‘( ,.‘f?]‘ p
L
[— . —
M= dienl=y

University of Kerbala

College of Science

Evaluation of Nuclear Properties of Some Germanium
and Selenium Isotopes

A Thesis

Submitted to the Council of the College of Science University of
Kerbala in Partial Fulfillment of the Requirements for the Degree
of Master of Science in Physics

By
Saja Abdul Hussien Abdul Sahib
Supervised by

Assist.Prof. Huda Hashim Kassim

2023A.D 1445A.H



Supervisor Certification

I certify that this thesis was prepared under our supervision at the College of
Science, University of Kerbala as a partial fulfillment of the requirements for

the degree of Master of science in physics.

Sianafire; =\ Rdin. o MBS

Name: Huda Hashim Kassim
Scientific degree: Assistant Professor
Address: College of Science-University of Kerbala

Date: / / 2023

Chairman of Physics Department

In view of the available recommendations, I forward this thesis for debate by

the examining committee.

Signature: =
P S R e & B L S
Name: Dr. Mohammed Abdulhussain AL-Kaabi

Title: Assistant Professor
Head of the Physics Department, College of Science/ University of Kerbala

Date: / [/ 2023



Examination Committee Certification

We certify that we have read this thesis, entitled " Evaluation of nuclear properties of
some Germanium and Selenium Isotopes" as the examining committee, examined the
student "Mustafa Musa Shaker" on its contents, and that in our opinion, it is adequate for
the partial fulfillment of the requirements for the Degree of Master in Science of Physics.

Signature: @ (4% l’)’“—sw

Name: Dr. Abdalsattar Kareem Hashim

Title: Professor
Address: Department of Physics,
College of Science University of Kerbala

Date: / /2023

(Chairman)

Signature: WW #- A

Name: Dr. Mohanad H. Oleiwi
Title: Professor

Address: Department of Physics,
College of Education,University of
Babylon

Date: / /2023

(Member)

Signature: W W/V 7 Signature: \N\wachon « N\ = YoSS. SM

Name: Dr. Adil Jalel Najim

Title: Lecturer
Address: Department of Physics,
College of Education /University of Kerbala

Date: / /2023
(Member)

o-“MJV\
Signature:

Name: Dr. Hassan Jameel Jawad AL-Fatlawy

s»"'"sb

Title: Professor

Name: Huda Hashim Kassim
Title: Assist. Professor
Address: Department of Physics,
College of Science/University of
Kerbala

Date: / /2023

(Supervisor)

Dean of the College of Science, University of Kerbala

Date:#/ \/ 2023



e
H)j)@M}?SﬂM )g'/
"}yfd)/\fwbu\ﬁo

r

\\ eﬂ)d\;.d\ b ) g

Saja Abdul Hussien



0.

My flonityy and
Hod!  and — and
ﬁmaé



Acknowledgments

Praise be to ALLAH, Lord of the whole creation and peace be upon his
messenger Muhammad.

| would like to express my sincere thanks and deep gratitude to my supervisor
Asst. Prof. Huda Hashim Kassim for suggesting this project, help, guidance,
advice throughout the work and many helpful discussions and suggestions.

| am grateful to Prof. Dr. Fadhil 1. Sharrad-College of Science-Univresity of
Kerbala for his help in this work.

| am thankful and very grateful to my family for their endless support to
perform this work.

Many thanks for all my friends and colleagues for their support to complete
this research.

Saja Abdul Hussien



Abstract

The Interacting Boson Model (IBM-1) has been used to study the nuclear
structure of even-even "“®Ge and %®2Se nuclei.The ratio (Rp.) between
energy levels (Eg+/E,+, Eq+/Ez+,, and E,+ /E+) is the first step to estimate
the limit of the nuclei under study and equal E 2: E 4: E 6: E 8= 1:2.5:4.5:7
for the O(6) limit. The energy levels have been calculated by applying the
Hamiltonian operator equation depending on the total number of bosons in the
model and comparing them with the experimental data for these nuclei. The
number of energy levels increases with the increase in the bosons number and
the results that were calculated based on the energy levels of all the nuclei
under study that have not been well established experimentally have been
confirmed.

In "#Ge nuclei, levels have been determined 2.957, 4.7236 and 2.400 MeV
for which the spin and/or parity 6*;, 8*; and 3*; for "“Ge nucleus, Levels
2.8561, 2.2097, 3.6815 and 2.273 MeV for the "®Ge nucleus with the spin
and/or parity are 61, 3";, 5*; and 2%3. The values 3.270, 2.3919, 2.609, 4.029
and 3.231 MeV with the spin and parity 6*1,3"1 45,5 and 4*3 for the ®Ge
nucleus and in 8Ge nucleus with the spin and parity 4*; 6%, 2% ang 3*1 With
energies of 1.7082, 3.1471, 1.5392 and 2.7850 MeV. In "5#2Se nuclei, levels
for 2.5581 and 3.756 MeV have been determined with the spin and/or parity
4*3 g 6%3 for ®Se nucleus, for the ®Se nucleus the predicted levels of new
energy are 4.1255, 4.2917 and 4.4653 MeV for the spin and
parity 557, 63 and 6%, for 8Se nucleus the spin and parity 6*;, 81, 3*1, 42 and
4% with energies of 3.2670, 5.2020, 2.727, 2.8710 and 3.2334 MeV and the
energies of 2.9435, 4.5785 and 3.0475 MeV with the spin and parity 4%, 5™

and 4%5 in #Se nucleus.



The reduced electric quadruple transition probability B(E2) has been
calculated, after determining the effective charge for the IBM-1 model. These
results are in good matching with existing measured data. Gyromagnetic
factor g was determined to calculate the magnetic transitions B(M1) and
compared with a few practical results. Calculating the mixing ratio
6(E2/M1) depends on the electric and magnetic transitions. This ratio gives
us an idea about the levels with mixed symmetry state. The last step is
studying the potential energy surface (E (N, g y)) for even-even Ge and Se
nuclei. The plot between them confirms the limits that were expected for the
nuclei according to the Casten triangle and belongs much closer to O(6) limit

with increasing neutron numbers.
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CHAPTER ONE GENERAL INTRODUCTION

1.1Introduction

It is the responsibility of nuclear physics researchers to develop a model or
nuclear models, which is the first step to underst and the observed and
measured data, linking them, and drawing conclusions. This is because
nuclear physics has made enormous amounts of theoretical and experimental
data and information related to nuclei available because of the numerous
studies that have tried to get inside these nuclei or because of the attempt to
dismantle these nuclei into their various components. The neutron-rich nuclei
in this region with proton numbers below Z = 40 became easier to access
because of new and improved experimental techniques, allowing a study of
how the occupation of the proton orbitals affects the shell structure of this
region. Nuclear models proposed to explain the interaction between nucleons
within the nucleus have been used in several attempts to comprehend the
nature of these forces in the lack of a comprehensive explanation of nuclear
structure. Studying nuclear structure across a broad region of the nuclear
chart, such as from shell closures up to mid-shell regions, reveals the growing
importance of residual interactions and collective features. The distribution of
these nucleons across the nucleus is one of the most fascinating and essential
emergent characteristics of the nucleus. When protons and/or neutrons are
filled from the lowest-lying up to the higher-lying orbitals to reach specific
values like 2, 8, 20, 28, 50, 82, and 126, then a nucleus is notably stable and
hence a large amount of energy is needed to excite the nucleus from the closed
shell to the next. These numbers are called magic numbers, which become
evident as a sudden drop in the observed nucleon separation energies.

In exotic nuclei, conventional magic numbers may become no longer valid,

even giving rise to novel shell structures not heretofore recognized[1, 2].
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Nuclear structure physics is loyal to the study of the properties of nuclei at
low excitation energies, where single energy levels can be resolved. This
means that typically quantum effects are predominant and the states of the
nucleus have a very complicated structure that depends on the intricate

interrelations of all the many nucleons involved [3].

1.2 The Nuclear Models
The exact nature of the nucleus is still a mystery, and many methods have

been developed to its underst anding. The interaction between nucleons has
been studied on the basis of the two-body system, but the results can't easily
be applied to the many-body system. In the absence of any definite and precise
theory to account for the complex inter-relationships between nucleons, a
number of nuclear models have been proposed, each based on a set of

simplified assumptions and useful in a limited way[4].

1.2.1 Liquid Drop Model
George Gamow first proposed the liquid drop model, which was elaborated

by Niles Bohr and John Archibald[5]. This model estimates the nucleus as a
drop of incompressible nuclear liquid, which consists of neutrons and protons
that are bound together by nuclear force. Though the model does not clarify
all the characteristics of the nucleus, it can clarify the spherical shape of the
majority of nuclei in addition to its ability to foretell the energy that strongly
holds the nucleus[6]. Mathematical analysis comes up with an equation
capable of foretelling the energy that binds the nucleons by identifying the

numbers of neutrons and protons in that nucleus[7].
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1.2.2 Shell Model
The shell model succeeded in explaining many nuclear properties of magic

and neighboring nuclei, such as spin, magnetic moment, nuclear isomerism,
stripping reaction, quadruple moment, ground state spin and parity (the parity
n of the wave function is its symmetry property under inversion through the
origin of the coordinate system, and it is an ‘‘observable’’ physical quantity
which,in the language of quantum mechanics means that its eigenvalues are
real quantities[8]Jof even-even nuclei but failed, sometimes badly, in
explaining the properties of other nuclei. The deviations of magnetic moments
from the Schmidt curve make this model less acceptable. The calculated
quadruple moments were several times larger compared to the predictions of
the single particle model. The E2 transitions were often much faster than
would be expected for a transition between single particle states. These later

nuclei were identified mostly in the rare earth and actinide regions[4].

The effect of the potential, as compared with the harmonic oscillator, is to
remove the J (angular momentum vector) degeneracy of the major shells. As
we go higher in energy, the splitting becomes more and more severe,
eventually becoming as large as the spacing between the oscillator levels
themselves. Filling the shells in order with nucleons, we again get the magic
numbers 2, 8, and 20, but the higher magic numbers do not emerge from the

calculations[9].
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1.2.3 The Collective Model
Bohr and Mottelson have developed the unified (collective) model[10] which

encompasses some properties of both the shell model and the liquid drop
model. The shell model potential is assumed to be non-spherical and the
nucleons move independently rather than being strongly coupled, as in the
case of the liquid drop model. The principal assumption, which differs from
that of the independent-particle model, states that, in the unified model, a
number of nearly loose particles move in a slowly varying potential which

arises from nuclear deformation[4].

