

University of Kerbala

 College of Computer Science & Information Technology

 Computer Science Department

2023 A.D. 1444 A.H.

Developing a unified Hierarchical Representation Model

for Planning and Acting in Autonomous Robots

A Thesis

Submitted to the Council of the College of Computer Science &

Information Technology / University of Kerbala in Partial Fulfillment

of the Requirements for the Master Degree in Computer Science

Written by

Zainab Abbas Fadhil

Supervised by

Asst. Prof. Dr. Ahmed Abdulhadi Ahmed

الرحمن الرحيمبسم الله

يطُونَ بِهِ عِلمًْا يعَْلََُ مَا بيََْْ أيَْدِيِهمْ وَمَا خَلْفَهمُْ) ِ الْقَيُّومِ وَقَدْ وَلََ يُُِ وَعَنَتِ الوُْجُوهُ لِلحَْي

لَ ظُلمًْا الِحَاتِ وَهُوَ مُؤْمِنٌ فلَََ يََ خَابَ مَنْ حَََ اُ ظُلمًْا وَلََ هَمْمًا وَمَنْ يعَْمَلْ مِنَ الصَّ

فْناَ فِيهِ مِنَ الوَْعِيدِ لعََلَّهمُْ يتََّقوُنَ نًً عَرَبِيًّا وَصَََّ َ وَكَذَلَِِ أنَزَْلنَْاهُ قرُْأ َ دِثُ ل كْرًاأَوْ يُُْ ِِ همُْ

نِ مِنْ قَبْلِ أَنْ ُ المَْلُِِ الحَْقُّ وَلََ تعَْجَلْ بِِلْقرُْأ َ ليَْكَ وَحْيهُُ وَقُلْ رَب ِ فتََعَالََ اللََّّ
ِ
 دِنْيِ يقُْضََ ا

 (عِلمًْا

صدق الله العظيم

Supervisor Certification

I certify that the thesis entitled (Developing a unified Hierarchical

Representation Model for Planning and Acting in Autonomous Robots)

was prepared under my supervision at the department of Computer

Science/College of Computer Science & Information Technology/ University

of Kerbala in partial fulfillment of the requirements of the degree of Master in

Computer Science.

The Head of the Department Certification

In view of the available recommendations, I forward the thesis entitled

“Developing a unified Hierarchical Representation Model for Planning

and Acting in Autonomous Robots” for debate by the examination committee.

Certification of the Examination Committee

We hereby certify that we have studied the dissertation entitled (Developing a

unified Hierarchical Representation Model for Planning And Acting in

Autonomous Robots) presented by the student (Zainab Abbas Fadhil) and

examined her in its content and what is related to it, and that, in our opinion, it

is adequate with (Very Good) standing as a thesis for the degree of Master in

Computer Science.

i

Dedication

 This work is dedicated to the family of the Prophet Muhammad "peace

be upon him and his family"

This work is also dedicated to

My supervisor, Dr. Ahmed

 My Grandfather

My Parents

My brothers and sisters

My second family

My husband

My Children

ii

Acknowledgement

Know that the success you have achieved is only by God's will and success. I

can only thank him and express my deep gratitude to him. God's grace and support

have been essential in my research journey, and I owe God all my progress.

I would like to express my thanks to my professors in the Department of

Computer Science and Information Technology

Grateful to have had the support and guidance of my supervisor, Dr. Ahmed.

He demonstrated a high level of commitment and dedication by closely monitor ing

my progress and providing valuable feedback and suggestions, his patience and

understanding during challenging times were truly appreciated.

I would like to express my heartfelt gratitude to my late father, who has been

a constant source of everything.

To my dear mother, thankful for your support and endless inspiration. Your

love and encouragement have been invaluable to me.

To my brother (Fadhil and Ali) and my sisters (Tabark and Nabaa)

I would like to express my deep gratitude to you for your continued support and

encouragement, and I consider myself fortunate to have you here with me.

Thankful to My father-in- law, for his constant encouragement and guidance.

His wisdom and advice have been invaluable in motivating me to strive for success.

My mother-in- law, you have always played a great role in encouraging me and

pushing me toward achieving my ambitions. Thank you for your friendship and

unconditional love.

To my loving husband, I am grateful for your unwavering support throughout

my journey. Your belief in my abilities and your desire to see me succeed has been

instrumental in my achievements.

To my beloved children (Muhammad, and Ibrahim), you are the light of my

life.

iii

Abstract

Hierarchical frameworks have traditionally been used by humans to

organize their thoughts on complex problems. One application of artificial

intelligence involves the creation of intelligent agents that break down

challenging problems into layers of abstraction, simplifying the problem-

solving process. The Hierarchical Task Network (HTN) structure enables tasks

to be effectively performed.

In the context of autonomous robots operating in closed and

deterministic environments, such as domestic environments, task planning is

crucial for achieving a high level of accuracy. To address this, the HTN planner

and descriptive action models were employed to determine the next state in the

state transition system during the planning process for the generated plan. A

formal representation for operational action models was introduced, and their

effective utilization in conjunction with the Refinement Acting Engine (RAE)

and the Dijkstra algorithm to determine optimal task approaches was explained

for the execution of this plan.

The integration planning and acting algorithm was designed to operate

hierarchically, utilizing a transit tree and backtracking to handle the error for

re-planning and execution in the event of execution errors. Careful attention

was given to method implementation to avoid system failure or suboptimal

performance.

The methodology used in the text involves addressing the task planning

challenges faced by autonomous robots operating in closed and deterministic

environments, specifically domestic environments. To achieve a high level of

accuracy in task execution, the Hierarchical Task Network (HTN) planner and

descriptive action models were employed with representation for operational

action models the Refinement Acting Engine (RAE), and the Dijkstra algorithm

to determine optimal task approaches, The hierarchical structure and error

handling mechanisms contribute to achieving accurate and efficient task

completion while maintaining system reliability depending on The integration

iv

planning and acting algorithm was designed to operate hierarchically, utilizing

a transit tree and backtracking algorithm.

Through experiments conducted using the Python language (Spyder), it

was demonstrated that the algorithm developed outperforms the commonly

used planning and acting approach, providing an optimal path within the

system. The results showed a precision value of approximately 94.9%, a recall

value of approximately 94.9%, and an F1-score of approximately 94.79%.

These findings validate the effectiveness of the approach in improving the

planning and acting process.

v

Declaration Associated with this Thesis

Some of the works presented in this thesis have been published and

accepted as listed below.

 Z. Al-Ghanimi and A. A. Al-Moadhen, "Deliberative Robotics Behavior

Systems: Asurvey," 2022 International Conference on Data Science and

Intelligent Computing (ICDSIC), Karbala, Iraq, 2022, pp. 147-152, doi:

10.1109/ICDSIC56987.2022.10076116.

 Zainab Al-Ghanimi and Ahmed Abdulhadi Al-Moadhen, “Integrating

Planning and Acting in Autonomous Robots through a Unified Hierarchical

Representation Model”, A Canadian journal of applied mathematics, computer

science and statistics, vol. 120, pp. 382–392, Jun. 2023.

vi

Table of Contents

Dedication... i

Acknowledgement .. ii

Abstract ...iii

Table of Contents .. vi

List of Tables ... viii

List of Figures ... ix

List of Abbreviations ... xi

CHAPTER ONE: INTRODUCTION..

1.1 Overview .. 1

1.2 Motivation .. 3

1.3 Problem Statement ... 6

1.4 The Aim of the Thesis.. 6

1.5 Objectives ... 7

1.6 Thesis Organization ... 8

CHAPTER TWO: THEORETICAL BACKGROUND

2.1 Overview .. 9

2.2 Robotics ... 9

2.2.1 Planning ... 10

2.2.2 Acting... 11

2.2.3 Planning versus Acting .. 11

2.3 Deliberation.. 14

2.3.1 Deliberation Models... 15

2.3.2 Knowledge Representations... 16

2.4 Planning Domain and Problem Representation ... 17

2.5 Techniques for Planning System ... 18

2.5.1 STRIPS Model ... 18

2.5.1 Definition of the PDDL Language... 18

2.6 Approaches Task Planning .. 19

2.6.1 Classical planning .. 19

2.6.2 Hierarchical Task Network...21

2.7 Refinement Acting Engine... 27

vii

2.8 Dijkstra Algorithm ... 28

2.9 Related Work ... 30

2.9.1 Planning system ... 30

2.9.2 Planning and Acting System .. 31

CHAPTER THREE: PROPOSED METHODOLOGY

3.1 Overview .. 37

3.2 HTN PLanner ... 37

3.3 Deterministic environment... 41

3.4 Refinement Acting Engine... 44

3.5 Integration planning and acting.. 46

3.6 Plan validation.. 53

CHAPTER FOUR: RESULTS AND DISCUSSION..

4.1 Overview .. 54

4.2 Domestic Environment... 54

4.3Domain environment... 55

4.3.1Tasks Robot .. 55

4.4 Feature HTN Planning .. 58

4.4 Evaluation system .. 59

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK

5.1 Overview .. 64

5.2 Conclusion ... 64

5.3 Limitations ... 65

5.4 Future work .. 66

REFERENCES ..67

viii

List of Tables

Table 2.1: Summary of previous works... 34

Table 4.1: presents a displaying the number of actions for TP, TN, FP, FN, Precision, Recall,
and F1-score . .. 63

ix

List of Figures

Figure 1.1: Deliberative Architectures... 5

Figure 2.1: Planning as a process of searching and a succession of phased predictions [2].
.. 12

Figure 2.2: Continual online planning and acting. ... 16

Figure 2.3: A planning domain is viewed as a system in which states change. 22

Figure 2.5: example for travel task .. 26

Figure 3.4: Refinement tree for task using differ methods.. 45

Figure 3.5: instance method for refinement. ... 50

Figure 4.1: Domestic Environment. ... 54

Figure 4.2: system implementation result. .. 58

Figure 4.3: Displays the result of calculating metrics to evaluate Precision, Recall, and F1-
score. ... 62

x

List of Algorithms

Algorithm 2.1: Dijkstra algorithm…………………………………………………………….. .29

Algorithm 3.1: Refinement Algorithm. …………………………………………………………47

Algorithm 3.2: Backtracking Algorithm. ………………………………………………………51

xi

List of Abbreviations

Abbreviation Description

APE Acting Planning Engine

APEplan Acting-and-Planning-Engine Planner

BT Behaviour Trees

FN False Negative

FP False Positive

GOAP Goal-Oriented Action Planning

HGN Hierarchical Goal network

HTN Hierarchical task network

PDDL Planning definition domain language

PRS Procedural Reasoning System

RAE Refinement Acting Engine

RAEplan Refinement-Acting-Engine Planner

RRT Rapidly-exploring random trees

STRIPS Stanford Research Institute Problem Solver

TN True Negative

TP True Positive

UCT Upper Confidence Bound on Trees

UPOM UCT Planner for Operational Models

1

CHAPTER ONE:

INTRODUCTION

1

Chapter One Introduction

1.1 Overview

Over time, one key area of interest in task planning has been

advancing planning methods for robotic systems. Intelligent autonomous

mobile robots are being extended in numerous applications to handle

complicated tasks. These jobs might be local household duties performed

within human houses, on remote planets, and can even underwater. To

enable these robots to interact with their environment and carry out their

assigned tasks, the environment should be intelligently discovered. This

discovery will allow a robot to reason about its activities and available

resources in a flexible and efficient manner. Planning and environment

should also be integrated through the deliberation process because the

knowledge base is crucial in expressing the organization of a robot's

surroundings, as well as the relationships between entities (each an item

and a task) and their properties [1].

Deliberation for acting includes selecting the actions to take and

how to carry them out in order to attain a goal. It pertains to a thought

process that takes place both prior to and during the execution of an action.

It also deals with what will happen if an agent takes an action and which

actions should an agent take, and how to perform this action to achieve

this intended effect. The reasoning enables the agent to forecast,

determine what to do and how to accomplish it, and integrate numerous

acts that contribute to the goal. In Artificial Intelligence (AI), planning is

studied as a deliberation process and performed computationally in the

intellectual aspect of acting. This cognitive process is an explicit, abstract

form of reasoning that involves selecting and organizing actions based on

predictions of their outcomes[2].

