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Abstract 

Underwater object detection plays a crucial role in various applications 

such as marine exploration, environmental monitoring, and underwater 

robotics. This thesis presents a proposed approach to address the challenges of 

underwater object detection, utilizing the Semantic Segmentation of 

Underwater Imagery (SUIM) dataset. The focus is on developing a finely tuned 

fully-convolutional encoder-decoder model that balances detection 

performance and computational efficiency. The unique challenges of 

underwater surveillance and exploration, including poor visibility and varying 

environmental conditions, underscore the need for specialized solutions. 

Semantic segmentation plays a crucial role in this approach, enhancing the 

model's ability to detect and classify objects accurately beneath the water's 

surface. 

The proposed model architecture leverages a fully-convolutional 

encoder-decoder network based on the VGG-16 model to extract complex 

spatial information from underwater scenes. The network uses a resize 

operation to match the input and output sizes, which helps to preserve the spatial 

resolution and avoid information loss. This network keeps both global and local 

features, which helps to detect objects in different underwater conditions. To 

enhance the visual fidelity of the detected objects, the model employs the 

Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) to 

improve the clarity of low-resolution underwater images. 

To further refine the detection results, morphological operations are 

employed to remove small artifacts and noise from the predictions, resulting in 

more accurate and visually coherent object boundaries. The integration of 

morphological operations into the detection pipeline contributes to the 

refinement of the final object localization. 
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The method is evaluated using the SUIM dataset, which contains 1525 

training images and 110 test images of underwater scenes with annotated object 

instances. To prevent overfitting and improve the generalization ability of the 

model, data augmentation techniques are applied to the training images. The 

dataset covers eight object categories: 1) Waterbody background (BW) 2) 

Human divers (HD) 3) Aquatic Plants/Flora (PF) 4) Wrecks/ruins (WR) 5) 

Robots and instruments (RO) 6) Reefs and other invertebrates (RI) 7) Fish and 

other vertebrates (FV) 8) Sea-floor and rocks (SR). The method uses only five 

categories: HD, PF, WR, RO, and FV. The method achieves an accuracy of 

88% on a pixel level, which shows the effectiveness of the method in identifying 

underwater objects under challenging conditions. 

The contributions of the proposed study extend beyond improved 

accuracy, as the model's computational efficiency is meticulously considered. 

By striking a balance between performance and computational requirements, 

the proposed approach holds promise for real-time applications, such as 

autonomous underwater vehicles and monitoring systems. The finding of this 

research contributes to the advancement of underwater object detection 

technology, with implications across various domains reliant on efficient and 

accurate underwater scene analysis. 
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CHAPTER ONE 

INTRODUCTION  



 

2 

 

1.1 Overview  

The ocean is the beating blue heart of the planet and the largest 

habitat on Earth. It covers approximately 70% of the Earth’s surface and 

holds 97% of the Earth’s water. It plays a significant foundational role in 

supporting both the environment and the economy. The environment 

produces more than half of the oxygen and absorbs most of the carbon. It 

also provides the biggest habitats for natural organisms. Sea grass 

meadows and coral reefs are the foundation of marine food chains, habitat 

provision, and nutrient cycling. If marine species (such as coral reefs and 

sea grasses) are damaged, the global climate will have largely deteriorated 

and human food resources will be largely affected. For the economy, 

maintaining the ocean ecosystem services is also important. Scientific 

ocean exploration and exploitation help to effectively manage, conserve, 

regulate, and use ocean resources. However, the understanding of the 

ocean remained limited for a long time due to scarce tools and 

technologies to explore the ocean world. Fortunately, the vision-based 

object detection technique [1, 2], as an effective way to explore the ocean, 

offers enormous potential to make exploration and exploitation more 

intelligent and efficient. 

In the past, human beings explored and exploited the ocean 

traditionally. For example, in the ocean research field, researchers try to 

quantify human impacts on fish biodiversity to preserve marine 

ecosystems. People fish by fishnet or visit the fish community by diving 

into the ocean world [3]. These quantification approaches help us to 

conduct in situ sampling of the fish community, but cannot collect 
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sufficient data and require considerable human physical resources. In 

recent years, Autonomous Underwater Vehicles (AUVs) [4, 5] and 

Remotely Operated Vehicles (ROVs) [6, 7]  equipped with intelligent 

underwater object detection systems have offered us opportunities to 

explore and protect ocean resources.  

Underwater cameras on AUVs and ROVs assist in monitoring and 

performing underwater tasks, such as capturing, surveilling, and counting 

marine organisms. These tasks require intelligent object detection 

systems, which face challenges from noisy underwater images and videos. 

As shown in Figure 1.1, researchers used an AUV with a camera system 

to collect and analyze underwater data [8]. Underwater vision-based 

applications are useful for marine ecology and management. However, 

robust object detection techniques are needed to overcome the underwater 

challenges for AUVs and ROVs [9, 10]. 

Figure 1.1 Autonomous Underwater Vehicles (AUVs) Equipped with GoPro 

Cameras (Image Source:[9]). 
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1.2 Problem Statement 

The problem of underwater object detection poses significant 

challenges due to the complex and dynamic nature of underwater 

environments which cause noise, distortion, and color changes in the 

captured images and videos. Traditional methods for object detection, 

such as segmentation, clustering, and edge detection, are not effective in 

such conditions, resulting in low accuracy and reliability. Moreover, the 

scarcity of labeled underwater data hinders the training and evaluation of 

object detection models. Therefore, there is an urgent need to develop 

advanced techniques that leverage deep learning algorithms, which can 

learn from large-scale and diverse data, to enhance the accuracy and 

efficiency of underwater object detection. 

1.3 Aim of Thesis 

This thesis aims to develop and apply deep learning algorithms for 

underwater object detection and segmentation, which can facilitate 

underwater imaging and enable various applications in underwater 

robotics, marine conservation, and underwater exploration. The specific 

objectives of the thesis are: 

1- To use a diverse underwater image dataset that covers different 

underwater conditions, such as water clarity, lighting, and species 

diversity. This dataset will be used to train and evaluate the deep 

learning algorithms, ensuring their generalization and robustness in 

real-world underwater scenarios. 
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2- To evaluate and compare different deep learning algorithms for 

underwater object detection, including single-stage and two-stage 

approaches. This analysis will reveal their advantages and 

disadvantages in the context of underwater imaging and identify the 

most suitable algorithms. 

3- To employ customized deep learning algorithms for underwater object 

detection that may involve modifying existing architectures, 

implementing training strategies, and using data augmentation 

techniques to improve accuracy, and efficiency in challenging 

underwater environments. 

4- To assess the performance of the developed deep learning algorithms 

using benchmark datasets and performance metrics. The results will be 

compared with existing methods to demonstrate their superiority in 

underwater object detection. 

1.4 Challenges of Underwater Object Detection 

The underwater environment is one of the most challenging 

conditions for object detection. Underwater object detection faces several 

challenges: 

1-  underwater images collected in the underwater scenes are of very low 

quality and contain considerable small-size objects degrading the 

accuracy of the detection frameworks [8, 9]. In underwater scenes, the 

light received by any camera suffers from wavelength-dependent light 

absorption and scattering caused by the particles in the water [10]. 
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Light absorption leads to the loss of image information and serious 

color distortion while light scattering produces haze-effects, reduces 

image contrast, and suppresses image details. Moreover, the detection 

performance has also been affected by shadow noise, non-uniform 

illumination, camera shaking, and complex background interference. 

Hence, underwater image enhancement, as the preprocessing 

procedure, is commonly used to assist underwater vision tasks. 

2- Well-annotated underwater data is not sufficient in terms of diversity 

and amount [11]. The performance of machine learning models is 

highly influenced by the size of the available datasets. For example, 

deep learning is a part of machine learning, and the established deep 

learning models trained on few training examples usually present poor 

performance, because they are likely to suffer from the over-fitting 

problem (a model fits exactly on the training data but cannot perform 

accurately on new data). For the underwater detection problem, 

previous detection frameworks have been designed and evaluated on 

underwater datasets collected under constrained conditions. The scale 

of the datasets is very small because the annotation of the underwater 

objects is extremely labor- and time-consuming. As reported in [12], 

most of the constructed underwater data has little human annotations.  

3- Current state-of-the-art detection frameworks have limited 

generalization and robustness capabilities. They cannot learn effective 

feature representation of datasets with imbalanced data distributions 

and imbalanced label noise distributions. Large-scale datasets with 

balanced and correct human annotations bring large performance 

advantages to machine learning models, however, machine learning 
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models may fail when the annotation quality of the training data cannot 

be guaranteed. 

1.5 Objectives 

The target of this work is to develop an improved Underwater 

Object Detection (UOD) and Recognition model for underwater images 

to identify prominent features and extract these foreground objects to 

analyze and investigate ocean life. The task includes the following 

objectives: 

1. Improve underwater image quality to segment underwater images 

with high accuracy. Clear edges using Image Super Resolution 

(ESRGAN) to enhance the resolution of images to enhance the contrast of 

an image.  

2. The proposed system involves employing a deep learning-based 

model that can detect underwater objects in images with high accuracy 

and efficiency.  

3. Assessing the performance of the proposed solution involves 

employing the Dice coefficient, also known as the F score, as a region 

similarity metric for quantifying the accuracy of predicted pixel labels 

when compared to the ground truth. In addition, contour accuracy through 

mean Intersection over Union (IOU) scores, which focus on the overlap 

of predicted object boundaries with the ground truth. These evaluations 

are conducted in comparison with other techniques and solutions for 

underwater image segmentation and object detection. The key distinction 
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lies in the fact that IOU scores specifically measure the overlap of object 

boundaries, while the F score evaluates overall region similarity. 

1.6 Thesis Organization 

Chapter Two: This chapter, provides a theoretical background on several 

key concepts in the field of computer vision, including machine learning, 

neural networks, and deep learning. It also provides an overview of object 

detection in computer vision, which is a fundamental task that involves 

detecting and localizing objects within images or videos. Moreover, an 

overview of ESRGAN, which is based on image enhancement techniques, 

has been presented, which utilizes generative adversarial networks to 

improve the quality and realism of images. 

