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Abstract  

 The Interacting Boson Model (IBM-1) has been used to study the nuclear 

structure of even-even 74-80Ge and 76-82Se nuclei.The ratio (RL/2) between 

energy levels (𝐸81+/𝐸21+ , 𝐸61+/𝐸21+ ,, and 𝐸41+/𝐸21+) is the first step to estimate 

the limit of the nuclei under study and equal E 2: E 4: E 6: E 8= 1:2.5:4.5:7 

for the O(6) limit. The energy levels have been calculated by applying the 

Hamiltonian operator equation depending on the total number of bosons in the 

model and comparing them with the experimental data for these nuclei. The 

number of energy levels increases with the increase in the bosons number and 

the results that were calculated based on the energy levels of all the nuclei 

under study that have not been well established experimentally have been 

confirmed.  

In 74-80Ge nuclei, levels have been determined 2.957, 4.7236 and 2.400 MeV 

for which the spin and/or parity 6+
1, 8+

1 and 3+
1 for 74Ge nucleus, Levels 

2.8561, 2.2097, 3.6815 and 2.273 MeV for the 76Ge nucleus with the spin 

and/or parity are 6+
1, 3

+
1, 5

+
1 and 2+

3. The values 3.270, 2.3919, 2.609, 4.029 

and 3.231 MeV with the spin and parity 6+
1,3

+
1, 4

+
2,5

+
1 and 4+

3 for the 78Ge 

nucleus and in 80Ge nucleus with the spin and parity 4+
1, 6

+
1, 2

+
2 and 3

+
1 with 

energies of 1.7082, 3.1471, 1.5392 and 2.7850 MeV. In 76-82Se nuclei, levels 

for 2.5581 and 3.756 MeV have been determined with the spin and/or parity 

4+
3 and 6

+
3 for 76Se nucleus, for the 78Se nucleus the predicted levels of new 

energy are 4.1255, 4.2917 and 4.4653 MeV for the spin and 

parity 51
+,  62

+ and  63
+, for 80Se nucleus the spin and parity 6+

1, 8
+

1, 3
+

1, 4
+

2 and 

4+
3 with energies of 3.2670, 5.2020, 2.727, 2.8710 and 3.2334 MeV and the 

energies of 2.9435, 4.5785 and 3.0475 MeV with the spin and parity 4+
2, 5

+
1 

and 4+
3 in 82Se nucleus. 
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The reduced electric quadruple transition probability B(E2) has been 

calculated, after determining the effective charge for the IBM-1 model. These 

results are in good matching with existing measured data. Gyromagnetic 

factor g was determined to calculate the magnetic transitions B(M1) and 

compared with a few practical results. Calculating the mixing ratio 

𝛿(𝐸2 𝑀1⁄ ) depends on the electric and magnetic transitions. This ratio gives 

us an idea about the levels with mixed symmetry state. The last step is 

studying the potential energy surface (E (N, , γ)) for even-even Ge and Se 

nuclei. The plot between them confirms the limits that were expected for the 

nuclei according to the Casten triangle and belongs much closer to O(6) limit 

with increasing neutron numbers. 
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1.1 Introduction  

  It is the responsibility of nuclear physics researchers to develop a model or 

nuclear models, which is the first step to underst and the observed and 

measured data, linking them, and drawing conclusions. This is because 

nuclear physics has made enormous amounts of theoretical and experimental 

data and information related to nuclei available because of the numerous 

studies that have tried to get inside these nuclei or because of the attempt to 

dismantle these nuclei into their various components. The neutron-rich nuclei 

in this region with proton numbers below Z = 40 became easier to access 

because of new and improved experimental techniques, allowing a study of 

how the occupation of the proton orbitals affects the shell structure of this 

region. Nuclear models proposed to explain the interaction between nucleons 

within the nucleus have been used in several attempts to comprehend the 

nature of these forces in the lack of a comprehensive explanation of nuclear 

structure. Studying nuclear structure across a broad region of the nuclear 

chart, such as from shell closures up to mid-shell regions, reveals the growing 

importance of residual interactions and collective features. The distribution of 

these nucleons across the nucleus is one of the most fascinating and essential 

emergent characteristics of the nucleus. When protons and/or neutrons are 

filled from the lowest-lying up to the higher-lying orbitals to reach specific 

values like 2, 8, 20, 28, 50, 82, and 126, then a nucleus is notably stable and 

hence a large amount of energy is needed to excite the nucleus from the closed 

shell to the next. These numbers are called magic numbers, which become 

evident as a sudden drop in the observed nucleon separation energies.  

In exotic nuclei, conventional magic numbers may become no longer valid, 

even giving rise to novel shell structures not heretofore recognized[1, 2]. 
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Nuclear structure physics is loyal to the study of the properties of nuclei at 

low excitation energies, where single energy levels can be resolved. This 

means that typically quantum effects are predominant and the states of the 

nucleus have a very complicated structure that depends on the intricate 

interrelations of all the many nucleons involved  [3]. 

1.2 The Nuclear Models 

 The exact nature of the nucleus is still a mystery, and many methods have 

been developed to its underst anding. The interaction between nucleons has 

been studied on the basis of the two-body system, but the results can't easily 

be applied to the many-body system. In the absence of any definite and precise 

theory to account for the complex inter-relationships between nucleons, a 

number of nuclear models have been proposed, each based on a set of 

simplified assumptions and useful in a limited way[4]. 

1.2.1 Liquid Drop Model 

 George Gamow first proposed the liquid drop model, which was elaborated 

by Niles Bohr and John Archibald[5]. This model estimates the nucleus as a 

drop of incompressible nuclear liquid, which consists of neutrons and protons 

that are bound together by nuclear force. Though the model does not clarify 

all the characteristics of the nucleus, it can clarify the spherical shape of the 

majority of nuclei in addition to its ability to foretell the energy that strongly 

holds the nucleus[6]. Mathematical analysis comes up with an equation 

capable of foretelling the energy that binds the nucleons by identifying the 

numbers of neutrons and protons in that nucleus[7]. 
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1.2.2 Shell Model 

 The shell model succeeded in explaining many nuclear properties of magic 

and neighboring nuclei, such as spin, magnetic moment, nuclear isomerism, 

stripping reaction, quadruple moment, ground state spin and parity (the parity 

π of the wave function is its symmetry property under inversion through the 

origin of the coordinate system, and it is an ‘‘observable’’ physical quantity 

which,in the language of quantum mechanics means that its eigenvalues are 

real quantities[8]of even-even nuclei but failed, sometimes badly, in 

explaining the properties of other nuclei. The deviations of magnetic moments 

from the Schmidt curve make this model less acceptable. The calculated 

quadruple moments were several times larger compared to the predictions of 

the single particle model. The E2 transitions were often much faster than 

would be expected for a transition between single particle states. These later 

nuclei were identified mostly in the rare earth and actinide regions[4]. 

The effect of the potential, as compared with the harmonic oscillator, is to 

remove the J (angular momentum vector) degeneracy of the major shells. As 

we go higher in energy, the splitting becomes more and more severe, 

eventually becoming as large as the spacing between the oscillator levels 

themselves. Filling the shells in order with nucleons, we again get the magic 

numbers 2, 8, and 20, but the higher magic numbers do not emerge from the 

calculations[9]. 
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1.2.3 The Collective Model 

 Bohr and Mottelson have developed the unified (collective) model[10] which 

encompasses some properties of both the shell model and the liquid drop 

model. The shell model potential is assumed to be non-spherical and the 

nucleons move independently rather than being strongly coupled, as in the 

case of the liquid drop model. The principal assumption, which differs from 

that of the independent-particle model, states that, in the unified model, a 

number of nearly loose particles move in a slowly varying potential which 

arises from nuclear deformation[4]. 

The collective degrees of freedom here can be described as a system of 

interacting bosons[11]. The degrees of freedom for a single-particle represent 

the individual nucleon’s motion in the average nuclear field. They are 

described as a system of interacting fermions. The coupling of fermions and 

bosons leads to the interacting boson-fermion model which has been 

extensively used in recent years to discuss the properties of nuclei with an odd 

number of nucleons[12]. 

1.2.4 The interacting boson model-1 (IBM-1)  

 The interacting boson model-1 (IBM-1) originated from the early ideas of 

Feshbach and Iachello [13], who in 1974 suggested a description states of 

collective quadruple in the nuclei of U(6) group [14]. The latter description 

was subsequently cast into a different mathematical form by Arima and 

Iachello with the introduction of an s and d-boson, which made the SU(6), or 

rather U(6), structure more apparent. The success of this phonological  
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approach to the structure of nuclei has led to major developments in underst 

anding nuclear structure[14].  

The original version of the interacting boson model, abbreviated as IBM-1, is 

applicable to even-even nuclei. The fermion states that cannot be represented 

are single-particle excitations, and high-L, low-seniority states[15]. Collective 

fermion states are well reproduced. The IBM-1 does not separate bosons 

connected with proton-proton and neutron-neutron pairs (this is done in an 

extended version of the model). In lighter nuclei the valence neutrons and 

protons are filling the same major shell, isospin must be introduced. 

The model IBM-1 was applied to nuclei with even numbers of neutrons and 

protons. In order to fix the number of bosons, one takes into account that both 

types of nucleons constitute closed shells with particle numbers 28, 50, 82 and 

126 (in the analogy with the Mendeleev periodic table, one would expect that 

there are discontinuities in the dependence of various measurable quantities 

on N or Z when oscillator shells are filled. However, these discontinuities 

were experimentally observed not for these numbers but for the so called 

magic numbers N (Z) = 2, 8, 20, 28, 50, 82 and 126[16]. Provided that the 

protons fill less than half of the furthest shell the number of corresponding 

active protons has to be divided by two in order to obtain the bosons number 

of protons N  , if more than half of the shell is occupied, the boson number 

reads N  = (number of protons)/2. By treating the neutrons in an analogous 

way, one obtains their number of bosons. 
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N  = (number of neutrons)/2. In the IBM-1, the bosons number N is calculated 

by adding the partial numbers 

 i.e. N = N  + N  [3, 17].  

Bosons in the first interacting boson model (IBM-1) have six-dimensional 

space because they have six sub-levels. As a consequence, they could be 

described in the form of a unitary group, represented by U(6). This could be 

solved to three dynamical symmetries and be helpful in identifying nuclear 

spectra at the end of major shells within the context of the IBM-1[18, 19]. 
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1.3 Casten Triangle 

 In the last 30 years, several examples of dynamic symmetries have been 

discovered in nuclei. The quantum states of a physical system are 

characterized by a set of energy levels. Three dynamic symmetries provide 

patterns of energy levels that can be recognized experimentally[20]. There are 

three dynamical symmetry limits defined as harmonic oscillator U(5), 

deformed rotor SU(3), and asymmetric deformed rotor O(6), and they form a 

triangle known as the Casten symmetry triangle representing the nuclear 

phase diagram[17].  

It can be shown the main feature of the three limits of the IBM-1 with the 

Casten triangle see Fig. 1.4, and their energy ratios[18]: 

 

𝐸2: 𝐸4: 𝐸6: 𝐸8 ≔ {

𝐸𝑛𝑑=1: 𝐸𝑛𝑑=2: 𝐸𝑛𝑑=3: 𝐸𝑛𝑑=4 = 1: 2: 3: 4 U(5)

𝐸𝜏=1: 𝐸𝜏=2: 𝐸𝜏=3: 𝐸𝜏=4 = 1: 2.5: 4.5: 7 O(6)

𝐸𝐿=2: 𝐸𝐿=4: 𝐸𝐿=6: 𝐸𝐿=8 = 1: 3.33: 7: 12 SU(3)

            (1.1) 

 

Figure 1.1: Symmetry triangle of the IBM-1 with the coefficients giving each dynamical 

symmetry[20]. 
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1.4 Germanium (Ge) and Selenium (Se) Nuclei 

 Germanium is a semiconductor. It was discovered in 1886, group14, period 

4 and has 33 nuclei with 32 protons this is the atomic number Z. The pure 

element was commonly doped with arsenic, gallium, or other elements and 

used as a transistor in thous ands of electronic applications. Germanium oxide 

has a high index of refraction and dispersion. This makes it suitable for use in 

wide-angle camera lenses and objective lenses for microscopes. Germanium 

is also used as an alloying agent (adding 1% germanium to silver stops it from 

tarnishing), in fluorescent lamps, and as a catalyst. Both germanium and 

germanium oxide are transparent to infrared radiation and so they are used in 

infrared spectroscopes[21].Selenium is an essential trace element for some 

species, including humans. Our bodies contain about 14 milligrams, and every 

cell in a human body contains more than a million selenium atoms. It was 

discovered in 1817, group 16, period 4, and has 33 nuclei with 34 protons this 

is the atomic number Z. The biggest use of selenium is as an additive to glass. 

Some selenium compounds decolourize glass, while others give it a deep red 

color. Selenium can also be used to reduce the transmission of sunlight in 

architectural glass, giving it a bronze tint. Selenium is used to make pigments 

for ceramics, paint, and plastics[22]. Germanium and selenium nuclei are part 

of the transition area, a highly attractive but complicated section of the 

periodic table. These nuclei displayed a range of shapes, including spherical 

and deformed[23].It has been challenging to interpret the nuclear structure of 

the germanium and selenium areas using conventionalexplanations[24].These 

nuclei have been successfully treated in IBM-1computations as exhibiting the 

model's O(6) symmetry[25,26].Ge and Se in Figure1.2 have many nuclei 

ranging as74-80Ge and76-82Se. For example, the nuclei of Ge and Se both have 

neutrons from 42 to 48.  
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Figure 1.2. Germanium and selenium nuclei that are sited in a nuclide chart [27]. 
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1.5 Previous Studies 

 The structure of Germanium and Selenium nuclei has been the subject of 

numerous in-depth research studies in previous years. 