The collective degrees of freedom here can be described as a system of
interacting bosons[11]. The degrees of freedom for a single-particle represent
the individual nucleon’s motion in the average nuclear field. They are
described as a system of interacting fermions. The coupling of fermions and
bosons leads to the interacting boson-fermion model which has been
extensively used in recent years to discuss the properties of nuclei with an odd

number of nucleons[12].
1.2.4 The interacting boson model-1 (IBM-1)

The interacting boson model-1 (IBM-1) originated from the early ideas of
Feshbach and lachello [13], who in 1974 suggested a description states of
collective quadruple in the nuclei of U(6) group [14]. The latter description
was subsequently cast into a different mathematical form by Arima and
lachello with the introduction of an s and d-boson, which made the SU(6), or

rather U(6), structure more apparent. The success of this phonological
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approach to the structure of nuclei has led to major developments in underst

anding nuclear structure[14].

The original version of the interacting boson model, abbreviated as IBM-1, is
applicable to even-even nuclei. The fermion states that cannot be represented
are single-particle excitations, and high-L, low-seniority states[15]. Collective
fermion states are well reproduced. The IBM-1 does not separate bosons
connected with proton-proton and neutron-neutron pairs (this is done in an
extended version of the model). In lighter nuclei the valence neutrons and

protons are filling the same major shell, isospin must be introduced.

The model IBM-1 was applied to nuclei with even numbers of neutrons and
protons. In order to fix the number of bosons, one takes into account that both
types of nucleons constitute closed shells with particle numbers 28, 50, 82 and
126 (in the analogy with the Mendeleev periodic table, one would expect that
there are discontinuities in the dependence of various measurable quantities
on N or Z when oscillator shells are filled. However, these discontinuities
were experimentally observed not for these numbers but for the so called
magic numbers N (Z) = 2, 8, 20, 28, 50, 82 and 126[16]. Provided that the
protons fill less than half of the furthest shell the number of corresponding
active protons has to be divided by two in order to obtain the bosons number

of protons N _, if more than half of the shell is occupied, the boson number
reads N _= (number of protons)/2. By treating the neutrons in an analogous

way, one obtains their number of bosons.
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N, = (number of neutrons)/2. In the IBM-1, the bosons number N is calculated

by adding the partial numbers

ie.N=N_+ N [3,17].

Bosons in the first interacting boson model (IBM-1) have six-dimensional
space because they have six sub-levels. As a consequence, they could be
described in the form of a unitary group, represented by U(6). This could be
solved to three dynamical symmetries and be helpful in identifying nuclear

spectra at the end of major shells within the context of the IBM-1[18, 19].
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1.3 Casten Triangle
In the last 30 years, several examples of dynamic symmetries have been

discovered in nuclei. The quantum states of a physical system are
characterized by a set of energy levels. Three dynamic symmetries provide
patterns of energy levels that can be recognized experimentally[20]. There are
three dynamical symmetry limits defined as harmonic oscillator U(5),
deformed rotor SU(3), and asymmetric deformed rotor O(6), and they form a
triangle known as the Casten symmetry triangle representing the nuclear
phase diagram[17].

It can be shown the main feature of the three limits of the IBM-1 with the

Casten triangle see Fig. 1.4, and their energy ratios[18]:

Epy=1:En =2:En =3: Ep =g = 1:2:3: 4 U(5)
Ey:EyiEqiEg =3 E,_:E;—p:E, 3 E;_, = 1:2.5:4.5:7 0(6) (1.1)
E —:E 4 E —¢:E; —g = 1:3.33:7: 12 SU(3)

O(6) as
=0

U5
2 STCRRS

Figure 1.1: Symmetry triangle of the IBM-1 with the coefficients giving each dynamical
symmetry[20].
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1.4 Germanium (Ge) and Selenium (Se) Nuclei

Germanium is a semiconductor. It was discovered in 1886, groupl4, period
4 and has 33 nuclei with 32 protons this is the atomic number Z. The pure
element was commonly doped with arsenic, gallium, or other elements and
used as a transistor in thous ands of electronic applications. Germanium oxide
has a high index of refraction and dispersion. This makes it suitable for use in
wide-angle camera lenses and objective lenses for microscopes. Germanium
Is also used as an alloying agent (adding 1% germanium to silver stops it from
tarnishing), in fluorescent lamps, and as a catalyst. Both germanium and
germanium oxide are transparent to infrared radiation and so they are used in
infrared spectroscopes[21].Selenium is an essential trace element for some
species, including humans. Our bodies contain about 14 milligrams, and every
cell in a human body contains more than a million selenium atoms. It was
discovered in 1817, group 16, period 4, and has 33 nuclei with 34 protons this
is the atomic number Z. The biggest use of selenium is as an additive to glass.
Some selenium compounds decolourize glass, while others give it a deep red
color. Selenium can also be used to reduce the transmission of sunlight in
architectural glass, giving it a bronze tint. Selenium is used to make pigments
for ceramics, paint, and plastics[22]. Germanium and selenium nuclei are part
of the transition area, a highly attractive but complicated section of the
periodic table. These nuclei displayed a range of shapes, including spherical
and deformed[23].1t has been challenging to interpret the nuclear structure of
the germanium and selenium areas using conventionalexplanations[24].These
nuclei have been successfully treated in IBM-1computations as exhibiting the
model's O(6) symmetry[25,26].Ge and Se in Figurel.2 have many nuclei
ranging as’*%°Ge and’®-%2Se. For example, the nuclei of Ge and Se both have

neutrons from 42 to 48.



CHAPTER ONE GENERAL INTRODUCTION

N
(Number of Neutrons)
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82 B e
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& Unknown
H 2 2 2 2 »_
6 14 28 50 82

Z
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Figure 1.2. Germanium and selenium nuclei that are sited in a nuclide chart [27].
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1.5 Previous Studies

The structure of Germanium and Selenium nuclei has been the subject of
numerous in-depth research studies in previous years.

E. Padilla-Rodal et al.,(2006) studied and determined the low energy
spectra, electric quadrupole transitions, and quadrupole moments of
Germanium nuclei in the formalism of the IBM-2 with configuration mixing.
New data were obtained for the neutron-rich radionuclei "88°82Ge using the
matrix formula. They carry information about the kernel deformation
coefficients[28].

N. Turkan et al.,(2010) studied the nuclear structure, which have E(5) critical
point between U(5) and O(6), behavior of the Ge nuclei, and the positive
parity states of even-mass Ge nuclei. The Interacting Boson Model (IBM-1
and IBM-2) have been calculated and compared with the Davidson potential

predictions along with the experimental data[29].

A. R. H. Subber,(2011) used Interacting Boson Models IBM-1 and IBM-2 to
calculate the energy levels of the low-lying states, and the electric quadruple
reduced transition probabilities B(E2) of Ge nuclei from A = 64 to A = 80.
Energy levels of the low-lying states of these nuclei were produced, and the
electric quadruple reduced transition probabilities B(E2) were calculated as
well. Mixing ratios 6(E2/M1) for transitions with Al = 0, I _= 0 were
calculated. All the results are compared with available experimental data and
other IBM wversions and calculations. Satisfactory agreements were
produced[30].

S. Abood et al.,(2013) studied the structure of some even-even Ge nuclei

within the framework of the interacting boson model. The positive parity

10
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states, B(E2), B(M1), and &6(E2/M1) values of the above nuclei have been
calculated. The IBM-2 results obtained for Ge have been compared with the
previous experimental and theoretical values obtained on the basis of the
interacting boson model (IBM-2). The sufficient aspects of the model leading
to the E(5) symmetry have been proven by presenting the E(5) characteristic
of the Ge nuclei[31].

D.L. Zhang and B. G. Ding,(2013) investigate the properties of the low-lying
energy states for 76Ge within the framework of the proton-neutron interacting
model IBM2, considering the validity of the Z = 38 subshell closure 88Sr50
as a doubly magic core. By introducing the quadrupole interactions among
like bosons to the IBM2 Hamiltonian, the energy levels for both the ground
state and y b ands are reproduced well. Particularly, the doublet structure of
the ¥ b and and the energy staggering signature fit the experimental data
correctly. The ratios of B (E2) transition strengths for some states of the y b
and, and the g factors of the 2+1, 2+2 states are very close to the experimental
data. The calculation result indicates that the nucleus exhibiting rigid triaxial
deformation in the low-lying states can be described rather well by the IBM2
[32].

K. Higashiyama and N. Yoshinaga,(2014) studied the projected quantum
generator (GCM) coordinate method of neutron-rich nuclei Se and Ge, where
monopole and quadrupole coupling. In addition to the tetramer reaction it is
used as an active reaction. The GCM reproduced the power levels in high-spin
states as well as low-spin states. The structure of the low mass states was

analyzed by GCM wave functions[33].

J. J. Sun et al.,(2015) studied the first heavy ion evaporation and fusion
reaction of “Ge performed through the reaction. The channel was °Zn ('Li,

11
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2np)"*Ge at beam energies of 30 and 35 MeV. In addition to comparison with
neighboring ">"®Ge nuclei, a striking average energy mode S (1) is observed
in the y range of "Ge. Collective structure of “Ge, including excitation
energies and ground state transition probabilities. The g- and y-b ands were
reproduced by the five-dimensional collective Hamiltonian (5DCH). A model
based on variable density functional. The analysis revealed a triaxial evolution
with rotation at "*Ge and found “Ge to be the decisive factor. Nucleation

indicates the three-axial evolution from soft to hard in Ge nuclei[34].

J. U. Nabi et al.,(2017) divide the work into two main categories. In the first
stage, the properties of the nuclear structure of "°Se were studied using the
boson interaction model (IBM-1). IBM-1 investigations include energy levels,
B(E2) values, and geometric prediction. The "°Se geometry is visualized
within a potential energy surface formalism based on the classical IBM
Model-1 limit. In the second phase, reaffirm the lifting of the ban on the Gamo
Teller (GT) force. ®Se (test case for nuclei with N > 40 and Z < 40).Using the
deformed pn-QRPA model, we calculate the late GT transitions, the stellar
electron capture cross section (in the low momentum transfer limit), and

excellent weak rates for the "°Se[35].