Chapter three: presents a comprehensive description of the proposed 

method, along with an overview of the theoretical underpinnings of the 

different techniques employed. Additionally, this chapter outlines the 

implementation details of the SUIM datasets utilized in the study. 

Chapter four: provides an in-depth analysis of the results obtained from 

the proposed method, accompanied by a comparative evaluation of the 

assessment algorithms utilized. This chapter aims to provide a thorough 

evaluation of the performance of the proposed method in comparison to 

other state-of-the-art techniques. The evaluation metrics used to assess the 

performance of the proposed method are also discussed in this chapter. 

Chapter five: serves as a valuable summary of the research conducted in 

the thesis and provides insights into potential future research directions in 

the field of underwater object detection. 

  



 

 

CHAPTER TWO 

THEORETICAL BACKGROUND 
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2.1 Overview  

This chapter covers important theoretical concepts in the field of 

computer vision, including machine learning, neural networks, and deep 

learning. Additionally, gave a brief introduction to object detection, a 

critical task in computer vision that focuses on identifying and locating 

objects in images and videos. Furthermore, provided an overview of 

image enhancement techniques that use Enhanced Super-Resolution 

Generative Adversarial Networks (ESRGANs) to improve the quality and 

authenticity of images. 

2.2 Characteristics of Underwater Images 

In contrast to traditional photography capturing the expanse of open 

skies, underwater imagery is imbued with a vivid prevalence of blue and 

green hues. However, the formidable light attenuation within the aquatic 

medium, unlike the open air, along with a heightened diffusion of incident 

light, yields a consequential reduction in perceptibility[13]. As a result, 

objects located at significant distances from both the observer and the 

imaging apparatus, as well as those at intermediate distances, and 

sometimes even those situated closer, are hardly visible and display 

minimal contrast when compared to their immediate environment [14]. 

Furthermore, the presence of suspended particulates within the water, 

encompassing elements such as sand, plankton, and algae, engenders a 

phenomenon where incident light interplays with these particles, 

bestowing upon them reflections and distinct forms[15]. 
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2.3  Underwater Image Processing 

 In the field of underwater image processing, two crucial 

factors come into play: the inherent properties of the water medium and 

the complex behavior of light as it traverses water [16]. Understanding 

these factors is essential for effective underwater image processing, 

regardless of the application. Unlike air, water has distinct properties that 

lead to light degradation effects in captured images, setting them apart 

from airborne images [17]. This divergence affects the visual scene by 

reducing contrast, creating haze, and attenuating light. Light attenuation, 

in particular, is a primary cause of the haziness in underwater images [17, 

18]. As light travels through water, it gradually dissipates and fades, 

typically occurring at around 20 meters in clear water. In contrast, in 

turbid water, light diminishes after traveling a short distance, often less 

than 5 meters. 

 Due to light attenuation, in clear water, the visibility goes off 

after 20m at about twenty meters and in turbid water, the visibility 

vanishes at about 5 meter distance. Absorption (defusing the light energy) 

and scattering (alters the light reflection path) are major cases of the light 

attenuation process[19]. 

 The scattering and absorption effects due to the light 

attenuation process, make the underwater image quality lower, and 

underwater image visual quality is suffered in a water environment[20]. 

Light deviation from its path from an object to the camera is called 

forward scattering and generates a blurring effect on an image. In contrast, 
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some part of light reflection from the middle without reaching the object 

is called backward scattering generally limits the contrast of the images 

[21]. It results in inconsistent lighting, reduced clarity, weaker contrast, 

and color shifts towards green and blue hues. Light deviates when 

encountering objects, causing forward scattering and blurriness. 

Backward scattering occurs when light reflects without hitting an object, 

reducing image contrast [8]. 

 The light intensity gets lower as light travels in water and the 

light color components gradually disappear depending upon their 

wavelengths. Due to the shortest wavelength, the blue color penetrated 

underwater more as compared to other components of the light, making 

the underwater images bluish due to blue color light component 

dominance[22].  

 The underwater images suffer from poor quality and suffer 

from these problems: un-even lighting, poor visibility, low contrast, 

blurring, disappearing of color components (resulting in a greenish and 

bluish appearance), and noise. Due to these problems, any computer 

vision application targeting underwater images needs to rectify one or 

more issues from these [23].  

There are two different strategies to process an image. one is image 

restoration and the other is image enhancement. The details are: 

1. In image restoration, a degradation model is suggested to recover the 

poorly constructed image quality. The original image is required to 
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recover the quality of an image. These methods are reliable but they need 

many environment property values as parameters for their model. These 

parameters can be light attenuation and water turbidity diffusion 

coefficients. These parameters vary from time to time and have variable 

values. And underwater depth of the scene is also an important parameter 

and is required for this inverse modeling to restore the image quality. 

2. No prior information is required for the image enhancement method. 

This technique uses qualitative subjective criteria to enhance image 

quality. No physical model is required to produce visually pleasant images 

from the original images. This kind of scheme is not very complex and 

simpler in implementation. These are relatively better performances as 

well.[24]. 

2.3.1 Underwater Light Travelling 

Light propagation properties in the water are discussed in this 

section. When light travels in a water medium, two phenomena are 

produced, absorption and scattering. The intensity of light goes low when 

light travels in any medium and this whole process is called absorption. 

The light intensity is linearly dependent upon the medium’s index of 

refraction. The index of refraction for water is 1.33 and for air, the 

refractive index has a value of 1. The deflection of light from a straight-
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line path when propagating, is called scattering. Due to the turbidity nature 

of water, the suspending particles in water are the root cause of deflection. 

Hence, the amount of light with in water is always less than the 

amount of light over the surface of water. Therefore images obtained 

under water generally have low visual quality [25]. The scarcity of light 

under water is usually because of two unavoidable facts. One, the light 

underwater loses its true intensity, and second, the chances for a scattering 

of light within the water are quite high.  

The relationship between the decay of light intensity and light 

traveling medium is described by Lambert-Beer empirical law as the 

decay of light intensity is related to the properties of the material (through 

which the light is traveling) via an exponential dependence[26]. 

Jerlov water types are further categorized into coastal and open 

ocean waters, each of which is subdivided into specific groups. Coastal 

water types are designated as groups 1-9, while open ocean water types 

encompass groups II, III, IA, and IB. An overview of a selection of Jerlov 

water types, displaying wavelength-dependent light attenuation 

coefficients [27], [26], and [28]. 

Visible light wavelengths, including 600nm, 525nm, and 475nm, are 

frequently associated with the colors red, green, and blue, respectively. 

Figure 2.1 demonstrates that red light experiences the most significant 

attenuation[29],[27].  
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2.3.2 Image Restoration 

Image restoration is a process that operates on a poor-quality image 

and estimates the clear, original image. Image restoration operation tries 

to recover the original image f(x,y) from the noisy image g(x,y) using 

available explicit knowledge about the degradation function h(x,y) and 

the noise properties n(x,y). 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, ℎ) + 𝑛(𝑥, 𝑦)                             (2.2) 

where * expresses the convolution operator. The degradation function 

comprises the system response from the imaging system itself and the 

effects of the water medium. 

Figure 2.1 Light Attenuation Coefficients Across Jerlov Water Types - Illustrating 

how attenuation. coefficients vary with wavelengths for Jerlov water types, based on 

[42], [40], and [41]. 
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2.4 Image Segmentation 

To examine images and extract valuable data, the technique of 

image segmentation is employed. This processing method involves 

dividing an image into distinct regions, each characterized by common 

pixel attributes such as color, intensity, grayscale level, or texture. The 

core goal of segmentation is to optimize information extraction from the 

image’s regions of interest, facilitating precise object localization within 

the scene. Ultimately, image segmentation aims to accurately distinguish 

foreground objects from the background area in an image. If an image is 

denoted as “I,” the process of partitioning it into smaller components 

designated as I1, I2, I3,… In constitutes image segmentation. 

I =  I 1 ∪  I2  ∪  I3. . . . . . .∪  I𝑛                         (2.3) 

There are two main general groups of Image segmentation techniques [30, 

31](Figure 2.2):  

1. Image Segmentation Techniques based on Layers: These 

techniques segment an image based on the different layers of 

abstraction in the image. For example, the segmentation may be based 

on the edges, textures, or shapes in the image. These techniques use 

image processing algorithms such as edge detection, texture analysis, 

and blob analysis to segment the image[32]. It can be further classified 

into four subcategories: 

• Region: This method groups pixels that belong to the same 

region or object based on some homogeneity criteria, such as 

intensity, color, texture, etc. Examples of region-based 

methods are Split and Merge, Region Growing, and Graph Cut. 
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• Edge-Based: This method detects the boundaries or edges of 

objects or regions by finding the discontinuities in pixel values, 

such as gradients, derivatives, etc. Examples of edge-based 

methods are Robert, Prewitt, Sobel, Canny, LOG (Laplacian of 

Gaussian), and Zero cross. 

• Threshold Based: This method separates the foreground and 

background of an image by choosing a threshold value that 

divides the pixel values into two or more classes. Examples of 

threshold-based methods are Global Thresholding and Local 

Thresholding. 

• Cluster: This method partitions the pixels into clusters based 

on some similarity or distance measure, such as Euclidean 

distance, Mahalanobis distance, etc. Examples of cluster-based 

methods are K-Means and Fuzzy C-Means [33]. 

2. Image Segmentation Techniques based on Blocks: This type of 

segmentation divides an image into blocks or regions of fixed or 

variable size and applies some transformation or operation on each 

block. It can be classified into one category: 



 

18 

 

• Other Method: This category includes some advanced or hybrid 

methods that combine different techniques or use some 

mathematical models to segment an image. Examples of other 

methods are Watershed, ANN (Artificial Neural Network), and 

PDE (Partial Differential Equation). [32]. 

2.5 Machine learning 

Machine learning has become a predominant force in the realm of 

information technology for roughly two decades. Its primary objective 

revolves around automatically detecting patterns within data, and 

subsequently leveraging these patterns to predict future data outcomes. 