E. Padilla-Rodal et al.,(2006) studied and determined the low energy 

spectra, electric quadrupole transitions, and quadrupole moments of 

Germanium nuclei in the formalism of the IBM-2 with configuration mixing. 

New data were obtained for the neutron-rich radionuclei 78,80,82Ge using the 

matrix formula. They carry information about the kernel deformation 

coefficients[28]. 

N. Turkan et al.,(2010) studied the nuclear structure, which have E(5) critical 

point between U(5) and O(6), behavior of the Ge nuclei, and the positive 

parity states of even-mass Ge nuclei. The Interacting Boson Model (IBM-1 

and IBM-2) have been calculated and compared with the Davidson potential 

predictions along with the experimental data[29].  

A. R. H. Subber,(2011) used Interacting Boson Models IBM-1 and IBM-2 to 

calculate the energy levels of the low-lying states, and the electric quadruple 

reduced transition probabilities B(E2) of Ge nuclei from A = 64 to A = 80. 

Energy levels of the low-lying states of these nuclei were produced, and the 

electric quadruple reduced transition probabilities B(E2) were calculated as 

well. Mixing ratios δ(E2/M1) for transitions with ΔI = 0, I _= 0 were 

calculated. All the results are compared with available experimental data and 

other IBM versions and calculations. Satisfactory agreements were 

produced[30]. 

 S. Abood et al.,(2013) studied the structure of some even-even Ge nuclei 

within the framework of the interacting boson model. The positive parity 
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states, B(E2), B(M1), and δ(E2/M1) values of the above nuclei have been 

calculated. The IBM-2 results obtained for Ge have been compared with the 

previous experimental and theoretical values obtained on the basis of the 

interacting boson model (IBM-2). The sufficient aspects of the model leading 

to the E(5) symmetry have been proven by presenting the E(5) characteristic 

of the Ge nuclei[31]. 

D.L. Zhang and B. G. Ding,(2013) investigate the properties of the low-lying 

energy states for 76Ge within the framework of the proton-neutron interacting 

model IBM2, considering the validity of the 𝑍 = 38 subshell closure 88Sr50 

as a doubly magic core. By introducing the quadrupole interactions among 

like bosons to the IBM2 Hamiltonian, the energy levels for both the ground 

state and 𝛾 b ands are reproduced well. Particularly, the doublet structure of 

the 𝛾 b and and the energy staggering signature fit the experimental data 

correctly. The ratios of 𝐵 (𝐸2) transition strengths for some states of the 𝛾 b 

and, and the 𝑔 factors of the 2+1, 2+2 states are very close to the experimental 

data. The calculation result indicates that the nucleus exhibiting rigid triaxial 

deformation in the low-lying states can be described rather well by the IBM2 

[32]. 

K. Higashiyama and N. Yoshinaga,(2014) studied the projected quantum 

generator (GCM) coordinate method of neutron-rich nuclei Se and Ge, where 

monopole and quadrupole coupling. In addition to the tetramer reaction it is 

used as an active reaction. The GCM reproduced the power levels in high-spin 

states as well as low-spin states. The structure of the low mass states was 

analyzed by GCM wave functions[33]. 

J. J. Sun et al.,(2015) studied the first heavy ion evaporation and fusion 

reaction of 74Ge performed through the reaction. The channel was 70Zn (7Li, 
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2np)74Ge at beam energies of 30 and 35 MeV. In addition to comparison with 

neighboring 72,76Ge nuclei, a striking average energy mode S (I) is observed 

in the γ range of 74Ge. Collective structure of 74Ge, including excitation 

energies and ground state transition probabilities. The g- and γ-b ands were 

reproduced by the five-dimensional collective Hamiltonian (5DCH). A model 

based on variable density functional. The analysis revealed a triaxial evolution 

with rotation at 74Ge and found 74Ge to be the decisive factor. Nucleation 

indicates the three-axial evolution from soft to hard in Ge nuclei[34].  

J. U. Nabi et al.,(2017) divide the work into two main categories. In the first 

stage, the properties of the nuclear structure of 76Se were studied using the 

boson interaction model (IBM-1). IBM-1 investigations include energy levels, 

B(E2) values, and geometric prediction. The 76Se geometry is visualized 

within a potential energy surface formalism based on the classical IBM 

Model-1 limit. In the second phase, reaffirm the lifting of the ban on the Gamo 

Teller (GT) force. 76Se (test case for nuclei with N > 40 and Z < 40).Using the 

deformed pn-QRPA model, we calculate the late GT transitions, the stellar 

electron capture cross section (in the low momentum transfer limit), and 

excellent weak rates for the 76Se[35]. 

Nomura et al.,(2017) study of shape transformations and coexistence of 

shapes in Ge and Se nuclei within the interacting boson model (IBM) with 

microscopic input from the self-consistent mean field. Determine the average 

field energy surface as a function of the quadrilateral parameters β and γ, 

obtained from the restricted Hartree-Fock-Bogoliubov method, based on the  

expected value of the IBM Hamiltonian with configuration mixing in the case  

of boson condensates. The resulting Hamiltonian was used to calculate the 
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excitation energies and electromagnetic properties of the selected nuclei 

66−94Ge and 68−96Se. He confirmed that many nuclei show ductility. The 

coexistence of bulbous and flat as well as in between. We also notice spherical 

and smooth shapes[36]. 

D.L.Zhang andC.F.Mu,(2018) studied the properties of low states, 

especially the related coexistence model in 80Ge, near one of the most 

fascinating neutron-rich double nuclei at N = 50 and Z = 28, and investigated 

them in the framework of the proton-neutron interaction model (IBM). -2). 

The study indicates that 80Ge is located within spherical and smooth 

collective vibration structures[37]. 

J.B.Gupta and J.H.Hamilton,(2019) at first, he studied these structures 

experimentally. The deformation state of each nucleus was deduced using the 

energy index formula. It shows the average value of the energy index, 

contrasting with the neutron number N. For a given Z, it gives more 

information about the spectral contrast with N. Use the energy level spectra 

to study the role of excited b ands in phase transitions and possible 

conformation coexistence. Common spectral features of the three nuclei series 

and some unique features were noted[38]. 

A. D. Ayangeakaa et al.,(2019) studied a large-scale, model-independent 

analysis of the nature of the triaxial deformation in 76Ge, a c andidate for 

neutrino-free double beta decay (0νββ), after multistep Coulomb excitation.   

The shape parameters inferred based on the analysis of the sum of fixed 

rotational rules provide insight into the fundamental set of ground states and 

γ-b ands. Both sequences were determined to be characterized by the same 

values of the deformation parameters β and γ. In addition, compelling 

evidence for rigid, low-rotation triaxial deformation has been obtained for the 

first time from the analysis of statistical fluctuations of quadrilateral 
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asymmetry extracted from the measured E2 matrix elements. The newly 

defined shape parameters have important inputs and constraints for 

calculations aimed at providing the relevant nuclear matrix elements of νββ, 

with appropriate accuracy[39]. 

H. N. Hady and M. K. Muttalb,(2020) studied the use of the interacting 

boson model (IBM−1 and IBM−2) for a complete study of 𝑆𝑒34
72−80  nuclei. 

Low positive states, dynamical symmetries, mixed symmetry states MSS, 

reducing the probability of the electric quadrupole transition B(E2), branching 

ratio, quadrupole momentum Q21
+ , reducing the probability of the magnetic 

dipole transition B(M1), mixing ratio 𝛿(𝐸2 𝑀1⁄ ), and reducing the 

probability of the monopolar transition studied electrode 𝐵(𝐸0), and the ratio 

𝑋 (𝐸0 𝑀1⁄ ), U(5) The features are dominant with the addition of a small 

effect of the parameter starting from to nuclei, energy ratios show that the 

nuclei are the ones closest to the typical vibrational limit, while the nuclei 

move towards the rotation region located on U(5)-SU(3) Kasten leg." Casten's 

Triangle"[40]. 

N. J. A. Awwad et al.,(2020) studied the methodology of ground state 

deformation, the physical properties (energy separation of binary neutrons, 

neutron, proton, and charge radii), and the coexistence of nuclear form in Zn,  

Ge, and Se.Nuclei performed using the relativistic Hartree-Bogoliubov 

formalism using zero and NN interactions are limited in scope.  

The coexistence minimum is axial and triaxial in the case of Ge, while both 

are pivotal in the case of Se[41]. 

K.Higashiyama and N.Yoshinaga,(2021) the quantum number projected 

generator coordinate method (QNPGCM) was used on neutron-rich Ge and 

Se nuclei, where monopolar and quadrupole coupling as well as quadrupole 
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interaction were used as the effective interaction. The energy spectra 

calculated with axial and triaxial deformations were compared with crust 

model results and experimental data. QNPGCM reproduces the energy levels 

of Erast states with equal rotation. However, the QNPGCM results only 

assume that the axial deformations are not satisfactory enough to reproduce 

the energy levels in the sub-b ands. Taking into account triaxial deformations 

is fundamentally important to describe yrast and quasi-γ b ands 

simultaneously[42]. 

K.Nomura,(2022) studied the simultaneous calculation of the shape 

evolution and related spectral properties of low states, and the decay 

properties of even and odd Ge and As nuclei in the cluster region A ≈ 70–80, 

from which the nuclear density functional theory and fundamental theory of 

the particle coupling regime are presented. He defined constrained and self-

consistent mean-field calculations using the universal energy density function 

(EDF) and the interacting boson Hamiltonian for even fundamental nuclei, 

and the fundamental components of particle-boson interactions in individual 

nuclei. Nuclear systems and the Gamo-Teller and Fermi transformation 

operators. A rapid structural evolution from smooth oblate to puffy forms has  

been suggested, as well as the coexistence of oblate spheroids around N = 40 

neutron subshell closure, even in Ge nuclei[43]. 
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1.6 The Aim of the Present Work 

 The present study aimed to investigate the nuclear structure of even-even 

nuclei for 74−80Ge and 76-82Se nuclei and study the behavior of these nuclei by 

using computer code PHINT:  

1. Estimated energy levels for ground state g-Gamma γ- and Beta β- b ands 

of these nuclei using the IBM-1 and compared with other studies. 

2. The probabilities of electric B(E2) and magnetic B(M1) transitions have 

been studied. 

3.  The mixing ratio 𝛿(𝐸2 𝑀1⁄ ) between the quadruple electric transitions 

and magnetic transitions. 

4. The potential energy surface (E (N, , γ)) calculated with the help of the 

PES.FOR program and plotted between it and the deformation parameters 

β and  using IBM-1 and belong much closer to O(6) limited with 

increasing neutron numbers. Triaxial shapes are connected to intermediate 

values of 0 < 𝛾 < 𝜋 3⁄  and β ≈ 1. 
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2.1 Interacting Boson Model (IBM-1) 

2.1.1 Hamiltonian of the IBM-1 

 It is now able to provide the transition region with straightforward 

consistency using the interacting boson model[14,44].Casten and Warner [18] 

have given a comprehensive review of this model and its application to the 

transition region. These qualities were collectively represented by a system of 

interacting s- and d-bosons for even-even nuclei within the IBM-1 framework. 

In this model, the three dynamical symmetries U(5), SU(3), and O(6) are 

described by a straightforward Hamiltonian that results from the six-

dimensional unitary group U(6)[44-47]. The basic concept underlying the 

group theory of the IBM-1 is that of the generators of a group.  

In the simplest form of the IBM, the Hamiltonian describes the interaction of 

the s and d bosons in a six-dimensional Hilbert space[48, 49]. It is given by 

creation operators 𝒔ϯ and 𝒅𝜇
ϯ
 with their Hermitian conjugates, i.e., annihilation 

operators, s and 𝒅𝜇, with their index 𝜇 = 0,±1,±2, (where the operators are 

given in bold). These satisfy Bose commutation relations[44]: 

[𝑠, 𝑠ϯ] = 1, [𝑠, 𝑠] = 0, [𝑠ϯ, 𝑠ϯ] = 0, 

[𝑑𝜇 , 𝑑𝜇,
ϯ
] = 𝛿𝜇𝜇,, [𝑑𝜇 , 𝑑𝜇,] = 0, [𝑑𝜇 

ϯ
, 𝑑𝜇,
ϯ
] = 0, 

[𝑠, 𝑑𝜇 
ϯ
] = 0, [𝑠ϯ, 𝑑𝜇 

ϯ
] = 0,                                               (2.1) 

[𝑠, 𝑑𝜇] = 0, [𝑠ϯ, 𝑑𝜇] = 0 

It is well known that, j=0 for 𝒔 operator. Therefore, the operators 𝒔ϯ and 𝒔 are 

scalars, i.e., spherical tensors of degree 0. The creation operators 𝒅𝜇 
ϯ

 is  
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transformed as spherical tensors under rotations, while the annihilation 

operators are not. In order to construct spherical tensors, one introduces a 

modified d-boson annihilation operator[18, 44]: 

𝒅̃𝜇 =  (−1)
𝜇𝒅−𝜇                                       (2.2) 

The most general Hamiltonian, H, in second quantized form which contains 

only one- body and-two-body terms can be written as[18,44,50,51]. 