2

Chapter One Introduction

The objective of this deliberation is to accomplish as many

predefined goals as possible. The AI planning plan development part is

mostly concerned with state transition difficulties. These issues have a

starting state, the desired goal, and a collection of feasible actions to

modify the state. A plan consists of activities that can be initiated from the

starting condition and, when implemented, will change it into a state

where the objective has been met. The most basic type of planning issue

is the "classical planning problem refers to the general planning of

restricted state-transition systems. This type of planning presupposes a

deterministic, discrete, and non-temporal world model. The problem is

modeled in a language that tells what information about the world can be

true at the time. The information that are relevant to the planning process

are known as predicates or facts. Predicates provide us with details that

may become important at a later stage of planning. These predicates

together form the state, which represents the current state of the world at

a specific point in time [3].

The Hierarchical Task Network (HTN) is a planning subfield in AI

that organizes plans hierarchically. While HTN planning shares

similarities with classical planning, as each world state is depicted by a

sequence of atoms, there are certain distinct characteristics, particularly in

terms of what they plan for and how they prepare for it, it differs from

traditional planners. In the context of Hierarchical Task Network (HTN)

planning, an environment's state is depicted as a set of atoms, with each

action corresponding to a deterministic change in state. The primary aim

of an HTN planner is not to accomplish a particular set of goals, but rather

to complete a sequence of tasks[3].

3

Chapter One Introduction

1.2 Motivation

 The hierarchy is one of the most common frameworks used to

comprehend and conceptualize the state of the world lies in its

effectiveness and widespread applicability. The hierarchical structure

allows for the organization and categorization of complex information in

a systematic and manageable manner.

Human beings naturally seek ways to make sense of the world

around them, especially when faced with intricate and multifaceted

phenomena. The hierarchy provides a clear and structured approach to

understanding complex systems by breaking them down into smaller,

more manageable components.

By utilizing a hierarchical framework, individuals can identify

relationships, dependencies, and patterns within a system. This allows for

a better grasp of the overall structure and functioning of the subject matter

under consideration. The hierarchical arrangement facilitates the

classification and organization of information, enabling easier navigation

and comprehension.

Furthermore, hierarchy promotes a top-down approach, where

overarching concepts or categories are defined first, followed by the

subdivision of these concepts into more specific subcategories. This step-

by-step progression helps in building a comprehensive understanding of

the subject matter and facilitates effective communication and knowledge

sharing.

Overall, the motivation behind using hierarchy as a framework for

comprehending and conceptualizing the state of the world is rooted in its

ability to provide structure, organization, and clarity to complex systems,

4

Chapter One Introduction

There by enhancing our understanding and enabling effective decision-

making and problem-solving.. HTN planners' use of an intuitive

hierarchical architecture makes it very simple to integrate readily

available expert information about a subject to drive the search process.

Task networks record practical procedural control knowledge or

instructions on how to carry out a task defined in terms of a breakdown

into subtasks. There are several domain-independent HTN planners

available (SHOP, SHOP2, O-PLAN, and O-PLAN2 [4][5][6][7]). To

create a plan in HTN planning, the process involves breaking down tasks

into increasingly smaller subtasks until basic, executable tasks with

constraints are obtained. Effective methods can assist an HTN planner in

achieving desirable outcomes. Hence the inclusion of search control

information can accelerate the HTN planning process beyond the speed

of classical planning [3]. HTN planning has received a widespread

application in robotics mission planning, as well as gaming AI creation

[8], [9]. As demonstrated in Figure (1.1), AI planning and action models

can be defined in two fundamental ways: through descriptive models and

operational models [3]. Descriptive models are more abstract than

operational models. Descriptive models abstract away the intricacies of

an action and focus on the primary effects; they are appropriate at higher

levels of a deliberative hierarchy.

5

Chapter One Introduction

Figure 1.1: Deliberative Architectures.

At runtime, the actor typically deliberates on how to carry out the

tasks it is currently undertaking. The deliberation continues incomplete

until the actor achieves its goal, which may include flexible modifications

to its plans and return results [2].

In a state transition system, HTN planners rely on descriptive action

models to effectively determine the next states. While this approach works

well in a closed, static, and deterministic environment, it falls short in

domains that are open, dynamic, and non-deterministic/probabilistic.

These are commonly encountered in real-world scenarios. The planning

domain rarely provides a completely accurate representation of the actor's

environment, and executing plans may result in failure due to various

reasons, such as action execution failures, unexpected events, or

incomplete/incorrect knowledge during the planning stage [3].

6

Chapter One Introduction

1.3 Problem Statement

1- Importance of effectively integrating planning and action in a

unified hierarchical model. This integration is necessary to address the

process of deliberation between planning and action, ensuring that plans

align with the actions taken.

2- Selecting the optimal path or method when executing an action in

an actor, particularly in the context of a refinement acting engine within a

Hierarchical Task Network (HTN) planning framework.

3- Handling action failures during execution and proposing a solution

by combining an HTN planner with an RAE to enable backtracking and

re-planning when actions fail or unexpected events.

1.4 The Aim of the Thesis

1- Propose a hierarchical representation that unifies the descriptive and

operational model, with actions ranging from abstracted levels to more

detailed ones, commands.

2- Develop an algorithm that enables the planner and actor to work

consistently using the unified representation.

7

Chapter One Introduction

1.5 Objectives

1- Search the descriptive action models required for planning and the

operational action models required for acting and maintaining

consistency between them.

2- Using artificial intelligent Algorithms Including 1- Hierarchal Task

Network, 2- Refinement Acting Engine, 3- Dijkstra Algorithm, 4-

Run-Lazy-Lookahead, and 5- backtrack algorithm.

3- Develop a hierarchical system with integrated planning and acting

algorithms that employ both descriptive and operational models.

By maintaining the hierarchy within the planning solution, users

are presented with a solution tree that includes the plan and a set of

refinement techniques that provide different ways of handling tasks

and responding to actions for closed-loop online decision-making.,

as well as how to select the by using optimal path between methods

in the operational models.

4- A proposed development algorithm that integrates an HTN planner

with an RAE, allowing for backtracking and re-planning when

actions fail to execute as intended.

8

Chapter One Introduction

1.6 Thesis Organization

The thesis is organized into five chapters, the remaining chapters of

the thesis are outlined as follows:

Chapter Two: presents the content and characteristics of robotics-

related approaches and the most commonly used methods, and explains

their importance and limitations, and described some of the work

associated with these techniques.

Chapter Three: presents the methodology used, including the

structure and related algorithms in detail.

Chapter Fourth: presents the performance evaluation and results

of the simulation. We describe the domain and tasks we used to conduct

our experiments.

Chapter Five: draws conclusions related to this research work and

suggests future work that will help future researchers to improve the

performance of (the hierarchical system).

1

CHAPTER TWO:

THEORETICAL BACKGROUND

9

Chapter Two Theoretical Background

2.1 Overview

 In this chapter, we have explained what robots are, their parts, and

the various environments that deal with them, as well as described the

deliberation process with its models, and planning system techniques. It

also explained the most used approaches to solve planning tasks and

described some of the work associated with these techniques.

2.2 Robotics

Robotics is a field of study that focuses on designing mechanical

devices that are capable of autonomous movement. Its a multidisciplinary

field of study that revolves around the design, development, and

implementation of mechanical devices, known as robots, with the ability

to perform tasks autonomously. It combines various branches of

engineering, such as mechanical, electrical, and computer science, along

with elements of mathematics and physics [10].

The primary objective of robotics is to create machines that can

perceive their environment, make decisions, and manipulate objects or

interact with their surroundings without continuous human intervention.

These robots are typically equipped with sensors to gather information

about their environment, processors to process that information, and

actuators to execute physical actions based on the processed data [11].

The study of robotics encompasses various subfields, including

robot kinematics and dynamics, control systems, perception and sensing,

artificial intelligence, machine learning, and human-robot interaction.

Researchers and engineers in robotics strive to develop robots that can

perform a wide range of tasks efficiently and effectively, such as industrial

automation, medical assistance, exploration of hazardous environments,

10

Chapter Two Theoretical Background

and even social interactions[10]. The objective of robotics is to create

machines capable of aiding humans in diverse tasks. These machines are

typically complex and can perform a variety of actions automatically,

depending on computer programming. A robot that is capable of

functioning independently without the need for human input or guidance

is considered an intelligent machine. Such machines can complete tasks

and operate effectively in a given environment. In many cases, robots that

possess a high degree of autonomy can carry out tasks that would

normally require human labor[12].

2.2.1 Planning

The process of creating an action plan to complete a task is known

as planning. In order to automate planning, a computer program must

represent: 1- the world, 2- represent actions and their effects on the world,

3- reason about the effects of sequences of such actions, 4- reason about

the interaction of actions that are happening at the same time, 5- control

the search process to find plans with a level of efficiency.

A major challenge for artificial intelligence is the capacity for

action-based reasoning. Common sense reasoning is often employed by

individuals, whereas the reasoning function is an explicit and abstract

process of deliberation that selects and organizes actions by anticipating

their consequences[13]. The primary objective of this deliberation is to

active the maximum number of predetermined goals possible. Several

planning systems are available[11]:

1. Motion and task planning

2. Temporal planning

3. Probabilistic planning

11

Chapter Two Theoretical Background

4. Planning in open domains

The task planner was used in this thesis. A high-level plan is created

through task planning[14]. The task planner has to be given a description

of the manipulable items, the task environment, the robot, and the

beginning and intended ultimate states of the environment.

 The ultimate result has to be a robot software that can change the

original condition into the required final state [12]. Classical planning and

hierarchical planning are the most often used methods for addressing

planning challenges. They typically rely on heuristic search, Nonetheless,

traditional planning approaches are increasingly sophisticated, especially

with regard to domain-independent heuristics.[15].

2.2.2 Acting

This section discusses how robots must engage in planning tasks in

order to operate effectively within their physical environment. As a result,

the planner's actions will be decomposed into a sequence of actions that

the robot system will execute. Throughout the execution process, the actor

directs the designated system elements using commands [2].

2.2.3 Planning versus Acting

Creating a deliberative machine that integrates planning and acting tasks

is a crucial challenge in design. Planning aims to generate a set of logical

actions that can accomplish a specific task.

12

Chapter Two Theoretical Background

For example, you may do this by using a lookahead strategy, that

combines prediction phases Figure (2.1), while in the state (s), action (a)

is anticipated to build a state (s') inside of a search through several sets of

actions for a set that leads to the ideal target state. Refers lookahead to a

technique used in decision-making processes to anticipate the potential

outcomes of future actions. It involves simulating different future

scenarios and evaluating their potential consequences before selecting the

best course of action. Lookahead is particularly valuable in domains

where decisions have long-term consequences and where the decision-

maker seeks to optimize outcomes based on a forward-looking

perspective. The difficulty of planning is influenced by the types of tasks

that require planning, the types of predictive models required, and the

types of plans considered suitable. Specific planning techniques for

particular types of problems have been developed to tackle different

challenges in various domains [2].

Figure 2.1: Planning as a process of searching and a succession of phased

predictions [2].

The process of acting include selecting how to execute the actions

that have been selected or decided upon while adjusting to the context in

which the activity is taking place. This can be done with or without the

assistance of a planner.

13

Chapter Two Theoretical Background

Each action is regarded as a general task that will undergo

refinement into more specific actions or instructions based on the existing

circumstances. Planning involves looking for projected states, whereas

acting necessitates continuously comparing the current condition to

predicted states and making adjustments as necessary. Acting, also entails

responding to unanticipated changes and external occurrences. Depending

on how straightforward planning is and how rapidly the environment

changes, there are several methods to arrange the interaction between

acting and planning. One straightforward sequence of steps is the linear

progression of "plan then act" which does not accurately describe the

relationship between planning and action. instead, it suggests that the

relationship is more complex and dynamic. The section likely elaborates

on the limitations of the linear progression model by highlighting factors

such as feedback loops, ongoing adjustments, and the iterative nature of

planning and action.

It may discuss how planning and action interact with each other in

a continuous cycle, rather than being distinct and separate stages. For

example, during the execution of a plan, unforeseen circumstances or new

information may arise, necessitating adjustments to the original plan.

These adjustments can then inform subsequent actions, which in turn may

require further planning modifications. This iterative process highlights

the ongoing interplay between planning and action throughout the course

of a task or project.

By explaining the limitations of the linear "plan then act" model,

the section emphasizes the importance of recognizing the dynamic nature

of planning and action.

14

Chapter Two Theoretical Background

It highlights the need for flexible approaches that allow for

adaptation, learning, and continuous improvement based on the feedback

received during the execution of a plan.