Nomura et al.,(2017) study of shape transformations and coexistence of
shapes in Ge and Se nuclei within the interacting boson model (IBM) with
microscopic input from the self-consistent mean field. Determine the average
field energy surface as a function of the quadrilateral parameters f and v,

obtained from the restricted Hartree-Fock-Bogoliubov method, based on the
expected value of the IBM Hamiltonian with configuration mixing in the case

of boson condensates. The resulting Hamiltonian was used to calculate the

12
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excitation energies and electromagnetic properties of the selected nuclei
66-9%4Ge and ®%%Se. He confirmed that many nuclei show ductility. The
coexistence of bulbous and flat as well as in between. We also notice spherical

and smooth shapes[36].

D.L.Zhang andC.F.Mu,(2018) studied the properties of low states,
especially the related coexistence model in ®Ge, near one of the most
fascinating neutron-rich double nuclei at N = 50 and Z = 28, and investigated
them in the framework of the proton-neutron interaction model (IBM). -2).
The study indicates that 80Ge is located within spherical and smooth
collective vibration structures[37].

J.B.Gupta and J.H.Hamilton,(2019) at first, he studied these structures
experimentally. The deformation state of each nucleus was deduced using the
energy index formula. It shows the average value of the energy index,
contrasting with the neutron number N. For a given Z, it gives more
information about the spectral contrast with N. Use the energy level spectra
to study the role of excited b ands in phase transitions and possible
conformation coexistence. Common spectral features of the three nuclei series

and some unique features were noted[38].

A. D. Ayangeakaa et al.,(2019) studied a large-scale, model-independent
analysis of the nature of the triaxial deformation in "°Ge, a ¢ andidate for
neutrino-free double beta decay (Ovpp), after multistep Coulomb excitation.
The shape parameters inferred based on the analysis of the sum of fixed

rotational rules provide insight into the fundamental set of ground states and
v-b ands. Both sequences were determined to be characterized by the same

values of the deformation parameters  and y. In addition, compelling
evidence for rigid, low-rotation triaxial deformation has been obtained for the
first time from the analysis of statistical fluctuations of quadrilateral
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asymmetry extracted from the measured E2 matrix elements. The newly
defined shape parameters have important inputs and constraints for
calculations aimed at providing the relevant nuclear matrix elements of vgg,
with appropriate accuracy[39].

H. N. Hady and M. K. Muttalb,(2020) studied the use of the interacting
boson model (IBM—1 and IBM—2) for a complete study of 72783Se nuclei.
Low positive states, dynamical symmetries, mixed symmetry states MSS,
reducing the probability of the electric quadrupole transition B(E2), branching

ratio, quadrupole momentum Q3 , reducing the probability of the magnetic

dipole transition B(M1), mixing ratio &§(E2/M1), and reducing the
probability of the monopolar transition studied electrode B(E0), and the ratio
X (E0/M1), U(5) The features are dominant with the addition of a small
effect of the parameter starting from to nuclei, energy ratios show that the
nuclei are the ones closest to the typical vibrational limit, while the nuclei
move towards the rotation region located on U(5)-SU(3) Kasten leg." Casten's
Triangle"[40].

N. J. A. Awwad et al.,(2020) studied the methodology of ground state
deformation, the physical properties (energy separation of binary neutrons,
neutron, proton, and charge radii), and the coexistence of nuclear form in Zn,
Ge, and Se.Nuclei performed using the relativistic Hartree-Bogoliubov
formalism using zero and NN interactions are limited in scope.

The coexistence minimum is axial and triaxial in the case of Ge, while both
are pivotal in the case of Se[41].

K.Higashiyama and N.Yoshinaga,(2021) the quantum number projected
generator coordinate method (QNPGCM) was used on neutron-rich Ge and

Se nuclei, where monopolar and quadrupole coupling as well as quadrupole

14



CHAPTER ONE GENERAL INTRODUCTION

interaction were used as the effective interaction. The energy spectra
calculated with axial and triaxial deformations were compared with crust
model results and experimental data. QNPGCM reproduces the energy levels
of Erast states with equal rotation. However, the QNPGCM results only
assume that the axial deformations are not satisfactory enough to reproduce
the energy levels in the sub-b ands. Taking into account triaxial deformations
iIs fundamentally important to describe yrast and quasi-y b ands

simultaneously[42].

K.Nomura,(2022) studied the simultaneous calculation of the shape
evolution and related spectral properties of low states, and the decay
properties of even and odd Ge and As nuclei in the cluster region A =~ 70-80,
from which the nuclear density functional theory and fundamental theory of
the particle coupling regime are presented. He defined constrained and self-
consistent mean-field calculations using the universal energy density function
(EDF) and the interacting boson Hamiltonian for even fundamental nuclei,
and the fundamental components of particle-boson interactions in individual
nuclei. Nuclear systems and the Gamo-Teller and Fermi transformation

operators. A rapid structural evolution from smooth oblate to puffy forms has

been suggested, as well as the coexistence of oblate spheroids around N = 40

neutron subshell closure, even in Ge nuclei[43].
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1.6 The Aim of the Present Work
The present study aimed to investigate the nuclear structure of even-even
nuclei for 7#30Ge @ 76-82Ge nyclei and study the behavior of these nuclei by

using computer code PHINT:

1. Estimated energy levels for ground state g-Gamma y- and Beta - b ands
of these nuclei using the IBM-1 and compared with other studies.

2. The probabilities of electric B(E2) and magnetic B(M1) transitions have
been studied.

3. The mixing ratio §(E2/M1) between the quadruple electric transitions
and magnetic transitions.

4. The potential energy surface (E (N, £ y)) calculated with the help of the
PES.FOR program and plotted between it and the deformation parameters
B and y using IBM-1 and belong much closer to O(6) limited with
increasing neutron numbers. Triaxial shapes are connected to intermediate

valuesof 0 <y <m/3and B~ 1.
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2.1 Interacting Boson Model (IBM-1)
2.1.1 Hamiltonian of the IBM-1

It is now able to provide the transition region with straightforward
consistency using the interacting boson model[14,44].Casten and Warner [18]
have given a comprehensive review of this model and its application to the
transition region. These qualities were collectively represented by a system of
interacting s- and d-bosons for even-even nuclei within the IBM-1 framework.
In this model, the three dynamical symmetries U(5), SU(3), and O(6) are
described by a straightforward Hamiltonian that results from the six-
dimensional unitary group U(6)[44-47]. The basic concept underlying the
group theory of the IBM-1 is that of the generators of a group.

In the simplest form of the IBM, the Hamiltonian describes the interaction of
the s and d bosons in a six-dimensional Hilbert space[48, 49]. It is given by
creation operators sT and dl with their Hermitian conjugates, i.e., annihilation
operators, s and d,,, with their index u = 0, +1, +2, (where the operators are

given in bold). These satisfy Bose commutation relations[44]:

[s,sT] =1,[s,s]1 =0, [sT,sT] = 0,

[y 1] = Sy [ ] = 0, [}, 1] =0,

[s,dl]=0[s"dl] =0, (2.1)
[5.du] = 0, [s%,d,] = 0

It is well known that, j=0 for s operator. Therefore, the operators s and s are

scalars, i.e., spherical tensors of degree 0. The creation operators dl IS
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transformed as spherical tensors under rotations, while the annihilation
operators are not. In order to construct spherical tensors, one introduces a

modified d-boson annihilation operator[18, 44]:

d,= (-DHd_, (2.2)
The most general Hamiltonian, H, in second quantized form which contains
only one- body and-two-body terms can be written as[18,44,50,51].

H=g,(st.s™) +e4(dl.d™)

+ZL=O.2.4% (2L + 1)5C'L[[dJr x dT1® x [d~ x d~](L)](0)

1

(0)
=0, |l x df]® x [@ x 1@ + [df x sT@ x [d~ x d]| "+ Zv,[lal x

+
df©® x [s7x 571 + [sTx 1@ x [d~ x d~]@] Ty [[st x 57O x

[s~ x s7]1@]” +u,[[d! x 1@ x [d~ x s7]@] (2.3)

where (st,d") and (5, d) are creation and annihilation operators for s and d-
bosons, respectively Ge and Se[52,53]. This Hamiltonian has two terms of
one-body interactions,

(5 and g;4), and seven terms of two-body interactions, [C, (L =0, 2, 4), v,
(L=0,2),and u; (L =0, 2)], where &sanq &4 are the single-boson energies, and
C,,v, and u; describe the two-boson interactions[44]. For a fixed boson
number N, it turns out that only one of the one-body terms and five of the two
body terms are independent, as can be demonstrated by noting N = ns+ ng,
[11,54]. It is possible to express the IBM-1 Hamiltonian as a multipole

expansion with various boson-boson interactions, as seen in Eq. (2.3)[55-58].

ﬁ = Eﬁd + aoﬁ.ﬁ + ali.i + azé. Q + agT3. T3 + a4_T4_. T4_ (24)
Where:
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fiy = (d'.d) is the total number of d — boson operator,
IR o .
p=3 (d. d) —3 (8.5) is the pairing operator,

L =+/10 [d' x d] Vis the angular momentum operator, (2.5)

Q= [d"x35+sTxd]® — \/2—7 [dT x d] Pis the quadruple operator,

T = [d f ><d~]m Is the octoupole (m=3) and hexadecapole (m=4) operator.

The boson energy is € = €4 - €, and y is the parameter of quadrupole structure

(between 0 and i‘/zj)[55,56,59,60]. The intensities of the pairing, angular

momentum, quadrupole, octupole, and hexadecapole interactions among the
bosons are represented by the phenomenological parameters a,, a,, a,, as,

and a,, respectively.