   𝐻̂ = ɛ𝑠(𝑠
ϯ. 𝑠~) + ɛ𝑑(𝑑

ϯ. 𝑑~)                                                                     

     +∑
1

2𝐿=0.2.4 (2𝐿 + 1)
1

2𝐶𝐿[[𝑑
ϯ × 𝑑ϯ](𝐿) × [𝑑~ × 𝑑~](𝐿)]

(0)
                            

     +
1

√2
𝑣2 [[𝑑

ϯ × 𝑑ϯ](2) × [𝑑~ × 𝑠~](2) + [𝑑ϯ × 𝑠ϯ](2) × [𝑑~ × 𝑑~]]
(0)

+  
1

2
𝑣0[[𝑑

ϯ ×

         𝑑ϯ](0)    × [𝑠~ × 𝑠~](0) + [𝑠ϯ × 𝑠ϯ](0)  × [𝑑~ × 𝑑~](0)]
(0) 1

2
𝑢0[[𝑠

ϯ × 𝑠ϯ](0)  ×

          [𝑠~ × 𝑠~](0)]
(0)
 + 𝑢2[[𝑑

ϯ × 𝑠ϯ](2)  ×  [𝑑~ × 𝑠~](2)]
(0)

                                       (2.3)  

where (𝑠†, 𝑑†) and (𝑠̃, 𝑑̃) are creation and annihilation operators for s and d-

bosons, respectively Ge and Se[52,53]. This Hamiltonian has two terms of 

one-body interactions,  

 (ɛ𝑠 and ɛ𝑑), and seven terms of two-body interactions, [𝐶𝐿 (L = 0, 2, 4), 𝑣𝐿 

(L = 0, 2), and 𝑢𝐿 (L = 0, 2)], where s and d are the single-boson energies, and 

𝐶𝐿, 𝑣𝐿 and 𝑢𝐿 describe the two-boson interactions[44]. For a fixed boson 

number N, it turns out that only one of the one-body terms and five of the two 

body terms are independent, as can be demonstrated by noting N = 𝑛𝑠+ 𝑛𝑑 

[11,54]. It is possible to express the IBM-1 Hamiltonian as a multipole 

expansion with various boson-boson interactions, as seen in Eq. (2.3)[55-58].  

 

𝐻̂ = ɛ𝑛̂𝑑 + 𝑎0𝑝̂. 𝑝̂ + 𝑎1𝐿̂. 𝐿̂ + 𝑎2𝑄̂. 𝑄̂ + 𝑎3𝑇̂3. 𝑇̂3 + 𝑎4𝑇̂4. 𝑇̂4    (2.4) 

Where: 
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 𝑛̂𝑑 = (𝒅
ϯ. 𝒅̃) is the total number of d − boson operator,  

 𝑝̂ =
1

2
(𝒅̃. 𝒅̃) −

1

2
(𝒔̃. 𝒔̃) is the pairing operator,  

𝐿̂ = √10 [𝒅ϯ × 𝒅̃] (1)is the angular momentum operator,                          (2.5)  

𝑄̂ =  [𝒅ϯ × 𝒔̃ + 𝒔ϯ × 𝒅̃] (2) −
√7

2
 [𝒅ϯ × 𝒅̃] (2)is the quadruple operator, 

†ˆ
m

mT d d     is the octoupole (m=3) and hexadecapole (m=4) operator. 

The boson energy is ɛ = ɛ𝑑 - ɛ𝑠 and 𝜒 is the parameter of quadrupole structure 

(between 0 and ±
√𝟕

𝟐
)[55,56,59,60]. The intensities of the pairing, angular 

momentum, quadrupole, octupole, and hexadecapole interactions among the 

bosons are represented by the phenomenological parameters 𝑎0, 𝑎1, 𝑎2, 𝑎3, 

and 𝑎4, respectively. 

 

2.1.2 Electromagnetic Transitions and E2/M1 Mixing Ratios 

 The IBM can be used to explain the electromagnetic transitions and excitation 

energy spectra. To do this, one must specify the transition operators in terms 

of the boson operators[61]. The transition operators are assumed to have just 

one body term in the lowest order. This operator's most general form in IBM-

1 can be given by[14,62,63]: 

 

𝑇𝑚
𝑙 = 𝑙𝛿𝑙2[𝑑

ϯ × 𝑠~ + 𝑠ϯ × 𝑑~]𝑚
2
+ 𝛽𝑙[𝑑

ϯ × 𝑑~]𝑚
𝑙  + 𝛾0𝛿𝑙0𝛿𝑚0[𝑠

ϯ × 𝑠~]0
0   (2.6) 

 

From above equation, it can be noticed that the first term can be shown only 

at 𝑙 =  2 transitions, while the last term can be presented only in the case of 

𝑙 = 0 transitions, as guaranteed by the Kronecker delta (𝛿) accompanying 

them.  
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Here, 
0
, 𝛼𝑙, and 𝐵𝑙 = (0,1,2,3,4) (𝑙 = 0, 1, 2, 3, 4) are parameters that specify 

the various operators' phrases. The quadrupole electric transition is then[18, 

44, 64]: 

 

𝑇𝑚
𝐸2 = 𝛼2[𝑑

ϯ × 𝑠~ + 𝑠ϯ × 𝑑~]
𝑚

2
+ 𝛽2[𝑑

ϯ × 𝑑~]
𝑚

2
= 𝛼2 ([𝑑

ϯ × 𝑑~ + 𝑠ϯ ×

𝑑~]
𝑚

2
+ [𝑑ϯ × 𝑑~]

𝑚

2
) = 𝑒𝐵𝑄̂                                                                                         (2.7) 

 

where 𝑒𝐵 is the boson effective charge and (𝛼2 = 𝑒𝐵), (𝛽2=𝛼2), 𝛼2, and 𝛽2 

are two parameters. It is possible to write the magnetic dipole (M1) operators 

as[15,65]: 

 

𝑇 𝑚
𝑀1 = 𝛽1[𝑑

ϯ × 𝑑~]
𝑚

1
                                                                                                      (2.8)   

 

The limitations that only s- and d - bosons are presented, as well as the 

inclusion of only one body term in the transition operators. There are no other 

transitions in IBM-1. Thus, the most generic second-order M1 generator can 

be expressed as[18,65]:  

 

 𝑇(𝑀1) = (𝑔𝐵 + 𝐴𝑁̂)𝐿̂ + 𝐵[𝑇(𝐸2) × 𝐿̂] + 𝐶𝑛̂𝑑𝐿̂                         (2.9)  

 

where 𝑔𝐵=Z/A which is the effective boson g factor, Z is atomic number and 

A is mass number, the total number of boson is N, the angular momentum 

operator is 𝐿̂, the matrix elements of the E2 operator is 𝑇̂ (E2), 𝑛̂𝑑 is the  

d- boson number operator, and the g - factor of the states is defined 

as[55,57,66]:  

 

𝑔𝐿 = 𝜇𝐿 𝐿⁄                      (2.10) 

 

The magnetic moment (𝜇𝐿) can be define as:  
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𝜇𝐿 = √
4𝜋 

3

𝐿

√[𝐿 (𝐿+1) (2𝐿+1)]
〈𝐿‖𝑇 (𝑀1)‖𝐿〉                         (2.11)  

 

from Eq. (2.9), it can write the final terms that produce the Ml matrix element 

as[57,67]: 

 

 〈́𝐿𝑓‖𝑇 (𝑀1)‖́𝐿𝑖〉 = −𝐵𝑓(𝐿𝑖𝐿𝑓)〈́𝐿𝑓‖𝑇(𝑀1)‖́𝐿𝑖〉 + 𝐶[𝐿𝑖(𝐿𝑖 +

1)(2𝐿𝑖 + 1)]
1 2 ⁄ × 〈́𝐿𝑓|𝑛̂𝑑| 𝐿𝑖〉𝛿𝐿𝑖𝐿𝑓               (2.12) 

 

𝑓(𝐿𝑖𝐿𝑓), given separately in Ref [14,58,67] for the cases L → L± 1 and L→L, 

written as: 

 

𝑓(𝐿𝑖𝐿𝑓) = [
1

4
(𝐿𝑖 + 𝐿𝑓 + 3)(𝐿𝑓 − 𝐿𝑖 + 2) × (𝐿𝑖 + 𝐿𝑓 + 3)(𝐿𝑖 − 𝐿𝑓 + 2)]

1 2⁄

        (2.13) 

 

In Eq.(2.9), the equivalent operator is diagonal in 𝐿̂ and the second part of Eq. 

(2.12) contributes only to transitions between states of the same spin.  

A particularly simple equation for the reduced E2 / M1 mixing ratio for  

L±1 → L transitions is given by Eq.(2.12), which is[67,68]: 

 

 

∆(𝐸2 𝑀1⁄ )= 〈́𝐿𝑓‖𝑇 (𝐸2)‖𝐿𝑖〉 〈́𝐿𝑓‖𝑇 (𝑀1)‖𝐿𝑖〉 = −1 𝐵𝑓(𝐿𝑖𝐿𝑓)⁄⁄ (2.14) 

 

 

The reduced mixing ratio∆(𝐸2 𝑀1⁄ )is related to the quantity normally 

measured, 𝛿(𝐸2 𝑀1⁄ ), and is related to the amount[13]:  

 

 

𝛿(𝐸2 𝑀1⁄ ) = 0.835[𝐸𝛾 (1 𝑀𝑒𝑉)⁄ ]∆(𝐸2 𝑀1⁄ )                        (2.15)  

 

where : 𝐸𝛾 is measured in MeV and ∆(𝐸2 𝑀1⁄ ) is measured in eb/ 𝜇𝑁 . 

Grechukhin[69]has already determined the spin dependency of Eq.(2.13) in 

terms of 𝑓(𝐿𝑖𝐿𝑓) similar to this, the relevant M1 operator is expressed in the 
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geometrical model's framework using the quadrupole coordinates of the 

nuclear surface[65].In the IBM-1framework, empirical values of  

[∆(𝐸2 𝑀1⁄ )𝑓(𝐿𝑖𝐿𝑓)]
−1

can be used to study the constant B in Eq.(2.9)  

utilizing the corresponding transition operator between the initial and final 

states reduced matrix element〈𝐿𝑓‖𝑇
𝑙‖𝐿𝑖〉. The st andard method of calculating 

the electromagnetic transition rates yields the B (𝐸𝑙) and B (𝑀𝑙) values, which 

are[19,70,71] by definition: 

 

𝐵 ((𝐸1)𝑜𝑟(𝑀1), 𝐿𝑖 → 𝐿𝑓) =
1

2𝐿+1
|〈𝐿𝑓‖𝑇

(𝐸𝑙)𝑜𝑟 (𝑀𝑙)‖𝐿𝑖〉|
2
   (2.16)  

 

Other important quantities that show the difference between the three 

dynamical symmetries (will be discuss later) are the ratios[11]: 

 

 𝑅 =
𝐵(𝐸2; 41

+→21
+)

𝐵(𝐸2; 21
+→01

+)
, 

𝑅′ =
𝐵(𝐸2; 22

+→21
+)

𝐵(𝐸2; 21
+→01

+)
,                                                                                                              (2.17) 

𝑅 ′′ =
𝐵(𝐸2; 02

+ → 21
+)

𝐵(𝐸2; 21
+ → 01

+)
, 

 

The calculation has been carried out numerically in the general case. But in 

the situations of the three dynamical symmetries, analytical formulation can 

be established, just as in the case of the excitation energies. 

 

2.2 Dynamical Symmetries 

 The bosons in (IBM-1) have six sub-levels, therefore they can be defined as 

a unitary groupU(6), which is represented by U(6) [18,47,55]. This could be 

resolved into the following three dynamical symmetries. 
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2.2.1 The vibrational limit U(5) 

 The following equation [13,18,47] can be used to determine the Hamiltonian 

operator for this limit symmetry in terms of creation and annihilation 

operators in Eq. (2.3) and if 𝑎0 = 0 = 𝑎2 in Eq. (2.4) the Hamiltonian of this 

limit is[18]: 

 

𝐻̂ = 𝜀𝑛̂𝑑 + 𝑎̂1𝐿̂. 𝐿̂ + 𝑎̂3𝑇̂. 𝑇̂ + 𝑎̂4𝑇̂. 𝑇̂                          (2.18) 

 

where 𝜀, 𝑎1, 𝑎3, and 𝑎4 are its constituent parameters. Its eigenvalue 

is[15,46,72]: 

 

𝐸(𝑁, 𝑛𝑑 , 𝑣, 𝑛∆, 𝐿,𝑀) = 𝛼𝑛𝑑 + 𝛽𝑛𝑑(𝑛𝑑 + 4) + 2𝛾𝑣(𝑣 + 3) + 2𝛿𝐿 (𝐿 + 1)           (2.19) 
 

 

The sub-group U(5) is representation of vibrational dynamical symmetry, 

along with the quantum numbers that give it diagonal quality and can be 

characterized as[14,55]: 

 

Ld MLnnN

OOOUU







,][

)2()3()5()5()6(



      (2.20) 

 

The quantum numbers values are [11,14,18]: 

 

𝑁 = 𝑁𝜋 +𝑁𝑣             

(2.21)  

𝑛𝑑 = 𝑁,𝑁 − 1,…… ,1,0         (2.22)  

𝑣 = 𝑛𝑑 , 𝑛𝑑 − 2,……… . ,1 𝑜𝑟 0 (𝑛𝑑  𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛)     (2.23)  

𝑛𝛽 = 0,1…… . , 𝑛𝑑 2⁄ 𝑜𝑟  (𝑛𝑑 − 1) 2 ; (𝑛𝑑 = 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑)⁄   (2.24) 

𝐿 = , + 1,…… ,2− 2,2        (2.25) 

Where  
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N: is the total boson number, 

 𝑛𝑑: is the number of d-boson,  

v: is boson seniority (the number of d-boson not paired to L= 0), 

𝑛𝛽: is the number of d-bosons coupled pairwise to L= 0, 

𝑛∆: is the number of d-bosons coupled triplet wise to L= 0, this is a further 

quantum number that is O (5) in chain (2.12) is not fully reducible with respect 

to O (3). 