It's not always possible or necessary to seek a clear plan before

taking action. When the environment is well-modeled and predictable,

such as in a manufacturing production line. This approach is necessary

when the cost or risk of acting is high and the actions are irreversible. In

such applications, it is often necessary for the designer to minimize the

diversity of the environment beyond what can be modeled and predicted

[2].

2.3 Deliberation

A set of components that are hierarchically arranged can carry out

the decision-making process of the robot. A robotic system can be given

more extensive, adaptable, and durable functions by using the current and

significant study area of deliberation in robotics. The use of prediction

models and the acquisition of these models are both necessary for

deliberate action. An actor can also need to develop their ability to adjust

to different roles and circumstances. Deliberate action cannot be boiled

down to a single function; planning is merely the first step. Integrating

many functions coherently is crucial. It requires the functions to be

consistent with one. Another deliberation may necessitate several

different functions. The robot's cognitive architecture involves five main

components: Planning, Observing, Acting, Goal reasoning, Monitoring,

and Learning. In this research, we focus on the processes of planning,

acting, and integrating them. The relationship between planning and

acting is fundamentally based on the idea of deliberation. Deliberation for

acting entails selecting the actions to take and how to carry them out.

15

Chapter Two Theoretical Background

It takes one or more acts that are justified by the hierarchal

sequences planned to achieve this goal. Deliberation refers to a process of

reasoning that occurs both before and while acting. For instance [2]:

 What will happen if an agent acts?

 Which steps should an agent choose should adhere to in order to

have the desired impact, and how should the agent go about doing so?

Autonomy, or the ability to carry out one's intended tasks without

being directly commanded by a human, is what drives agents with

deliberative capacities. They assume that instructions, a collection of

primitives that perform sensory-motor control, are used to carry out

actions. The actor's actions are carried out by putting directives into

action. It employs models of how these commands function to engage in

deliberation. The process of planning comprises choosing and arranging

the procedures required to achieve a certain objective. The steps that need

to be followed are frequently known [2].

2.3.1 Deliberation Models

To choose which acts to do and how to take them, an entity engaged

in acting needs anticipatory models of its actions. Descriptive and

operational models are used, respectively, to express these two forms of

information. One can create both descriptive and operational models of

activities by utilizing state variables that represent the state of an actor and

its surroundings.

 Descriptive action models define the state or collection of possible

states that can occur as a result of completing an action. Plans produced

using descriptive models operate effectively under the assumptions of a

closed, unchanging, and deterministic reality (this plan).

16

Chapter Two Theoretical Background

 Operational models, on the other hand, define how to carry out an

action involves determining the appropriate commands to perform in the

current environment and organizing them in a way that achieves the

desired outcome. A plan's action result in state transformations, which

change the set of true facts in accordance with the effect of the action

(execution of plan).

Acting needs online planning and deliberation continual. As shown

in Figure (2.2), an actor must break down their actions into smaller phases

in order to access the necessary operators [16].

Figure 2.2: Continual online planning and acting.

2.3.2 Knowledge Representations

An agent must carefully plan and execute its actions, which

requires models for organizing, monitoring, modifying, and adapting

its strategies and plans. The agent also needs methods for breaking

down its activities into manageable steps or assigning them to specific

capabilities.

17

Chapter Two Theoretical Background

Descriptive models, which are essential for reasoning, address

issues such as causes, consequences, motives, benefits, and costs of

actions. In contrast, operational models, often referred to as task

performance standards, deal with the "how" aspects of actions. Certain

models might possess specifications for both operational and

descriptive aspects [17].

The required knowledge representations for actors must facilitate

the uniform and generic specification of both "know-what" and "know-

how" action models. It is important to note that the actor's environment

must be taken into account in both types of models. The knowledge

representations that actors are required to use should make it easier to

specify both the "know-what" and "know-how" models of actions. They

ought to support effective algorithms for deliberation [18].

2.4 Planning Domain and Problem Representation

The terms "planning domain" and "problem representation" denote

the approach of encoding all relevant information about the robot's

environment for all the tasks that carry out. The elements of the world that

describe the problems are formalized in the resulting domain.

Given that each style has a particular level of expressiveness and

complexity, this formalization of knowledge representation plays a crucial

role in determining the types of problems that can be represented and

solved [19]. It goes without saying that a language can represent a wider

range of issues the more expressive it is. As a result, complex systems and

concepts encountered in the actual world may be represented more easily

in expressive languages.

18

Chapter Two Theoretical Background

However, the intricacy of the language frequently increases the

computational difficulty of the methods employed to solve the problem,

which results in a longer processing time [20].

2.5 Techniques for Planning System

Since the last years, the study of planning systems has been ongoing

activity for study. And numerous methods, algorithms, and systems have

been put forth. They are very different from one another in terms of how

they model the world or how they approach problem-solving.

2.5.1 STRIPS Model

The Stanford Research Institute Problem Solver (STRIPS) planner

is frequently cited as the first system to implement a dedicated planning

algorithm, and its action modeling approach, which defines prerequisites,

positive effects, and negative effects as sets of atomic facts, is still being

utilized today[21]. The STRIPS style represents planning problems using

the triplet "I, A, G," which includes the initial state (I), a list actions (A),

as well as a list of goals (or desired end-states(G)). The states are

represented as a collection of predicates based on first-order predicate

logic[22].

This type of planning was constantly changing states to achieve the

desired state by using the heuristic and already-applied action details.

2.5.1 Definition of the PDDL Language

The Planning Domain Definition Language is an industry-standard

language for creating STRIPS domains and problem sets (PDDL) (The

19

Chapter Two Theoretical Background

most basic subset of PDDL is referred to as "STRIPS")[21]. Most of the

code can be written in PDDL using English words so that it can be easily

read and understood. Simple AI planning problems can be written using

this method fairly easily[23].

The PDDL The definition of a planning problem can be divided

into two components: the domain and the problem itself. The domain

component specifies: the state variables and actions in a generic model of

the relevant environment, while the problem describes a specific instance

referring to the problem definition within the given domain, including the

starting state and target condition. STRIPS and PDDL can be utilized to

solve a variety of problems. If a limited number of actions, prerequisites,

and effects is capable of illustrating the world domain, a PDDL domain

and problem can be created to solve it [21].

2.6 Approaches Task Planning

Two of the most common methods for completing planning tasks

are classical planning and hierarchical planning. Solvers typically use

heuristic search, while classical planning approaches are more

sophisticated, especially with regard to domain-independent heuristics

[7].

2.6.1 Classical planning

The so-called "classical planning problem" is the most basic type

of planning problem often discussed. It makes the assumption that the

universe is predictable, discrete, and fundamentally non-temporal [21].

20

Chapter Two Theoretical Background

Classical planning involves finding a series of actions that

transforms a starting state to a target condition, under the assumptions of

a deterministic environment and actions. The primary computational

difficulty is developing efficient methods for generating such action

sequences, which are commonly referred to as plans [2]. Planning refers

to the process of discovering a series of actions or steps in a deterministic

environment that transforms a starting state into a desired state. Task is to

develop effective methods for obtaining such action sequences,

commonly referred to as plans, which presents a computational challenge.

A typical planning problem can be presented as a directed graph, where

the nodes correspond to states, and the edges indicate the actions that

change the state of the edge's source node to the state of its destination

node. One way to express the problem is as a challenge of finding a path

or sequence of actions. Hence, a plan can be considered as a path from the

starting node in the graph to a node that represents one of the target states.

[15]. The following is a formal model for a traditional planning issue:

(Classical Planning Model) Definition. A planning model = [S, s0,

SG, A, fi] is made up of the following elements [24]:

 The state space is composed of an initial state s0 S, a finite and discrete

collection of states' S,

 A group of objective states SG S,

 A sequence of acts

 The appropriate A(s) A actions for each state's S, and (s).

The outcome of an action, a, in a state, s', is f(s, a), often referred to as s[a].

The use of a series of activities to change a state may be characterized as

 (2.1)

S [a0 . . . an] = (s [a0 . . . an−1]) [an]

21

Chapter Two Theoretical Background

2.6.2 Hierarchical Task Network

The AI planning approach, one of type of planning is known as

Hierarchical Task Network (HTN) planning, differs from traditional

planning. The fundamental concept of this approach involves a

specification of the initial states, a task network that serves as a set of

achievable objectives, and the approach involves utilizing domain

knowledge that encompasses networks of both simple and complex tasks.

Each task that can be performed is represented in a hierarchical manner in

a task network or decomposed into more detailed subtasks if the task is

primitive [25]. The planning process commences by decomposing the

primary task network and continues until all composite tasks have been

decomposed, which denotes the finding of a solution. This approach

consists of a series of fundamental steps that apply to the world's initial

condition and carried out with the aid of the planning operators. Creating

problem-solving "recipes" that mimic the problem-solving approaches of

a human expert in a particular domain. Approach a planning challenge is

made simple with HTN approaches. The plan is usually represented as a

symbol[11].

Definition from transition state (s; a), Figure (2.3), which depicts

what happens when a state undergoes an action, explains the outcome and

uses the same concept as traditional planning. To define a planning

problem and its solutions, the language on the other hand contains tasks,

methodologies, and task networks[2].

22

Chapter Two Theoretical Background

Figure 2.3: A planning domain is viewed as a system in which states change.

 The words "problem representation" and "planning domain" refer to the

methodical coding of all pertinent information about the robot world for

all of the tasks the robot does. The aspects of the world that will be utilized

to define issues are formalized in the resultant problem. The theoretical

framework is made up of tasks, operators, task networks, techniques, a

planning issue, and a solution. The planning system's input consists of a

number of operators and techniques, each of which describes how to break

down a task into a number of smaller tasks (smaller tasks)[26]. Planning

progresses by constantly breaking down non-primitive tasks this task

decomposed into increasingly smaller subtasks using the methods

employed until it approaches Primitive tasks are tasks that can be directly

handled by the planning operators [8].

The planning problem is the set of beliefs the actor has about the

world, divided to 4-part:

The problem definition S0 issue is broken down into:

 (2.2)

 Initial state by enumerating all the right data in that state, the (init)

section defines the starting state used to represent the issue. These details

are referred to as facts or predicates.

P= (S0, W, O, M)

23

Chapter Two Theoretical Background

Before adding any action to convert the robot site to another, for

instance, while creating the work environment, the initial condition of the

robot site is a basic fact.

 A task network is composed of a set of task nodes, denoted as U,

and a set of constraints denoted as C. These constraints define conditions

over U that must be satisfied during the planning process and by the

resulting HTN solution [27] and planning domain:-

 (2.3)

 An acting domain's specification we simulate a 4-tuple for method

Using:

 (2.4)

 Name (m): One of the unique features of the approach is to ensure

that no two methods in the planning domain can have the same method

symbol. The names of the methods enable us to refer to them without

explicitly specifying the preconditions and effects when replacing method

instances.

 Task (m): non-primitive job, divides u into smaller tasks (m). A

task network consists of (Subtasks (m), Constraint (m)). A task may have

numerous ways, each reflecting a distinct approach of refining that work.

 An action is a process that converts the state of the robot. This includes

perceiving and learning about its environment. The hierarchy of

abstraction comprises multiple levels, where each level represents a

different degree of abstraction It is possible to observe an activity. It is

primitive at some levels and compound at others.

D = (M, O)

m = (name (m), task (m), subtasks (m), constr (m))

24

Chapter Two Theoretical Background

For example, opening (a door) is an abstract basic action and a

compound job that may be developed into a set of actual actions when

necessary. At the bottom of the hierarchy, the most fundamental action is

a command. The robot platform can execute commands instantly. A three-

tuple action is:

 (2.5)

Before the action is performed, the state S must fulfill the precondition

(a), and after the action is completed, the state must satisfy the effects (a).

 A name: which may include arguments.

 A precondition list: is a set of facts that must be true in order for an

action to be carried out.

 An effect: list of facts made true by executing the action.All these

sequences of action are depending on the heuristic system. We can see

in Figure (2.4) Task network visualizations [27].

a = (name (a), precond (a), effects (a))

25

Chapter Two Theoretical Background

Can describe this chart as a simple example in Figure (2.5). We

divide the Travel task from more abstract task access more detailed

commands.

t1
 (
r1

,
..
.,
 r

_
k
)

t2
 (
r1

,
..
.,
 r

_
k
)

tk
 (
r1

,
..
.,
 r

_
k
)

R
o
o
t

m
2

-t
2

m
1
-t

2

m
2
-t

1

m
k
-t

2

o
1

o
2

o
3

o
1

o
k

m
1
-t

1

p
re

co
nd

R
e
p

re
s
e
n

ta
ti

o
n

 o
f

a
 l
is

t
o

f

ta
s
k
 (

n
o

n
-p

ri
m

it
iv

e
)

n
o

d
e

t1
.