This methodology finds a significant foothold in computer vision, where 

learning algorithms play a pivotal role in various applications. Unlike 

Figure 2.2 Types of Segmentation Techniques. 
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traditional computer programs that require explicit manual coding, 

machine learning harnesses potent algorithms to solve complex problems. 

In doing so, it diminishes the need for extensive human intervention, as 

the algorithms themselves adapt and evolve[34]. An algorithm entails a 

series of instructions guiding the transformation of input into output. Over 

the years, the practicality of machine learning has burgeoned, especially 

in the face of mounting data volumes. 

Moreover, machine learning is harnessed for a broad spectrum of 

tasks, particularly in the analysis of intricate and extensive datasets. 

Examples encompass the interpretation of astronomical data, weather 

forecasting, genomic data processing, and even web search 

optimization[35-37]. This technology extends its reach to other domains 

such as mathematics, physics, statistics, and theoretical computer science, 

fostering interdisciplinary collaboration. Machine learning's significance 

lies in its inherent automation, as it engenders learning algorithms capable 

of independent operation, devoid of human intervention. 

The essence of this approach lies in the existence of conventional 

algorithms that can discern intriguing insights from vast datasets without 

necessitating custom-coded solutions. The allure of machine learning 

stems from its ability to construct its logic based on generic data input, 

eliminating the need for explicit programming. Within machine learning, 

two main types of algorithms hold prominence: supervised and 

unsupervised learning. This dual algorithmic approach underpins the 

diverse applications and potential advancements within the expansive 

realm of machine learning[38]. 
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1- Supervised algorithm 

Supervised algorithms rely on training data that has been labeled by 

humans. These algorithms learn from different instances, such as training 

images in the context of object detection, where humans have provided 

labels and locations for relevant objects. The learning algorithm then uses 

these instances to make predictions or annotations for previously unseen 

data.[37] (see figure 2.3). 

In tasks like classification, supervised algorithms are frequently used. 

For example, in object detection, credit card fraud detection, and similar 

tasks, these algorithms play a crucial role. There are primarily two types 

of supervised machine learning: regression and classification. Regression 

models are employed for predicting continuous data, like forecasting 

housing prices based on historical data and trends. On the other hand, 

classification algorithms aim to determine the correct class of new data 

based on patterns learned from the training data. 

 

Figure 2.3 Type of supervised algorithm. 
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2.6 Neural networks 

Neural networks are streamlined models inspired by the intricate 

structure of organic neuron systems. Among the many types of machine 

learning models, Neural networks stand out as a popular choice, with a 

prominent instance known as Convolutional Neural Networks (CNN).  

Neural networks are commonly used for data modeling and 

statistical analysis, often seen as an alternative to traditional nonlinear 

regression or clustering methods. These networks are designed to replicate 

human brain functionality, specifically the ability to organize basic 

constituents within neural systems to perform various computations. 

Unlike digital computers, neural networks, characterized by 

interconnected neurons, exhibit remarkable speed and parallel processing 

capacity. 

Each neuron within a neural network is connected to others via 

links, each link having an associated weight that influences the signal it 

carries. This weight either enhances or inhibits the transmitted signal, 

serving as crucial information for solving specific problems. Neurons 

possess an internal state referred to as an activation signal. The inspiration 

for artificial neurons traces back to studies on the threshold logic unit by 

Warren McCulloch and the perceptron by Frank Rosenblatt7 [39]. it's 

essential to acknowledge that while artificial neurons draw from 

biological principles, they operate as mathematical functions on 

conventional computers. In contrast, the human brain contains billions of 

neurons operating in parallel.[40]. Artificial neural networks are designed 

to solve complex problems by processing data in a nonlinear, parallel, and 

distributed manner using their fundamental building blocks, i.e., artificial 
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neurons. These networks are structured as layers, typically organized into 

input, hidden, and output layers[41-43]. 

In a feed-forward multi-layer network, fully-connected layers 

enable each neuron's output to become input for every neuron in the 

subsequent layer. While some layers process original input data, others 

integrate information from various neurons. Hidden layers, situated 

between input and output layers, play a significant role. The number of 

neurons in the previous layer equals the count of weights in each neuron. 

These structured layers, especially the hidden layers, consist of classifiers 

that contribute to the network's overall functionality. Overall, artificial 

neural networks hold the potential to tackle intricate tasks through their 

ability to process data in a parallel, distributed, and nonlinear manner.[41-

43] (see figure 2.4). 

 

Figure 2.4 Neural network multiple layers. 

Artificial Neural Networks (ANNs) and Convolutional Neural 

Networks (CNNs) serve distinct roles. ANNs are versatile and applicable 

across various domains, while CNNs are specialized for image-related 

tasks. Research papers cover a broad spectrum of applications and 

methodologies for ANNs, whereas CNN research mainly revolves around 

enhancing image-related tasks. ANNs can be shallow or deep, while 
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CNNs are inherently deep and focused on hierarchical feature learning 

from images. Recent advancements have seen ANNs incorporating 

transformers for diverse applications, and CNNs have benefited from 

transfer learning and efficient architectures. 

Activation functions are pivotal components of ANNs, responsible 

for nonlinear mappings of input data across neurons in hidden layers. 

Various activation functions are employed in intermediate layers. 

2.7 Deep Learning 

Machine learning encompasses various components and fields, 

with deep learning standing out as a particularly effective area[44]. Deep 

neural networks, a modern iteration of neural networks, are particularly 

well-suited for tasks like image recognition and detection, vital for 

applications like motion detection, facial recognition, automated driving, 

and parking systems.  

Deep learning focuses on learning hierarchical features, whereas 

higher-level features are composed of lower-level ones. It seeks to bridge 

the gap between machine learning's original goals and its current 

capabilities[44]. Deep learning is not a new concept but has gained 

prominence, especially in complex tasks like natural language processing 

and computer vision. Deep learning models, especially for object 

detection, have become exceptionally advanced. This progress is closely 

tied to deep neural networks, a major advancement in machine 

learning[45]. 

Machine learning involves various algorithms that learn from data 

to predict future events. Deep learning extends this using neural networks 
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in intricate or modified forms. It efficiently handles massive datasets and 

employs a mix of machine learning algorithms, such as Support Vector 

Machines (SVMs), to enhance performance. Deep learning leverages 

neural networks but also combines with other techniques like SVMs to 

create hybrid models. 

Deep learning involves neural networks with multiple hidden 

layers, unlike traditional neural networks as shown in Figure 2.5. 

Convolutional Neural Networks (CNNs) are especially prevalent in deep 

learning. They consist of numerous layers that sequentially process data, 

making them highly effective for tasks like image recognition. 

Essentially, a neural network comprises interconnected nodes, resembling 

the human brain's neurons, and forms intricate structures to handle 

intricate tasks. Nodes that are organized in a way like neurons in the 

human 

 

Figure 2.5 Neural networks can have many hidden layers. 

2.8 Object detection in computer vision 

Object detection is a complex task within computer vision, 

presenting challenges similar to other assignments in this field. Training 

for detection and classification occurs concurrently in various image 
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locations. Convolutional models distribute work across these locations, 

sharing computation loads. However, unlike localization tasks, object 

detection requires accounting for a background class when no object is 

present. Both classifying and locating image regions contribute to the 

challenge of identifying objects. Successful object detection involves 

understanding how to segment images and determine object locations. 

Recognizing an object's location aids in understanding its shape while 

understanding an object's shape assists in pinpointing its location [46]. For 

instance, features that appear distinct, such as a person's face and attire, 

might constitute parts of the same object. Nonetheless, comprehending the 

object's identity remains difficult without first recognizing the object 

itself. 

2.8.1 Underwater Object Detection Based on Object 

Characteristics 

Previous research using traditional techniques was employed to 

detect underwater objects, utilizing algorithms that focused on identifying 

contours, shapes, colors, or a fusion of these aspects to determine the 

presence of objects in images and classify them.   

The proposed approach taken in [47] for object detection 

underwater follows a specific approach. Initially, it determines whether 

an object is present in an image by employing color segmentation. This is 

possible due to the controlled environment of fish imagery within a box 

with a known blue background and uniform illumination. The object, in 

this case, refers to fish. By subtracting the red channel from the blue 

channel and considering that fish object pixels have lower blue and higher 
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red channel values, a mask is generated. This mask designates object 

pixels with a value of one and background pixels with a value of zero. 

Once the presence of an object is established, the approach 

proceeds to extract its contour using the derived mask information. The 

contour is then simplified through data reduction, reducing it to, for 

instance, 40 points. Analyzing the normalized length and turn angle 

between these points aids in identifying whether the object is a fish or not. 

If it is indeed a fish, the tracking process begins, and its species is 

identified. Species identification involves assessing landmark points on 

the fish and utilizing Turn Angle Distribution Analysis (TADA). This 

performance metric achieved an accuracy of 73.3% with a dataset of 300 

fish images encompassing six species.  

Although this approach was advanced for its time and yielded 

promising outcomes due to the controlled environment with optimal 

lighting conditions, it possesses limitations. It is constrained by its 

reliance on a specialized setup and its inability to handle scenarios where 

fish are partially occluded, bent, or subjected to shadows, which often 

leads to erroneous object detection in real-world settings. 

2.8.2 Underwater Object Detection Based on Deep Learning 

Deep learning has revolutionized object detection, making it more 

applicable to real-life scenarios. The approach proposed in [47] was 

limited by its specific setup and lacked real-world suitability. Deep 

learning has overcome these limitations by autonomously learning from 

labeled datasets, enabling object identification in diverse positions and 

enhancing real-life usability.  



 

27 

 

H. Qin [48] adopted a deep learning approach for fish detection and 

classification. Although designed for underwater imagery, this approach 

utilized a series of steps. It began with foreground extraction to enhance 

object detection. Subsequently, the enhanced images were fed into a 

Convolutional Neural Network (CNN) comprising two convolutional 

layers with distinct kernel sizes. The output of these layers underwent 

feature pooling and spatial pyramid pooling, facilitating object 

recognition across different poses. The final classification was achieved 

through a classifier layer utilizing Support Vector Machines (SVM). The 

Fish for Knowledge (F4K) dataset, containing 22,370 images of 23 fish 

species, was utilized. Despite using a relatively less complex network, this 

method achieved an accuracy of 98.57%.  