𝜆: is number of bosons in the reduced state, 

L: is the total angular momentum quantum number.  

The ideal diagram of the energy spectrum dependent on quantum number 

numbers 𝑛𝑑, 𝑣 = 𝑛𝑑, and 𝑛∆ = 0 are used to describe the ground state b ands 

which conforms to dynamical symmetry U(5), is shown in Figure (2.1). 

The following selection rules apply to the 𝑇𝐸2 operator in Eq.(2.7)[55,62]. 
 

 ∆𝑛𝑑 = 0,±1         (2.26)  

 

The B(E2) values along these b ands are[18,67,73]: 
 

𝐵(𝐸2; 𝑛𝑑 + 1, 𝑣 = 𝑛𝑑 + 1, 𝑛∆ = 0, 𝐿𝑖 = 2𝑛𝑑 + 2 → 𝑛𝑑 , 𝑣 = 𝑛𝑑 , 𝑛∆ =

0, 𝐿𝑓 = 2𝑛𝑑) = 𝛼2
2 1

4
(𝐿 + 2)(2𝑁 − 𝐿)               (2.27)  

 

Also the B(E2) along the ground states b and given only the first term[11]:   
 

 𝐵(𝐸2; 21
+ → 01

+) = 𝛼2
2𝑁 = 𝑒𝐵

2𝑁       (2.28)  
 

The matrix element of the 𝑛̂𝑑 operator can be expressed as[11,55], and the 

magnetic dipole transitions can be determined using Eq.(2.9): 
 

 〈[𝑁], 𝑛𝑑 , 𝑣, 𝑛∆, 𝐿|𝑛̂𝑑|[𝑁], 𝑛𝑑 , 𝑣, 𝑛∆, 𝐿〉 = 𝑛𝑑      (2.29)  

and 

𝑔21+ = 𝑔𝐵 + 𝐴𝑁 +√
4𝜋

3
 𝐶 − √

4𝜋

3
 
1

5√2
𝐵      (2.30) 
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The B(E2) ratios are[11,44]  

 𝑅 = 2
 (𝑁−1)

𝑁 𝑁→∞
→   2,  

𝑅′ = 2
 (𝑁−1)

𝑁 𝑁→∞
→   2,         (2.31) 

𝑅′′ = 2
(𝑁 − 1)

𝑁 𝑁→∞
→   2  

 

2.2.2 The rotational limit SU(3) 

 In terms of creation and annihilation operators, if 𝜀 =  𝑎0 = 𝑎3 = 𝑎4 = 0 in 

Eq. (2.4), the Hamiltonian operator for dynamical symmetry is given by[47, 

61, 74]: 
 

𝐻̂ = 𝑎1𝐿̂. 𝐿̂ + 𝑎2𝑄̂. 𝑄̂         (2.32) 

 

 

Their eigenvalue is[18,75]: 

 

𝐸 (𝑁, ,, 𝐾, 𝐿) =
𝑎2

2
(2 + 2 + + 3(+ )) + (𝑎1 −

3𝑎2

8
) 𝐿 (𝐿 + 1)             (2.33) 

 

Subgroup SU(3), which has quantum numbers that give it its diagonal feature, 

expresses the rotational dynamical symmetry as[55, 76]: 

 

L
MLKN

OOSUU

),(][

)2()3()3()6(







      (2.34) 

  

All[𝑁]contains values of(,) that are given by: 

 

(2𝑁, 0), (2𝑁 − 4,2), (2𝑁 − 8,4), (2𝑁 − 6,0), ……… ..    (2.35) 

For 𝐾 = 0,2,4,…..min (,)        (2.36) 
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For 𝐾 = 0 the values L=0,2,4,….max (,)are allowed    (2.37) 

 and for 𝐾 > 0 𝐿 = 𝐾,𝐾 + 1,𝐾 + 2,… . 𝐾 +𝑚𝑎𝑥 (,)    (2.38) 

It is convenient to rewrite 𝑇𝐸2 in Eq. (2.7)as for the accounts within this limit 

[18,76]: 
 

𝑇𝑚
𝐸2 = 𝛼2 [[𝑑

ϯ × 𝑠~ + 𝑠ϯ × 𝑑~]
𝑚

2
−
√7 

2
[𝑑ϯ × 𝑑~]

𝑚

2
]    (2.39)  

 

The following selection criteria [18,55] apply to the where(𝛽2 =
√7

2
𝛼2), 𝑇

𝐸2 

operator in Eq. (2.39): 
 

∆ = 0, ∆ = 0          (2.40) 
 

Figure (2.2) demonstrates that the quantum numbers define the ground state b 

and   = 2𝑁, = 0 𝑎𝑛𝑑 𝑘 = 0. 

The results show that the B(E2) values along this b and are[55,74]:  
 

𝐵(𝐸2; ( = 2𝑁, = 0),𝐾 = 0, 𝐿𝑓 = 𝐿 + 2 → ( = 2𝑁, = 0),𝐾 =

0, 𝐿𝑓 = 𝐿) = 𝛼2
2 3(𝐿+2)(𝐿+1)

4(2𝐿+3)(2𝐿+5)
(2𝑁 − 𝐿)(2𝑁 + 𝐿 + 3)             (2.41)  

 

In particular  

 

𝐵(𝐸2; 21
+ → 01

+) =
𝛼2
2

5
𝑁(2𝑁 + 3) =

𝑒𝐵
2 

5
N (2N + 3)    (2.42) 

 

The magnetic dipole transitions can be calculated using Eq.(2.9), and the  

matrix element of the 𝑛̂𝑑 operator can be expressed as[55, 74]: 
 

 

〈[𝑁], (2𝑁, 0), = 0, 𝐿|𝑛̂𝑑|[𝑁], (2𝑁 − 4,2), = 0, 𝐿〉 =

−√𝑁 √[
(2𝑁−𝐿)(2𝑁+𝐿+1)

3(2𝑁−1)(2𝑁)
] √[

(2𝑁−1)2−𝐿(𝐿+1)

3(2𝑁−2)(2𝑁−1)
] √[

2(2𝑁−1)

(2𝑁−3)
]    (2.43) 

 and  

𝑔21+ = 𝑔𝐵 + 𝐴𝑁 +√
4𝜋

3
 
6−8𝑁 (𝑁−1)

6 (2𝑁−1)
𝐶       (2.44) 
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The B(E2) ratios are[11,76]: 

𝑅 =
10

7

(𝑁 − 1)(2𝑁 + 5)

𝑁(2𝑁 + 3) 𝑁→∞
→   

10

7
,  

𝑅′ = 0,           (2.45) 

𝑅′′ = 0  

2.2.3 The γ-unstable limit O(6) 

 This symmetry arises when the coefficients 𝜀, 𝑎2 and 𝑎4 in Eq. (2.4) vanish.  

Therefore, the O(6) Hamiltonian given by[55,68]: 
 

 

Ĥ = a0P̂. P̂ + a1L̂. L̂ + a3T̂. T̂        (2.46) 

 

when the𝑎0, 𝑎1 and 𝑎3 are parameters.The eigenvalue is expressed as 

[18,77,78]: 

 

𝐸 (𝜎, 𝜏, 𝐿) = 𝐴(𝑁 − 𝜎)(𝑁 + 𝜎 + 4) + 𝐵𝜏(𝜏 + 3) + 𝐶𝐿(𝐿 + 1)   (2.47) 

 

where: 

 (𝐴 = 𝑎0 4,𝐵 = 𝑎3 2, 𝐶 = 𝑎1 − 𝑎3 10⁄⁄⁄ ). 

The sub-group O(6), which represents the dynamical symmetry of unstable 

gamma, contains quantum numbers[55]:  

 

MLLvN

OOOOU







,][

)2()3()5()6()6(



      (2.48) 

 

Where : 
 

𝜎 = 𝑁,𝑁 − 2,…… ,0 𝑜𝑟 1, 𝑓𝑜𝑟 𝑁 = 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑     (2.49) 

The quantum number labels the O (5).  

𝜏 = 𝜎, 𝜎 − 1,… . ,0                  (2.50)  
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𝜏 = 3𝑣∆ +           (2.51) 

𝑣∆ = 0,1,… ..                   (2.52)  

𝐿 = , + 1,…… ,2− 2,2        (2.53) 

where the values of the quantum numbers 𝜏 and 𝑣∆ are identical to the 𝑣 and 

𝑛∆, respectively, of the U(5) chain[18].The ideal depiction of an energy 

spectrum is shown in Figure (2.3). The transition operator's first term in 

Eq.(2.7) is found to be the dominant one in the regions where this symmetry 

holds true, and the second term will be discarded (i.e., we consider 𝛽2= 0). 

These selection rule applies to the 𝑇𝐸2 operator in Eq. (2.7)[58,77,79]: 
 

∆𝜎 = 0, ∆𝜏 = ∓1          (2.54) 

 

The B(E2) values along the ground state b and defined by the O(6) quantum 

numbers[13,18,55]: 
 

𝐵(𝐸2; 𝜎 = 𝑁, 𝜏 + 1, 𝑣∆ = 0, 𝐿𝑖 = 2𝜏 + 2 → 𝜎 = 𝑁, 𝜏, 𝑣∆ = 0, 𝐿𝑓 = 2𝜏) =

𝛼2
2 𝐿+2

8 (𝐿+5)
(2𝑁 − 𝐿)(2𝑁 + 𝐿 + 8)       (2.55) 

In particular 
 

 𝐵(𝐸2; 21
+ → 01

+) =
𝛼2
2

5
𝑁(𝑁 + 4) =

𝑒𝐵
2

5
𝑁(𝑁 + 4)     (2.56) 

 

The magnetic dipole transitions can be calculated using Eq. (2.9), and the 

matrix element of the 𝑛̂𝑑 operator can be represented as follows: 
 

〈[𝑁], 𝜎 = 𝑁, 𝜏, 𝑣∆, 𝐿|𝑛̂𝑑|[𝑁], 𝜎 = 𝑁 − 2, 𝜏, 𝑣∆, 𝐿〉 =

−√𝑁√[
𝑁(𝑁+3)−𝜏(𝜏+3)

2𝑁(𝑁+1)
]√[

(𝑁−1)(𝑁−2)−𝜏(𝜏+3)

2𝑁(𝑁+1)
]      (2.57)  

 and, 

 𝑔21+ = 𝑔𝐵 + 𝐴𝑁 +√
4𝜋

3
 
4+𝑁 (𝑁−1)

2 (𝑁+1)
𝐶       (2.58) 
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The B(E2) ratios are[11]: 

𝑅 =
10

7

(𝑁 − 1)(𝑁 + 5)

𝑁(𝑁 + 4) 𝑁→∞
→   

10

7
,  

𝑅′ =
10

7

(𝑁−1)(𝑁+5)

𝑁(𝑁+4) 𝑁→∞
→   

10

7
,        (2.59) 

𝑅′′ = 0. 

 

2.3 Transitional Regions 

 Some of the features of the pure symmetries are observed empirically in 

selected nuclei. However, most nuclei display properties which are 

intermediate between them. In order to describe these transitional nuclei, one 

must return to the full Hamiltonian, Eq. (2.4), and diagonalize it numerically. 

It is convenient to divide transitional nuclei into four classes [11,18]: 

2.3.1 Nuclei with Spectra Intermediate between U(5) and SU(3) 

 The convenient Hamiltonian for this transitional region is[18]: 

 

Ĥ = ε n̂d + a2Q̂. Q̂ + a1L̂. L̂         (2.60) 

 

The SU(3) limit has been used as the starting point, there is an increase in both 

E (21
+) and E (41

+) separately, a clear reduction in the ratio E (41
+) E (21

+)⁄ , 

and the γ-b and is above the β-b and. The introduction of a term in 𝜀 𝑛𝑑 to an 

SU(3) Hamiltonian must usually be accompanied by a companion amendment 

of the Q̂. Q̂ and L̂. L̂ terms to maintain the required energies for the 21
+ and 22

+ 

states[11]. 

2.3.2 Nuclei with Spectra Intermediate between SU(3) and O(6)  

 The choice of the Hamiltonian for this transitional region is depended on the 

ratio a0 4a2⁄ , if it is approach to -1, then the Hamiltonian is[18]: 
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 𝐻̂ = 𝑎1𝐿̂. 𝐿̂  + 𝑎2𝑄̂. 𝑄̂ + 𝑎0𝑝̂. 𝑝̂       (2.61) 

 

but with larger magnitudes, the Hamiltonian becomes[11]: 

 

𝐻̂ = 𝑎1𝐿̂. 𝐿̂ + 𝑎2𝑄̂. 𝑄̂ + 𝑎0𝑝̂. 𝑝̂ + 𝑎3𝑇̂3. 𝑇̂3       (2.62) 

 

where the term 𝑻̂3. 𝑻̂3 will tend to reduce the ratio E (41
+) E (21

+)⁄  thus must 

be kept small for well deformed nuclei[44]. 

 

2.3.3 Nuclei with Spectra Intermediate between U(5) and O(6)  

 Nuclei in this transitional region has been less studied than the earlier two 

and can be calculated with a Hamiltonian[11, 44]: 

𝐻̂ = 𝜀𝑛̂𝑑 + 𝑎0𝑝̂. 𝑝̂ + 𝑎1𝐿̂. 𝐿̂ + 𝑎3𝑇̂3. 𝑇̂3       (2.63) 

2.3.4 Nuclei with Spectra Intermediate among all three limiting 

cases 

 Nuclei in this transitional region are the most difficult to treat since they 

require the use of all the operators appearing in Eq.(2.4)[44]. 

