Positive (FP) and False Negative (FN), we can get a more understanding 

of the performance of the system in terms of action recognition and 

planning. 

TP = | {instances where robot output contains an action} ∩ {instances 

where action is in expected plan}| 

 

(FP) is the cardinality (number of actions) of the intersection between the 

set of times when an action is present in the robot output and the set of 

times when it is absent from the expected plan. 

 

FP = | {instances where robot output contains an action} ∩ {instances 

where action is not in expected plan}| 

 

(TN) represents the number of actions (or cardinality) that are absent in 

both the robot output and the expected plan. 
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 It measures the intersection between the set of instances where a 

specific action is not present in the robot output and the set of instances 

where the same action is not present in the expected plan. 

TN = | {instances where robot output does not contain the action} ∩ 

{instances where the action is not in the expected plan}| 

 

 (FN) the value of corresponds to the number of actions (or cardinality) 

that are absent in the robot output but present in the expected plan. It 

represents the intersection between the set of instances where a specific  

 action is not present in the robot output and the set of instances where the 

same action is included in the expected plan. 

 

FN = | {instances where robot output does not contain the action} ∩ 

{instances where action is in expected plan}| 

 

 

Figure 4.3: Displays the result of calculating metrics to evaluate Precision, Recall, 
and F1-score. 
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Table 4.1: presents a displaying the number of actions for TP, TN, FP, FN, 

Precision, Recall, and F1-score . 

Num_action TP    TN   FP  FN Precision     Recall   F1-score 

1  2 0 0 0 1.0 1.0 1.0 

2  3 0 0 0 1.0 1.0 1.0 

3  3 0 0 0 1.0 1.0 1.0 

4  2 0 1 1 0.66 0.66 0.66 

5  3 0 0 0 1.0 1.0 1.0 

6  3 0 0 0 1.0 1.0 1.0 

7  3 0 0 0 1.0 1.0 1.0 

8  3 0 0 0 1.0 1.0 1.0 

9  2 0 0 0 1.0 1.0 1.0 

10  3 0 0 0 1.0 1.0 1.0 

11  3 0 0 0 1.0 1.0 1.0 

12  2 0 1 1 0.66 0.66 0.66 

13  2 0 0 0 1.0 1.0 1.0 

14  3 0 0 0 1.0 1.0 1.0 

15  3 0 0 0 1.0 1.0 1.0 

16  2 0 0 0 1.0 1.0 1.0 

17  2 0 0 0 1.0 1.0 1.0 

18  3 0 0 0 1.0 1.0 1.0 

19  3 0 0 0 1.0 1.0 1.0 

20  2 0 1 1 0.66 0.66 0.66 

 

The table indicates that the system achieved a precision value of 

approximately 94.9%, a recall value of approximately 94.9%, and an F1-

score of approximately 94.79%.  
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5.1 Overview 

 This chapter provides a conclusion on the research phases and 

objectives, as well as future work for other researchers 

5.2 Conclusion 

In conclusion, this section highlights the achievements and findings 

of the presented thesis. The thesis focused on developing algorithms for 

HTN planning, acting, and integrating planning and acting processes. The 

key points discussed are as follows: 

 

1. HTN planner and descriptive action models: The thesis proposed 

an HTN planner that works in conjunction with descriptive action models 

to calculate the next state during the planning process. This approach 

demonstrated effective utilization and provided a foundation for further 

development. 

 

2. Operational action models: The introduction of operational 

action models, represented formally, showed their successful integration 

with the Refinement Acting Engine (RAE) and the Dijkstra algorithm. 

This integration helped in determining optimal task approaches, leading 

to improved performance. 

 

3. Integration of planning and acting: The planning and acting 

algorithm was designed hierarchically, utilizing a transit tree and 

backtracking mechanisms. This design allowed for re-planning in case of 

execution errors, ensuring system reliability and avoiding suboptimal 

behavior. 



 

65 

Chapter Five                                         Conclusion and Future Works  

 

4. Experimental evaluations: The developed algorithms were 

evaluated using the Python language (Spyder). The result showed that the 

algorithm outperformed conventional planning and acting approaches by 

providing optimal paths within the system. 

 

5. Precision, recall, and F1-score: The system demonstrated 

accurate identification of positive instances while maintaining 

completeness. The precision value of 94.9%, recall value of 94.9%, and 

F1-score of 94.79% highlighted the system's ability to achieve high 

accuracy and completeness in its performance. 

 

Overall, the presented thesis made significant contributions to HTN 

planning and acting, showcasing the effectiveness of the proposed 

algorithms in terms of system reliability, optimal performance, and 

accuracy in task identification. 

5.3 Limitations 

It is essential to be aware of the constraints imposed by the existing 

planning and action system in addition to the prospective topics for future 

investigation. These restrictions offer chances for more study and 

development. The system has the following limitation: 

Scalability: When faced with difficult tasks or large-scale settings, 

the system's performance may suffer. The planning and acting algorithms 

may require extra improvement as the environment's size and complexity 

rise in order to ensure efficient and successful functioning. 