2.1.2 Electromagnetic Transitions and E2/M1 Mixing Ratios
The IBM can be used to explain the electromagnetic transitions and excitation
energy spectra. To do this, one must specify the transition operators in terms
of the boson operators[61]. The transition operators are assumed to have just
one body term in the lowest order. This operator's most general form in IBM-
1 can be given by[14,62,63]:

~ ~1 2 ~ ~
Th = a8p[dt x s~ +sTx d ],y + BildT X d™ 14 + ¥o6108molsT X 571 (2.6)

From above equation, it can be noticed that the first term can be shown only
at [ = 2 transitions, while the last term can be presented only in the case of
[ = 0 transitions, as guaranteed by the Kronecker delta (§) accompanying

them.
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Here, 7,, a;,and B; = (0,1,2,3,4) (1=0, 1, 2, 3, 4) are parameters that specify
the various operators' phrases. The quadrupole electric transition is then[18,
44, 64]:

TE2 = ap[dt x s~ +stx ] +poldt x d°] = a, ([dF x d~ + st x

2
m
2 2 PN
d]. + dtxd”] ) = e5Q 2.7)
where ey is the boson effective charge and (a, = eg), (B,=y,), a,, and 3,

are two parameters. It is possible to write the magnetic dipole (M1) operators
as[15,65]:

T ML = B [df x d”] (2.8)

1
m
The limitations that only s- and d - bosons are presented, as well as the
inclusion of only one body term in the transition operators. There are no other

transitions in IBM-1. Thus, the most generic second-order M1 generator can

be expressed as[18,65]:
T(M1) = (gs + AN)L + B[T(E2) x L] + CA4L (2.9)

where gg=Z/A which is the effective boson g factor, Z is atomic number and
A is mass number, the total number of boson is N, the angular momentum
operator is L, the matrix elements of the E2 operator is T (E2), A, is the

d- boson number operator, and the g - factor of the states is defined
as[55,57,66]:

9. =u/L (2.10)

The magnetic moment (u; ) can be define as:
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w = \P ——(LIT (MDIIL) (2.11)

3 JIL (L+1) (2L+1)

from Eq. (2.9), it can write the final terms that produce the MI matrix element
as[57,67]:

(PLAIT (MO PLi) = —Bf (LiLe PLAITMDIIPL) + CILi(L; +
D@L + DIY? x(plglfigl pLi)Sy,., (2.12)

f(L;L), given separately in Ref [14,58,67] for the cases L — L+ 1 and L-L,

written as:
/
(L) = [5(Li+ Ly +3)(Lr — Ly +2) x (L + Ly +3) (L — Lp + 2)]1 © o (213)

In Eq.(2.9), the equivalent operator is diagonal in L and the second part of Eq.
(2.12) contributes only to transitions between states of the same spin.

A particularly simple equation for the reduced E2 / M1 mixing ratio for

L+1 — L transitions is given by Eq.(2.12), which is[67,68]:

ACE2/M1) = (pLe T (E2)Il L) /{PLAIT (M)l pL;) = — 1/Bf (LiLy) (2.14)

The reduced mixing ratioA(E2/M1)is related to the quantity normally
measured, §(E2/M1), and is related to the amount[13]:

§(E2/M1) = 0.835[E, /(1 MeV)|A(E2/M1) (2.15)

where :E, is measured in MeV and A(E2/M1) is measured in eb/ py.
Grechukhin[69]has already determined the spin dependency of Eq.(2.13) in

terms of f(LiLf) similar to this, the relevant M1 operator is expressed in the
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geometrical model's framework using the quadrupole coordinates of the

nuclear surface[65].In the IBM-1framework, empirical values of

[A(EZ/Ml)f(LiLf)]_lcan be used to study the constant B in Eq.(2.9)
utilizing the corresponding transition operator between the initial and final
states reduced matrix element(L||T*||L;). The st andard method of calculating
the electromagnetic transition rates yields the B (El) and B (M1) values, which
are[19,70,71] by definition:

B ((El)or(Ml),Li - Lf) = — [(Ly || T EDor (Ml)||Li)|2 (2.16)

2L+1

Other important quantities that show the difference between the three
dynamical symmetries (will be discuss later) are the ratios[11]:

_ B(E2;47-27)

~ B(E2;21-0%)

, _ B(E2;23-27)
R = B(E2; 21501 ) (2.17)
_ B(E2; 07 - 27)
~ B(E2; 2§ - 0})

12

The calculation has been carried out numerically in the general case. But in
the situations of the three dynamical symmetries, analytical formulation can

be established, just as in the case of the excitation energies.

2.2 Dynamical Symmetries
The bosons in (IBM-1) have six sub-levels, therefore they can be defined as
a unitary groupU(6), which is represented by U(6) [18,47,55]. This could be

resolved into the following three dynamical symmetries.
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2.2.1 The vibrational limit U(5)

The following equation [13,18,47] can be used to determine the Hamiltonian
operator for this limit symmetry in terms of creation and annihilation
operators in Eq. (2.3) and if a;, = 0 = a, in Eq. (2.4) the Hamiltonian of this
limit is[18]:

H=¢eny+a,L.L+a,T.T+a,T.T (2.18)

where ¢, a;, as, and a, are its constituent parameters. Its eigenvalue
is[15,46,72]:

E(N,ng,v,np L, M) = ang + fng(ng + 4) + 2yv(v + 3) + 26L (L + 1) (2.19)
The sub-group U(5) is representation of vibrational dynamical symmetry,

along with the quantum numbers that give it diagonal quality and can be
characterized as[14,55]:

U(@®6) oU((B) >0() >20(3) o0(2)
L A A (2.20)

[N] n, v,n, L \/

The quantum numbers values are [11,14,18]:

N=N,+N,

(2.21)

ng=N,N—1,.... ,1,0 (2.22)
V="n4Ng3 —2,.....,10r0(nygodd or even) (2.23)
ng =01.....,ng/20r (ng—1)/2; (ng = even or odd) (2.24)
L=4LA+1,.... 24— 2,22 (2.25)
Where
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N: is the total boson number,

ng. 1s the number of d-boson,

v: is boson seniority (the number of d-boson not paired to L= 0),

ng: is the number of d-bosons coupled pairwise to L= 0,

n,: is the number of d-bosons coupled triplet wise to L= 0, this is a further
guantum number that is O (5) in chain (2.12) is not fully reducible with respect
to O (3).

A: is number of bosons in the reduced state,

L: is the total angular momentum quantum number.

The ideal diagram of the energy spectrum dependent on quantum number
numbers ny, v = ng, and n, = 0 are used to describe the ground state b ands
which conforms to dynamical symmetry U(5), is shown in Figure (2.1).

The following selection rules apply to the T2 operator in Eq.(2.7)[55,62].
Ang; =0,+1 (2.26)
The B(E2) values along these b ands are[18,67,73]:
B(EZ;ng+1Lv=ng+1ny=0,L;=2n3+2>nygv=ngn, =

0Ly = 2ng) = a5 (L +2)(2N — L) (2.27)
Also the B(E2) along the ground states b and given only the first term[11]:
B(E2;2} - 01) = a?N = e2ZN (2.28)

The matrix element of the 7,; operator can be expressed as[11,55], and the

magnetic dipole transitions can be determined using Eq.(2.9):

([N],ng,v,ny, L|Ag|[N],ng,v,n5, L) = ng (2.29)

and

4 4 1
92t = 95 +AN+\/§ C—\/;ﬁB;( (2.30)
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Figure 2.1. A typical spectrum with U(5) symmetry and N=6.

In parentheses the quantum number v and na [18,55].
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The B(E2) ratios are[11,44]

(N-1)

R=2 —2,
N—->oo
R =28D__,o (2.31)
N N-ooo
o (N-1)
R’ =2

2.2.2 The rotational limit SU(3)

In terms of creation and annihilation operators, if e = ay = a; = a, =0in
Eq. (2.4), the Hamiltonian operator for dynamical symmetry is given by[47,
61, 74]:

H=a,l.1L +a,0.0 (2.32)

Their eigenvalue is[18,75]:

ENAuK L) =22+ 2+ u+30+m)+ (e —22)L (L +1) (2.33)

8
Subgroup SU(3), which has quantum numbers that give it its diagonal feature,

expresses the rotational dynamical symmetry as[55, 76]:

u®G) o SUB o 0B o 0(2)
! ! ! l (2.34)

[N] (4.1) K L M

All[N]contains values of(4, 1) that are given by:

(2N,0),(2N —4,2),(2N —8,4),(2N — 6,0), ... ... ... .. (2.35)
For K = 0,2,4,....min (A4, ) (2.36)

26



CHAPTER TWO THEORETICAL PART

For K = 0 the values L=0,2,4,....max (4, ¢)are allowed (2.37)
andforK >0L=K,K+1,K+2,...K + max (4, 1) (2.38)
It is convenient to rewrite T£2 in Eq. (2.7)as for the accounts within this limit
[18,76]:

TE2 = ay [[dt x s~ + st x a2 =L [t xa]? | (2.39)

2 2
m m
: : o V7 E2

The following selection criteria [18,55] apply to the Where(ﬁ2 = 7(12), T
operator in Eq. (2.39):
AA=0,Au=0 (2.40)
Figure (2.2) demonstrates that the quantum numbers define the ground state b
and A=2N,u=0and k = 0.
The results show that the B(E2) values along this b and are[55,74]:
B(E2;(A=2N,u=0),K=0,L; =L+2->(1=2N,u=0),K =

3(L+2)(L+1)

— _ 2 —
0,Lr=L)=a} PTETRESTETRYS (2N —L)(2N + L + 3) (2.41)
In particular
2 2
B(E2;2} - 0f) = ZN(2N +3) = =N (2N +3) (2.42)

The magnetic dipole transitions can be calculated using Eq.(2.9), and the

matrix element of the 7i; operator can be expressed as[55, 74]:

([N],(2N,0), y = 0,L|A4|[N], (2N — 4,2), y = 0,L) =
_JN \/[(2N—L)(2N+L+1)] \/[(ZN—l)Z—L(L+1)] \/[Z(ZN—l) (2.43)

3(2N—1)(2N) 3(2N-2)(2N-1) (2N=3)
and
47 6-8N (N—1)
gt =9p t AN + \/; mc (2.44)
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Figure 2.2. A typical spectrum with SU (3) symmetry and A/=8. In parentheses the quantum number A and p [18,55].
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The B(E2) ratios are[11,76]:

_10(N-1)(2N +5) 10

~ 7 NQ@N+3) nNowo 7’
R' =0, (2.45)
R" =0

2.2.3 The y-unstable limit O(6)
This symmetry arises when the coefficients ¢, a, and a, in Eq. (2.4) vanish.
Therefore, the O(6) Hamiltonian given by[55,68]:

ﬁ - aO’P\. ’P\ + alﬁ. E + a3T. T (246)

when theay, a, and a; are parameters.The eigenvalue is expressed as
[18,77,78]:

E(o,7,L) =A(N—=0)(N+0c+4)+Br(t+3)+ CL(L + 1) (2.47)

where:
(A = a0/4‘,B = a3/2,C =aq — a3/10).
The sub-group O(6), which represents the dynamical symmetry of unstable

gamma, contains quantum numbers[55]:

U@ o 0) > 0B) » 0B > 0(2

l l l l l (2.48)
[N] o TV, L ML
Where :
c=NN-2,.... ,00r 1, for N = even or odd (2.49)
The quantum number labels the O (5).
t=0,0—1,...,0 (2.50)
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T=3v,+ 4 (2.51)
Up = 0,1, . (252)
L=,1+1,.... 24 =222 (2.53)

where the values of the quantum numbers t and v, are identical to the v and
n,, respectively, of the U(5) chain[18].The ideal depiction of an energy
spectrum is shown in Figure (2.3). The transition operator's first term in
Eq.(2.7) is found to be the dominant one in the regions where this symmetry
holds true, and the second term will be discarded (i.e., we consider ,= 0).