2.4 Potential Energy Surface Basis 
 

 The IBM energy surface 𝐸(𝑁, 𝛽, 𝛾) is made using the expected value of the 

IBM-1 Hamiltonian Eq.(2.3) in a coherent state (|𝑁, 𝛽, 𝛾⟩)[18,44,80]. The 

state|𝑁, 𝛽, 𝛾⟩ is a result of boson creation operators (𝑏𝑐
+)over the boson 

vacuum|0⟩, that is, 

 

|𝑁, 𝛽, 𝛾⟩ = 1 √𝑁! (𝑏𝐶
+)𝑁 |0⟩ ⁄         (2.64)   

 

where |0⟩ is the boson vacuum and the 𝒃𝑐
ϯ
 acts in the intrinsic system and is 

given by[18, 80]: 
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𝑏𝑐
+ = (1 + 𝛽)−1 2⁄ {𝑠ϯ + 𝛽 [cos γ(𝑑0

ϯ
) + √1 2⁄ sin 𝛾(𝑑2

ϯ
+ 𝑑−2

ϯ
)]}       (2.65)  

 

N is the boson number, or the number of valence bosons that are not inside a 

doubly-closed shell.Via this coherent state formalism, a potential energy 

surface (PES) E (N,β,γ) in the quadruple deformation variables β and γ can be 

derived for any IBM Hamiltonian, where β is the deformation parameter 

measures the axial deviation from sphericity and γ is the angle variable 

controls the departure from axial symmetry, thus the variables β and γ 

determine the geometry of nuclear surface.It is simple to construct the energy 

surface in terms of the shape variables and the Hamiltonian Eq.(2.3) 

parameters[13,80]:  
 

 

𝐸(𝑁, 𝛽, 𝛾) = 〈𝑁, 𝛽, 𝛾|𝐻|𝑁, 𝛽, 𝛾〉 〈𝑁, 𝛽, 𝛾|𝑁, 𝛽, 𝛾〉⁄   

=
𝑁𝜀𝑑𝛽

2

(1+𝛽2)
+
𝑁(𝑁+1)

(1+𝛽2)2
(𝛼1𝛽

4 + 𝛼2𝛽
3 cos 3𝛾 + 𝛼3𝛽

2 + 𝛼4)   (2.66) 

 

where the coefficients 𝐶𝐿, 𝑣2, 𝑣0, and 𝑢0up in equation (2.3) are related to the 

a’s. In the geometrical collective model, 𝛽 and 𝛾 are variation parameters 

associated to the form variables. The form is spherical when 𝛽 = 0, distorts 

when 𝛽 ≠ 0, and is prolate when 𝛾 = 0 and oblate when 𝛾 = 60[18,23]. 

 𝛾 represents the amount of divergence from the focal symmetry and correlates 

with the nucleus. These formulas result in 𝐵𝑚𝑖𝑛 = 0,√2 and 1 for U(5), 

SU(3), and O(6), respectively, for big N. 

2.4.1 The U(5) Symmetry 

 It is sufficient to write the energy functional, E (N, β, γ), associated with the 

Casimir invariant of the the U(5) Symmetry, Eq.(2.20), this yields[11,18,44]: 
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𝐸(𝑁; 𝛽, 𝛾) = 𝜀𝑑
𝑁𝛽2

(1+𝛽2)
,        (2.67) 

 

This energy functional is γ-independent and has 𝛽𝑚𝑖𝑛 = 0  

2.4.2 The SU(3) Symmetry 

 The energy functional, E (N, β, γ), associated with the Casimir invariant of 

the SU(3) Symmetry, Eq. (2. 34), is[11, 18, 44]: 

 

𝐸(𝑁; 𝛽, 𝛾) = 𝑎2
𝑁(𝑁−1)

(1+𝛽2)2
(4𝛽2 ± 2√2𝛽3 cos 3𝛾 +

1

2
𝛽4),    (2.68) 

 

the equilibrium values are obtained by solving[11]: 

 

𝜕𝐸

𝜕𝛽
=
𝜕𝐸

𝜕𝛾
= 0,          (2.69) 

 

To give 𝛽𝑚𝑖𝑛 = √2 and 𝛾 = 0° with the positive sign of the second term in 

Eq. (2.68) for 𝜒 = −√7 2⁄ , and 𝛾 = 60° with the negative sign of the term 

and 𝜒 = +√7 2⁄  corresponding to prolate and oblate deformed shape 

respectively[11,18,75]. 
 

 2.4.3 The O(6) Symmetry 

 It is sufficient to write the energy functional, E (N, β, γ), associated with the 

Casimir invariant of the O(6) symmetry, this yields[11]: 
 

𝐸(𝑁; 𝛽, 𝛾) =
𝑎0

4
𝑁(𝑁 − 1) (

1−𝛽2

1+𝛽2
)
2

       (2.70) 

 

The equilibrium value is given by 𝛽𝑚𝑖𝑛 = 1, corresponding to γ-unstable 

deformed shape[11,18]. 
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 In this chapter, the results of the even-even 74-80Ge and 76-82Se nuclei have 

been done using Interacting Boson Model (IBM-1). Then, the calculations 

IBM-1 for Germanium and Selenium nuclei that are related to dynamical 

symmetry O(6). There is an exclusive equation for finding the Hamiltonian 

operator function which is used to determine the energy levels to Eq.(2.4). 

The Hamiltonian operator equation depends on the total number of bosons (N) 

in this model, and energy levels decrease as the N value decreases. The even 

Ge and Se nuclei (core) consisted of proton number (Z) =32 and 34, 

respectively, and a range of neutron numbers (n) from 42 to 48. It has boson 

total numbers between 3-6 and 4-7 for Ge and Se, respectively. Furthermore, 

the IBM-1 is applied to describe the Ge and Se nuclei using computer code 

PHINT. This code was written by Scholten[81]. 

 

3.1 Energy levels calculation  

 The boson numbers of 74-80Ge nuclei range between 3-6 and 76-82Se nuclei 

range between 4-7 which are calculated relative to closed shells for Z and N 

between 28 and 50. For the calculations that follow, the energy ratio R = E4 / 

E2 [16,53] has been used as the starting point. This ratio has limiting values: 

R4/2 ~ 2.0 for a quadrupole vibrator, R4/2 ~ 2.5 for a non-axially gamma soft 

rotor and R4/2 ~ 3.33 for an ideally symmetric rotor[17,18].The R4/2 ratios for 

74-80Ge and 76-82Se nuclei are constant with an increase in neutron number and 

equal ~ 2.5, which means that their structures seem to be deformed nuclei with 

O(6) dynamical symmetry. Figure (3.1) shows the energy ratios E 2: E 4: E 6: 

E 8= 1:2.5:4.5:7 for the O(6) limit[11,18].Table 3.1 lists adopted values of the  

parameters used for IBM-1 calculations using Eq.(2.4) and according to 

Eq.(2.47). 



CHAPTER THREE                   RESULTS AND DISCUSSION 

 

37 
 

        

 

 Figure 3.1. Comparison of the energy ratio (E 8: E 6: E 4: E 2) for (a) 74-80Ge and (b) 76-

82Se nuclei calculated by IBM-1 with the experimental data that is presently available 

[27,82-86]. 

 
 

Table 3.1. Adopted values for the parameters used for IBM-1 calculations. All 

parameters are given in MeV, excepted N and CHQ. The experimental data are taken 

from Refs.[27,82-86]. 

A N EPS PAIR ELL QQ OCT HEXA CHQ 

74Ge 6 0.000 0.1059 0.0855 0.000 0.0484 0.000 0.000 

76Ge 5 0.000 0.1592 0.0864 0.000 0.0433 0.000 0.000 

78Ge 4 0.000 0.1546 0.1003 0.000 0.0459 0.000 0.000 

80Ge 3 0.000 0.2465 0.0828 0.000 0.0586 0.000 0.000 

76Se 7 0.000 0.0701 0.0673 0.000 0.0509 0.000 0.000 

78Se 6 0.000 0.1070 0.0807 0.000 0.0530 0.000 0.000 

80Se 5 0.000 0.1232 0.0918 0.000 0.0558 0.000 0.000 

82Se 4 0.000 0.1410 0.0658 0.000 0.0653 0.000 0.000 

 (EPS = ɛ, PAIR = a0/2, ELL= 2a1, QQ= 2a2, OCT= a3/5, HEX= a4/5 and CHQ=) 

in Eq. (2.4) [18]. 
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The energy levels of 74-80Ge and 76-82Se nuclei have been classified according 

to three b ands (gr-, γ- and β-b ands). The β-b and is after the γ-b and for 

dynamical symmetry O(6). Also, it can be shown in accordance in the 

sequence of energy levels for each b and with the ideal sequence for g- and-

b ands (0+, 2+, 4+, 6+,...) and for -b and (2+, 3+, 4+, 5+, 6+,....)[18].Figures (3.2-

3.9) showed the IBM calculations (energies, spin and parity) are in general in 

good agreement with the experimental data, especially in the ground states 

[27,82-86].  
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1.74Ge Nucleus 

The 74Ge nucleus has 32 protons(2 proton-particles)and 42 neutrons(4 

neutron-holes), and then the total number of bosons is 6. The ratio R4/2 =2.456, 

thus it was suitable to apply Eq.(2.46) in order to calculate the low-lying 

positive parity energy levels. Levels 6+
1, 8

+
1 and 3+

1 between brackets refer 

(s) with energies of 2.957, 4.7236 and 2.400 MeV, respectively, correspond 

to cases for which the spin and/or parity of the corresponding states are not 

well established experimentally[12, 68] and can be seen in Figure(3.2).  

  

 

Figure 3.2. Comparison the IBM-1 calculation with the experimental data[27, 82] for the 
74Ge nuclei 



CHAPTER THREE                   RESULTS AND DISCUSSION 

 

40 
 

2.76Ge Nucleus 

The 76Ge nucleus has 32 protons(2 proton-particles)and 44 neutrons(3 

neutron-holes), and then the total number of bosons is 5 and have the ratio  

R4/2 =2.504, to produce the low-lying positive parity energy sates it is 

convenient to apply the O(6) Hamiltonian by using Eq.(2.46). Levels 6+
1, 3

+
1, 

5+
1 and 2+

3 with energies of 2.8561, 2.2097, 3.6815 and 2.273 MeV, 

respectively, correspond to cases for which the spin and/or parity of the 

corresponding states are not well established experimentally[27, 83] as well 

as, the dash line refers to the predicted level of new energy that the spin and 

parity non-specific 4.086, 3.9401 and 4.767 MeV for the spin and/or 

parity  81
+,  62

+ and 63
+, as can be seen in Figure (3.3). 

 

Figure 3.3. Comparison the IBM-1 calculation with the experimental data[27,83] for the 
76Ge nuclei. 
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3.78Ge Nucleus 

The 78Ge nucleus has 32 protons(2 proton-particles)and 46 neutrons(2 

neutron-holes), and the total number of bosons is 4. The ratio R4/2 =2.535, thus 

it was suitable to apply Eq.(2.46) in order to calculate the low-lying positive 

parity energy levels. Levels 6+
1,3

+
1, 4

+
2,5

+
1 and 4+

3 with energies of 3.270, 

2.3919, 2.609, 4.029 and 3.231 MeV, respectively, correspond to cases for 

which the spin and/or parity of the corresponding states are not well 

established experimentally[27,84] and the dash line refers to the predicted 

level of new energy that the spin and parity are non-specific 5.1714 and 

4.3554 MeV for the spin and/or parity  81
+ and  62

+ as can be seen in Figure 

(3.4).  

 

Figure 3.4. Comparison the IBM-1 calculation with the experimental data [27,84] for the 
78Ge nuclei. 
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4.80Ge Nucleus 

The 80Ge nucleus has 32 protons(2 proton-particles)and 48 neutrons(1 

neutron-holes), and then the total number of bosons is 3 and has the ratio  

R4/2 =2.643,to produce the low-lying positive parity energy states it is 

convenient to apply the O(6) Hamiltonian by using Eq.(2.46) in order to 

calculate the low-lying positive parity energy levels. Levels 4+
1, 6

+
1, 2

+
2 and 3

+
1 

and with energies of 1.7082, 3.1471, 1.5392 and 2.7850 MeV, respectively, 

correspond to cases for which the spin and/or parity of the corresponding 

states are not well established experimentally[27,85] as well as the predicted 

level of new energy of 2.8815 and 2.6311 MeV for the spin and/or 

parity  42
+ and  23

+, as can be seen in Figure(3.5). 

 

Figure 3.5. Comparison the IBM-1 calculation with the experimental data  [27, 85] for 

the 80Ge nuclei. 
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From the above figures (3.2) and (3.3) for 74Ge and 76Ge, it can be noticed that 

for a larger number of bosons(N=6 and 5), there are more energy levels 

converging with each other because of increasing the number of energy levels 

with the boson number (N) increment. But in the figures (3.4) and (3.5) for 

78Ge and 80Ge whenever the number of bosons decreases (N=4 and 3), the 

difference between energy levels will decrease because, 78Ge and 80Ge nuclei 

approach toward magic number (n50) which has an effect on converging 

energy levels (i.e. whenever the nuclei approaches the magic number, the 

nucleus will be more stable). 
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5.76Se Nucleus 

The 76Se nucleus has 34 protons(3 proton-particles) and 42 neutrons(4 

neutron-holes), and then the total number of bosons is 7 and has the ratio 

 R4/2 =2.380. The energy levels were calculated under IBM-1 by using Eq. 