However, there are also some limitations. Foreground extraction 

had real-world constraints due to the presence of non-fish objects. 

Furthermore, the dataset contained images with varying resolutions, 

standardized to 47*47 pixels, and this approach would require a deeper 

network for higher resolutions, impacting processing time. Additionally, 

species were unevenly distributed in the dataset, with some having 

significantly fewer images. The absence of underwater-specific image 

enhancement in the dataset raised concerns about its robustness for real-

life object detection in underwater environments with lower image 

quality.  

H. Huang [49], employs another approach, involving a deep 

learning object detection algorithm called Fast R-CNN. The dataset was 

compiled from the F4K video repository, featuring 12 fish species and a 

more balanced image distribution compared to [48]. Training used 
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Stochastic Gradient Descent (SGD). Various experiments were conducted 

using different algorithms like R-CNN, Fast R-CNN, and Fast R-CNN 

with Singular Value Decomposition (SVD). Processing times per image 

were 24.945, 0.311, and 0.273 seconds, respectively, with mean Average 

Precision (mAP) values of 81.2%, 81.4%, and 78.9%. However, this 

approach's limitation lies in the dataset's selection of well-lit and well-

posed fish images, lacking digital image processing tailored for 

underwater conditions. As a result, its performance might decrease when 

applied to real-world underwater imagery. 

2.9 Overview of ESRGAN-based image enhancement 

techniques 

Enhancing the accuracy and effectiveness of underwater object 

detection is a pivotal challenge in marine research, environmental 

monitoring, and underwater robotics. In recent years, the emergence of 

Enhanced Super-Resolution Generative Adversarial Networks 

(ESRGAN) has offered a promising avenue to address this challenge and 

elevate the quality of underwater object detection[50]. ESRGAN-based 

techniques introduce an innovative approach that centers on improving 

the visual quality of underwater images, specifically focusing on 

upscaling low-resolution underwater frames while simultaneously 

preserving and enhancing vital object details[51].  

This section explores the foundational concepts, architectural 

adaptations, key enhancements, and practical implications of ESRGAN-

based techniques for enhancing underwater object detection (see figure 

2.6). 
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The architectural design of ESRGAN is strategically adapted to the 

unique challenges posed by underwater imagery, where limited visibility, 

scattering, and distortion prevail. ESRGAN's core comprises a generator-

discriminator pair that collaborates to enhance the quality of underwater 

images, with a direct impact on object detection accuracy[52]. The 

generator, fine-tuned for underwater data characteristics, strives to 

generate high-resolution underwater images that not only exhibit 

improved visibility but also emphasize object features crucial for accurate 

detection. The discriminator, in turn, evaluates the generated images 

against real high-resolution underwater data, fostering a dynamic 

adversarial training process. This interplay compels the generator to 

assimilate intricate underwater object characteristics, inherently enriching 

the quality of object detection[53]. 

Figure 2.6 Super-Resolution Results (×4) - ESRGAN vs. Ground-Truth[50]. 
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In the specific context of underwater object detection, the practical 

applications of ESRGAN-based techniques are substantial. These 

applications collectively underscore the potential of ESRGAN-based 

techniques to redefine the accuracy and scope of underwater object 

detection, advancing fields dependent on reliable underwater object 

analysis [52](see figure 2.7). 

As the fields of deep learning and underwater imaging progress, 

ESRGAN-based techniques hold promise for further advancements in 

object detection accuracy. Future trajectories could encompass refining 

architectural configurations to better account for underwater conditions, 

formulating tailored loss functions that incorporate object-specific 

attributes, or optimizing training strategies for specific detection 

Figure 2.7 Image Comparison Between Input Images, Real-ESRGAN 

Outputs, Fine-Tuned Real-ESRGAN Outputs, and Original Images. 
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scenarios. The trajectory of ESRGAN-based image enhancement 

techniques for underwater object detection signifies a trajectory of 

continuous innovation and exploration, bearing implications that extend 

beyond conventional object detection methods [54]. 

2.10 Performance Metrics 

Performance Metrics. To evaluate the performance of the proposed 

underwater object detection model, two commonly used metrics are 

adopted: F-measure and Intersection over Union (IoU). 

F-measure is a harmonic mean of precision and recall, which 

balances the trade-off between them. The evaluation metrics of the object 

detection model first need to classify the recognition results into four 

categories according to the true labels: TP is the true positive, TN is the 

true negative, FP is the false positive, and FN is the false negative. The 

above four categories can be used to calculate the precision and recall of 

the model. The formula for calculating the precision is shown in Equation 

(2.1) [55], the formula for calculating the recall is specified in Equation 

(2.2) [55], and the formula for the F1 score is defined in Equation (2.3) 

[56], In Equation (2.1), P is a precision rate, and R is a recall rate. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
TP

𝑇𝑃+𝐹𝑃
                                                    (2.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
TP

𝑇𝑃+𝐹𝑁
                                                    (2.2) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃×𝑅

𝑃+𝑅
                                                    (2.3) 
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IoU measures the degree of overlap between the predicted 

bounding box and the ground truth bounding box. It is defined as the ratio 

of the area of the intersection and the area of the union of the two boxes. 

IoU is calculated as equation (2.4)[57]: 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
                              (2.4) 

A higher IoU value indicates a better alignment between the 

predicted and the ground truth boxes. A common threshold for IoU is 0.5, 

meaning that the predicted box should cover at least half of the ground 

truth box to be considered a correct detection. 

2.11  Related Work 

Machine learning algorithms have been employed in underwater 

recognition and detection tasks for a long history. The traditional machine 

learning approaches designed hand-crafted features for underwater object 

detection. Some of them selected shape, color, or texture features. For 

example, Beijbom et al. [12] extracted texture and color features and 

exploited a Support Vector Machine (SVM) as the classifier to detect the 

underwater corals of multiple scales. Kim et al. [58] proposed an 

underwater object detection method based on multi-template object 

selection and color-based image segmentation. Chuang et al. [59] 

extracted texture features using phase Fourier transform for detecting 

fishes. Several machine learning algorithms employed more complex 

features such as Scale-Invariant Feature Transform (SIFT) [60], 
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Histogram of Oriented Gradients (HOG) [61], or Shape Context (SC) 

[62]. 

In certain cases, carefully selected hand-crafted features have 

demonstrated strong performance when applied to specific underwater 

objects or datasets. However, these methods can falter when introduced 

to new datasets. The limitations of hand-crafted feature-based approaches 

are twofold:  

First, they tend to be task-specific and lack the flexibility to 

generalize effectively. Features tailored for addressing low-light 

conditions may not be suitable for well-illuminated underwater scenes. 

Additionally, significant changes in the objects to be detected can render 

these hand-crafted features inadequate for the new detection task. 

Second, the hand-crafted feature extraction and classifier 

development processes are typically designed independently. This 

disjointed approach can result in a misalignment between the extracted 

features and the classifier's requirements, ultimately leading to suboptimal 

classification performance. For example, Villon et al. [61] first extracted 

the Histogram of Oriented Gradients (HOG) features from the underwater 

images, and then they employed the Support Vector Machine (SVM) as 

the classifier for fish classification[48]. The performance of this 

HOG+SVM framework lags far behind the end-to-end deep learning 

framework [61]. Moreover, it takes considerable experience to propose 

and valid an effective hand-crafted feature. On the other hand, supervised 

deep learning algorithms can automatically extract features from big data. 

Deep learning is a specialized subset of machine learning. A deep 

learning model uses a layered structure to analyze data, and its layered 
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structure is inspired by the biological network of neurons in the human 

brain, which can learn and discriminate knowledge from big data [44]. A 

good deep learning model requires lots of training data, from which it 

extracts useful and discriminate features. The biggest difference between 

traditional machine learning and deep learning algorithms is that deep 

learning requires fewer human interventions. The traditional machine 

learning models are trained to simulate specific functions or carry out 

specific tasks. When the tasks have changed, they need some human 

intervention to some degree, human experts have to step in and adjust the 

used features or classifiers. On the other hand, deep learning architectures 

can effectively learn features from the input data with less human 

intervention. 

Contributing to large amounts of training data, deep learning 

networks have shown promising performance in various computer vision 

and image understanding tasks. For example, convolutional neural 

networks pre-trained on the large-scale data set ImageNet [63] have 

achieved unprecedented successes in image classification, image 

segmentation, object detection, tracking, and so on. Moreover, deep 

learning has also been widely deployed in underwater object detection. 

Choi [64] applied a convolutional neural network (CNN) to classify fish 

species, while Villon et al. [61] employed a deep learning model to detect 

coral reef fishes. Li et al. [65] directly exploited the commonly used 

general object detection framework Fast-RCNN to detect fish species, 

lately, they applied the faster detection framework Faster-RCNN [66] to 

accelerate fish detection. To meet the real-time detection requirements, 

Yang et al. [67] applied the real-time detection framework YOLOv3 [68] 
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for underwater object detection. Even though deep learning detection 

models show large advantages over traditional machine learning detection 

models, they still cannot handle noisy data and the class imbalance 

problem. Deep learning models cannot effectively detect small objects in 

some cases, leading to high false positives and false negatives. Hence, 

efforts are still needed to handle challenging problems in deep learning-

based underwater object detection. 