These selection rule applies to the T2 operator in Eq. (2.7)[58,77,79]:
Aog =0,At = +1 (2.54)

The B(E2) values along the ground state b and defined by the O(6) quantum
numbers[13,18,55]:

B(E2;0 =N,7+1,v,=0,L;=2t+2>0=N,7,v, =0,L; = 27) =

2 L+2

& ss @N = L)2N + L +8) (2.55)
In particular

2 2
B(E2;2f - 09) = %N(N +4) = %BN(N +4) (2.56)

The magnetic dipole transitions can be calculated using Eq. (2.9), and the

matrix element of the 7i; operator can be represented as follows:

([N],0 = N, 1,05, L|4|[N],0 = N — 2,T,v,,L) =

N(N+3)—-t(t+3) (N-1)(N-2)—-1(T+3)
_\/N\/[ 2N(N+1) ]\/[ 2N(N+1) (2.57)
and,
_ 4T 4+N (N-1)
9ot =9gp + AN + \E EYTON C (2.58)
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Figure 2.3. Typical spectrum with O(6) symmetry and N=6, and the quantum numbers o; va[18,55].
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The B(E2) ratios are[11]:
_10(N-1)(N+5) 10
7 N(N+4) nNow 7’

R — L N-DN+5) 10
T 7 N(N+4) Noowo 7’

(2.59)

R" =0.

2.3 Transitional Regions
Some of the features of the pure symmetries are observed empirically in

selected nuclei. However, most nuclei display properties which are
intermediate between them. In order to describe these transitional nuclei, one
must return to the full Hamiltonian, Eq. (2.4), and diagonalize it numerically.

It is convenient to divide transitional nuclei into four classes [11,18]:

2.3.1 Nuclei with Spectra Intermediate between U(5) and SU(3)

The convenient Hamiltonian for this transitional region is[18]:
H=¢efig+a,Q.Q+a,L.L (2.60)

The SU(3) limit has been used as the starting point, there is an increase in both
E (27) and E (47) separately, a clear reduction in the ratio E (47) /E (27),
and the y-b and is above the B-b and. The introduction of a term in e n, to an
SU(3) Hamiltonian must usually be accompanied by a companion amendment

of the Q. Q and L. L. terms to maintain the required energies for the 23 and 23
states[11].

2.3.2 Nuclei with Spectra Intermediate between SU(3) and O(6)

The choice of the Hamiltonian for this transitional region is depended on the

ratio a,/4a,, if it is approach to -1, then the Hamiltonian is[18]:
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ﬁ == ali. E + azé. Q + aoﬁ.ﬁ (261)
but with larger magnitudes, the Hamiltonian becomes[11]:
ﬁ = alz.z+a2@-é +a0ﬁ.ﬁ+a3T3.T3 (262)

where the term T5. T will tend to reduce the ratio E (47) /E (2}) thus must

be kept small for well deformed nuclei[44].

2.3.3 Nuclei with Spectra Intermediate between U(5) and O(6)
Nuclei in this transitional region has been less studied than the earlier two
and can be calculated with a Hamiltonian[11, 44]:

ﬁ = Sﬁd + aoﬁ.ﬁ + alz.i + a3T3. Tg (263)

2.3.4 Nuclei with Spectra Intermediate among all three limiting

cases
Nuclei in this transitional region are the most difficult to treat since they

require the use of all the operators appearing in Eq.(2.4)[44].

2.4 Potential Energy Surface Basis

The IBM energy surface E(N, 8,y) is made using the expected value of the
IBM-1 Hamiltonian Eq.(2.3) in a coherent state (|N, 8,v))[18,44,80]. The
state|N, B,y) is a result of boson creation operators (b} )over the boson

vacuum|0), that is,
IN, B,y) = 1/VN! (bH)N |0) (2.64)

where |0) is the boson vacuum and the bl acts in the intrinsic system and is
given by[18, 80]:
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b = (1+ B2 {s" + p|cosy(a}) +1/2siny(d} +d',)|}  (2.65)

N is the boson number, or the number of valence bosons that are not inside a
doubly-closed shell.Via this coherent state formalism, a potential energy
surface (PES) E (N,B,y) in the quadruple deformation variables § and y can be
derived for any IBM Hamiltonian, where B is the deformation parameter
measures the axial deviation from sphericity and vy is the angle variable
controls the departure from axial symmetry, thus the variables B and y
determine the geometry of nuclear surface.lt is simple to construct the energy
surface in terms of the shape variables and the Hamiltonian Eq.(2.3)

parameters[13,80]:

E(N,B,y) =(N,B,yIHIN,B,y)/{N,B,YIN,B,v)
_ NggP? N(N+1)
T (1+B2) | (1+B2)2

(af* + ayB3 cos 3y + azB? + ay) (2.66)

where the coefficients C,, v,, vy, and uyup in equation (2.3) are related to the
a’s. In the geometrical collective model, § and y are variation parameters
associated to the form variables. The form is spherical when g = 0, distorts
when S # 0, and is prolate when y = 0 and oblate when y = 60[18,23].

y represents the amount of divergence from the focal symmetry and correlates

with the nucleus. These formulas result in B,,;,, = 0,2 and 1 for U(5),
SU(3), and O(6), respectively, for big N.

2.4.1 The U(5) Symmetry
It is sufficient to write the energy functional, E (N, B, y), associated with the
Casimir invariant of the the U(5) Symmetry, Eq.(2.20), this yields[11,18,44]:
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NB?
EWN;B.v) = €a {52y (2.67)

This energy functional is y-independent and has £,,,;,, = 0

2.4.2 The SU(3) Symmetry

The energy functional, E (N, B, y), associated with the Casimir invariant of
the SU(3) Symmetry, Eq. (2. 34), is[11, 18, 44]:

E(N;B,7) = a, é”li”ﬁ‘zg (482 £ 2V2p3 cos 3y +35*), (2.68)

the equilibrium values are obtained by solving[11]:

OE _ OE _
Z=3=0, (2.69)
To give B, = V2 and ¥y = 0° with the positive sign of the second term in
Eq. (2.68) for y = —+/7/2, and y = 60" with the negative sign of the term
and y = ++/7/2 corresponding to prolate and oblate deformed shape
respectively[11,18,75].

2.4.3 The O(6) Symmetry
It is sufficient to write the energy functional, E (N, B, y), associated with the

Casimir invariant of the O(6) symmetry, this yields[11]:

2

EWN;Bp) = 2N - D) (5553) (270)

1+p2

The equilibrium value is given by f,,;;, = 1, corresponding to y-unstable
deformed shape[11,18].
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In this chapter, the results of the even-even "#%Ge and "®82Se nuclei have
been done using Interacting Boson Model (IBM-1). Then, the calculations
IBM-1 for Germanium and Selenium nuclei that are related to dynamical
symmetry O(6). There is an exclusive equation for finding the Hamiltonian
operator function which is used to determine the energy levels to Eq.(2.4).
The Hamiltonian operator equation depends on the total number of bosons (N)
in this model, and energy levels decrease as the N value decreases. The even
Ge and Se nuclei (core) consisted of proton number (Z) =32 and 34,
respectively, and a range of neutron numbers (n) from 42 to 48. It has boson
total numbers between 3-6 and 4-7 for Ge and Se, respectively. Furthermore,
the IBM-1 is applied to describe the Ge and Se nuclei using computer code
PHINT. This code was written by Scholten[81].

3.1 Energy levels calculation

The boson numbers of “8Ge nuclei range between 3-6 and "82Se nuclei
range between 4-7 which are calculated relative to closed shells for Z and N
between 28 and 50. For the calculations that follow, the energy ratio R = E4 /
E2 [16,53] has been used as the starting point. This ratio has limiting values:
R4, ~ 2.0 for a quadrupole vibrator, R4, ~ 2.5 for a non-axially gamma soft
rotor and Ry, ~ 3.33 for an ideally symmetric rotor[17,18].The R4, ratios for
480Ge and %%2Se nuclei are constant with an increase in neutron number and
equal ~ 2.5, which means that their structures seem to be deformed nuclei with
O(6) dynamical symmetry. Figure (3.1) shows the energy ratios E 2: E 4. E 6:
E 8=1:2.5:4.5:7 for the O(6) limit[11,18].Table 3.1 lists adopted values of the
parameters used for IBM-1 calculations using Eq.(2.4) and according to
Eq.(2.47).
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Figure 3.1. Comparison of the energy ratio (E s: E 6: E 4: E 2) for (a) “%Ge and (b) &
82Se nuclei calculated by IBM-1 with the experimental data that is presently available

[27,82-86].

Table 3.1. Adopted values for the parameters used for IBM-1 calculations. All
parameters are given in MeV, excepted N and CHQ. The experimental data are taken

from Refs.[27,82-86].

A
UGe
6Ge
8Ge
80Ge
7650
85
80gg

SZSe

N O o N W NN OO Z

EPS
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

PAIR
0.1059
0.1592
0.1546
0.2465
0.0701
0.1070
0.1232
0.1410

ELL
0.0855
0.0864
0.1003
0.0828
0.0673
0.0807
0.0918
0.0658

QQ
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000

OoCT
0.0484
0.0433
0.0459
0.0586
0.0509
0.0530
0.0558
0.0653

HEXA
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

CHQ
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

(EPS = €, PAIR = ao/2, ELL= 2a;, QQ= 2a2, OCT= as/5, HEX= as/5 and CHQ=y)
in Eq. (2.4) [18].
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The energy levels of "48°Ge and 6-82Se nuclei have been classified according
to three b ands (gr-, y- and B-b ands). The B-b and is after the y-b and for
dynamical symmetry O(6). Also, it can be shown in accordance in the
sequence of energy levels for each b and with the ideal sequence for g- and -
b ands (0%, 2*, 4%, 6%,...) and for y-b and (2%, 3%, 4%, 5%, 6%,....)[18].Figures (3.2-
3.9) showed the IBM calculations (energies, spin and parity) are in general in
good agreement with the experimental data, especially in the ground states
[27,82-86].
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1.74Ge Nucleus

The "Ge nucleus has 32 protons(2 proton-particles)and 42 neutrons(4
neutron-holes), and then the total number of bosons is 6. The ratio R4, =2.456,
thus it was suitable to apply EQ.(2.46) in order to calculate the low-lying
positive parity energy levels. Levels 671, 8" and 3*; between brackets refer
(s) with energies of 2.957, 4.7236 and 2.400 MeV, respectively, correspond
to cases for which the spin and/or parity of the corresponding states are not

well established experimentally[12, 68] and can be seen in Figure(3.2).