(2.46) for O(6). Levels 4+
3 and 6

+
3 with energies of 2.5581 and 3.756 MeV, 

respectively, correspond to cases for which the spin and/or parity of the 

corresponding states are not well established experimentally[27,83] and can 

be seen in Figure (3.6). 

 

 

Figure 3.6. Comparison the IBM-1 calculation with the experimental data[27,83] for the 
76Se nuclei. 
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6.78Se Nucleus 

The 78Se nucleus has 34 protons(3 proton-particles) and 44 neutrons(3 

neutron-holes), and then the total number of bosons is 6. The ratio R4/2 =2.448, 

thus it was suitable to apply Eq.(2.46)in order to calculate the low-lying 

positive parity energy levels. The dash line refers to the predicted level of new 

energy that the spin and parity non-specific 4.1255, 4.2917 and 4.4653 MeV 

for the spin and/or parity 51
+,  62

+ and  63
+, respectively, as can be seen in 

Figure (3.7). 

 

 

Figure 3.7. Comparison the IBM-1 calculation with the experimental data [27,84] for the 
78Se nuclei. 
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7.80Se Nucleus 

The 80Se nucleus has 34 protons(3 proton-particles) and 46 neutrons(2 

neutron-holes), and then the total number of bosons is 5. The ratio R4/2 =2.553, 

thus it was suitable to apply Eq.(2.46) in order to calculate the low-lying 

positive parity energy levels. Levels 6+
1, 8

+
1, 3

+
1, 4

+
2 and 4

+
3 with energies of 

3.2670, 5.2020, 2.727, 2.8710 and 3.2334 MeV, respectively, correspond to 

cases for which the spin and/or parity of the corresponding states are not well 

established experimentally[27,85] as well as the predicted level of new energy 

of 4.4460 and 4.6620 MeV for the spin and/or parity  51
+ and  62

+, as can be 

seen in Figure (3.8). 

 

 

Figure 3.8. Comparison the IBM-1 calculation with the experimental data[27,85] for the 
80Se nuclei. 
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8.82Se Nucleus  

The 82Se nucleus has 34 protons(3 proton-particles) and 48 neutrons(1 

neutron-hole), and then the total number of bosons is 4. The ratio R4/2 =2.650, 

thus it was suitable to apply Eq.(2.46) in order to calculate the low-lying 

positive parity energy levels. Levels 4+
2, 5

+
1 and 4+

3 have energies of 2.9435, 

4.5785 and 3.0475 MeV, respectively, and correspond to cases for which the 

spin and/or parity of the corresponding states are not well established 

experimentally[27,86]. The dash line refers to the predicted level of new 

energy that the spin and parity non-specific 2.9415 and 4.5815 MeV for the 

spin and/or parity  31
+ and  62

+, as can be seen in Figure (3.9).  

 

 

Figure 3.9. Comparison the IBM-1 calculation with the experimental data [27,86] for the 
82Se nuclei. 
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From the above four figures (3.6) to (3.9), notice that the difference between 

energy levels in 76,78Se nuclei is less than the difference between energy levels 

of 80,82Se nuclei. Since the number of energy levels in 76,78Se is greater than 

that in 80,82Se, which is due to the existence for more bosons in 76,78Se nuclei 

(N=7 and 6), there are more energy levels converging with each other because 

of increasing the number of energy levels with boson number (N) increment. 

In O(6) limite, the higher-lying, lower  representations, the sequences of 

levels are completely identical, except for lower cutoffs, since max= each 

case. 

Figures (3.2)- (3.9) show, the IBM calculations (energies, spin and parity) are 

in general in good agreement with the experimental data, especially in the 

ground state, and the energy levels 𝐸41+ > 𝐸22+ 𝑎𝑡 𝜏 = 2, 𝐸61+ > 𝐸42+ >

𝐸31+ > 𝐸02+  𝑎𝑡 𝜏 = 3, 𝑎𝑛𝑑 𝐸81+ > 𝐸62+ > 𝐸51+ > 𝐸43+ > 𝐸23+  𝑎𝑡 𝜏 = 4 

resemble the typical spectrum of the O(6) symmetry [18]. 

Tables (3.2 and 3.3) show the measured and calculated values for energy 

levels of Ge and Se nuclei using IBM-1 and compared with previous studies 

(Th.)[31,37, 38,40,42,43]. These comparisons between our calculations and 

other studies show that our calculations of energy levels are better than those 

of those. 
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Table 3.2. Comparison of the calculated values for energy levels of Ge nuclei with 

previous studies (Th.). The experimental data are taken from Refs.[27,82-85]. 

Nuclei 𝑱 Exp. This work Th. 
74Ge 21

+ 0.595 0.595 0.611 (a) 

 41
+ 1.463 1.481 1.483 (a) 

 61
+ 2.569* 2.557 2.538 (d) 

 81
+ 4.874* 4.723 ------ 

 22
+ 1.204 1.321 1.584 (a) 

 31
+ 1.697* 1.800 1.379 (d) 

 42
+ 2.165 2.154 2.159 (d) 

 51
+ 2.697 3.144 ----- 

 62
+ 3.372 3.617 ----- 

 02
+ 1.482 1.482 2.069 (a) 

 23
+ 2.197 2.078 2.324 (d) 

 43
+ 2.669 3.063 2.566 (d) 

 63
+ 3.372* 3.439 ----- 

76Ge 21
+ 0.562 0.562 0.348 (a) 

 41
+ 1.410 1.514 1.058 (a) 

 61
+ 3.071* 2.856 2.497 (b) 

 81
+ 3.565 4.086 3.557 (b) 

 22
+ 1.108 1.213 1.902 (a) 

 31
+ 2.456* 2.209 1.661 (b) 

 42
+ 2.733 2.382 2.279 (b) 

 51
+ 3.453* 3.681 2.780 (b) 

 62
+ ---- 3.940 3.413 (b) 

 02
+ 1.911 1.911 1.869 (a) 

 23
+ 2.204* 2.273 2.421 (d) 

 43
+ 2.994 3.125 2.689 (d) 

 63
+ ---- 4.767 ------ 
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Continued  

Nuclei 𝑱 Exp. This work Th. 
78Ge 21

+ 0.619 0.622 0.516 (a) 

 41
+ 1.570 1.691 1.701 (a) 

 61
+ 3.287* 3.270 3.174 (b) 

 81
+ ------ 5.1714 4.070 (b) 

 22
+ 1.186 1.310 3.386 (a) 

 31
+ 2.330* 2.391 1.746 (b) 

 42
+ 2.666* 2.609 2.794 (b) 

 51
+ 4.305* 4.029 3.174 (b) 

 62
+ ----- 4.355 3.979 (b) 

 02
+ 1.546 1.546 3.340 (a) 

 23
+ 1.842 2.168 1.707 (d) 

 43
+ 2.759* 3.230 1.904 (d) 

80Ge 21
+ 0.659 0.651 0.728 (c) 

 41
+ 1.742* 1.708 1.804 (c) 

 61
+ 2.978* 3.147 3.197 (c) 

 22
+ 1.573* 1.539 1.096 (c) 

 31
+ 3.036* 2.785 2.319 (c) 

 42
+ ---- 2.881 2.092 (c) 

 02
+ 1.972 1.972 0.733 (c) 

 23
+ ----- 2.631 3.514 (d) 
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Table 3.3. Comparison of the calculated values for energy levels of Ge nuclei with 

previous studies (Th.). The experimental data are taken from Refs.[ 27,83-86]. 

Nuclei 𝑱 Exp. This work Th. 
76Se 21

+ 0.559 0.558 0.649 (e) 

 41
+ 1.330 1.436 1.217 (e) 

 61
+ 2.262 2.134 2.393 (e) 

 81
+ 3.269 4.153 3.482 (e) 

 22
+ 1.216 1.321 1.054 (e) 

 31
+ 1.688 2.388 1.801 (e) 

 42
+ 2.025 2.014 1.894 (e) 

 51
+ 2.489 2.809 2.891 (e) 

 62
+ 2.976 3.156 2.673 (e) 

 02
+ 1.122 1.121 0.898 (e) 

 23
+ 1.122 1.679 1.552 (e) 

 43
+ 1.787 2.558 2.486 (e) 

 63
+ 2.619 3.756 3.451 (e) 

78Se 21
+ 0.613 0.613 0.580 (b) 

 41
+ 1.502 1.602 1.335 (b) 

 61
+ 2.546 2.566 2.369 (b) 

 81
+ 3.585 4.207 3.369 (b) 

 22
+ 1.308 1.408 1.082 (b) 

 31
+ 1.853 2.351 2.007 (b) 

 42
+ 2.190 2.562 1.846 (b) 

 51
+ ---- 4.125 2.977 (b) 

 62
+ ---- 4.291 3.159 (b) 

 02
+ 1.498 1.498 0.961 (b) 

 23
+ 1.995 2.111 2.409 (e) 

 43
+ 2.682 3.100 3.511 (e) 

 63
+ ----- 4.465 5.079 (e) 
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Continued 

  (a)Ref. [43]. (b) Ref. [42]. (c) Ref. [37]. (d) Ref. [31]. (e) Ref. [40]. (f) Ref. [38]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nuclei 𝑱 Exp. This work Th. 
80Se 21

+ 0.666 0.666 0.683 (b) 

 41
+ 1.701 1.755 1.829 (b) 

 61
+ 3.030* 3.267 3.314 (b) 

 81
+ 5.180* 5.202 3.908 (b) 

 22
+ 1.449 1.503 1.208 (b) 

 31
+ 2.787* 2.727 2.014 (b) 

 42
+ 2.494* 2.871 2.226 (b) 

 51
+ ---- 4.446 3.174 (b) 

 62
+ ---- 4.662 3.471 (b) 

 02
+ 1.410 1.478 1.293 (b) 

 23
+ 1.959 2.144 2.233 (e) 

 43
+ 3.226 3.233 3.142 (e) 

82Se 21
+ 0.654 0.654 0.672 (f) 

 41
+ 1.735 1.637 1.963 (f) 

 61
+ 3.144 2.949 ---- 

 81
+ 3.517 4.589 ---- 

 22
+ 1.731 1.634 1.567 (f) 

 31
+ ---- 2.941 ---- 

 42
+ 2.550* 2.943 ---- 

 51
+ 4.231* 4.578 ---- 

 02
+ 1.410 1.410 1.546 (f) 

 23
+ 3.591 2.064 ---- 

 43
+ 3.688 3.047* ---- 
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3. 2 Electric Quadrupole Transition Probability B(E2) Values 

 1. Absolute B(E2) values 

Now, additional details on the structure of nuclei can be described in terms of 

the strength of the transitions between excited states and can be represented 

in terms of the reduced E2 matrix element, which must be a Hermitian tensor 

of rank two when N must be conserved to Eq. (2.4)[18,46]. 

The computer code PHINT[81] has been used to calculate the BE(2). The 

values of effective charge (eB) are obtained from Eq. (2.56) for all nuclei under 

study, and depending on practical values, they are presented in Table (3.4). 

By normalizing the predictions to the experimental values of B(E2; 21
+ → 01

+), 

the values of (eB) are determined for all Ge and Se nuclei under examination. 

 

Table 3.4. Effective charges to reproduce B(E2) values for 74–80Ge and76-82 Se nuclei. 

 The experimental data are taken from Refs.[ 27,82-86].  

Nuclei N B (E2; 𝟐𝟏
+ → 𝟎𝟏

+) e2b2 e
B
 eb 

74

Ge 6 0.0609 0.0712 
76

Ge 5 0.0554 0.0785 
78

Ge 4 0.0455 0.0843 
80

Ge 3 0.0278 0.0814 
76Se 7 0.0871 0.0752 
78Se 6 0.0662 0.0743 
80Se 5 0.0505 0.0749 
82Se 4 0.0366 0.0756 

 

For all nuclei under study, the comparison of calculations of B(E2) values 

with the experimental data [27,82-86] is given in Tables 3.5 and 3.6 which 

show there is no available experimental transition data to many transitions. 

Therefore, it has been predicted using IBM-1. From Tables (3.5) and (3.6), it  
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can be noticed that the values of B(E2) are in general higher for most 

transitions in Se nuclei than B(E2) in Ge nuclei, and in general there is a good 

agreement with the experimental B(E2) values. Furthermore, the calculations 

of B(E2) values are compared with previous studies (Th.), and they are 

presented in Tables 3.5 and 3.6. This comparison shows that the calculated 

B(E2) values are better than those in Ref.[31,35,40,42,43]. 