R
e
p

re
s
e
n

ta
ti

o
n

 t
h

e

m
e
th

o
d

s
 a

p
p

li
c
a
b

le
 t

o
 t

h
e

ta
s
k

B
y

 t
h

e
 P

re
c
o

n
d

it
io

n
s
 t

h
a
t

m
u

s
t

b
e
 s

a
ti

s
fi

e
d

 f
o

r

re
fi

n
e
m

e
n

t
o

f
th

e
 t

a
s
k

u
s
in

g
 m

e
th

o
d

s
 t

o
 a

c
c
e
s
s

to

s
u

b
ta

s
k

O
p

e
ra

to
r

th
a
t

is
 r

e
le

v
a
n

t

to
 t

a
s
k
 t

 i
f

th
e
 t

a
s
k
 w

a
s

p
ri

m
it

iv
e
.

p
re

co
nd

F
ig

u
re

 2
.4

:
 T

a
sk

 n
e
tw

o
rk

 v
is

u
a

li
za

ti
o

n
s

in
v
o

lv
e
 r

e
p

re
se

n
ti

n
g
 a

 s
e
t

o
f

ta
sk

s

a
n

d
 t

h
e
ir

 i
n

te
rd

e
p

e
n

d
e
n

ci
e
s

in
 a

 g
ra

p
h

ic
a

l
fo

rm
a

t.

26

Chapter Two Theoretical Background

Figure 2.5: example for travel task

This example illustrated that there are two methods for completing

a travel task: either by taxi or on foot. Based on factors like our location,

our financial situation, and other factors like the state of the world, we can

select the best method.

A task is considered primitive if one of its symbols is a symbol for an

operator; otherwise, it is non-primitive.

The method symbol, which represents a method's name, is the second new

symbol. A method exists for non-primitive activities.

There is a way for decomposing an abstract task into less abstract tasks,

primitive tasks, or a combination of both for non-primitive activities.

A method has the following components:

1- Name of method for example, travel by taxi.

2- Task for example, travel, a task that it can solve.

3- Preconditions: the world's current condition determines whether the

approach is still applicable.

4- task network (or subtasks) a task network used for visualizing more

tasks in networks [2].

27

Chapter Two Theoretical Background

2.7 Refinement Acting Engine

Hierarchical Task Networks (HTNs) are commonly used in robot

planning to represent complex tasks and their dependencies. To execute

an actor-dependent HTN in planning a robot, you need to define the HTN

Structure: This involves breaking down the complex task into smaller sub-

tasks and organizing them hierarchically based on their dependencies,

Define actor: Actors refer to the agents that are responsible for completing

the tasks.

In this case, the robots will be the actors, assign tasks to the actor:

Based on the dependencies defined in the HTN structure, you need to

assign the tasks to a robot, Monitor progress: As the robots start working

on the assigned tasks, you need to monitor their progress and ensure that

they are following the correct sequence defined in the HTN. In a

summary, executing an actor-dependent HTN in planning a robot requires

careful planning, organization, monitoring, and optimization to guarantee

the effective accomplishment of the intricate task [28]. We propose an

action technique called Refinement Acting Engine RAE incorporates the

necessary techniques for performing actions using this representation.

Describes an operational model formalism based on refining techniques.

This method describes how to carry out a task (an abstract task of some

kind) by breaking it down into more concrete tasks. RAE uses a variety

of refinement methods. To provide commands for the execution platform,

abstract activities are iteratively refined into less abstract ones [29].

The Refinement Action Engine (RAE), which has the capability to

test approaches in making judgments, offers the procedures necessary to

deal with this representation. To manage the acts that the actor must do

and new events to which he must respond, RAE employs a library of

methods called M. RAE receives the following inputs:

28

Chapter Two Theoretical Background

 A collection factual information representing the world as it is

right now.

 Collection task that need accomplished.

 A series events indicating external occurrences the performer

might have to respond.

Task-defining sources, such as planners or users are where tasks

originate. RAE chooses a pertinent method m and builds a LIFO stack for

each task in the input stream to keep track of the refinement's status. If m

doesn't work, RAE will try an alternate strategy that is appropriate right

now and hasn't been used before.

The last-in, first-out (LIFO) list known as a refinement stack is

composed of tuples with the following format: (T; m; I, tried) [30] I is a

reference to body of m[30], and it is initially set to 1, tried is a collection

of refining method executions for T that have already been attempted but

failed. The standard push, pop, and top operations are used to manage a

stack [30].

In a stack, progressing means going up one step at a time [30]. If

this part is a command, RAE sends it to the execution platforms; if it is a

task, RAE chooses an appropriate method and places it at the top of the

stack; and if this step is to exit from m, RAE removes m from the stack.

2.8 Dijkstra Algorithm

There are many algorithms that deal with calculating distances and

choosing the most appropriate path based on system characteristics and

employing them for this work, such The Dijkstra algorithm, named after

its inventor E.W. Dijkstra, is used to compute the shortest path between a

starting point (the source) and a destination in a graph [31].

29

Chapter Two Theoretical Background

As the Dijkstra algorithm in 2.1 can compute the shortest paths

from a single source to all nodes in a graph simultaneously. This issue is

also known as the single-source shortest paths problem. GPS technology

employ this algorithm to one can determine the most optimal path from

the current location to the destination by finding the shortest route, It has

many industrial uses, particularly in fields where modeling networks is

necessary

Dijkstra's Algorithm Fundamentals:

 The Dijkstra's Algorithm begins by selecting a starting node (also

known as the source node) and then evaluates the graph to identify the

shortest possible path from that particular node to every other node

present in the network.

 After identifying the shortest path between the source node and the

second node, the algorithm marks the second node as "visited" and adds

it to the path.

This process continues until all nodes in the graph are included in

the path, connecting the source node to every other node through the

shortest route. At each iteration, the algorithm updates the distances

between adjacent nodes and selects the node with the shortest distance to

the source node as the next one to be processed [32].

Algorithm 3.1: Dijkstra algorithm.

1. Initialize-single-source(S,G)

2. S ≠ 0 //first-method-using- in-actor

3. Q ← V [G] //combine-other-node

4. While Q ≠ Ø //multiple-method-using

5. Do u ← extract-min (Q) // a linear search through all of Q's vertices

6. Return ← u

30

Chapter Two Theoretical Background

2.9 Related Work

This section covers the different aspects of work that are related to

the planning system and its integration with the acting system.

2.9.1 Planning system

In the past years, there are plentiful published works on the

planning primitives, which reduced the acting function. J. Orkin, at el.

[33] (GOAP) Goal-Oriented Action Planning is a simple method of action

planning. R. E. Fikes and N. J. Nilsson, [22] STRIPS is a planning system

designed primarily for controlling the conduct of autonomous characters

in video games in real time. Real-time planning grants AI characters the

ability to think. Think about the difference between planning and

predefining state transitions. Real-time planning enables you to simulate

the impact of different variables on logic and modify behavior

accordingly. More recent games have included HTN planning after [33]

showed that real-time planning is a workable approach for the current

generation of games. There are numerous HTN planners available.

Some of the Interactive Planning and Execution System ken Currie

and Custin Tate, [4] O-Plan (Open Planning Architecture) is the design

and execution of a more flexible system targeted at assisting planning

research and development, allowing for planning approaches, and

allowing for powerful search controlling heuristics. A. Tate, at el. in A.

Tate, B. Drabble, and R. Kirby [5] O-Plan2 A key contribution of this

study to it is the comprehensive conceptualization of a planning and

control system that is modular and adaptive.

31

Chapter Two Theoretical Background

In D. YueCao AmnonLotem Hector Muftoz-Avila, SHOP [6] as

well as SHOP2's successor, and D. Nau, et al. [7] SHOP3, R. P. Goldman

and U. Kuter [34]designed for video game AI planning. Shivashankar et

al.[35] Create a task semantics for planning that was simply

corresponding to the goal semantics for classical planning.

2.9.2 Planning and Acting System

Researchers sought to integrate acting and planning, so an actor

may use a Refinement Acting Engine (RAE). S. Patra, et al. in this

context[36] [37] To complete tasks in constantly changing contexts in a

dynamic environment an RAE leverages hierarchical operational models

in the planning procedure, as well as planning and learning algorithms,

The experimental findings suggest that employing two separate

measurements, specifically learning techniques considerably increases

RAE performance based on its efficiency and success. Creating and

advancing a cohesive acting-and-planning system that utilizes identical

operational models for both components for the actor and make use of a

hierarchical task-oriented language with cutting-edge Control structures

designed for making decisions in real-time within a closed-loop system.

F.Fklix Ingrand,et al. [38] The PRS system motivates the action [9], and

it may seek guidance from the planner.

 The RAEplan planning algorithm generates plans by simulating

the actions of the actor operational models using Monte Carlo rollout

simulations. RAEplan also use proper refining techniques to determine

how to alter activities or occurrences.

Experiments demonstrate how much more effective the acting and

planning systems are. The operational models used by the actor in the

32

Chapter Two Theoretical Background

system appear to be used in both acting and planning [37]. To demonstrate

acting-and-planning, the APE algorithm is employed, which leverages

hierarchical operational models based by the PRS system. In contrast to

the reactive PRS method, APE makes decisions the planner, RAEplan,

generates plans by utilizing Monte Carlo sampling to simulate executions

of the actor's operational models.

APE-plan executes a subset of the available refinement techniques

each time APE is to choose the method for refining a job, subtask, or

event. When a refining technique is utilized, a command to the execution

platform is issued at each site. The investigation contains a number of

exciting realistic domain aspects, For example, factors such as

dynamicity, real-time sensing requirements, information gathering,

collaboration, and simultaneous operations.in S. Patra, et al [39]. To

distinguish between domains with and without dead ends, the researchers

utilized three distinct Metrics for evaluating performance include the

success ratio, retry ratio, and speed of achieving success.

In D. S. Nau,at el. [40] The discrepancy between the descriptive

action models needed for planning was the main emphasis of this work

Acting requires operational action models, It should be addressed the

difference between the descriptive action models needed for acting and

the operational action models needed for planning.

Patra, et al.[16] [25] Using the actor's operational models, APE and

UPOM integrate acting with planning. In V. Alcázar, at el. [41] RRT

structures and search algorithms were created for use in continuous path

planning issues as a search method for automated planning, with RRTs

adapted for implicit and discrete search spaces. In D. J. Musliner, at el.

[42] integration of planning and acting was performed by having the

33

Chapter Two Theoretical Background

planner synthesise a new plan, which can take a long time: the old plan

was thus performed continuously in a loop, with the new plan only

installed once planning was complete.

 A. Menif et al. [43] Domain compilation and procedural task

application/decomposition techniques are combined in the SHPE

methodology.

 It is designed to give video games quick planning capabilities. In

Amanda Coles, at el. [44] COLIN is a forward-chaining heuristic search

planner that reasons using Continuous Linear numeric change as well as

accessing the full temporal semantics of PDDL to utilise classical

planning and organise time. Simone Fratini, at el.[45] Organize time by

offering knowledge representation the system describes a new controller

composed uses the APSI-timeline-based TRF methodology to model and

solve planning challenges.

M. Colledanchise [10] applied behaviour trees (BT) were applied

for online planning and acting, which allowing the old plan to be run in a

loop while the planner generates a new plan hence, the new plan is not

installed until the planning is completed. BT can also react to unexpected

events, though no refinement techniques (a mechanism to express several

alternative refinements of jobs) were offered.

In R. Lallement,at el. [46] demonstrate the use of HTN planning in

robots. The authors J. Wolfe, at el. [47]discuss how they used an HTN

strategy to integrate task and motion planning. Motion primitives are

evaluated for cost and feasibility using a specific solver and sampling.

Ron Alford, at el. [27] makes a contribution by formalizing GTN

planning, a hybrid formalism that makes task and goal breakdown easier

by using Goal-Task Network (GTN) planning, a method that integrates

goal and task planning. Yuan, at el. [48] Use SHOP HTN Task modifiers

34

Chapter Two Theoretical Background

concept was introduced and how to improve the planning algorithm so

that it can take advantage of the task modifier and give it goal reasoning

abilities.

Table 2.1: Summary of previous works.

Authors Years
Method

used
Result

Simone Fratini,

et al. [45]
(2011)

based on

ESA APSI

technology

Explains a brand-new

planning module that

models and resolves

planning issues using a

timeline-based

methodology.