6.0}

74
Ge
1. {8 —
> 4.0 e +
E L — ¢ e —
T§ (6) i 4__
354 (3" L
ga 4" |
> 2" Exp. IBM-1
S| o Exp. IBM-I P
- -Band p -Band
171 [ — !
Exp. IBM-1
L 1
gr-Band

Figure 3.2. Comparison the IBM-1 calculation with the experimental data[27, 82] for the
"4Ge nuclei
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2.°Ge Nucleus

The "®Ge nucleus has 32 protons(2 proton-particles)and 44 neutrons(3
neutron-holes), and then the total number of bosons is 5 and have the ratio
R4, =2.504, to produce the low-lying positive parity energy sates it is
convenient to apply the O(6) Hamiltonian by using Eq.(2.46). Levels 671, 31,
5% and 2%; with energies of 2.8561, 2.2097, 3.6815 and 2.273 MeV,
respectively, correspond to cases for which the spin and/or parity of the
corresponding states are not well established experimentally[27, 83] as well
as, the dash line refers to the predicted level of new energy that the spin and
parity non-specific 4.086, 3.9401 and 4.767 MeV for the spin and/or

parity 87, 67 and 6%, as can be seen in Figure (3.3).

6.0
o) 76Ge
6"
24,0 8" errinans —_ 6 _
= B
2 61— 4 s
g = A=
§2'0 O+E T IBM-1
&%) 4+ [y — 2+ XP. s
s T— B -Band
oyt Exp. IBM-I
L |
N vy -Band
0.( Qe
Exp. IBM-1
gr-Band

Figure 3.3. Comparison the IBM-1 calculation with the experimental data[27,83] for the
5Ge nuclei.
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3.8Ge Nucleus

The "8Ge nucleus has 32 protons(2 proton-particles)and 46 neutrons(2
neutron-holes), and the total number of bosons is 4. The ratio R4, =2.535, thus
it was suitable to apply Eq.(2.46) in order to calculate the low-lying positive
parity energy levels. Levels 61,31 47,571 and 4%; with energies of 3.270,
2.3919, 2.609, 4.029 and 3.231 MeV, respectively, correspond to cases for
which the spin and/or parity of the corresponding states are not well
established experimentally[27,84] and the dash line refers to the predicted
level of new energy that the spin and parity are non-specific 5.1714 and
4.3554 MeV for the spin and/or parity 87 and 63 as can be seen in Figure
(3.4).

6.0
78(}e
6" .....
%‘40 8 ... —_— )— —
E -
e (6') —
« @ @)—
% (83—
529 | 2
g | — D
- Exp. IBM-I1
| Exp. IBM-I L |
2 L B -Band
ot vy -Band
0.0
Exp. 1BM-1
L
gr-Band

Figure 3.4. Comparison the IBM-1 calculation with the experimental data [27,84] for the
8Ge nuclei.
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4.89Ge Nucleus

The 8Ge nucleus has 32 protons(2 proton-particles)and 48 neutrons(1
neutron-holes), and then the total number of bosons is 3 and has the ratio

R4 =2.643,to produce the low-lying positive parity energy states it is
convenient to apply the O(6) Hamiltonian by using Eq.(2.46) in order to
calculate the low-lying positive parity energy levels. Levels 4%; 671, 2% ang 3"1
and with energies of 1.7082, 3.1471, 1.5392 and 2.7850 MeV, respectively,
correspond to cases for which the spin and/or parity of the corresponding
states are not well established experimentally[27,85] as well as the predicted
level of new energy of 2.8815 and 2.6311 MeV for the spin and/or

parity 47 and 23, as can be seen in Figure(3.5).

6.0
BOGe
£
4.0
=z .
2 4 -
[ + — + .
il . s
:‘?2.0 + 0
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‘Exp. IBM-I L
. B -Band
2 v -Band
0 — .
0.8 Exp. IBM-I
I
gr-Band

Figure 3.5. Comparison the IBM-1 calculation with the experimental data [27, 85] for
the 8°Ge nuclei.
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From the above figures (3.2) and (3.3) for "*Ge and "°Ge, it can be noticed that
for a larger number of bosons(N=6 and 5), there are more energy levels
converging with each other because of increasing the number of energy levels
with the boson number (N) increment. But in the figures (3.4) and (3.5) for
8Ge and ®Ge whenever the number of bosons decreases (N=4 and 3), the
difference between energy levels will decrease because, 8Ge and 8Ge nuclei
approach toward magic number (n~50) which has an effect on converging
energy levels (i.e. whenever the nuclei approaches the magic number, the

nucleus will be more stable).
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5.7°Se Nucleus

The Se nucleus has 34 protons(3 proton-particles) and 42 neutrons(4
neutron-holes), and then the total number of bosons is 7 and has the ratio
R4, =2.380. The energy levels were calculated under IBM-1 by using Eq.
(2.46) for O(6). Levels 4%; ;g 673 With energies of 2.5581 and 3.756 MeV,
respectively, correspond to cases for which the spin and/or parity of the
corresponding states are not well established experimentally[27,83] and can

be seen in Figure (3.6).

6.0
76Se
o —
%’ 4.0 ' i
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00 O
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Figure 3.6. Comparison the IBM-1 calculation with the experimental data[27,83] for the
5Se nuclei.
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6.78Se Nucleus

The 8Se nucleus has 34 protons(3 proton-particles) and 44 neutrons(3
neutron-holes), and then the total number of bosons is 6. The ratio R4, =2.448,
thus it was suitable to apply Eq.(2.46)in order to calculate the low-lying
positive parity energy levels. The dash line refers to the predicted level of new
energy that the spin and parity non-specific 4.1255, 4.2917 and 4.4653 MeV
for the spin and/or parity 57, 67 and 63, respectively, as can be seen in
Figure (3.7).

6.0
785@
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Figure 3.7. Comparison the IBM-1 calculation with the experimental data [27,84] for the
8Se nuclei.
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7.89Se Nucleus

The 8Se nucleus has 34 protons(3 proton-particles) and 46 neutrons(2
neutron-holes), and then the total number of bosons is 5. The ratio R4, =2.553,
thus it was suitable to apply EQ.(2.46) in order to calculate the low-lying
positive parity energy levels. Levels 6%, 81, 3*1, 4%, ang 473 With energies of
3.2670, 5.2020, 2.727, 2.8710 and 3.2334 MeV, respectively, correspond to
cases for which the spin and/or parity of the corresponding states are not well
established experimentally[27,85] as well as the predicted level of new energy
of 4.4460 and 4.6620 MeV for the spin and/or parity 57 and 67, as can be
seen in Figure (3.8).

6.0 *°Se
(8)
6
% 5+ --------- A—
349
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Figure 3.8. Comparison the IBM-1 calculation with the experimental data[27,85] for the
8Se nuclei.

46



CHAPTER THREE RESULTS AND DISCUSSION

8.82Se Nucleus

The 8Se nucleus has 34 protons(3 proton-particles) and 48 neutrons(l
neutron-hole), and then the total number of bosons is 4. The ratio R4, =2.650,
thus it was suitable to apply EQ.(2.46) in order to calculate the low-lying
positive parity energy levels. Levels 4*,, 51 and 4*3 have energies of 2.9435,
4.5785 and 3.0475 MeV, respectively, and correspond to cases for which the
spin and/or parity of the corresponding states are not well established
experimentally[27,86]. The dash line refers to the predicted level of new
energy that the spin and parity non-specific 2.9415 and 4.5815 MeV for the

spin and/or parity 37 and 63, as can be seen in Figure (3.9).
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Figure 3.9. Comparison the IBM-1 calculation with the experimental data [27,86] for the
82Se nuclei.
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From the above four figures (3.6) to (3.9), notice that the difference between
energy levels in "®78Se nuclei is less than the difference between energy levels
of 882Se nuclei. Since the number of energy levels in ®78Se is greater than
that in 882Se, which is due to the existence for more bosons in ®78Se nuclei
(N=7 and 6), there are more energy levels converging with each other because
of increasing the number of energy levels with boson number (N) increment.
In O(6) limite, the higher-lying, lower t representations, the sequences of
levels are completely identical, except for lower cutoffs, since tma=c each
case.

Figures (3.2)- (3.9) show, the IBM calculations (energies, spin and parity) are
in general in good agreement with the experimental data, especially in the
ground state, and the energy levels E,+ > E,ratt=2Es > Epr >
Esy > Egr att=3,and Egy > Egt > Egt > Eyy > Ejy at1=4
resemble the typical spectrum of the O(6) symmetry [18].

Tables (3.2 and 3.3) show the measured and calculated values for energy
levels of Ge and Se nuclei using IBM-1 and compared with previous studies
(Th.)[31,37, 38,40,42,43]. These comparisons between our calculations and
other studies show that our calculations of energy levels are better than those

of those.

48



CHAPTER THREE RESULTS AND DISCUSSION

Table 3.2. Comparison of the calculated values for energy levels of Ge nuclei with
previous studies (Th.). The experimental data are taken from Refs.[27,82-85].