The researchers in [69] study have introduced SUIM, the first 

extensive dataset for underwater image semantic segmentation, 

comprising over 1500 images with pixel-level annotations spanning eight 

categories. These images were collected during oceanic expeditions and 

human-robot collaborations, and annotated by humans. Additionally, the 

researchers provide a benchmark evaluation of the latest semantic 

segmentation techniques and introduce SUIM-Net, a computational 

model that balances performance and efficiency, catering to the needs of 

visually-guided underwater robots. SUIM-Net shows promising results in 

various applications, offering exciting avenues for future research in 

underwater robot vision. 
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CHAPTER THREE 

PROPOSED METHODOLOGY  
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3.1 Overview  

This chapter proposes a proposed method for semantic 

segmentation of underwater imagery, which aims to identify and label 

different objects in the subaquatic scenes. The method consists of the 

following steps: First, the SUIM dataset, which contains 1525 annotated 

images for training and validation and 110 images for testing, is used as 

the data source. Second, the ESRGAN model, which is a state-of-the-art 

super-resolution technique, is applied to enhance the resolution and 

quality of the underwater images. Third, data augmentation techniques, 

such as rotation, flipping, and cropping, are employed to increase the 

diversity and robustness of the training data. Fourth, the VGG-16 fully 

convolutional network encoder-decoder, which is a deep neural network 

architecture for semantic segmentation, is trained on the augmented data 

to learn the mapping from the input images to the output masks. Fifth, the 

performance of the proposed method is evaluated on the test set using 

various metrics, such as accuracy, precision, recall, F1-score, and IoU. 

Sixth, morphological operations, such as opening and closing, are applied 

as a post-processing step to refine the segmentation results and remove 

spurious regions. The details of each step and the experimental results are 

presented in the following sections. 

3.2 Proposed Methodology 

In this section, the details of the proposed methodology are 

explained, which consists of four main stages: preprocessing, semantic 

segmentation, post-processing, and performance evaluation. The network 
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architecture of the model is based on the VGG-16 fully convolutional 

network encoder-decoder, which is a state-of-the-art technique for 

semantic segmentation. The network architecture is illustrated in Figure 

3.1. The main goal of the research is to achieve high-quality semantic 

segmentation of underwater images. 

The proposed methodology is applied to the SUIM dataset, which 

is a large-scale dataset of underwater images with pixel-level annotations. 

The SUIM dataset contains images from different underwater 

environments, such as coral reefs, shipwrecks, and aquatic life. The 

dataset also provides depth maps and saliency maps for each image, which 

can be used for further analysis and improvement. The SUIM dataset is 

divided into training, validation, and testing sets, with 70%, 15%, and 

15% of the images, respectively. 

The proposed methodology involves the following steps: 

1- Preprocessing: Underwater Image Super-Resolution and Data 

Augmentation 

The first step of the methodology is to preprocess the underwater 

images to enhance their resolution and diversity. For this purpose, the 

ESRGAN model is used, which is a generative adversarial network 

(GAN) that can produce super-resolved images from low-resolution 

inputs. The ESRGAN model is trained on a large dataset of natural images 

and can generate realistic and sharp images. The ESRGAN model is 

applied to the SUIM dataset to obtain super-resolved images with four 

times the original resolution. This step helps to improve the quality and 

clarity of the underwater images, which can benefit the subsequent 

semantic segmentation process. 
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In addition to super-resolution, data augmentation is also 

performed on the super-resolved images to increase the size and diversity 

of the dataset. Data augmentation is a common technique to prevent 

overfitting and improve the generalization ability of the model. These 

techniques can generate new images from the original ones by applying 

random transformations and perturbations.  

2- Semantic Segmentation Model: VGG-16 Fully Convolutional 

Network Encoder-Decoder 

The second step of the methodology is to perform semantic 

segmentation on the preprocessed images using the VGG-16 fully 

convolutional network encoder-decoder model. This model is a deep 

neural network that can perform pixel-wise classification of the images, 

assigning a semantic label to each pixel. The model consists of two parts: 

an encoder and a decoder. The encoder is based on the VGG-16 network, 

which is a popular and powerful network for image classification. The 

encoder extracts high-level features from the images by applying a series 

of convolutional and pooling layers. The decoder is a symmetric 

counterpart of the encoder, which reconstructs the output segmentation 

map from the encoded features by applying a series of deconvolutional 

and pooling layers. The decoder also uses skip connections to fuse the 

features from the encoder and the decoder at different levels of 

abstraction. This helps to preserve the spatial information and improve the 

accuracy of the segmentation. The VGG-16 fully convolutional network 

encoder-decoder model is trained on the preprocessed SUIM dataset using 

the cross-entropy loss function and the Adam optimizer. 
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3- Post-Processing: Morphological Operations 

The third step of the methodology is to apply morphological operations as 

a post-processing step to refine the segmentation results. Morphological 

operations are mathematical operations that can modify the shape and 

structure of the objects in the images. Two types of morphological 

operations are used: erosion and dilation. Erosion is an operation that 

shrinks the objects by removing the pixels at the boundaries. Dilation is 

an operation that expands the objects by adding pixels at the boundaries. 

Erosion and dilation are applied alternately to the segmentation results to 

remove the noise and fill the gaps. This step helps to improve the 

smoothness and completeness of the segmentation and enhance the 

quality of the images. 

4- Performance Evaluation: F-score and Intersection over Union 

(IOU) 

The final step of the methodology is to evaluate the performance of the 

semantic segmentation model using two metrics: F-score and IOU. These 

metrics measure the similarity and overlap between the predicted 

segmentation map and the ground truth annotation. F-score is the 

harmonic mean of precision and recall, which are defined as the ratio of 

true positives to the total number of positives. IOU is the ratio of the 

intersection area to the union area between the predicted and the ground 

truth regions. Both metrics range from 0 to 1, where higher values indicate 

better performance. The F-score and IOU are calculated for each image 

and each class in the SUIM dataset, and the average values over the testing 

set are reported. 
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Figure 3.2 Flowchart of the proposed Underwater Object Detection system. 
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3.3 Pre-Processing 

The pre-processing section describes the methods that are applied 

to the underwater images before performing semantic segmentation. The 

main purpose of these methods is to improve the resolution and diversity 

of the images, which can enhance the quality and clarity of the images and 

benefit the subsequent segmentation process. The pre-processing section 

consists of two subsections: image super-resolution using ESRGAN and 

data augmentation. Image super-resolution is a technique that can 

generate high-resolution images from low-resolution inputs. Data 

augmentation is a technique that can increase the size and variety of the 

dataset, by applying random transformations and perturbations to the 

images. These techniques are explained in detail in the following 

subsections. 

3.3.1 Image Super-Resolution using ESRGAN 

The first stage of the proposed methodology is to apply image 

super-resolution to the underwater images using the ESRGAN model. 

This stage aims to enhance the resolution and quality of the underwater 

images, which are often degraded by various factors in the underwater 

environment. By using image super-resolution, the underwater images 

can be restored and improved, which can facilitate the subsequent object 

detection process. 

The ESRGAN model is applied to the underwater images as a 

preprocessing step, before performing object detection. The purpose of 

this step is to improve the quality and clarity of the underwater images, 
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which are often blurred and noisy. By using the ESRGAN model, the 

underwater images can be enhanced with more details and textures, which 

can benefit various underwater applications, such as object detection and 

classification.  

Figure 3.3 shows the architecture of the ESRGAN model  for image 

super-resolution, which is the process of transforming a low-resolution 

(LR) image into a super-resolution (SR) one. The model has several 

components that work together to enhance the details and quality of the 

input image. The input image is an LR image with a size of 480 x 448 

pixels. The model uses three Basic Blocks, which are initial processing 

units that extract basic features from the input image. The model also uses 

three Dense Blocks, which are connected densely and extract more details 

and information from the processed image. The outputs of all the Dense 

Blocks are concatenated and undergo some transition processes to prepare 

for the final enhancement stage. The output image is an SR image with a 

size of 1920 x 1792 pixels, which is four times larger than the input image. 

The SR image shows an underwater scene with improved clarity and 

quality. 

 

 

 

 

 

LR 

480 X 448 

SR 

1920 X 1792 

Figure 3.3 Architecture of Enhanced Super-Resolution Generative Adversarial Networks(ERSGAN) 
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3.3.2 Data Augmentation 

Data augmentation is a technique of artificially increasing the size 

and diversity of the training dataset by applying various transformations 

to the original images. Data augmentation can improve the performance 

and robustness of the deep learning algorithms, as it reduces the risk of 

overfitting and introduces more variability to the data. In this study, the 

following image augmentations will be used to enhance the underwater 

image dataset: 

1. Rotation: randomly rotate the images by a range of 0.2 degrees, which 

can account for the orientation changes of the underwater objects. 

2. Width and height shift: randomly shift the images horizontally and 

vertically by a range of 0.05, which can account for the position 

changes of the underwater objects. 

3. Zoom: randomly zoom in or out the images by a range of 0.05, which 

can account for the scale changes of the underwater objects. 

4. Horizontal flip: randomly flip the images horizontally, which can 

account for the symmetry of some underwater objects. 

These augmentations will be applied to each image in the training 

and testing dataset with a probability of 0.5, resulting in a larger and more 

diverse dataset. 

3.4 Image Segmentation 

Image segmentation is the process of dividing an image into regions 

that correspond to different objects or semantic categories. For 
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underwater object detection, image segmentation can help to identify and 

locate the objects of interest in the complex and noisy underwater 

environment. Image segmentation can also provide useful information for 

other tasks, such as image restoration, marine biology, and underwater 

robotics. 

Learning-based semantic segmentation is a type of image 

segmentation that uses machine learning techniques, especially deep 

neural networks, to learn the mapping from the input image to the output 

segmentation map. Learning-based semantic segmentation can leverage a 

large amount of data and the powerful feature extraction capabilities of 

deep neural networks to achieve high accuracy and robustness. Learning-

based semantic segmentation can be divided into two main categories: 

fully convolutional networks (FCNs) and encoder-decoder networks.  

FCNs use convolutional layers to produce the segmentation map 

directly from the input image, without using any fully connected layers. 

Encoder-decoder networks use an encoder network to extract high-level 

features from the input image, and a decoder network to upsample the 

features and generate the segmentation map. Both types of networks can 

be trained end-to-end using supervised learning, where the ground truth 

segmentation maps are provided as labels. Learning-based semantic 

segmentation can handle various challenges of underwater images, such 

as low visibility, color distortion, and scale variation, by using appropriate 

network architectures and data augmentation techniques. 
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3.5 Image Segmentation using VGG-16 and Fully 

Convolutional Networks  

This section presents a method for image segmentation of underwater 

imagery, which is the task of assigning a label to each pixel in an image, 

such as background, foreground, or object classes. Image segmentation 

can be useful for many applications, such as scene understanding, object 

detection, medical image analysis, etc. 