In Ge and Se nuclei, B (E2;21
+ → 01

+) and B (E2;41
+ → 21

+) values decrease as 

neutron number increases toward the close shell (N=50). Also, it can be 

observed that the maximum values of B(E2) for nuclei of dynamical 

symmetry O(6) i.e. the number of bosons has an obvious effect on the value 

of B(E2), the values of B(E2) decrease whenever the number of bosons 

decreases, and when it is closer to the magic number (50).  
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Table 3.5. B(E2) values for Ge nuclei (in e2. b2). The experimental data are taken from 

Refs.[ 27,82-85]. 
76Ge 74Ge 

𝑱 
Th. Exp.  IBM -1  Th. Exp. IBM-1  

0.0297 (a) 0.0554 0.0555 0.0333 (a) 0.0609 0.0609 𝟐𝟏
+ → 𝟎𝟏

+ 

0.0048 (a) 0.0803 0.0704 0.0321 (a) 0.0793 0.0798 𝟐𝟐
+ → 𝟐𝟏

+ 

-------- -------- 0.0259 -------- -------- 0.0325 𝟐𝟑
+ → 𝟎𝟐

+ 

0.0401 (a) 0.0727 0.0704 0.0460 (a) 0.0757 0.0798 𝟒𝟏
+ → 𝟐𝟏

+ 

0.0180 (b) 0.0401 0.0323 -------- -------- 0.0387 𝟒𝟐
+ → 𝟒𝟏

+ 

------ -------- 0.0282 -------- -------- 0.0392 𝟒𝟑
+ → 𝟐𝟑

+ 

0.152 (c) 0.0582 0.0678 0.147 (c) -------- 0.0812 𝟔𝟏
+ → 𝟒𝟏

+ 

-------- 0.0048 0.0071 -------- -------- 0.0064 𝟔𝟏
+ → 𝟒𝟐

+ 

-------- -------- 0.0367 -------- -------- 0.0491 𝟔𝟐
+ → 𝟒𝟐

+ 

-------- -------- 0.0171 -------- -------- 0.0229 𝟔𝟐
+ → 𝟔𝟏

+ 

-------- -------- 0.0538 -------- -------- 0.0720 𝟖𝟏
+ → 𝟔𝟏

+ 

0.0012 (b) -------- 0.0215 -------- -------- 0.0170 𝟎𝟐
+ → 𝟐𝟐

+ 

0.0039 (b) -------- 0.0194 -------- -------- 0.0230 𝟑𝟏
+ → 𝟒𝟏

+ 

0.0767 (b) 0.0420 0.0484 -------- -------- 0.0580 𝟑𝟏
+ → 𝟐𝟐

+ 
80Ge 78Ge 

𝑱 
Th. Exp. IBM-1 Th. Exp. IBM-1 

0.021 (c) 0.0278 0.0279 0.0229 (a) 0.0455 0.0455 𝟐𝟏
+ → 𝟎𝟏

+ 

0.0023 (c) -------- 0.0303 0.0014 (a) 0.0594 0.0548 𝟐𝟐
+ → 𝟐𝟏

+ 

-------- -------- 0.0066 -------- -------- 0.0171 𝟐𝟑
+ → 𝟎𝟐

+ 

0.0042 (c) -------- 0.0303 0.0293 (a) 0.0217 0.0548 𝟒𝟏
+ → 𝟐𝟏

+ 

-------- -------- 0.0095 0.0017 (b) -------- 0.0226 𝟒𝟐
+ → 𝟒𝟏

+ 

-------- -------- -------- -------- -------- 0.0142 𝟒𝟑
+ → 𝟐𝟑

+ 

0.163 (c) -------- 0.0199 0.160 (c) -------- 0.0474 𝟔𝟏
+ → 𝟒𝟏

+ 

-------- -------- 0.0072 -------- -------- 0.078 𝟔𝟏
+ → 𝟒𝟐

+ 

-------- -------- -------- -------- -------- 0.0124 𝟔𝟐
+ → 𝟒𝟐

+ 

-------- -------- -------- -------- -------- 0.009 𝟔𝟐
+ → 𝟔𝟏

+ 

-------- 0.0008 0.0008 -------- -------- 0.0284 𝟖𝟏
+ → 𝟔𝟏

+ 

-------- -------- 0.029 
1.9× 10−5 

(b) 
-------- 0.0270 𝟎𝟐

+ → 𝟐𝟐
+ 

-------- -------- 0.0056 0.0440 (b) -------- 0.0130 𝟑𝟏
+ → 𝟒𝟏

+ 

-------- -------- 0.0142 0.0780 (b) -------- 0.0338 𝟑𝟏
+ → 𝟐𝟐

+ 
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Table 3.6. B(E2) values for Se nuclei (in e2. b2). The experimental data are taken from 

Refs.[ 27,83-86]. 

𝑱 
76Se 78Se 

IBM -1 Exp. Th. IBM-1 Exp. Th. 

𝟐𝟏
+ → 𝟎𝟏

+ 0.0871 0.0871 0.0841 (d) 0.0662 0.0663 1× 10−5 (b) 

𝟐𝟐
+ → 𝟐𝟏

+ 0.1163 0.0822 0.1000 (d) 0.0868 0.0439 0.0580 (b) 

𝟐𝟑
+ → 𝟎𝟐

+ 0.0509 0.0038 -------- 0.0353 0.0198 -------- 

𝟒𝟏
+ → 𝟐𝟏

+ 0.1163 0.1358 0.1400 (d) 0.0868 0.0932 0.0946 (d) 

𝟒𝟐
+ → 𝟒𝟏

+ 0.0583 0.0420 0.0690 (d) 0.0421 -------- 0.0358 (b) 

𝟒𝟐
+ → 𝟐𝟐

+ 0.0642 0.0554 0.0860 (d) 0.0463 0.0792 0.0558 (b) 

𝟒𝟑
+ → 𝟐𝟑

+ 0.0646 -------- -------- 0.0426 -------- -------- 

𝟔𝟏
+ → 𝟒𝟏

+ 0.1225 0.1300 0.1700 (d) 0.0883 0.0930 0.1000 (d) 

𝟔𝟏
+ → 𝟒𝟐

+ 0.008 -------- -------- 0.0070 -------- -------- 

𝟔𝟐
+ → 𝟒𝟐

+ 0.0002 0.0059 0.0934 (e) 0.0534 0.1624 -------- 

𝟔𝟐
+ → 𝟔𝟏

+ 0.0014 ------- -------- 0.0249 0.0396 -------- 

𝟖𝟏
+ → 𝟔𝟏

+ 0.1152 0.1568 0.1777 (d) 0.0783 0.1109 0.0929 (d) 

𝟎𝟐
+ → 𝟐𝟐

+ 0.0185 -------- -------- 0.0185 -------- 0.177 (b) 

𝟑𝟏
+ → 𝟒𝟏

+ 0.0348 <0.6 -------- 0.0250 -------- 0.0283 (b) 

𝟑𝟏
+ → 𝟐𝟐

+ 0.0875 0.0062 0.1100 (d) 0.0631 0.0495 0.0362 (b) 

𝑱 
80Se 82Se 

IBM-1 Exp. Th. IBM-1 Exp. Th. 

𝟐𝟏
+ → 𝟎𝟏

+ 0.0505 0.0506 0.0506 (d) 0.0366 0.0366 -------- 

𝟐𝟐
+ → 𝟐𝟏

+ 0.0641 0.0378 0.0580 (b) 0.0441 0.0086 -------- 

𝟐𝟑
+ → 𝟎𝟐

+ 0.0236 -------- -------- 0.0137 0.0005 -------- 

𝟒𝟏
+ → 𝟐𝟏

+ 0.0641 0.0721 0.0706 (d) 0.0441 0.0465 -------- 

𝟒𝟐
+ → 𝟒𝟏

+ 0.0294 0.0573 0.0210 (b) 0.0181 -------- -------- 

𝟒𝟐
+ → 𝟐𝟐

+ 0.0323 0.0268 0.0354 (b) 0.0200 0.0338 -------- 

𝟒𝟑
+ → 𝟐𝟑

+ 0.0256 -------- -------- 0.0114 -------- -------- 

𝟔𝟏
+ → 𝟒𝟏

+ 0.0617 -------- 0.0720 (d) 0.0381 0.0254 -------- 

𝟔𝟏
+ → 𝟒𝟐

+ 0.0065 -------- -------- 0.0062 -------- -------- 

𝟔𝟐
+ → 𝟒𝟐

+ 0.0334 -------- -------- 0.0156 -------- -------- 

𝟔𝟐
+ → 𝟔𝟏

+ 0.0156 -------- -------- 0.0073 -------- -------- 

𝟖𝟏
+ → 𝟔𝟏

+ 0.0490 -------- 0.0590 (d) 0.0229 0.0011 -------- 

𝟎𝟐
+ → 𝟐𝟐

+ 0.0195 0.0034 0.1280 (b) 0.0215 -------- -------- 

𝟑𝟏
+ → 𝟒𝟏

+ 0.0175 -------- 0.0220 (b) 0.0108 -------- -------- 

𝟑𝟏
+ → 𝟐𝟐

+ 0.0441 -------- 0.0428 (b) 0.0272 -------- -------- 

 (a) Ref. [43]. (b) Ref. [42]. (c) Ref. [31]. (d) Ref. [40]. (e) Ref. [35]. 
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2. B(E2) Ratio 

 The B(E2) ratio is used to show that the74-80Ge and76-82Se nuclei are deformed 

and that a dynamical symmetry O(6). The B(E2) ratio is calculated using the 

formulas in Eq.(2.59)[54]. 

For each of the studied nuclei, the B(E2) ratio is determined using Eq. (2.59) 

and is provided in Tables (3.7) and (3.8). The IBM-1 computations for the 74-

80Ge and 76-82Se nuclei are compared with the experimental data[27,82-86] in 

these Tables. 

Table 3.7. The IBM-1 and the experimental values of B(E2) ratios for 74-80Ge nuclei. 

The experimental data are taken from Refs.[27, 82-85]. 

Nuclei N 
B(E2) ratios 

IBM-1 EXP. 
74Ge 6 1.310 1.301 
76Ge 5 1.268 1.449 
78Ge 4 1.204 1.304 
80Ge 3 1.086 ---- 

 

Table 3.8. The IBM-1 and the experimental values of B(E2) ratios for 76-82Se nuclei. 

The experimental data are taken from Refs.[27, 83-86]. 

Nuclei N 
B(E2) ratios 

IBM-1 EXP. 
76Se 7 1.33 1.55 
78Se 6 1.31 1.40 
80Se 5 1.26 1.42 
82Se 4 1.20 1.2 

 

The theoretical values of the B(E2) ratio for those nuclei are presented in the 

above table to be in good agreement with the experimental findings and to be 

1.4. This indicates that the 74-80Ge and 76-82Se nuclei typically exhibit the O(6) 

limit[18,55]. 
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3.3 𝐁 (𝐌𝟏) Values and Mixing Ratios (E2 / M1) 

 Similarly, to calculate the B(M1) values by using the computer codes PHINT 

[81], must specify values of the parameters gB = Z/A (M1), A (M1N), C 

(M1ND), and B (M1E2) in Eq.(2.9), by using the Equations (2.13) and (2.14) 

to calculate the parameter B, using Equations(2.12) and (2.57) to calculate the 

parameter C and finally to calculate the parameter A used the Eq.(2.58) for 

O(6) symmetry. Each of these parameters is presented in the Table (3.9). 

For all the nuclei under examination, the computed B(M1) values with the 

experimental data[72,82,86] are presented in the Table(3.10) and(3.11) except 

the 78,80Ge and 82Se nuclei because they don’t have any experimental B(M1) 

values, but we can calculate B(M1) values depending on the reduced mixing 

ratio (Eq.(2.14)) and δ(E2/M1) values (Eq.(2.15)). From this comparison, the 

calculated B(M1) are in a good agreement with the experimental data. 
 

Table 3.9. The coefficients of 𝑇𝑀1 used in the present work. All parameters are given in  

 (𝜇𝑁), except N. The experimental data are taken from Refs.[ 27,82-86]. 

Nuclei N M1 M1N M1ND M1E2 
74Ge 6 0.432 0.063 -0.056 -0.103 
76Ge 5 0.421 -0.179 0.107 -0.092 
78Ge 4 0.421 -0.275 0.225 0.082 
80Ge 3 0.400 -0.500 0.375 0.072 
76Se 7 0.447 0.088 -0.029 -0.072 
78Se 6 0.435 0.029 -0.046 -0.362 
80Se 5 0.425 0.090 -0.075 -0.095 
82Se 4 0.414 -0.100 -0.120 -0.500 

 

Table 3.10. B(M1)values for Ge nuclei (in 𝜇𝑁
2 ). The experimental data are taken from 

Refs.[ 27,82-85]. 
76

Ge 
74

Ge 𝑱 
Exp.

 

IBM -1
 

Exp.
 

IBM-1
 

0.0007 0.0004 0.0017 0.0006 𝟐𝟐
+ → 𝟐𝟏

+ 

------- 0.0007 ------- 0.0011 𝟒𝟐
+ → 𝟒𝟏

+ 

------- 0.0008 ------- 0.0014 𝟔𝟐
+ → 𝟔𝟏

+ 

------- 0.0002 ------- 0.0003 𝟑𝟏
+ → 𝟒𝟏

+ 

------- 0.0003 ------- 0.0005 𝟑𝟏
+ → 𝟐𝟐

+ 
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80Ge 78Ge 
𝑱 

  Exp. IBM-1 Exp. IBM-1 

------- 0.0001 ------- 0.0003 𝟐𝟐
+ → 𝟐𝟏

+ 

------- 0.0001 ------- 0.0004 𝟒𝟐
+ → 𝟒𝟏

+ 

------- ------- ------- 0.0003 𝟔𝟐
+ → 𝟔𝟏

+ 

------- ------- ------- 0.0001 𝟑𝟏
+ → 𝟒𝟏

+ 

------- 0.0001 ------- 0.0002 𝟑𝟏
+ → 𝟐𝟐

+ 

 

 

 

Table 3.11. B(M1)values for Se nuclei (in 𝜇𝑁
2 ). The experimental data are taken from 

Refs.[ 27,83-86]. 

𝑱 
76Se 78Se 

IBM-1 Exp. IBM-1 Exp. 