Amanda Coles,

et al. [44]

(2012)

Linear

program

(LP)

Time managing

Integrated planning and

outcomes

representation of

knowledge.

Shivashankar,

et al. [35]
(2012) HGN

Provide task semantics

that easily matched the

goal semantics of classical

planning and that, when

used in the domains of

classical planning, offered

higher soundness

guarantees.

Dana S,

et al. [16]
(2015) RAE

The discrepancy between

operational action models,

which are needed for

action, and descriptive

action models, which are

needed for planning.

Ron Alford,

et al. [27]
(2016) GTN

Through the use of goal

and task planning

35

combined in a method

called Goal-Task Network

(GTN) planning.

Contributions included

formalizing Both task and

goal decomposition are

supported by a hybrid

formalism known as GTN

planning.

Xenija Neufeld,

et al. [49]
(2017) HTN

This paper summarizes

and analyses the planner

implementations used in

several of these games in

light of the various planner

components.

Sunandita Patra,

et al. [37]

(2018)
RAE &

APE-plan

 Operational models make

it possible to deal with a

range of situations and

react to unanticipated

results and occurrences in

a constantly shifting

environment, Performance

is based on its efficiency

and success.

Sunandita Patra,

et al. [25]
(2020)

APE,UPOM

and learning

strategies

It was suggested to

integrate acting and

planning using the actor's

operational models. The

speed to success metric

was used to evaluate the

overall time required for

planning and executing,

including the failure cases.

Sunandita Patra,

et al. [36]

(2020) RAE ,
UPOM and
learning
strategies

Used hierarchical

refinement operational

models to provide a novel

system for integrating

action and planning.

36

Results reveal that UPOM

and the learning

techniques greatly raise

RAE's performance using

the following two metrics:

success and effectiveness

Weihang Yuan,

et at. [48]
(2021) THN

Task modifiers concept

was introduced and How

to improve the SHOP

HTN planning algorithm

so that it can take

advantage of the task

modifier and give it goal

reasoning abilities. A task

modifier modifies the task

list in response to

unexpected observations

in the environment.

CHAPTER THREE:

PROPOSED METHODOLOGY

37

Chapter Three Proposed Methodology

3.1 Overview

In this chapter, we define the HTN planning formulation 3.1 after

defining some of the fundamental words and representations. In Section

3.2, we define the environment in which this system operates. 3.3 Discuss

the actor and their handling of the refinement process during the execution

of operations. The refining approach is dealt with in 3.4 by employing an

optimal path, along with the actor definition and how to connect with the

planner. Finally, in 3.4, how to determine whether a plan is valid.

3.2 HTN PLanner

We adhere to the HTN formulation described in [3] which is

presented in further detail in chapter two. Terms, literals, operators,

actions, and plans used by us from traditional planning. A Hierarchical

Task Network (HTN) is an action-planning approach that employs the

hierarchical decomposition of network operations to address problems at

different levels of abstraction [50]. A Task network is entered into a

planning system together with the problem that has to be solved, or the

task planning's objective. The task network consists set of tasks that define

additional tasks. Planning operates by recursively decomposing non-

primitive tasks into smaller sub-tasks until primitive tasks are reached that

can be executed directly using planning operators.

We demonstrate how to convert HTN domain descriptions into

PDDL so that traditional planners can use them (provided they comply

with certain requirements). Our approach may considerably enhance the

performance of a classical planner when arranging data in accordance

with the hierarchical system's requirements into PDDL [51].

38

Chapter Three Proposed Methodology

The planning domain and problem have been formalized by using

planning domain and definition language (PDDL) which refers to all

environmental data relevant to the robot's activities that are done for its

surroundings. The PDDL has used the STRIPS model to represent the

main components of the structure PDDL has. The concept a planning

problem is separated into two components: The beginning state and goal

condition are specified by the problem However in accordance with the

hierarchical system's structure, the goal takes the shape of a collection of

tasks sequential.

 Corresponding domain

 Objects

Problem

 Initial state

 Goal state

Figure 3.1: The problem representation in planning domain definition language.

Every element of the world's first state that is pertinent to the

problem must be explicitly stated in the initial state. Both static and

dynamic data can be stored in the initial state. For instance, item f, a

refrigerator, is an illustration of static information since it is assumed to

remain constant throughout the action planning process. A further

example of dynamic information is the condition in which I might propose

that r is a robot that begins at location 1, as it is expected that it would

move about while action planning is underway[52]. The G objective is to

carry out a series of tasks in order to accomplish the ultimate objective.

39

Chapter Three Proposed Methodology

For instance, the first task's objective is for the robot to conduct

navigation, and the second task's objective is for the robot to fetch a

particular object. Up until the robot reaches the desired destination, the

work is sequential [8].

Domain planning: Planning consists of two steps: establishing the

domain, which offers a broad representation of a broad representation of

the pertinent components of the world, and identifying the issue, which is

a particular instance within the domain that identifies the beginning point

and the desired outcome. According to the problem definition:

 Requirement

 Predict parameter

 Action Precondition

 Effect

Figure 3.2: The domain representation in planning domain definition language.

Requirement: - It is made up of every object and predicate-argument that

should be displayed with their type in domains where the corresponding

constraints are given as (: types).

Predicates: One part of the domain definition is the section that includes

the list of state variables in the model. These variables are binary and

represent fact either true / false.

Actions: A knowledge base is a collection of facts and predictions that

may either be true or false.

Domain

40

Chapter Three Proposed Methodology

According to PDDL, the parts of the problem and domain can be

clarified, as in the simple example:

Procedure problem():

 Domain: domestic_env

 Objects: robot

 Init:

 in?(robot, base)

 Goal:

 in?(robot, Location1)

Procedure domain(domestic_env)

Requirement: navigation task

Prediction:

 in?(robot, base)

 not in?(robot, location1)

Precondition:

 not in?(robot, location1)

 in?(robot, base)

Action Search:

 Effect:

 found?(robot, Location1))

The problem contains the initial state, the desired goal, and the

things to do with their domain, as shown in the example, depending on

the name of the domain in the field of "domestic environment".

Requirements to do "task navigation" And the initial facts before

the action effect that is the initial location of the robot before moving.

41

Chapter Three Proposed Methodology

The name of the action that the robot performs according to the

precondition and the desired effect as shown, in the beginning. One of the

facts of the robot is in location 1(r.loc1 is true), after implementing the

required effects to this action (is navigating to another location) the results

will be different from the initial fact (r.loc1 is false).

3.3 Deterministic environment

To model the architecture for continuous online planning and

acting, we employed deterministic environments. This framework

consists of the software creating the robot's "plan" by identifying a series

of simple actions that allow the robot to move from the beginning state to

the end state after receiving descriptions of the starting state and final

state. This sequence may correspond to the actions that the robot must do.

Mainly, we use an autonomous robot that is employed largely for

domestic chores is referred to as a domestic robot.

We assume that the robot performs the navigation and fetching

tasks in the order of a deterministic environment.

The following is how the tasks are arranged in the hierarchical

system as Figure (3.3):

42

Chapter Three Proposed Methodology

F
ig

u
re

 3
.3

:
a
n
 i
llu

st
ra

ti
o
n
 o

f
a
 p

la
n
n
in

g
 i

n
 d

o
m

e
st

ic
 e

n
v
ir

o
n
m

e
n
t

h
ie

ra
rc

h
ic

a
lly

43

Chapter Three Proposed Methodology

Making a list of activities and objectives for the system that will be

carried out in the same order as anticipated is a part of the planning

process. If the initial state of the tasks to be scheduled has a full order,

when the initial tasks are fully ordered, we may use the W instead of a

sequence of tasks using graph notation for the task network w = (U, C),

where W = t1, t2,..., tk. The task in the first node of the U graph is

represented by t1, the job in the second node by t2, and so on. Even if the

jobs are fully ordered, we refine them using a tree generation/transit

technique. Instead of being shown as a series of tasks, as initially

suggested in the HTN planner formulation, they are shown as a task

network in an acyclic digraph form. The task network-handling planner's

variable definitions state that U is a collection of task nodes, which are

handled as follows:

 Task (u) specifies the task (t1,...tk) associated with u.

 The node that has been refined is represented by refined (u).

 If task t were a simple task (primitive task), operator (u) would

represent the operator that would be relevant to the task.

 Whether a node has been visited is indicated by the variable visited (u)

(true, false).

 State (u) depicts the node's state at the time it was first visited.

 Methods (u) refers to the techniques employed for refining that are

appropriate for task t.

44

Chapter Three Proposed Methodology

Planning: To utilize the Hierarchical System Algorithm for planning, the

planning problem is segmented into two components: the domain and the

problem definition. The domain definition entails specifying the current

variables (facts that can be true or false) and actions. On the other hand,

the problem definition focuses on determining the initial, objective state

(task) to formulate a plan. Uses a descriptive model to predict what the

actions will do. Comparative to operational models, descriptive models

are more abstract. Planning can be difficult because building extremely

comprehensive prediction models is frequently too complex. Descriptive

models are useful at higher levels of a deliberative hierarchy because they

abstract away the details and focus on an action's fundamental impacts.

Additionally, since these models need information that was not known at

the time of planning, abstraction is required. Furthermore, reasoning with

intricate models is extremely computationally challenging.

3.4 Refinement Acting Engine

Actors refer to the agents that are responsible for completing the

tasks. Based on the dependencies defined in the HTN planner structure by

the refinement, RAE assumes always methods prioritizing the refinement

of tasks using the first method over the others. However, if this method

fails, it can be replaced by the following methods, depending on the

priorities and their order. It is possible that the other methods are superior

to the first one.

45

Chapter Three Proposed Methodology

As a solution, we proposed incorporating the Dijkstra algorithm

along with the refinement engine in the operational model to evaluate the

available methods and select the best suited for the given tasks. One

distinguishing feature of this Dijkstra algorithm enable to identify the

source node (i.e., the first method associated with the task) and compare

it to other nodes to determine the best among them. For instance, when

moving from one location to another, there may be multiple safe routes to

reach a specific point to accomplish the task. However, by incorporating

this algorithm, it selects the most efficient path among them. Figure (3.4)

below demonstrates that there are multiple methods to access the same

procedure and to choose the best of these.

Figure 3.4: Refinement tree for task using differ methods.

46

Chapter Three Proposed Methodology

3.5 Integration planning and acting

In order to effectively utilize planning algorithms, actors must

cooperate with planners. It is important to recognize that an actor's

environment may not be fully captured by a planning domain. Therefore,

even if a planning algorithm forecasts that a plan would be successful in

achieving a target, there may be unforeseen problems that arise during

execution, such as execution failures, unexpected events, incorrect

information, or partial information. Actors must therefore have the ability

to modify their plans in response to such problems.

To address these issues, an online planning algorithm called Run-

lazy-Lookahead can be used to facilitate interaction between planning and

acting. In this approach, (Σ, s, g) represents a planning problem, and the

algorithm incorporates modifications to enable actors to modify their

plans when necessary [53].

The run-lazy-lookahead algorithm involves calling Lookahead and

then executing the plan as far as possible. Its Simulate function is

responsible for testing whether the remainder of the plan can be executed

47

Chapter Three Proposed Methodology

correctly. It can either simply compute γ(s, π) or perform a more detailed

analysis.

However, this algorithm has some potential issues, such as waiting

too long to re-plan if execution fails or missing opportunities to replace

the plan with a better one[54].

We have made some modifications to the algorithm. As mentioned

earlier, the run-lazy-Lookahead planner's signature is (∑; s; g), whereas

the HTN planners' signatures are (S; W; O; M). In the case of hierarchical

systems, ∑ represents the planning domain, and goal g is presented in a

hierarchical task network as shown in algorithm 3.2, rather than in

sequential tasks. Hierarchical action implementation has its advantages,

as each task and its associated actions can be defined hierarchically. When

errors occur in the implementation phase of a specific procedure, it is

possible to track this procedure using the tracking algorithm and deal with

the sub-tree associated with it.

Algorithm 3.1: Refinement Algorithm.

1. I simplified the observed state.

2. N refine (∑, I, N) //N is task network

3. If N =fail

4. Return fails

5. π accessibility to simple activities (actions) by DFS (N).