3.5.1 Network Architecture 

The proposed model is built upon a fully convolutional encoder-

decoder architecture, which includes skip connections connecting 

corresponding layers. The base structure of the model adopts residual 

learning principles, with an additional optional skip layer named RSB 

(Residual Skip Block). Each RSB is composed of three convolutional 

(conv) layers, followed by Batch Normalization (BN) and ReLU non-

linearity.  

As illustrated in Figure 3.4, This approach is chosen to ensure real-time 

inference while maintaining a reasonable segmentation performance. 

Conversely, the model prioritizes improved performance, utilizing 12 

encoding layers from a pre-trained VGG-16 architecture. 

3.5.2 Training Pipeline and Implementation Details 

The approach to underwater object detection involves training a 

deep learning model to learn a mapping from the input domain of natural 

underwater images to their corresponding semantic labels in RGB space. 
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The standard cross-entropy loss is used as the supervisory signal for end-

to-end training, which measures the difference between predicted and 

ground truth pixel labels. The optimization pipeline is implemented using 

TensorFlow libraries and trained on a Windows host with an NVIDIA 

GeForce GTX 1080 8GB graphics card. The Adam optimizer with a 

learning rate of 10-4 and momentum of 0.5 is used for global iterative 

learning. To enhance the robustness of the model, various image 

transformations are applied for data augmentation during training. 
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3.6 Post-Processing with Morphological Operations 

 Morphological operations are important techniques for 

underwater image processing, as they can shape and analyze the structures 

in images, improving their quality and interpretability. These operations 

use two basic processes: dilation and erosion. Dilation expands the 

boundaries of objects in an image, while erosion shrinks them. The 

amount of expansion or shrinkage depends on the size and shape of the 

structuring element, which is a small binary image that defines the 

neighborhood of a pixel. 

 One of the morphological operations that is used for underwater 

image processing is close dilation, which is a combination of dilation and 

erosion. Close dilation first dilates an image and then erodes the dilated 

image, using the same structuring element for both operations. Close 

dilation is useful for filling small holes in an image while preserving the 

shape and size of large holes and objects in the image1. Close dilation can 

also enhance the visibility and contrast of objects, which is crucial for 

underwater object detection. Shows an example of close dilation applied 

to an underwater image (see Figure 3.5). 

Ground Truth 
Before Morphological 

Operations 

After Morphological 

Operations 
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Figure 3.5 Enhanced Results Before and After Morphological Operations Application. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION
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4.1 Overview  

This chapter offers a comprehensive exploration and evaluation of 

the performance of the proposed model in the context of underwater object 

detection and segmentation. It encompasses a series of well-designed 

experiments, each aimed at assessing different aspects of the model’s 

capabilities.  

The main goal of this chapter is to present and analyze the 

quantitative results obtained from the model’s performance across various 

benchmark metrics and experimental scenarios. These outcomes are 

systematically presented, providing insights into the strengths, limitations, 

and nuances of the model when compared to established state-of-the-art 

models. The chapter unfolds by providing a comprehensive overview of 

the methodologies, the validation dataset, and the chosen evaluation 

metrics. The execution of each experiment is documented, focusing on 

configuration settings, training procedures, and data augmentation 

techniques.  

Following this, the chapter presents numerical results through 

tables, graphs, and visual representations, enabling a comparative analysis 

of the model’s performance against benchmark models. Metrics related to 

object detection accuracy, semantic segmentation precision, and saliency 

prediction are thoroughly discussed in the context of the model’s overall 

performance objectives.  

As the chapter progresses, the discussion section takes a central 

role. The results are thoughtfully contextualized, interpreted, and 

compared with existing literature. Significant findings, trends, and 

implications emerging from the experimental outcomes are elucidated, 
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providing a comprehensive narrative on the importance and relevance of 

the model’s contributions to the field of underwater object detection. 

4.2 The Dataset 

The SUIM dataset[69] is a comprehensive collection of underwater 

images specifically designed for semantic segmentation tasks. It provides 

a valuable resource for advancing research and development in the field 

of underwater computer vision. With its diverse set of object categories 

and carefully annotated pixel-level labels, the dataset facilitates the 

training and evaluation of state-of-the-art semantic segmentation models 

for underwater scenes. 

Underwater environments pose unique challenges for image 

analysis due to factors such as light attenuation, domain-specific object 

categories, background patterns, and optical distortion artifacts. These 

challenges necessitate the development of specialized algorithms and 

datasets tailored to the underwater domain. The SUIM dataset fills this 

gap by offering a large-scale annotated dataset that covers a wide range of 

object categories encountered in underwater exploration and surveying 

applications. 

The SUIM dataset comprises several object categories that are 

labeled for semantic segmentation. These categories include: 1) 

Waterbody background (BW) 2) Human divers (HD) 3) Aquatic 

Plants/Flora (PF) 4) Wrecks/ruins (WR) 5) Robots and instruments (RO) 

6) Reefs and other invertebrates (RI) 7) Fish and other vertebrates (FV) 8) 

Sea-floor and rocks (SR). 
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To represent these object categories in the image space, a 3-bit 

binary RGB color scheme is utilized. Each object category is assigned a 

specific color using this color representation. This color-based labeling 

approach enables the distinction and identification of different objects 

within the images. 

These object categories and their corresponding colors are essential 

for training and evaluating semantic segmentation models on the SUIM 

dataset as shown in Table 4.1.   They serve as the ground truth labels for 

the dataset (see Figure 4.1), allowing for an accurate assessment of model 

performance in detecting and segmenting the various underwater objects 

and features. 

 

Table 4.1 The Object Categories and Corresponding Color Codes for Pixel 

Annotations in The SUIM Dataset. 

Object category RGB Color  Code 

Background (waterbody) 000 BW 

Human divers 001 HD 

Aquatic plants and sea-grass 010 PF 

Wrecks or ruins 011 WR 

Robots (AUVs/ROVs/instruments) 100 RO 

Reefs and invertebrates 101 RI 

Fish and vertebrates 110 FV 

Sea-floor and rocks 111 SR 
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Figure 4.1 Sample of SUIM Dataset. 
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4.3 Pre-Processing 

Pre-processing is an important step in underwater image 

processing, as it can improve the quality and clarity of the images before 

applying further analysis and interpretation. Pre-processing techniques 

can address the challenges and limitations of underwater imaging, such as 

low resolution, noise, blurring, color distortion, and non-uniform 

illumination. This section presents the results of two pre-processing 

methods that were applied to the underwater image dataset: ESRGAN and 

image augmentation. 

4.3.1 ESRGAN 

ESRGAN stands for Enhanced Super-Resolution Generative 

Adversarial Networks, which is a method for improving the quality and 

realism of images that are upscaled from low resolution to high resolution. 

ESRGAN is based on the Super-Resolution Generative Adversarial 

Network (SRGAN) but introduces several enhancements to the network 

architecture, the adversarial loss, and the perceptual loss. ESRGAN can 

produce high-resolution images that are sharper, more detailed, and more 

natural-looking. 

The integration of the ESRGAN technique was an essential part of 

the exploration, as it contributed to the augmentation of image quality and, 

consequently, to the efficacy of the model’s performance. The training 

phase started with a pre-trained model’s parameter values as a starting 

point. The training conducted with ESRGAN showed promising results, 

as illustrated in Figure 4.2 and Figure 4.3. 
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Before ESRGAN  After ESRGAN 

 

 

 
640 X 480  2560 X 1920 

 

 
 

 

 

640 X 360  2560 X 1440 

 

 

 
960 X 540  3840 X 2160 

Figure 4.2 Visual Enhancement with ESRGAN: Sample Images from the SUIM 

Dataset Before and After Processing. 
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Before Zoom   After Zoom 

Before ESRGAN 

 

 

 
After ESRGAN 

 

 

 
Before ESRGAN 

 

 

 

After ESRGAN 

 

 

 

Figure 4.3 Visual Enhancement with ESRGAN - Zoomed-In Comparisons: Sample 

Images from the SUIM Dataset Before and After Processing to Highlight 

Effectiveness. 
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4.3.2 Dataset Image Augmentation 

Image dataset augmentation involves applying various image 

processing operations, such as rotation, shifting in width and height, 

shearing, zooming, and horizontal flipping, to diversify the dataset. These 

operations introduce variations in the object's position and image quality, 

ultimately enhancing the dataset's diversity. This augmentation process 

aids in improving the training's generalization and consequently enhances 

the object detection capabilities. The specific parameters for these 

operations are determined by random values within a predefined range, as 

detailed in Table 4.2. 

 

Table 4.2 Image Processing Operations Configuration to Introduce Image 

Augmentation. 

Image processing 

operation 
Configuration bounds  

1. Original image  
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1. Rotation -0.2 to +0.2 radians 

 

2. Width Shift -0.5 to +0.5 radians 

 

3. Height Shift -0.5 to +0.5 radians 

 

4. Shear -0.5 to +0.5 radians 
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5. Zoom Range -0.5 to +0.5 radians 

 

6. Horizontal flip enabled 

 

 

The SUIM dataset comprises a total of 1525 RGB images 

designated for training and validation purposes, along with an additional 

110 images for testing to evaluate semantic segmentation models. These 

images exhibit varying spatial resolutions, ranging from dimensions like 

1906 × 1080, 1280 × 720, 640 × 480, to 256 × 256 pixels. 

These images were meticulously selected from a vast pool of 

samples collected during underwater explorations and collaborative 

experiments involving humans and robots in diverse water environments. 

Some images were also drawn from larger datasets such as "EUVP" 

(Enhancing Underwater Visual Perception)[75] (see Figure 4.6), which 

represents a collection of techniques aimed at improving the visual quality 

of underwater images. In contrast, "UFO-120" (Underwater Florida 

Objects) UFO-120 [76] (see Figure 4.4) is a dataset focused on object 

detection and recognition in Florida's underwater conditions. "USR-248" 
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(Underwater Sonar and Radar)[50] (see Figure 4.5) is another dataset 

primarily used for underwater navigation and target detection through 

sonar and radar data. The "SUIM dataset" appears to be a specialized 

dataset tailored for the semantic segmentation of underwater imagery, 

allowing researchers to classify each pixel into predefined categories. 