𝟐𝟐
+ → 𝟐𝟏

+ 0.0004 0.0008 0.0080 0.0015 

𝟒𝟐
+ → 𝟒𝟏

+ 0.0008 0.0017 0.0142 0.0716 

𝟔𝟐
+ → 𝟔𝟏

+ 0.0415 ------ 0.0180 0.2504 

𝟑𝟏
+ → 𝟒𝟏

+ 0.0002 ------ 0.0049 ------ 

𝟑𝟏
+ → 𝟐𝟐

+ 0.0004 ------ 0.0066 0.0178 

𝑱 
80Se 82Se 

IBM-1 Exp. IBM-1 Exp. 

𝟐𝟐
+ → 𝟐𝟏

+ 0.0004 0.0007 0.0077 ------ 

𝟒𝟐
+ → 𝟒𝟏

+ 0.0007 0.0067 0.0116 ------ 

𝟔𝟐
+ → 𝟔𝟏

+ 0.0008 ------ 0.0100 ------ 

𝟑𝟏
+ → 𝟒𝟏

+ 0.0025 ------ 0.0040 ------ 

𝟑𝟏
+ → 𝟐𝟐

+ 0.0003 ------ 0.0054 ------ 

 

 The lowest-order description of the M1 operator is proportional to the total 

angular momentum and hence does not give rise to transitions. It is therefore 

necessary to consider higher-order terms in a realistic calculation, and, rather 

surprisingly, it is then in fact possible to extract some simple predictions for 

the behavior of E2/M1 mixing ratios in a variety of cases. Moreover, for 

transitions within the - b and results in the additional prediction of a link 

between the reduced mixing ratios for -g transitions and - transitions. 
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To calculate the E2/M1 multipole mixing ratios, the Interacting Boson Model 

has been applied over a wide range of nuclei. The  (E2/M1) multipole mixing 

ratios of the electromagnetic transitions between the energy states of Ge and 

Se nuclei were calculated by using Eq.(2.14 and 2.15) and given in Tables 

(3.12) and (3.13). The mixing ratio found for 74Ge the 0.608 MeV transition 

is 4.258, this value is in agreement with the experimental  

values of +3.4 (4). For 76Ge the 0.545 MeV transition is 4.035 and this value 

is in agreement with the experimental values of +3.5 (15). For 76Se the 0.657 

MeV transition is 6.302 this value is in agreement with the experimental value 

of +5.2 (2). For 78Se the 0.694, 0.593 and 0.545 MeV transition is 2.914, 0.582 

and 1.083, this value is in agreement with the experimental value of +3.5 (5), 

-0.2 (2) and +0.4 (24). For 80Se the 0.786 and 0.793 MeV transitions are 8.272 

and 4.354 that values are in agreement with the experimental values of 

−5 (−6
+2) and +1.1 (1.0). 

 

Table 3.12. The IBM-1 and the experimental values of δ(E2/M1) multipole mixing ratios 

for 74-80Ge nuclei. The experimental data are taken from Refs. [ 27, 30, 82-85]. 

 

𝑱 

 

E ( MeV) 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 
 

E ( MeV) 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 

74Ge 76Ge 

IBM-1 Exp. IBM-1 Exp. 

𝟐𝟐
+ → 𝟐𝟏

+ 0.608 4.258 +3.4 (4) 0.545 4.035 +3.5 (15) 

𝟒𝟐
+ → 𝟒𝟏

+ 1.109 5.521 --- 1.323 7.604 --- 

𝟔𝟐
+ → 𝟔𝟏

+ 0.802 2.711 --- 1.084 4.194 --- 

𝟑𝟏
+ → 𝟒𝟏

+ 0.701 5.198 --- 1.045 7.693 --- 

𝟑𝟏
+ → 𝟐𝟐

+ 0.961 8.753 +1.3 (4) 1.347 14.550 --- 
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𝑱 

 

E ( MeV) 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 
 

E ( MeV) 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 

78Ge 80Ge 

IBM-1 Exp. IBM-1 Exp. 

𝟐𝟐
+ → 𝟐𝟏

+ 0.567 6.514 --- 0.914 13.284 --- 

𝟒𝟐
+ → 𝟒𝟏

+ 1.095 6.857 --- 1.173 9.500 --- 

𝟔𝟐
+ → 𝟔𝟏

+ 1.147 5.248 --- --- --- --- 

𝟑𝟏
+ → 𝟒𝟏

+ 0.759 7.224 --- 1.293 --- --- 

𝟑𝟏
+ → 𝟐𝟐

+ 1.143 12.412 --- 1.462 14.552 --- 

 

 

Table 3.13. The IBM-1 and the experimental values of δ(E2/M1) multipole ratios for 

 76-82Se nuclei. The experimental data are taken from Refs.[ 27, 40, 83-86]. 

 

𝑱 

 

E ( MeV) 

 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 
 

E ( MeV) 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 

76Se 78Se 

IBM-1 Exp. IBM-1 Exp.  

𝟐𝟐
+ → 𝟐𝟏

+ 0.657 6.302 +5.2 (2) 0.694 2.918 +3.5 (5) 

𝟒𝟐
+ → 𝟒𝟏

+ 0.695 4.995 +1.7 (−1
+6) 0.687 0.988 --- 

𝟔𝟐
+ → 𝟔𝟏

+ 0.713 0.108 --- 1.325 0.582 -0.2 (2) 

𝟑𝟏
+ → 𝟒𝟏

+ 0.357 3.707 --- 0.351 0.661 --- 

𝟑𝟏
+ → 𝟐𝟐

+ 0.471 5.823 --- 0.545 1.083 +0.42 (24) 

 

𝑱 

 

 

E ( MeV) 
 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 
 

E ( MeV) 

𝜹 (𝑬𝟐 𝑴𝟏⁄ ) 
80Se 82Se 

IBM-1 Exp. [27] IBM-1 Exp. 

𝟐𝟐
+ → 𝟐𝟏

+ 0.786 8.272 −5 (−6
+2) 1.076 2.359 --- 

𝟒𝟐
+ → 𝟒𝟏

+ 0.793 4.354 +1.1 (1.0) 0.814 0.851 --- 

𝟔𝟐
+ → 𝟔𝟏

+ 1.395 5.158 --- 1.632 1.158 --- 

𝟑𝟏
+ → 𝟒𝟏

+ 0.419 3.303 --- 1.304 1.795 --- 

𝟑𝟏
+ → 𝟐𝟐

+ 0.671 6.927 --- 1.307 2.556 --- 
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3.4 Potential Energy Surface 

 One of the characteristics of a nucleus is the potential energy surface, is the 

geometric character of nuclei was visualized by plotting the potential energy 

surface (PES).The potential energy surface to Eq.(2.66) 𝐸(𝑁, 𝛽. 𝛾) is 

calculated with the help of the PES.FOR program Fadhil. I. Sharrad [17] wrote 

the code for this software. In this work, we use equation (2.70) to determine 

the potential energy surface. For the nuclei 74-80Ge and 76-82Se, the contour 

plots in the 𝛾 - 𝛽 plane resulting from 𝐸(𝑁, 𝛽. 𝛾) are shown in Figure (3.10). 

The mapped IBM energy surfaces are triaxial in shape for the majority of the 

investigated Ge and Se nuclei with the same total bosons number. Triaxial 

shapes are connected to intermediate values of 0 < 𝛾 < 𝜋 3⁄  and the plots of 

potential energy surfaces as a function of the deformation parameter β and for 

Ge and Se nuclei show that the well on the prolate-to-oblate side in all nuclei, 

βmin =1 in O(6) limit and still constant with atomic mass (A). The Ge and Se 

nuclei under consideration here don't show any rapid structural change; 

instead, they stay 𝛾 - soft. This development displays the triaxial deformation 

when the neutrons shell closure  50 is approached. The PES contour plots 

show Ge and Se nuclei under O(6) region. Ge and Se nuclei represent there is 

clear deformation when approaching from neutron closed shell (n50). The 

big difference between protons number and neutrons number make these 

nuclei have access energy which cause disorders in the nucleus. 
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Figure 3.10. The potential energy surface in 𝛾. 𝛽 plane for the 74-80Ge and 76-82Se nuclei. 

 

 E (N,,  MeV 
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3.5    Conclusions 

 In this work, we can conclude the following: 

1. The interacting boson model (IBM-1) is well successful in studying 

nuclei 74-80Ge and 76-82Se to calculate the low-lying collective 

properties. 

2. The R4/2 ratio between the levels is the first step to study the nuclear 

structure and exam the Ge and Se nuclei to which limit they were 

belong and equal ~ 2.5. which means that their structure seem to be 

deformed nuclei with O(6) dynamical symmetry.  

3. The increment in number of bosons (N) leads to increment in number 

of energy levels and the fitting between experimental and calculated 

energy levels becomes more convergence in energy levels among them. 

The kind of bosons (hole or particle) affect on the properties of the 

nuclei. 

4. B(E2) values decreases as neutron number increases approach to the 

close shell (N50). Also, it can be observed the maximum values of 

B(E2) for nuclei of dynamical symmetry O(6) i.e. number of bosons 

has an obvious effect in the value of B(E2). 

5. The monopole transition B(M1) and the ratio ( (E2/M1)) between the 

monopole and electric transition give acceptable values as compared 

with the available experimental data which are high in some transitions 

and low in the others depending on the strength of the transition for 

B(E2) and B(M1). 

6. The contour plot of the potential energy surfaces shows all even-even 

Ge and Se nuclei are deformed and have O(6) limt γ-unstable like 

characters which increases with bosons number. 
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 3.6  Suggestions and Future Works 

1. Study of even-even 74-80Ge and 76-82Se nuclei in other ways to confirme 

the values for energy levels predicted in this work. 

2. Using the statistical calculation to get the error in the results for 

example the mean or st ander deviation and get the error. 

3. Study of even-even 74-80Ge and 76-82Se nuclei under IBM-1CQF. 

4. Study the even-even 74-80Ge and 76-82Se nuclei by odd mass number 

using interacting boson-fermion model (IBFM). 
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 :الخلاصة
 زوجية -لدراسة التركيب النووي للانوية الزوجية (IBM-1) البوزون المتفاعلم استخدام نموذج ت

 Ge80-74وSe82-76.النسبة ) L/2R(بين مستويات الطاقة ))𝐸41+/𝐸21+ and 𝐸61+/𝐸21+, 𝐸81+/𝐸21+ 

 التي تقع فيه النوى قيد الدراسة ويساوي التحديدهي الخطوة الأولى لتقدير 

 E 2: E 4: E 6: E 8= 1:2.5:4.5:7 للتحديدO)6).  تم حساب مستويات الطاقة بتطبيق معادلة

المؤثر الهاملتوني التي تعتمد على العدد الكلي للبوزونات في النموذج ومقارنتها مع القيم العملية لهذه 

لى ع. يتزايد عدد مستويات الطاقة مع زيادة عدد البوزونات. قد تم تأكيد النتائج المحسوبة بناءً الانوية

 مستويات الطاقة لجميع النوى قيد الدراسة والتي لم يتم إثباتها عمليا.

التي يكون  مليون الكترون فولت 2.400و 2.957,4.7236تم تحديد المستويات  ,Ge80-74في نوى  

81فيها الزخم و/أو التماثل 
+, 61

31و +
 3.6815, 2.2097, 2.8561والمستويات  Ge74لنواة  +

1التي يكون فيها الزخم و/أو التماثل  Ge76لنواة  الكترون فولتمليون  2.273و
+6 ,1

+3 ,1
3و 5+

+2. 

مليون الكترون فولت التي يكون فيها الزخم و/أو  3.231و  4.029, 2.609, 2.3919, 3.270القيم 

1التماثل 
+6 ,, 31

+ , 42
+ 1

43و  5+
 التي يكون فيها الزخم و/أو التماثل Ge80وفي نواة Ge78للنواة  +

1 
+, 41

+6 ,2
1و 2+

 مليون الكترون فولت. 2.7850و  1.5392, 3.1471, 1.7082ذو قيم طاقة  3+

مليون الكترون فولت التي يكون فيها الزخم  3.756و  2.5581, تم تحديد المستوياتSe82-76في نوى 

43و/أو التماثل 
63 و +

 4.2917, 4.1255, مستويات الطاقة الجديدة المتوقعة Se78للنواة  ,Se76للنواة  +

62مليون الكترون فولت ذو الزخم و/أو التماثل.  4.4653و 
+, 51

63و +
التي يكون فيها  Se80، نواة  +

61 الزخم و/أو التماثل
+, 81

+, 31
+, 42

43و+
و  2.8710, 2.727, 5.2020, 3.2670مع الطاقات  +

التي  الكترون فولتمليون  3.0475و  4.5785, 2.9435مليون الكترون فولت والطاقات  3.2334

42,يكون فيها الزخم و/أو التماثل
+  51

43و +
 .Se82لنواة  +

، بعد تحديد الشحنة الفعالة للبوزون B(E2)الانتقالات الكهربائية المختزلة تم حساب احتمالية 

 . تم تحديد العاملتمت مقارنة النتائج مع البيانات العملية وكانت ذات تطابق جيد IBM-1.لنموذج

ومقارنتها ببعض النتائج التجريبية. يعتمد  B(M1)المغناطيسية  الانتقالاتلحساب  gالجيرومغناطيسي 

𝛿(𝐸2حساب نسبة الخلط  𝑀1⁄ الكهربائية والمغناطيسية. تعطينا هذه النسبة فكرة  الانتقالاتعلى  (

,𝐸(𝑁 جهد السطح الجزء الأخير هو دراسة سطحعن المستويات ذات التماثل المختلط. 𝛽. 𝛾)  للنواة

ويؤكد الرسم بينهما الحدود المتوقعة للنواة حسب مثلث كاستن، وانتمائها أقرب  Se.و Ge الزوجية

 مع زيادة عدد النيوترونات.( O)6بكثير إلى التحديد
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