 

 

 



 

66 

Chapter Five                                         Conclusion and Future Works  

 

Adaptability to Unknown environment: When operating in 

Unknown or Unstructured settings, the system's performance may be 

jeopardized. It mainly relies on pre-existing maps or information bases, 

This constraint may be overcome by creating methods that allow the 

system to dynamically adapt and learn from its surroundings in real-time. 

The planning and acting system can overcome present difficulties 

and grow into a more reliable, adaptive, and intelligent solution for 

diverse applications in the field of robotics by addressing these constraints 

via more research and development. 

5.4 Future work  

Two prospective topics of investigation were found to help the 

research in the future.  

The D* algorithm may first be integrated, making use of its 

effective path-planning skills to dynamically adapt to the environment as 

it changes in real-time. The system's capacity to choose the best routes 

and react to changing circumstances would be improved by this 

improvement. 

 Second, by introducing learning strategies into the system, the 

robot would be better equipped to learn new information and make better 

decisions. The system may learn from previous events, see trends, and 

make better judgments based on accumulated information by utilizing 

machine learning techniques. 

It is envisaged that the planning and acting system will continue to 

develop by embracing these future developments, offering ever more 

effective, adaptive, and intelligent robotic systems for various 

applications. 
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ةص  لاخ  ال   
 

لطالما استخدم البشر الأطر الهرمية لتنظيم أفكارهم حول المشكلات المعقدة. .  

تطبيقات الذكاء الاصطناعي إنشاء عوامل ذكية تقسم المشكلات الصعبة إلى طبقات يتضمن أحد 

أداء  (HTN) من التجريد ، وتبسيط عملية حل المشكلات. يتيح لنا هيكل شبكة المهام الهرمية

 .مثل هذه المهام بفعالية

حلية ، مفي سياق الروبوتات المستقلة التي تعمل في بيئات مغلقة وحتمية ، مثل البيئات ال

يعد تخطيط المهام أمرًا بالغ الأهمية لتحقيق مستوى عالٍ من الدقة. لمعالجة هذا الأمر ، استخدمنا 

ونماذج عمل وصفية لتحديد الحالة التالية في نظام انتقال الحالة أثناء عملية  HTN مخطط

خدامها بشكل مكن استالتخطيط. لقد قدمنا تمثيلًا رسمياً لنماذج الإجراءات التشغيلية وشرحنا كيف ي

 .لتحديد أساليب المهام المثلى Dijkstra وخوارزمية (RAE) فعال مع محرك عمل الصقل

تم تصميم خوارزمية التخطيط والتنفيذ الخاصة بنا للعمل بشكل هرمي ، باستخدام شجرة 

طبيق تعبور والتراجع لإعادة التخطيط في حالة حدوث أخطاء في التنفيذ. تم إيلاء اهتمام دقيق ل

 .الأسلوب لتجنب فشل النظام أو الأداء دون المستوى الأمثل

تتضمن المنهجية المستخدمة في النص معالجة تحديات تخطيط المهام التي تواجهها 

الروبوتات المستقلة التي تعمل في بيئات مغلقة وحتمية ، على وجه التحديد البيئات المحلية. لتحقيق 

( ونماذج HTNالمهام ، تم استخدام مخطط شبكة المهام الهرمية )مستوى عالٍ من الدقة في تنفيذ 

( ، RAEالإجراءات الوصفية مع تمثيل لنماذج الإجراءات التشغيلية ، ومحرك الصقل الفعال )

لتحديد نهج المهام المثلى ، يساهم الهيكل الهرمي وآليات معالجة الأخطاء  Dijkstraوخوارزمية 

في تحقيق إنجاز دقيق وفعال للمهام مع الحفاظ على موثوقية النظام اعتمادًا على تخطيط التكامل 

وخوارزمية التمثيل التي تم تصميمها للعمل بشكل هرمي ، باستخدام شجرة العبور وخوارزمية 

 التراجع.

، أوضحنا أن  Python (Spyder) ل التجارب التي أجري  باستخدام لغةمن خلا

الخوارزمية التي طورناها تتفوق في الأداء على نهج التخطيط والتنفيذ الشائع الاستخدام ، مما 

، وقيمة استدعاء تقارب %94.9يوفر المسار الأمثل داخل النظام. أظهرت النتائج دقة تقارب 

. تثب  هذه النتائج فعالية نهجنا في تحسين عملية التخطيط ،%94.79تقارب F1 ودرجة ،94.9%

  .والتنفيذ



 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 عنوان الرسالة

Save translation 

تطوير نموذج تمثيل هرمي موحد للتخطيط والعمل في 

 المستقلةالروبوتات 
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