These datasets and methods differ in terms of their type, purpose, and 

application, and each plays a unique role in advancing the field of 

underwater image analysis and enhancement. Which were previously 

designed for addressing underwater image enhancement and super-

resolution challenges. The image selection process aimed to encompass a 

wide range of natural underwater scenes and different setups used in 

human-robot collaborative experiments. 

 

 

Figure 4.5 A Few Sample Images from The UFO-120 Dataset are Shown. 

Figure 4.4 A Few Sample Images from The USR-248 Dataset are Shown. 
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To provide further insights into the dataset, Figure 4.7 illustrates 

the distribution of each object category, their relationships with one 

another, and the distribution of RGB channel intensity values within the 

SUIM dataset. 
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Figure 4.7 Sample Images and Corresponding Pixel Annotations in the SUIM 

Dataset. 

Figure 4.6 A few sample images from the EUVP dataset are shown. 
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4.4 Deep Learning Network Training Settings 

As in the background chapter, it was demonstrated that semantic 

segmentation is an effective approach for object detection, particularly in 

the context of underwater environments. It offers a good mean average 

precision when combined with image super-resolution using ESRGAN. 

The training settings for semantic segmentation are outlined in 

Table 4.3 These settings encompass the hardware utilized, training 

resolution, parameters to mitigate overfitting, learning rate, image 

augmentation techniques, saving of training parameters, and maximum 

iterations. 

The training process was conducted on a GPU card, specifically the 

NVIDIA GeForce GTX 1080 with 8GB of memory. The training was 

performed over 5,000 iterations, employing various spatial resolutions, 
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Figure 4.8 Statistics of Object Categories Values in the SUIM Dataset. 
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such as 1906 × 1080, 1280 × 720, 640 × 480, and 256 × 256 pixels. 

Network parameters were saved every 5,000 iterations to monitor the 

training progress. 

To prevent overfitting, a set of parameters was employed. Simple 

image augmentation techniques were applied to the dataset, including a 

rotation range of 0.2, width shift, height shift, shear, and a zoom range of 

0.05. Horizontal flip was enabled, while the remaining parameters were 

kept at their default values. 

The learning rate, which influences how the optimizer adapts 

during training, was set to a dynamic value. A large learning rate can lead 

to rapid changes in weight values, potentially resulting in convergence to 

a suboptimal solution. Conversely, a low learning rate may cause slow 

convergence. Therefore, a dynamic learning rate was utilized to ensure a 

stable gradient and prevent model divergence. 

By providing these detailed training settings, a robust framework is 

established for training the semantic segmentation model for underwater 

object detection. These settings aim to achieve accurate results and 

mitigate potential issues such as overfitting and unstable gradients. 

Table 4.3 Underwater Object Detection Training Settings. 

Category Configuration item Configuration value 

1. Network  Deep learning network CNN 

2. Hardware GPU card used Nvidia GTX 1080 

3. Training Resolution 
Image resolution during 

training 

1906 × 1080, 1280 × 720, 

640 × 480, and 256 × 256 

pixels 

4. Learning Rate 

Adjustment 
Learning rate 0.0001 
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5. Image Augmentations rotation range 0.2 

 Width shift range 0.05 

 Height shift range 0.05 

 Zoom range 0.05 

 Horizontal flip enabled 

6. Epoch Number Number of Epochs 50 

7. Data Saving Save data every 5,000 Iteration 

8. Total Training Iterations Total Iterations 250,000 Iteration 

 

4.5 Underwater Object Detection Using Deep Learning 

Model Training and Results 

In this thesis, a specialized underwater object detection model 

materialized through meticulous development and configuration. The 

bedrock of its construction rested upon the precise parameters and 

environmental settings, thoughtfully outlined in section 4.1. This model 

undertook rigorous training, immersing itself in a dataset of underwater 

images as meticulously elucidated in section 4.2.  

A distinctive facet of this study involved training the model with 

unwavering attention to meticulous detail. Before integrating ESRGAN 

as a preprocessing step, training each epoch took roughly 10 hours, guided 

by the parameters detailed in Table 1.  

However, following the introduction of ESRGAN to enhance 

image quality, the training time per epoch was extended to nearly 12 hours 

due to increased computational demand. Over 50 epochs, this resulted in 

an extensive 25-day training duration. This illustrates the trade-off 

between improved image quality through ESRGAN and the extended 

temporal commitment for training in underwater image analysis. 
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Remarkably, this intensive training was conducted on a curated dataset 

comprising 1,525 images, each intricately capturing the essence of 

underwater scenarios. 

The imminent presentation, a beacon of forthcoming insights, 

promises to unveil an all-encompassing perspective encompassing the 

training dynamics and the consequential evaluation metrics for other 

model iterations. This calculated juxtaposition seeks to offer a 

comprehensive vantage point into the diverse performance of these 

models in the intricate task of detecting submerged objects within 

underwater imagery. The spectrum of evaluation metrics spans a diverse 

range of object detection indices, with particular emphasis on pivotal 

measures such as Average Precision (AP), mean Intersection over Union 

(mIoU), precision, recall, and the F1-score. Additionally, it is essential to 

underscore that the exploration encompassed the integration of the 

ESRGAN technique. This technique's integration presents an additional 

dimension, contributing to the augmentation of image quality and, 

consequently, to the efficacy of the model's performance. 

Initiating the training phase, the model leverages a pre-trained 

model's parameter values as a starting point. Subsequently, the assessment 

of outcomes commences through the evaluation of the loss function. 

Typically, this process begins with a notably high loss, gradually 

diminishing as optimization of the model's parameters unfolds. As 

evidenced in the training conducted with ERSGAN, the initial average 

accuracy of 0.8932 ascended commendably to 0.9836, a trend showcased 

in Figure 4.9. Simultaneously, the average loss, commencing at 0.0713, 

exhibited a downward, culminating at 0.0101, as illustrated in Figure 4.10. 
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These outcomes affirm the model's adaptability to the underlying 

challenge. 

However, the optimizer's proficiency in problem adaptation and 

resolution does not inherently guarantee the trained model's precision in 

object detection. Diverse factors may contribute to this, ranging from an 

insufficiently diverse training dataset, which may fail to encapsulate all 

conceivable object scenarios, to potential limitations rooted in the quality 

of the image dataset itself. Challenges might arise from inefficiencies in 

extracting object features due to inadequate image quality, further 

accentuating the complexity of the detection process. 
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Figure 4.10 Accuracy versus different epoch plot. 
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Figure 4.9 Loss versus different epoch plot. 
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In Section 3, the SUIM dataset and its diverse applications in semantic 

segmentation and saliency prediction were thoroughly explored. In the 

evaluation, the performance of state-of-the-art (SOTA) models is 

compared using the following two training configurations: 

1. Semantic Segmentation with Five Major Object Categories 

This configuration involves semantic segmentation of images into five 

major object categories, as detailed in Table 4.2: HD, WR, RO, RI, and 

FV. All other objects are considered as background, denoted as 

BW=PF=SR= (000)RGB. Each model is set up to produce five 

channels of output, one for each of these object categories. The 

separate pixel masks predicted by the models are then combined to 

create RGB masks for visualization(see Figure 4.11). 

in
p

u
t 

    
 

G
r
o

u
n

d
 T

r
u

th
 

 
   

 

O
u

r
 M

o
d

e
l 

     

Figure 4.11 Qualitative Comparison of Semantic Segmentation with Object 

Categories (HD, WR, RO, RI, and FV) Using the Proposed Model and Ground 

Truth. 
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Figure 4.12 presents a set of image samples, showcasing the various 

stages of the image processing pipeline. The first column displays the 

original images, while the second column reveals the images enhanced 

using the ESRGAN (Enhanced Super-Resolution Generative Adversarial 

Network). Moving to the third and fourth columns, images before and 

after applying morphological operations are observed, which play a 

pivotal role in refining the segmentation results. Finally, the fifth column 

features the ground truth images, providing a reference for evaluating the 

quality of the image processing techniques. These image samples 

illustrate the progressive improvements achieved through each stage of 

the processing pipeline, emphasizing the significance of ESRGAN and 

morphological operations in enhancing image quality and facilitating 

more accurate object detection and segmentation. 

 

Original ESRGAN  
Before 

Morphological 

After 

Morphological 
Ground Truth 
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Figure 4.12 Image Samples — Original, ESRGAN-Enhanced, Pre-Morphological, 

Post-Morphological, and Ground Truth Images. 

2. Single-Channel Saliency Prediction 

In this configuration, the ground truth intensities of HD, RO, FV, and 

WR pixels are assigned a value of 1.0, while the rest are set to 0.0. The 

model's output is thresholded and visualized as binary images for 

saliency prediction. In the comprehensive evaluation, the performance 

of all models was meticulously assessed using established metrics for 

region similarity and contour accuracy.  
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Quantitative outcomes, as depicted in Figures 4.13 and 4.14, offer 

a comparative analysis of F-Score and mean IOU (mIOU) scores, 

spanning each object class for semantic segmentation and saliency 

Figure 4.14 Quantitative performance comparison between models to show the F-

Score. 

HD WR RO RI FV

PSPNet 80.21 70.94 72.04 72.65 79.19

DeepLab 89.68 77.73 72.72 78.28 87.95

SUIM-Net (RSB) 89.04 65.37 74.18 71.92 84.36

SUIM-Net (VGG) 93.56 86.02 78.06 83.49 93.73

Our Model 93.63 86.31 84.62 83.72 93.07

0.00

20.00

40.00

60.00

80.00

100.00

Quantitative performance comparison between models 
(F-Score)

PSPNet DeepLab SUIM-Net (RSB) SUIM-Net (VGG) Our Model

Figure 4.13 Quantitative performance comparison between models to show the IOU. 