6. while π != empty and simulate (∑, I, N) != fail do

7. a pop-first-action in π

8. execute(a)

9. I simplified the observed state.

10. If π != empty then

11. N Un-refine (N, a)

12. N, a backtrack (N, a)

13. Else

14. Break

https://www.google.com/search?lei=aGtnZOWyKo6pxc8Plo6b4Ac&q=%E2%88%91%20%D9%85%D8%B9%D9%86%D9%89&ved=2ahUKEwjlhrn1sIH_AhWOVPEDHRbHBnwQsKwBKAF6BAhKEAI
https://www.google.com/search?lei=aGtnZOWyKo6pxc8Plo6b4Ac&q=%E2%88%91%20%D9%85%D8%B9%D9%86%D9%89&ved=2ahUKEwjlhrn1sIH_AhWOVPEDHRbHBnwQsKwBKAF6BAhKEAI

48

Chapter Three Proposed Methodology

The Refinement algorithm outlines a refinement process for hierarchical

task networks (HTNs) in the context of planning and task execution.

Here's an explanation of the steps involved:

1: Simplify the observed state (I): This step involves reducing the

complexity of the current observed state to a more manageable

representation. It helps in focusing on the relevant information for

planning and decision-making.

2: Refine (∑, I, N): The algorithm takes as input the refined HTN (N), the

simplified observed state (I), and the initial state (∑). The refinement

process aims to decompose the high-level tasks in the HTN into more

detailed sub-tasks.

3: If N = fail: If the refinement of the HTN fails, indicating that the task

cannot be further decomposed or refined, the algorithm returns a failure.

4: Return fails: If the refinement fails, the algorithm terminates and reports

failure.

5: Accessibility to simple activities (actions) by DFS (N): This step

determines the accessibility of simple activities or actions within the

refined HTN. It employs a depth-first search (DFS) to traverse the HTN

and identify the available actions that can be executed.

6: While Π is not empty and simulate (∑, I, N) is not fail do: This loop

executes as long as there are remaining actions (π) and simulating the

execution of the HTN (simulate (∑, I, N)) does not result in failure.

49

Chapter Three Proposed Methodology

7: Pop the first action in Π (a): The algorithm selects and removes the first

action from the list of remaining actions (π).

8: Execute(a): The selected action (a) is executed, potentially involving

interactions with the environment or other agents.

9: Simplify the observed state (I): After executing the action, the observed

state is simplified to reflect any changes resulting from the action

execution.

10: If π is not empty then: If there are remaining actions (π) in the list,

indicating more tasks to be executed.

11: Un-refine (N, a): This step involves undoing the refinement of the

HTN (N) related to the executed action (a), reverting the task structure to

a previous state.

12: Backtrack (N, a): The algorithm backtracks to a previous point in the

HTN (N) where the executed action (a) was selected, potentially exploring

alternative paths or options.

13: Else: If there are no remaining actions in π, indicating that all tasks

have been completed.

14: Break: The algorithm breaks out of the loop, indicating successful

completion of the refined HTN and task execution.

Overall, this algorithm iteratively refines and executes an HTN, handling

failures, and making use of simplified observed states to guide the

50

Chapter Three Proposed Methodology

planning and execution process. It employs a depth-first search for

accessibility analysis and backtracking to explore different execution

paths when necessary.

The re-planning process is limited only to the failed action and

method associated with the task, and it is modified instead of re-planning

the entire plan. When performing tasks in a sequential manner, as is the

case in run-lazy-Lookaheads, all procedures will be sequential and re-

planning the plan, when a problem occurs in one of the procedures, the

tasks are tracked from actions last to the problem that occurs. This

procedure will be costly from the computational point of view. However,

depending on the task tree, the actions associated with this task can be

determined faster, as shown in Figure (3.5).

Figure 3.5: instance method for refinement.

The refinement algorithm runs each plan as far as possible and only

runs refinement again when a plan simulator shows that the plan will not

work as intended.

51

Chapter Three Proposed Methodology

An example in Figure (3.5) shows that opening a door depends on

whether the door turns or slides. If the simulation of the plan reveals that

it will not work correctly, the simulator should return a failure.

When the plan cannot be carried out as anticipated, the Backtrack

algorithm of an HTN planner is used to retrace the steps as utilized in (3.3)

[52].

Algorithm 3.2: Backtracking Algorithm.

1- Backtracking (N, a)

2- Mp parent of(a) //method connect actions

3- Np preorder DFs(Mp)

4- for each v reverse (Np) do //access root of sub-tree

5- Refine (v) false

6- If v is non primitive then

7- Nv Successors(v)

8- n n/N

9- return n, v

10- return root(n)

The procedure named "backtrack (N, a)" is utilized to update the

task network in case the refinement of node u fails. Backtracking in

reverse is thoroughly explained in the context of backtracking (preorder

DFS) of the task network . Figure (3.6) represents our workflow hierarchy.

52

Chapter Three Proposed Methodology

F
ig

u
re

 3
.6

:
d

ia
gr

am

re
p
re

se
nt

s
th

e
p
la

nn
in

g
an

d
 a

ct
io

n
an

d
 t

he
 c

o
m

b
in

at
io

n
b
et

w
ee

n
th

em

53

Chapter Three Proposed Methodology

3.6 Plan validation

The validation plan is a strategy that should specify what needs to

be done. It is written at the beginning of the validation project before being

created plan. In the checking stage, the actual state (calculated from the

database in system) is compared to the expected state. This comparison

aims to see if there is a contradiction between the two states that might

point to an unexpected situation. The expected state is written and

compared to what is performed by the planner from creating a plan.

Expected state = [(a_search_for_loc1), (a_move_from_base_to_loc1),

(a_localize_gate_in_loc1)] in this example the expected state is written

based on the task tree in the system in Figure (3.3) when compared to the

Plan case to see the validity and purpose of the plan: Find out if there is a

contradiction between results and expectations.

Is there a lack of information related to the results of the plan or

missing information? It is possible that if there is a deficiency, this

information resulting from the validation can be used for re-planning [50].

CHAPTER FOUR:

RESULTS AND DISCUSSION

54

Chapter Four Results and Discussion

4.1 Overview

The preceding chapters have provided a comprehensive overview

of the hierarchical system, delving into its intricacies and functionalities.

In the present chapter, we shift our focus towards the evaluation of the

system's performance and the outcomes obtained through simulations. In

this chapter, we present the results of our experiments with a system.

Sections 4.2 and 4.3 delve into the domain and tasks employed for our

experimental setup, while Section 4.4 is dedicated to the thorough

evaluation of the system.

4.2 Domestic Environment

This thesis deals with an autonomous robot intended for use in a

domestic environment, which is a type of robot designed to perform

various tasks within a household setting. These robots are capable of

navigating through the home, identifying objects, and interacting with

them. We have designed a domestic environment that includes a living

room, kitchen, bedroom, and sitting room utilization in Figure (4.1).

Figure 4.1: Domestic Environment.

55

Chapter Four Results and Discussion

4.3Domain environment

The fundamental goal of the system is to demonstrate its autonomy

by interacting with the first task and progressing to the subsequent tasks

until all tasks are completed.

4.3.1Tasks Robot

 The Navigation Task

Within the field of robotics, the process of moving a robot from one

location to another within a predefined area is an essential task. To

accomplish this, the robot must possess the ability to determine its own

position, utilize a map or have awareness of its surroundings, and make

informed decisions regarding the optimal path to the desired destination.

 Localization plays a crucial role in the capabilities of an autonomous robot

as it forms the foundation for effective decision-making. It involves

accurately determining the robot's position and orientation in relation to

its surroundings, utilizing a combination of mapping and knowledge base.

Without precise localization, the robot's ability to plan and execute tasks

effectively would be compromised.

 The move action, which includes physically moving the robot from one

place to another after taking a sequence of steps in the environment, is an

essential part of the navigation process. For the robot to get where it's

going, the move action must be completed successfully [55].

56

Chapter Four Results and Discussion

 A search task in robotics is the process of locating a certain object

or position within an environment. The robot may take extra steps

to finish the job after examining the surroundings to locate the

target. A search task's principal goal is to locate a certain target

within the supplied context. Despite the fact that they have different

focuses, search and localization activities can both be accomplished

by robots. While search tasks are concentrated on locating a specific

target within the environment, localization tasks require identifying

the robot's location within the environment[56].

 Fetching Task

 Robotics fetching jobs include a variety of actions in which the

robot collects, transports, and delivers objects to a predetermined

location. By utilizing its gripper to pick up the things, moving them to

their intended place, and setting them down appropriately, the robot

must be able to plan, carry out, and interact with its environment [57].

 In robotics, a pickup job comprises a robot using a gripper to grab

or capture an item. In order to pick up an object, the robot may need to

execute a number of smaller tasks, including object detection,

localization, grasp planning, and grip execution.

 Additionally, touching can be a crucial component of the fetching

process since it allows the robot to detect the existence or characteristics

of an object [58].

The sequential completion of the following tasks is required by the

automated system:

1- The robot is assigned a set of tasks and starts from the entry hall,

with the first one being to navigate to the kitchen. This task is divided

57

Chapter Four Results and Discussion

into sub-tasks, starting with searching for the kitchen using the "search"

instruction. Once the location of the kitchen is known, the robot uses the

"move" instruction to reach it,

2- Utilizing "localization" techniques to ascertain the robot's position,

the Dijkstra algorithm was employed to calculate the optimal path,

specifically the shortest distance route from the entry hall to kitchen. If

the distance to the kitchen is 3 meters and the distance to an alternative

location is 6 meters, the optimal path" to cross gate "between the two is

chosen. The other part of the task is to locate the refrigerator, which is

done using "localization" after the robot arrives in the kitchen, A sequence

of procedures is then performed, beginning with the "open" instruction to

open the refrigerator door, followed by "localization" to identify the

location of the mug, and finally "fetch process" through "pick up" actions

to take the mug using the robot arm. This completes the first task.

3- To navigate to the second location, the robot executes the "search"

command to determine the location. It then uses the existing knowledge

base and house map to navigate to the living room, which it does by

executing a series of sub-tasks. Once the robot arrives at the living room

by "move" instruction, it inspects the door and determines the type of lock

it "slid" or "turn". It then searches for the table food by executing the

"localization" procedure and places the mug on the table by executing the

"drop" command, thus completing its second task. The robot uses the

Dijkstra algorithm to find the optimal path to access the living room.

4- Following the completion of the second task, the robot proceeds to

the next task by searching for the bedroom and moving towards it using

the "search" and "move" commands based on a Dijkstra algorithm that

determines the optimal path. Upon reaching the bedroom, the robot

58

Chapter Four Results and Discussion

This study employed a planning domain that involved 20 primitive

task operators and 23 task refining techniques for dealing with 16 non-

primitive, which allowed us to obtain an integrated plan in our system

Figure (4.2) is used to display the results.

Figure 4.2: system implementation result.

4.4 Feature HTN Planning

We compared the system with the previous system in order to

assess its limitations and advantages:

GTPyhop is a Python-based automated planning system that

utilizes hierarchical planning techniques to generate action plans for tasks

and goals[59]. It extends Pyhop to encompass goal planning in addition to

task planning, incorporating aspects of HTN planning from Pyhop and

SHOP[6].

59

Chapter Four Results and Discussion

The GTPyhop software combines planning and acting algorithms

from the Run-Lazy-Lookahead actor, but its use of recursion poses two

limitations for successful re-planning:

 Firstly, the use of recursion prevents the code from being re-

entered, meaning the only recourse for re-planning in the event of an action

failure is to reconstruct the plan by re-running the system, which may lead

to inaccurate results.

 Secondly, GTPyhop only returns the plan and not the

refinement tree, which is necessary for accurate re-planning.

Unlike HTN planners that use schema-specific languages, this

system does not have prior knowledge of the preconditions and subtasks

of its methods. It instead invokes the method directly via Python code[59].

Our experiments show that the new algorithm we developed can

improve upon the common planning and acting approach by modifying the

integration of planning and acting with the Run-Lazy-Lookahead

algorithm in two ways:

 The algorithm uses an iterative transfer tree procedure for

task refinement, with tree traversal algorithms handling refinement and

backtracking. This provides greater control over how the algorithm refines

tasks. The algorithm can process a partial task tree and provide a complete

solution task network, enabling hierarchical knowledge inclusion in the re-

planning process.

4.4 Evaluation system

Numerous tests are run in a controlled setting as part of the thesis

review to assess the effectiveness of the system is one of the assessment

metrics employed. Precision, recall, and F1-score are computed using

these numbers, giving information about the system's performance.