Nuclei J" EXp. This work Th.
“Ge 2f 0.595 0.595 0.611@
41 1.463 1.481 1.483@
65 2.569* 2.557 2.538 @
8+ 4.874* 4723 -
2% 1.204 1.321 1.584 @
37 1.697* 1.800 1.379@
43 2.165 2.154 2.159@
57 2.697 3.144 | -
63 3.372 3.617 -
0% 1.482 1.482 2.069 @
23 2.197 2.078 2.324@
4% 2.669 3.063 2.566 @
63 3.372% 3439 -
*Ge 2+ 0.562 0.562 0.348 @
47 1.410 1.514 1.058 @
61 3.071* 2.856 2.497 ®
8F 3.565 4.086 3.557®
2% 1.108 1.213 1.902 @
37 2.456* 2.209 1.661®
4% 2.733 2.382 2.279®
57 3.453* 3.681 2.780®
63 3.940 3.413®
0% 1.911 1.911 1.869@
23 2.204%* 2.273 2.421@
4% 2.994 3.125 2.689 @
63 4767 | -
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Continued
Nuclei J" EXp. This work Th.
8Ge 21 0.619 0.622 0.516 @
4% 1.570 1.691 1.701®
65 3.287* 3.270 3.174®
8F | - 5.1714 4,070®
23 1.186 1.310 3.386 @
37 2.330* 2.391 1.746 ®
4% 2.666* 2.609 2.794®
5¢ 4.305* 4,029 3.174®
65 | - 4.355 3.979 ®
0% 1.546 1.546 3.340@
2% 1.842 2.168 1.707 @
4% 2.759% 3.230 1.904 @
80Ge 21 0.659 0.651 0.728 ©
4% 1.742% 1.708 1.804©
61 2.978* 3.147 3.197©
23 1.573* 1.539 1.096 ©
37 3.036* 2.785 2.3190
4% 2.881 2.092©
0% 1.972 1.972 0.733©
28 2.631 3.514 @
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Table 3.3. Comparison of the calculated values for energy levels of Ge nuclei with
previous studies (Th.). The experimental data are taken from Refs.[ 27,83-86].

Nuclei J" EXp. This work Th.
763e 27 0.559 0.558 0.649 ©®
4% 1.330 1.436 1.217©
67 2.262 2.134 2.393®
8+ 3.269 4.153 3.482©
23 1.216 1.321 1.054 ©
37 1.688 2.388 1.801©®
4% 2.025 2.014 1.894©
57 2.489 2.809 2.891 ¢
63 2.976 3.156 2.673¢
03 1.122 1.121 0.898 ©
23 1.122 1.679 1.552©
4% 1.787 2.558 2.486 ©
63 2.619 3.756 3.4516
8Se 27 0.613 0.613 0.580 ®
4% 1.502 1.602 1.335®
67 2.546 2.566 2.369 ®
8F 3.585 4.207 3.369®
2% 1.308 1.408 1.082®
3f 1.853 2.351 2.007®
4% 2.190 2.562 1.846®
57 4.125 2.977®
63 4.291 3.159 ®
03 1.498 1.498 0.961®
23 1.995 2.111 2.409 ©
4% 2.682 3.100 3.511®
65 - 4.465 5.079®
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Nuclei J" Exp. This work Th.
805e 27 0.666 0.666 0.683 ®
47 1.701 1.755 1.829®)
65 3.030* 3.267 3.314®
87 5.180* 5.202 3.908 ®
23 1.449 1.503 1.208 ®
37 2.787* 2.727 2.014®
43 2.494* 2.871 2.226®
5¢ 4.446 3.174®)
63 4.662 3.471®
0% 1.410 1.478 1.293®
2% 1.959 2.144 2.233¢
4% 3.226 3.233 3.1420
825e 27 0.654 0.654 0.672®
47 1.735 1.637 1.963 0

65 3.144 2.949

8F 3.517 4.589
2% 1.731 1.634 1.567 0

37 2.941

4% 2.550* 2.943

57 4.231* 4.578
0% 1.410 1.410 1.546

23 3.591 2.064

4% 3.688 3.047*

Continued

(2)Ref. [43]. (b) Ref. [42]. () Ref. [37]. (d) Ref. [31]. (¢) Ref. [40]. (f) Ref. [38].

52



CHAPTER THREE RESULTS AND DISCUSSION

3. 2 Electric Quadrupole Transition Probability B(E2) Values
1. Absolute B(E2) values

Now, additional details on the structure of nuclei can be described in terms of
the strength of the transitions between excited states and can be represented
in terms of the reduced E2 matrix element, which must be a Hermitian tensor
of rank two when N must be conserved to Eq. (2.4)[18,46].

The computer code PHINT[81] has been used to calculate the BE(2). The
values of effective charge (eg) are obtained from Eqg. (2.56) for all nuclei under
study, and depending on practical values, they are presented in Table (3.4).
By normalizing the predictions to the experimental values of B(E2; 27 — 07),

the values of (eg) are determined for all Ge and Se nuclei under examination.

Table 3.4. Effective charges to reproduce B(E2) values for "*8°Ge and’®®2 Se nuclei.
The experimental data are taken from Refs.[ 27,82-86].

Nuclei N B (E2; 27 —» 07) e?b? e eb
74

Ge 6 0.0609 0.0712
"Ge 5 0.0554 0.0785
B Ge 4 0.0455 0.0843
Ge 3 0.0278 0.0814
76Se 7 0.0871 0.0752
78Se 6 0.0662 0.0743
80Se 5 0.0505 0.0749
82Se 4 0.0366 0.0756

For all nuclei under study, the comparison of calculations of B(E2) values
with the experimental data [27,82-86] is given in Tables 3.5 and 3.6 which
show there is no available experimental transition data to many transitions.
Therefore, it has been predicted using IBM-1. From Tables (3.5) and (3.6), it
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can be noticed that the values of B(E2) are in general higher for most
transitions in Se nuclei than B(E2) in Ge nuclei, and in general there is a good
agreement with the experimental B(E2) values. Furthermore, the calculations
of B(E2) values are compared with previous studies (Th.), and they are
presented in Tables 3.5 and 3.6. This comparison shows that the calculated
B(E2) values are better than those in Ref.[31,35,40,42,43].

In Ge and Se nuclei, B (E2;2] — 07) and B (E2;47 — 27) values decrease as
neutron number increases toward the close shell (N=50). Also, it can be
observed that the maximum values of B(E2) for nuclei of dynamical
symmetry O(6) i.e. the number of bosons has an obvious effect on the value
of B(E2), the values of B(E2) decrease whenever the number of bosons

decreases, and when it is closer to the magic number (=50).
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Table 3.5. B(E2) values for Ge nuclei (in €. b?). The experimental data are taken from

]TC
27 - 07
23 - 27
23 - 03
47 - 27
43 > 47
43 > 23
61 - 4;
6] - 43
65 - 43
65 > 67
8] — 67
03 - 23
37 - 47
37 > 2%

]ﬂ:
27 - 07
23 - 27
23 - 03
47 - 27
43 - 47
43 > 23
6] - 47
67 > 47
65 > 47
65 - 67
87 - 67

03 - 23

37 - 47
37 > 23

IBM-1
0.0609
0.0798
0.0325
0.0798
0.0387
0.0392
0.0812
0.0064
0.0491
0.0229
0.0720
0.0170
0.0230
0.0580

IBM-1
0.0455
0.0548
0.0171
0.0548
0.0226
0.0142
0.0474
0.078
0.0124
0.009
0.0284

0.0270

0.0130
0.0338

Refs.[ 27,82-85].

Exp. Th.
0.0609 0.0333 @
0.0793 0.0321@
0.0757 0.0460 @
-------- 0.147©

Exp. Th.
0.0455 0.0229®@
0.0594 0.0014 @
0.0217 0.0293 @
-------- 0.0017 ®
-------- 0.160 ©
________ 1.9% 107>

(b)
-------- 0.0440 ®
-------- 0.0780®
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IBM -1
0.0555
0.0704
0.0259
0.0704
0.0323
0.0282
0.0678
0.0071
0.0367
0.0171
0.0538
0.0215
0.0194
0.0484

IBM-1
0.0279
0.0303
0.0066
0.0303
0.0095

0.029

0.0056
0.0142

Th.

0.0297 @
0.0048 @
0.0401 @
0.0180®

0.0012®
0.0039 ®
0.0767®

Th.
0.021©
0.0023©
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Table 3.6. B(E2) values for Se nuclei (in €2 b?). The experimental data are taken from

]TC
27 - 07
23 > 2%
23 - 03
47 - 27
43 > 47
43 - 23
43 > 23
6 - 47
6 - 43
65 - 43
65 - 67
8] — 67
0 - 23
37 - 47
37 - 23

]TC
27 - 07
23 > 27
23 - 03
47 - 27
43 > 47
43 > 23
43 > 23
67 - 47
67 - 43
63 > 43
65 > 67
87 - 67
03 - 23
37 - 47
31 »23

IBM -1
0.0871
0.1163
0.0509
0.1163
0.0583
0.0642
0.0646
0.1225
0.008

0.0002
0.0014
0.1152
0.0185
0.0348
0.0875

IBM-1
0.0505
0.0641
0.0236
0.0641
0.0294
0.0323
0.0256
0.0617
0.0065
0.0334
0.0156
0.0490
0.0195
0.0175
0.0441

Th.

0.0841 @
0.1000 @

0.1100@

Th.
0.0506 @
0.0580 ®
0.0706 @
0.0210 ®
0.0354 ®

0.0590 @
0.1280 ®
0.0220 ®)
0.0428 ®)

Refs.[ 27,83-86].

IBM-1
0.0662
0.0868
0.0353
0.0868
0.0421
0.0463
0.0426
0.0883
0.0070
0.0534
0.0249
0.0783
0.0185
0.0250
0.0631

IBM-1
0.0366
0.0441
0.0137
0.0441
0.0181
0.0200
0.0114
0.0381
0.0062
0.0156
0.0073
0.0229
0.0215
0.0108
0.0272

() Ref. [43]. (b) Ref. [42]. (c) Ref. [31]. (d) Ref. [40]. (e) Ref. [35].
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Th.
1x 1075 ®
0.0580 ®
0.0946 @
0.0358 ®
0.0558 ®)

0.0929 @
0.177®
0.0283®
0.0362 ®
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2. B(E2) Ratio

The B(E2) ratio is used to show that the’*8Ge and’®#2Se nuclei are deformed
and that a dynamical symmetry O(6). The B(E2) ratio is calculated using the
formulas in Eq.(2.59)[54].

For each of the studied nuclei, the B(E2) ratio is determined using Eqg. (2.59)
and is provided in Tables (3.7) and (3.8). The IBM-1 computations for the '
80Ge and "®82Se nuclei are compared with the experimental data[27,82-86] in

these Tables.