HD WR RO RI FV

PSPNet 75.76 86.82 72.66 85.16 74.67

DeepLab 80.78 85.17 66.03 83.96 79.62

SUIM-Net (RSB) 81.12 80.68 65.79 84.90 76.81

SUIM-Net (VGG) 85.09 89.90 72.49 89.51 83.78

Our Model 81.96 88.66 78.79 89.87 81.28
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prediction tasks. Amid the evaluated models, DeepLabV3 consistently 

emerged as the frontrunner, boasting the three highest F-Score and mIOU 

scores for both tasks. Notably, The combination of PSPNet with 

MobileNet, often denoted as PSPNetMobileNet, harnesses the strengths of 

both architectures. The MobileNet backbone provides efficiency, making 

it feasible for real-time or mobile deployment, while the PSPNet module 

enhances its semantic segmentation capabilities by capturing scene 

context at multiple scales. 

Conversely, the SUIM-NetRSB and SUIM-NetVGG models  [69] 

exhibited unwavering and competitive performance, evident in terms of 

region similarity and object localization. This resilience was reflected in 

the minor deviations from the respective highest scores. 

Figure 4.15 visually encapsulates the average F-Score and IOU 

comparison, showcasing the superiority of the proposed model in terms 

of accuracy and object boundary localization for underwater semantic 

Figure 4.15 The Average of F-Score and IOU. 

F-score IOU

PSPNet 75.01 79.01

DeepLa 81.27 79.11

SUIM-Net(RSB) 76.97 77.86

SUIM-Net(VGG) 86.97 84.15

our model 88.27 84.11
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segmentation. Intriguingly, the proposed model demonstrated notable 

enhancements in accuracy for specific objects, as illustrated alongside. 

These advancements further underscore the efficacy of the approach and 

its potential for superior performance in semantic segmentation and 

saliency prediction tasks compared to the other evaluated models. 

     Table 4.4 presents a comparative analysis of F-measure scores across 

various object detection methods, focusing on the impact of Enhanced 

Super-Resolution Generative Adversarial Network (ESRGAN) and 

Morphological Processing. The table contrasts F-measure scores before 

and after applying these enhancement techniques, shedding light on their 

effectiveness in improving object detection accuracy. Additionally, the 

scores are juxtaposed with a State-of-the-Art (SOTA) Benchmark to 

assess the relative performance and advancements achieved. This 

comparative assessment is instrumental in evaluating the practical 

benefits of employing ESRGAN and Morphological Processing in 

underwater object detection applications. 

Table 4.4 Comparison of F-measure Scores Before and After ESRGAN and 

Morphological Processing with SOTA Benchmark. 

F-measure 

Before 

ESRGAN 

After 

ESRGAN 

Before 

Morphological 

After 

Morphological 
SOTA 

86.41 87.1426 87.53 88.27 86.97 
 



 

 

 

CHAPTER FIVE 

CONCLUSION AND FUTURE WORKS  
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5.1 Overview  

In this chapter, a comprehensive exploration of underwater object 

detection using deep learning techniques has been presented. The research 

aimed to address the challenges posed by the unique characteristics of 

underwater environments, such as poor visibility, varying lighting 

conditions, and complex backgrounds. Through extensive 

experimentation and analysis, promising results and insights have been 

achieved, although several avenues for improvement and further research 

remain. 

5.2 Conclusion 

In conclusion, this research has addressed a critical need in the field of 

underwater computer vision by providing robust solutions for semantic 

segmentation and pixel-level detection of salient objects, enhancing the 

capabilities of visually-guided Autonomous Underwater Vehicles 

(AUVs). The main contributions and implications of this research are: 

1- The SUIM dataset was introduced as a significant milestone in the 

domain of underwater computer vision. This extensively annotated 

dataset was created to perform general semantic segmentation of 

underwater environments, covering five distinct object categories: 

human divers (HD), fish and vertebrates (FV), robots (RO), reefs 

and invertebrates (RI), and wrecks and ruins (WR).  

2- VGG-16, a fully-convolutional encoder-decoder architecture, was 

developed, that outperforms existing state-of-the-art models in 
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terms of both semantic segmentation accuracy and computational 

efficiency. With an 88% accuracy rate, this model excels in 

accurately detecting and classifying objects in challenging 

underwater environments.  

3- Image Super-Resolution using ESRGAN was employed as a 

preprocessing step to enhance the resolution and quality of low-

resolution underwater images. Additionally, morphological 

operations were employed to further refine the segmentation 

results.  

This research not only addresses current limitations but also paves 

the way for enhanced capabilities and practical use of visually-guided 

AUVs in underwater exploration, marine research, and environmental 

monitoring. By contributing to the advancement of underwater 

robotics and exploration, this work has the potential to significantly 

impact the understanding and preservation of underwater ecosystems 

and marine resources, making a valuable contribution to the field of 

marine science and technology. 

5.3  Future Work 

 

This thesis introduces novel solutions for underwater image 

enhancement and underwater object detection. The proposed frameworks 

are designed to enhance and detect objects robustly in underwater 

environments, with extensive experimental results showcasing their high 
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accuracy and potential utility for ocean scientists and biologists. However, 

there remains room for improvement in the future endeavors. 

1-  The next step involves formulating a comprehensive enhancement-

detection framework that seamlessly integrates low-level enhancement 

and high-level detection within a single end-to-end structure. The 

current approach employs distinct enhancement and detection models, 

leading to a sequential processing pipeline where enhanced images are 

sequentially fed into the detection model. This results in added time 

and resource overhead due to image transmission. In future work, the 

focus will be on developing a unified enhancement-detection 

framework that obviates the need for separate processes. Such a 

unified framework offers two advantages: firstly, joint optimization of 

both tasks is expected to yield better solutions compared to the 

cascaded pipeline; secondly, this integration is expected to 

significantly expedite the processing speed by eliminating the need for 

inter-model image transmission. The aim is to devise a novel multi-

task loss function to evaluate the performance of this unified 

framework. 

2- The demand for reduced computational complexity is critical for real-

time applications in underwater scenarios. While a powerful deep 

detection framework was introduced in Chapter 4 that effectively 

addresses noise challenges in underwater data, its time complexity 

remains high due to its deep ensemble nature. Additionally, the 

considerable storage and memory bandwidth consumed by deep neural 

networks raises concerns. To address these issues, future research will 

incorporate various model compression algorithms into the 
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framework, aiming to substantially reduce memory and computational 

overhead. These algorithms, involving weight binarization, weight 

pruning, and compact block design, can lead to efficient training and 

inference in deep networks. The goal is to introduce a deep-learning 

compression algorithm that minimizes storage and energy 

requirements, rendering deep networks suitable for real-time 

deployment on AUVs and ROVs. 

3- The plan for the future involves extending the enhancement-detection 

framework to accommodate underwater video analysis. For the 

analysis of sequential underwater data, RNNs are particularly well-

suited. Unlike CNNs, RNNs feature self-connected hidden layers that 

facilitate information feedback across sequential inputs. This memory 

retention capacity allows RNNs to process varying sequences 

effectively. Hence, the strategy entails amalgamating CNNs and 

RNNs-based architectures into a unified deep-learning framework, 

thereby enabling comprehensive end-to-end analysis of underwater 

videos. 

Furthermore, in future research endeavors, the incorporation of the 

YOLO framework is contemplated. YOLO is a widely recognized object 

detection architecture known for its real-time performance and accuracy. 

By integrating YOLO into the proposed enhancement-detection 

framework, even greater efficiency and precision in detecting objects 

within underwater scenes are anticipated. This strategic integration holds 

promise for enhancing the overall robustness and applicability of the 

model, thereby contributing to the advancement of underwater object 

detection and analysis. 
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 الخلاصة 
 

يلعب كشف الكائنات تحت الماء دوراً حيوياً في تطبيقات متنوعة مثل استكشاف المحيطات ومراقبة      

البيئة والروبوتات تحت الماء. تقدم هذه الرسالة نهجاً مقترحاً لمعالجة تحديات كشف الكائنات تحت الماء،  

يتم التركيز على .   (SUIM) باستخدام مجموعة البيانات لتحليل الصور الفوتوغرافية الفوقية للبحريات

بين أداء الكشف وكفاءة الحوسبة. تسلط  -تطوير نموذج مشفر فك بالكامل مُضبَّط بعناية، يحقق توازناً 

التحديات الفريدة لمراقبة واستكشاف المياه، بما في ذلك سوء الرؤية وتغيرات الظروف البيئية، الضوء 

ا تفريق  يلعب  إلى حلول متخصصة.  الحاجة  تعزيز قدرة على  النهج، مع  في هذا  حاسماً  لمعاني دوراً 

 .النموذج على اكتشاف وتصنيف الكائنات بدقة تحت سطح الماء

لاستخراج   (VGG-16) فك بالكامل تستند إلى نموذج- تستغل هندسة النموذج المقترح شبكة مشفر     

معلومات فضائية معقدة من مشاهد تحت الماء. تستخدم الشبكة عملية تغيير حجم لمطابقة أحجام الإدخال  

الشبكة  هذه  تحتفظ  المعلومات.  فقدان  وتجنب  الفضائية  الدقة  على  الحفاظ  في  يساعد  مما  والإخراج، 

تحت الكائنات في ظروف  اكتشاف  في  يساعد  مما  والمحلية،  العامة  ولتعزيز    بالسمات  متنوعة.  الماء 

شبكة النموذج  يستخدم  بصرياً،  المكتشفة  الكائنات  الصور  (ESRGAN) وضوح  وضوح  لتحسين 

 .الفوتوغرافية تحت الماء ذات الدقة المنخفضة

المورفولوجيا لإزالة الأجسام        استخدام عمليات  يتم  الكشف بشكل إضافي،  نتائج  ومن أجل تحسين 

الفنية والضوضاء الصغيرة من التنبؤات، مما يؤدي إلى حدود أكثر دقة وتناسقاً بصرياً للكائنات. يُسهم  

  . تحسين تحديد الموقع النهائي للكائناتدمج عمليات المورفولوجيا في خط الكشف في 
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