60

Chapter Four Results and Discussion

Precision a performance indicator called precision is used to assess how

accurately a model can identify instances of success that is

determined[60]. Precision can be expressed mathematically as:

Precision = TP / (TP + FP)

Recall, is a parameter that quantifies the completeness of a model's

positive predictions[60][61]. The mathematical formula for the recall is:

F1-score is a statistic that, by combining accuracy and recall, the formula

for calculating the F1-score is:

F1-score = 2* (Precision* Recall) / (Precision+ Recall)

calculate precision, recall, and the F1-score, we utilize The values

representing true, false positive, and true, false negative as They can be

briefly described as:

(TP) The number of elements in the intersection between the set of

occurrences where a certain action appears in the robot output and the

set of instances where the same action appears in the expected plan is

measured by the TP metric.

To understand this metric, let's break down its components:

1. Set of occurrences where a certain action appears in the robot's

output: This set consists of the instances or occurrences where a

specific action is detected or identified by the robot or the system

being evaluated. It represents the actions that the robot outputs or

recognizes during its operation.

61

Chapter Four Results and Discussion

2. Set of instances where the same action appears in the expected

plan: This set represents the instances or occurrences where the

same action is expected or intended to occur according to the

predefined or expected plan. It is a reference set that defines the

correct actions that should be performed. (Depending on the initial

environment)

The TP metric then measures the number of elements (occurrences) that

are common or shared between these two sets. In other words, it counts

how many times the robot's detected actions align with the expected

actions.

The TP metric is useful for assessing the accuracy or correctness of

action recognition or planning algorithms.

By comparing the TP metric with other evaluation metrics like False

Positive (FP) and False Negative (FN), we can get a more understanding

of the performance of the system in terms of action recognition and

planning.

TP = | {instances where robot output contains an action} ∩ {instances

where action is in expected plan}|

(FP) is the cardinality (number of actions) of the intersection between the

set of times when an action is present in the robot output and the set of

times when it is absent from the expected plan.

FP = | {instances where robot output contains an action} ∩ {instances

where action is not in expected plan}|

(TN) represents the number of actions (or cardinality) that are absent in

both the robot output and the expected plan.

62

Chapter Four Results and Discussion

 It measures the intersection between the set of instances where a

specific action is not present in the robot output and the set of instances

where the same action is not present in the expected plan.

TN = | {instances where robot output does not contain the action} ∩

{instances where the action is not in the expected plan}|

 (FN) the value of corresponds to the number of actions (or cardinality)

that are absent in the robot output but present in the expected plan. It

represents the intersection between the set of instances where a specific

 action is not present in the robot output and the set of instances where the

same action is included in the expected plan.

FN = | {instances where robot output does not contain the action} ∩

{instances where action is in expected plan}|

Figure 4.3: Displays the result of calculating metrics to evaluate Precision, Recall,
and F1-score.

63

Chapter Four Results and Discussion

Table 4.1: presents a displaying the number of actions for TP, TN, FP, FN,

Precision, Recall, and F1-score .

Num_action TP TN FP FN Precision Recall F1-score

1 2 0 0 0 1.0 1.0 1.0

2 3 0 0 0 1.0 1.0 1.0

3 3 0 0 0 1.0 1.0 1.0

4 2 0 1 1 0.66 0.66 0.66

5 3 0 0 0 1.0 1.0 1.0

6 3 0 0 0 1.0 1.0 1.0

7 3 0 0 0 1.0 1.0 1.0

8 3 0 0 0 1.0 1.0 1.0

9 2 0 0 0 1.0 1.0 1.0

10 3 0 0 0 1.0 1.0 1.0

11 3 0 0 0 1.0 1.0 1.0

12 2 0 1 1 0.66 0.66 0.66

13 2 0 0 0 1.0 1.0 1.0

14 3 0 0 0 1.0 1.0 1.0

15 3 0 0 0 1.0 1.0 1.0

16 2 0 0 0 1.0 1.0 1.0

17 2 0 0 0 1.0 1.0 1.0

18 3 0 0 0 1.0 1.0 1.0

19 3 0 0 0 1.0 1.0 1.0

20 2 0 1 1 0.66 0.66 0.66

The table indicates that the system achieved a precision value of

approximately 94.9%, a recall value of approximately 94.9%, and an F1-

score of approximately 94.79%.

CHAPTER FIVE:

CONCLUSIONS AND FUTURE WORK

64

Chapter Five Conclusion and Future Works

5.1 Overview

 This chapter provides a conclusion on the research phases and

objectives, as well as future work for other researchers

5.2 Conclusion

In conclusion, this section highlights the achievements and findings

of the presented thesis. The thesis focused on developing algorithms for

HTN planning, acting, and integrating planning and acting processes. The

key points discussed are as follows:

1. HTN planner and descriptive action models: The thesis proposed

an HTN planner that works in conjunction with descriptive action models

to calculate the next state during the planning process. This approach

demonstrated effective utilization and provided a foundation for further

development.

2. Operational action models: The introduction of operational

action models, represented formally, showed their successful integration

with the Refinement Acting Engine (RAE) and the Dijkstra algorithm.

This integration helped in determining optimal task approaches, leading

to improved performance.

3. Integration of planning and acting: The planning and acting

algorithm was designed hierarchically, utilizing a transit tree and

backtracking mechanisms. This design allowed for re-planning in case of

execution errors, ensuring system reliability and avoiding suboptimal

behavior.

65

Chapter Five Conclusion and Future Works

4. Experimental evaluations: The developed algorithms were

evaluated using the Python language (Spyder). The result showed that the

algorithm outperformed conventional planning and acting approaches by

providing optimal paths within the system.

5. Precision, recall, and F1-score: The system demonstrated

accurate identification of positive instances while maintaining

completeness. The precision value of 94.9%, recall value of 94.9%, and

F1-score of 94.79% highlighted the system's ability to achieve high

accuracy and completeness in its performance.

Overall, the presented thesis made significant contributions to HTN

planning and acting, showcasing the effectiveness of the proposed

algorithms in terms of system reliability, optimal performance, and

accuracy in task identification.

5.3 Limitations

It is essential to be aware of the constraints imposed by the existing

planning and action system in addition to the prospective topics for future

investigation. These restrictions offer chances for more study and

development. The system has the following limitation:

Scalability: When faced with difficult tasks or large-scale settings,

the system's performance may suffer. The planning and acting algorithms

may require extra improvement as the environment's size and complexity

rise in order to ensure efficient and successful functioning.

66

Chapter Five Conclusion and Future Works

Adaptability to Unknown environment: When operating in

Unknown or Unstructured settings, the system's performance may be

jeopardized. It mainly relies on pre-existing maps or information bases,

This constraint may be overcome by creating methods that allow the

system to dynamically adapt and learn from its surroundings in real-time.

The planning and acting system can overcome present difficulties

and grow into a more reliable, adaptive, and intelligent solution for

diverse applications in the field of robotics by addressing these constraints

via more research and development.

5.4 Future work

Two prospective topics of investigation were found to help the

research in the future.

The D* algorithm may first be integrated, making use of its

effective path-planning skills to dynamically adapt to the environment as

it changes in real-time. The system's capacity to choose the best routes

and react to changing circumstances would be improved by this

improvement.

 Second, by introducing learning strategies into the system, the

robot would be better equipped to learn new information and make better

decisions. The system may learn from previous events, see trends, and

make better judgments based on accumulated information by utilizing

machine learning techniques.

It is envisaged that the planning and acting system will continue to

develop by embracing these future developments, offering ever more

effective, adaptive, and intelligent robotic systems for various

applications.

67

REFERENCES

[1] A. Al-Moadhen, R. Qiu, M. Packianather, Z. Ji, and R. Setchi, “Integrat ing

robot task planner with common-sense knowledge base to improve the

efficiency of planning,” Procedia Comput. Sci., vol. 22, pp. 211–220, 2013,

doi: 10.1016/j.procs.2013.09.097.

[2] Ghallab, M., Nau, D., & Traverso, P. (2016). Automated Planning and Acting.

book. Cambridge, UK: Cambridge University Press.

[3] Ghallab, M., Nau, D., & Traverso, P. (2016). Automated Planning: Theory &

Practice. book. Cambridge University Press.

[4] Currie, K., & Tate, A. (1991). Oplan - The Open Planning Architecture.

Artificial Intelligence, 52, 49-86. doi: 0004-3702/91/$03.50

[5] Tate, A., Drabble, B., & Kirby, R. (year). O-Plan2: An Open Architecture for

Command, Planning, and Control. Artificial Intelligence Applications Institute,

University of Edinburgh, South Bridge, Edinburgh EH HN, United Kingdom.

1994.

 [6] Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999). SHOP: Simple

Hierarchical Ordered Planner. In Proceedings of the 16th International Joint

Conference on Artificial Intelligence (IJCAI-99) (pp. 968-973).

[7] Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman,

F. (2003). SHOP2: An HTN Planning System. Journal of Artificial Intelligence

Research, 20, 379-404.

[8] Georgievski, I., & Aiello, M. (2015). HTN planning: Overview, comparison,

and beyond. Artificial Intelligence, 222, 124-156. doi:

10.1016/j.artint.2015.02.002.

[9] Thompson, F., & Galeazzi, R. (2020). Robust mission planning for

Autonomous Marine Vehicle fleets. Robotics and Autonomous Systems, 124,

103404. doi: 10.1016/j.robot.2019.103404.

[10] Michele Colledanchise. (2017). Behavior Trees in Robotics. Doctoral Thesis.

Stockholm, Sweden: KTH Royal Institute of Technology. TRITA-CSC-A-

2017:07. ISSN-1653-5723. ISRN-KTH/CSC/A-17/07-SE. ISBN 978-91-7729-

283-8. Robotics Perception and Learning. School of Computer Science and

Communication. SE-100 44 Stockholm, Sweden. Copyright © 2017 by

Michele Colledanchise except where otherwise stated. Tryck:

68

Universitetsservice US-AB 2017.

[11] Ingrand, F., & Ghallab, M. (2014). Deliberation for autonomous robots: A

survey. Artificial Intelligence, 1(143), 1-35. doi:10.1016/j.artint.2014.11.003

[12] Alia Karim Abdul Hassan . Robotics And Planning. 2009 Journal Nasa .

https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-

knows/what_is_robotics_k4.html

[13] D. E. Wilkins, “Domain- independent planning Representation and plan

generation,” Artif. Intell., vol. 22, no. 3, pp. 269–301, 1984, doi: 10.1016/0004-

3702(84)90053-5.

[14] M. Fox, G. Gerevini, D. Long, and I. Serina, “Plan stability: Replanning versus

plan repair,” ICAPS 2006 - Proceedings, Sixt. Int. Conf. Autom. Plan. Sched.,

vol. 2006, pp. 212–221, 2006.

[15] D. Höller, P. Bercher, G. Behnke, and S. Biundo, “On guiding search in HTN

planning with classical planning heuristics,” IJCAI Int. Jt. Conf. Artif. Intell.,

vol. 2019-Augus, pp. 6171–6175, 2019, doi: 10.24963/ijcai.2019/857.

[16] D. S. Nau, M. Ghallab, and P. Traverso, “Blended planning and acting:

Preliminary approach, research challenges,” Proc. Natl. Conf. Artif. Intell., vol.

6, pp. 4047–4051, 2015.

[17] M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated planning

and acting: A position paper,” Artif. Intell., vol. 208, no. 1, pp. 1–17, , doi:

10.1016/j.artint.2013.11.002.

[18] C. da Costa Pereira and A. G. B. Tettamanzi, “Reasoning about actions with

imprecise and incomplete state descriptions,” Fuzzy Sets Syst., vol. 160, no. 10,

pp. 1383–1401, 2009, doi: 10.1016/j.fss.2008.11.019.

[19] A. A. Al Moadhen, A. M. Abdulhussein, and H. G. Kamil, “Planning and acting

framework under robot operating system,” IOP Conf. Ser. Mater. Sci. Eng., vol.

433, no. 1, 2018, doi: 10.1088/1757-899X/433/1/012090.

[20] M. Plan, “HAMILTON GARDENS OPERATIVE,” 2014.

[21] P.Haslum, N.Lipovetzky, , D.Magazzeni, and C.Muise. Title: An Introduction

to the Planning Domain Definition Language. 2019 DOI

10.2200/S00900ED2V01Y201902AIM042

[22] R. E. Fikes and N. J. Nilsson. "STRIPS: A New Approach to the Applicat ion

of Theorem Proving to Problem Solving" Journal: Artificial Intelligence.

1971.Publisher: North-Holland Publishing Company Copyright: © 1971 by

North-Holland Publishing Company

69

[23] M. Ghallab, A. Howe, C. Knoblock, I.D. McDermott A. Ram, M. Veloso D.

Weld, and D. Wilkins. PDDL | The Planning Domain Defnition Language.

journal: Tech Report CVC TR-98-003/DCS TR-1165, 1998.

[24] N. Lipovetzky. " Structure and Inference In Classical Planning" 2014 ISBN

978-1-31-246621-0. Published by AI Access.

[25] S. Patra, J. Mason, M. Ghallab, D. Nau, and P. Traverso, “Deliberative Acting,

Online Planning and Learning with Hierarchical Operational Models,” Oct.

2020, doi: 10.1016/j.artint.2021.103523.

[26] Alford, R., Shivashankar, V., Kuter, U., & Nau, D. (2012). HTN Problem

Spaces: Structure, Algorithms, Termination. In Proceedings of the Twenty-

Sixth AAAI Conference on Artificial Intelligence (AAAI-12), 1475-1481.

[27] R. Alford, V. Shivashankar, M. Roberts, J. Frank, and D. W. 2016 Aha,

“Hierarchical planning: Relating task and goal decomposition with task

sharing,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, pp. 3022–3028,

2016.

[28] B. Hayes and B. Scassellati, “Autonomously constructing hierarchical task

networks for planning and human-robot collaboration,” Proc. - IEEE Int. Conf.

Robot. Autom., vol. 2016-June, pp. 5469–5476, 2016, doi:

10.1109/ICRA.2016.7487760.

[29] S. Stock, M. Mansouri, F. Pecora, and J. Hertzberg, “Online task merging with

a hierarchical hybrid task planner for mobile service robots,” IEEE Int. Conf.

Intell. Robot. Syst., vol. 2015-Decem, pp. 6459–6464, 2015, doi:

10.1109/IROS.2015.7354300.

[30] S. Patra, J. Mason, M. Ghallab, D. Nau, and P. Traverso, “Deliberative acting,

planning and learning with hierarchical operational models,” Artif. Intell., vol.

299, pp. 1–68, 2021, doi: 10.1016/j.artint.2021.103523.

[31] M. A. Javaid, “Understanding Dijkstra Algorithm,” SSRN Electron. J., no.

January 2013, 2013, doi: 10.2139/ssrn.2340905.

[32] L. S. Liu et al., “Path Planning for Smart Car Based on Dijkstra Algorithm and

Dynamic Window Approach,” Wirel. Commun. Mob. Comput., vol. 2021,

2021, doi: 10.1155/2021/8881684.

[33] J. Orkin, “Three states and a plan: the AI of FEAR,” Game Dev. Conf., vol.

2006, doi=10.1.1.92.8551&rep=rep1&type=pdf

[34] R. P. Goldman and U. Kuter, “Hierarchical Task Network Planning in Common

Lisp: the case of SHOP3,” (2019), doi:10.5281.

70

[35] V. Shivashankar, U. Kuter, D. Nau, and R. Alford, “A Hierarchical Goal-Based

Formalism and Algorithm for Single-Agent Planning,” Proceedings of the 11th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June,

4–8, 2012, Valencia, Spain.

[36] S. Patra, J. Mason, A. Kumar, M. Ghallab, P. Traverso, and D. Nau,

“Integrating Acting, Planning, and Learning in Hierarchical Operational

Models,” 2020. University of Maryland, College Park, MD 20742, USA

2LAAS-CNRS, 31077, Toulouse,.

[37] S. Patra, M. Ghallab, D. Nau, and P. Traverso, “APE: An Acting and Planning

Engine,” 2018. HAL Id: hal-01959098

[38] F. Fklix Ingrand, R. Chatila, R. ABami, and dQic Robert, “PRS: A High Level

Supervision and1 Control Language for Autonomous Mobile Robots,” ,

International Conference on Robotics and Automation Minneapolis. Minnesota

- April 1996

[39] S. Patra, M. Ghallab, D. Nau, and P. Traverso, “Using Operational Models to

Integrate Acting and Planning,” 2018. ICAPS Workshop on Integrated

Planning, Acting and Execution, Jun 2018, Delft, Netherlands. hal-01959118

[40] D. S. Nau, M. Ghallab, and P. Traverso, “Blended Planning and Acting:

Preliminary Approach, Research Challenges.” (2015) [Online]. Availab le :

www.aaai.org

[41] V. Alcázar, M. Veloso, and D. Borrajo, “Adapting a rapidly-exploring random

tree for automated planning,” Proc. 4th Annu. Symp. Comb. Search, SoCS 2011,

pp. 2–9, 2011.

[42] D. J. Musliner, M. J. S. Pelican, K. D. Krebsbach, R. P. Goldman, and E. H.

Durfee, “The evolution of CIRCA, a theory-based AI architecture with real-

time performance guarantees,” AAAI Spring Symp. - Tech. Rep., vol. SS-08-02,

pp. 43–48, 2008.

[43] A. Menif, É. Jacopin, and T. Cazenave, “SHPE: HTN planning for video

games,” Commun. Comput. Inf. Sci., vol. 504, no. 2011, pp. 119–132, 2014,

doi: 10.1007/978-3-319-14923-3.

[44] A. Coles, A. Coles, M. Fox, and D. Long, “COLIN: Planning with continuous

linear numeric change,” J. Artif. Intell. Res., vol. 44, pp. 1–96, 2012, doi:

10.1613/jair.3608.

[45] S. Fratini, A. Cesta, R. De Benedictis, A. Orlandini, and R. Rasconi, “APSI-

71

based deliberation in Goal Oriented Autonomous Controllers,” 11th Symp. Adv.

Sp. Technol. Robot. Autom., 2011.

[46] R. Lallement et al., “HATP : Hierarchical Agent-based Task Planner To cite

this version : HAL Id : hal-01944178 HATP : Hierarchical Agent-based Task

Planner,” 2018.

[47] J. Wolfe, B. Marthi, and S. Russell, “Combined task and motion planning for

mobile manipulation,” ICAPS 2010 - Proc. 20th Int. Conf. Autom. Plan. Sched.,

pp. 254–257, 2010, doi: 10.1609/icaps.v20i1.13436.

[48] W. Yuan, H. Munoz-Avila, V. Gogineni, S. Kondrakunta, M. Cox, and L. He,

“Task Modifiers for HTN Planning and Acting,” Proc. Ninth Annu. Conf. Adv.

Cogn. Syst., no. 2016, pp. 1–13, 2021.

[49] X. Neufeld, S. Mostaghim, D. L. Sancho-Pradel, and S. Brand, “Building a

planner: A survey of planning systems used in commercial video games,” IEEE

Trans. Games, vol. 11, no. 2, pp. 91–108, 2019, doi:

10.1109/TG.2017.2782846.

[50] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and

expressivity,” Proc. Natl. Conf. Artif. Intell., vol. 2, pp. 1123–1128, 1994.

[51] R. Alford, U. Kuter, and D. Nau, '' Translating HTNs to PDDL : A Small

Amount of Domain Knowledge Can Go a Long Way ''2004. University of

Maryland, College Park, Maryland 20742, USA.

[52] S. J. Russell and P. Norvig, Solving problems by searching.Book. 2016.

[53] M. Ghallab, D. Nau, P. Traverso, I. LAAS-CNRS, University of Toulouse,

France, University of Maryland, USA, FBK ICT IRST, Trento, and Manuscript,

“Automated Planning and Acting,” Autom. Plan. Act., pp. 1–354, 2016, doi:

10.1017/CBO9781139583923.

[54] M. Ghallab, D. Nau, and P. Traverso, “Deliberation in Planning and Acting

Automated Planning and Acting Deliberation in Planning and Acting Part 2:

Refinement Models.” June 22, 2017.

[55] E. T. H. Library, “A robot using a modular navigation system,” 2002.

[56] R. Siegwart and I. Nourbakhsh, “Mobile Robot Localization,” Robot., pp. 159–

230, 2011.

[57] A. Bouguerra, “Robust Execution of Robot Task-Plans A Knowledge-based

Approach.” Publisher: Örebro University 2008 issn 1650-8580

isbn 978-91-7668-610-2

[58] A. Bhalerao, K. Chopade, P. Doifode, and J. Gaikwad, “Pick and Place Robotic

72

ARM using PLC,” Publisher by: (IJERT) ISSN: 2278-0181

Vol. 8 Issue 08, August-2019

[59] D. Nau, Y. Bansod, S. Patra, M. Roberts, and R. Li, “GTPyhop: A Hierarchica l

Goal+Task Planner Implemented in Python.”(2021) Published ICSPS

[60] D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation,” no. May, 2020, doi: 10.9735/2229-

3981.

[61] H. Dalianis, “Evaluation Metrics and Evaluation,” Clin. Text Min., no. 1967,

pp. 45–53, 2018, doi: 10.1007/978-3-319-78503-5_6.

ةص لاخ ال

لطالما استخدم البشر الأطر الهرمية لتنظيم أفكارهم حول المشكلات المعقدة. .

تطبيقات الذكاء الاصطناعي إنشاء عوامل ذكية تقسم المشكلات الصعبة إلى طبقات يتضمن أحد

أداء (HTN) من التجريد ، وتبسيط عملية حل المشكلات. يتيح لنا هيكل شبكة المهام الهرمية

 .مثل هذه المهام بفعالية

حلية ، مفي سياق الروبوتات المستقلة التي تعمل في بيئات مغلقة وحتمية ، مثل البيئات ال

يعد تخطيط المهام أمرًا بالغ الأهمية لتحقيق مستوى عالٍ من الدقة. لمعالجة هذا الأمر ، استخدمنا

ونماذج عمل وصفية لتحديد الحالة التالية في نظام انتقال الحالة أثناء عملية HTN مخطط

خدامها بشكل مكن استالتخطيط. لقد قدمنا تمثيلًا رسمياً لنماذج الإجراءات التشغيلية وشرحنا كيف ي

 .لتحديد أساليب المهام المثلى Dijkstra وخوارزمية (RAE) فعال مع محرك عمل الصقل

تم تصميم خوارزمية التخطيط والتنفيذ الخاصة بنا للعمل بشكل هرمي ، باستخدام شجرة

طبيق تعبور والتراجع لإعادة التخطيط في حالة حدوث أخطاء في التنفيذ. تم إيلاء اهتمام دقيق ل

 .الأسلوب لتجنب فشل النظام أو الأداء دون المستوى الأمثل

تتضمن المنهجية المستخدمة في النص معالجة تحديات تخطيط المهام التي تواجهها

الروبوتات المستقلة التي تعمل في بيئات مغلقة وحتمية ، على وجه التحديد البيئات المحلية. لتحقيق

(ونماذج HTNالمهام ، تم استخدام مخطط شبكة المهام الهرمية)مستوى عالٍ من الدقة في تنفيذ

(، RAEالإجراءات الوصفية مع تمثيل لنماذج الإجراءات التشغيلية ، ومحرك الصقل الفعال)

لتحديد نهج المهام المثلى ، يساهم الهيكل الهرمي وآليات معالجة الأخطاء Dijkstraوخوارزمية

في تحقيق إنجاز دقيق وفعال للمهام مع الحفاظ على موثوقية النظام اعتمادًا على تخطيط التكامل

وخوارزمية التمثيل التي تم تصميمها للعمل بشكل هرمي ، باستخدام شجرة العبور وخوارزمية

 التراجع.

، أوضحنا أن Python (Spyder) ل التجارب التي أجري باستخدام لغةمن خلا

الخوارزمية التي طورناها تتفوق في الأداء على نهج التخطيط والتنفيذ الشائع الاستخدام ، مما

، وقيمة استدعاء تقارب %94.9يوفر المسار الأمثل داخل النظام. أظهرت النتائج دقة تقارب

. تثب هذه النتائج فعالية نهجنا في تحسين عملية التخطيط ،%94.79تقارب F1 ودرجة ،94.9%

 .والتنفيذ

 عنوان الرسالة

Save translation

تطوير نموذج تمثيل هرمي موحد للتخطيط والعمل في

 المستقلةالروبوتات

 رسالة ماجستير
جامعة كربلاء وهي جزء من متطلبات / مقدمة الى مجلس كلية علوم الحاسوب وتكنولوجيا المعلومات

 نيل درجة الماجستير في علوم الحاسوب

 كتبت بواسطة

زينب عباس فاضل

بإشــراف

 احمد الهادي عبد أحمد م. د.أ.

 م 2023 ه 1444

 جامعة كربلاء

 كلية علوم الحاسوب وتكنولوجيا المعلومات
 قسم علوم الحاسوب