Table 3.7. The IBM-1 and the experimental values of B(E2) ratios for "*°Ge nuclei.
The experimental data are taken from Refs.[27, 82-85].
B(E2) ratios

NUcelE N IBM-1 EXP
"Ge 6 1.310 1.301
%Ge 5 1.268 1.449
5Ge 4 1.204 1.304
0Ge 3 1.086

Table 3.8. The IBM-1 and the experimental values of B(E2) ratios for "582Se nuclei.
The experimental data are taken from Refs.[27, 83-86].
B(E2) ratios

Nuelel | N IBM-1 EXP
%Se | 7 1.33 1.55
BSe | 6 1.31 1.40
WSe 5 1.26 1.42
®Se | 4 1.20 1.2

The theoretical values of the B(E2) ratio for those nuclei are presented in the
above table to be in good agreement with the experimental findings and to be
~1.4. This indicates that the "#8°Ge and "®-82Se nuclei typically exhibit the O(6)
limit[18,55].
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3.3 B (M1) Values and Mixing Ratios (E2 / M1)

Similarly, to calculate the B(M1) values by using the computer codes PHINT
[81], must specify values of the parameters gs = Z/A (M1), A (M1N), C
(M1IND), and B (M1E2) in Eq.(2.9), by using the Equations (2.13) and (2.14)
to calculate the parameter B, using Equations(2.12) and (2.57) to calculate the
parameter C and finally to calculate the parameter A used the Eq.(2.58) for
O(6) symmetry. Each of these parameters is presented in the Table (3.9).

For all the nuclei under examination, the computed B(M1) values with the
experimental data[72,82,86] are presented in the Table(3.10) and(3.11) except
the "®8Ge and 82Se nuclei because they don’t have any experimental B(M1)
values, but we can calculate B(M1) values depending on the reduced mixing
ratio (Eq.(2.14)) and 6(E2/M1) values (Eq.(2.15)). From this comparison, the
calculated B(M1) are in a good agreement with the experimental data.

Table 3.9. The coefficients of TM?* used in the present work. All parameters are given in
(un), except N. The experimental data are taken from Refs.[ 27,82-86].

Nuclei N M1 M1N M1IND M1E?2
“Ge 6 0.432 0.063 -0.056 -0.103
®Ge 5 0.421 -0.179 0.107 -0.092
BGe 4 0.421 -0.275 0.225 0.082
8Ge 3 0.400 -0.500 0.375 0.072
®Se 7 0.447 0.088 -0.029 -0.072
8Se 6 0.435 0.029 -0.046 -0.362
805e 5 0.425 0.090 -0.075 -0.095
825e 4 0.414 -0.100 -0.120 -0.500

Table 3.10. B(M1)values for Ge nuclei (in u%). The experimental data are taken from
Refs.[ 27,82-85].
74

Vi Ge Ge
IBM-1 EXxp. IBM -1 EXp.
23 - 27 0.0006 0.0017 0.0004 0.0007
4% > 47 0.0011 | - 0.0007 | = -------
65 - 67 0.0014 | - 0.0008 | = ---—---
37 - 47 0.0003 | - 0.0002 | = ------
37 > 23 0.0005 | @ ------- 0.0003 | = -
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78Ge goGe

Jr IBM-1 EXxp. IBM-1 EXxp.
23 - 27 0.0003 | - 0.0001 | = -
43 > 47 0.0004 | - 0.0001 | = -
65 - 67 0.0003 | e eemeen e
37 - 47 0.0001 | e eemeem e
37 - 23 0.0002 | - 0.0001 | = -

Table 3.11. B(M1)values for Se nuclei (in u%). The experimental data are taken from
Refs.[ 27,83-86].

i 768@ 7886
J IBM-1 Exp. IBM-1 Exp.
25 -2t 0.0004 0.0008 0.0080 0.0015
4% >4t 0.0008 0.0017 0.0142 0.0716
67 - 6 0.0415 e 0.0180 0.2504
3t 5 4t 00002 | e 0.0049 = e
3t 523 0.0004 | o 0.0066 0.0178
SOSe SZSe
(9
J IBM-1 Exp. IBM-1 Exp.
25 -2} 0.0004 0.0007 0.0077 = -
4 >4t 0.0007 0.0067 0.0116 | -
67 - 6 0.0008 | e 00100 = e
3t 4t 0.0025 | e 0.0040 = -om
3t 523 00003 | e 0.0054 | —coee-

The lowest-order description of the M1 operator is proportional to the total
angular momentum and hence does not give rise to transitions. It is therefore
necessary to consider higher-order terms in a realistic calculation, and, rather
surprisingly, it is then in fact possible to extract some simple predictions for
the behavior of E2/M1 mixing ratios in a variety of cases. Moreover, for
transitions within the y- b and results in the additional prediction of a link

between the reduced mixing ratios for y-g transitions and y-y transitions.
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To calculate the E2/M1 multipole mixing ratios, the Interacting Boson Model
has been applied over a wide range of nuclei. The & (E2/M1) multipole mixing
ratios of the electromagnetic transitions between the energy states of Ge and
Se nuclei were calculated by using Eq.(2.14 and 2.15) and given in Tables
(3.12) and (3.13). The mixing ratio found for "*Ge the 0.608 MeV transition
Is 4.258, this value is in agreement with the experimental

values of +3.4 (4). For "®Ge the 0.545 MeV transition is 4.035 and this value
is in agreement with the experimental values of +3.5 (15). For °Se the 0.657
MeV transition is 6.302 this value is in agreement with the experimental value
of +5.2 (2). For "8Se the 0.694, 0.593 and 0.545 MeV transition is 2.914, 0.582
and 1.083, this value is in agreement with the experimental value of +3.5 (5),
-0.2 (2) and +0.4 (24). For ®Se the 0.786 and 0.793 MeV transitions are 8.272
and 4.354 that values are in agreement with the experimental values of
—5 (*2) and +1.1 (1.0).

Table 3.12. The IBM-1 and the experimental values of 5(E2/M1) multipole mixing ratios
for "4%Ge nuclei. The experimental data are taken from Refs. [ 27, 30, 82-85].

6 (E2/M1) 6 (E2/M1)
74Ge 7GGe
J- Ey (MeV) Ey (MeV)
IBM-1 EXp. IBM-1 EXp.
25 > 2% 0.608 4258  +3.4(4) 0.545 4.035 +3.5 (15)
43 > 4% 1.109 5.521 1.323 7.604
65 — 67 0.802 2.711 1.084 4.194
37 - 4% 0.701 5.198 1.045 7.693
37 - 27 0.961 8.753 +1.3 (4) 1.347 14.550

60



CHAPTER THREE RESULTS AND DISCUSSION

5 (E2/M1) 5 (E2/M1)
78Ge 80Ge
J* Ey ( MeV) Ey ( MeV)
IBM-1 Exp. IBM-1 EXxp.
23 - 27 0.567 6.514 --- 0.914 13.284
43 - 4% 1.095 6.857 --- 1.173 9.500
65 — 67 1.147 5.248
37 > 4 0.759 7.224 1.293
37 - 23 1.143 12.412 --- 1.462 14.552

Table 3.13. The IBM-1 and the experimental values of 6(E2/M1) multipole ratios for
6-82Se nuclei. The experimental data are taken from Refs.[ 27, 40, 83-86].

8 (E2/M1) 5 (E2/M1)
Jr Ey (MeV) 760 Ey (MeV) 780
IBM-1 EXxp. IBM-1 EXxp.
2% - 27 0.657 6302  +5.2(2) 0.694 2918  +35(5)
45 - 47 0.695 4995 | +1.7 (*9) 0.687 0.988
6 > 6} 0.713 0.108 1.325 0582  -0.2(2)
3% 47 0.357 3.707 0.351 0.661
3t > 2% 0.471 5.823 0.545 1.083 | +0.42 (24)
5 (E2/M1) 5 (E2/M1)
SOSe BZSe
T
J Br(MeV) 1M1 Experp M) igma Exp.
2% - 27 0.786 8272 —5 (%) 1.076 2,350
4t - 4t 0.793 4354 | +1.1(10) 0.814 0.851
6 — 67 1.395 5.158 1.632 1.158
3% - 4t 0.419 3.303 1.304 1.795
3% - 27 0.671 6.927 1.307 2,556
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3.4 Potential Energy Surface

One of the characteristics of a nucleus is the potential energy surface, is the
geometric character of nuclei was visualized by plotting the potential energy
surface (PES).The potential energy surface to EQ.(2.66) E(N,B.y) is
calculated with the help of the PES.FOR program Fadhil. I. Sharrad [17] wrote
the code for this software. In this work, we use equation (2.70) to determine
the potential energy surface. For the nuclei "*%°Ge and "6-%2Se, the contour
plots in the y - B plane resulting from E(N, B.y) are shown in Figure (3.10).
The mapped IBM energy surfaces are triaxial in shape for the majority of the
investigated Ge and Se nuclei with the same total bosons number. Triaxial
shapes are connected to intermediate values of 0 < y < m/3 and the plots of
potential energy surfaces as a function of the deformation parameter § and for
Ge and Se nuclei show that the well on the prolate-to-oblate side in all nuclei,
Bmin =1 in O(6) limit and still constant with atomic mass (A). The Ge and Se
nuclei under consideration here don't show any rapid structural change;
instead, they stay y - soft. This development displays the triaxial deformation
when the neutrons shell closure ~ 50 is approached. The PES contour plots
show Ge and Se nuclei under O(6) region. Ge and Se nuclei represent there is
clear deformation when approaching from neutron closed shell (n~50). The
big difference between protons number and neutrons number make these

nuclei have access energy which cause disorders in the nucleus.
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E(N,B,v) MeV
uuiuu
0.3838
0.7575
1131
1.505
1.879
2.253

2626

e

Figure 3.10. The potential energy surface in y. 8 plane for the "“#Ge and "6-%2Se nuclei.
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3.5

Conclusions

In this work, we can conclude the following:

1.

The interacting boson model (IBM-1) is well successful in studying
nuclei “®Ge and 7%%Se to calculate the low-lying collective
properties.

The R4, ratio between the levels is the first step to study the nuclear
structure and exam the Ge and Se nuclei to which limit they were
belong and equal ~ 2.5. which means that their structure seem to be
deformed nuclei with O(6) dynamical symmetry.

The increment in number of bosons (N) leads to increment in number
of energy levels and the fitting between experimental and calculated
energy levels becomes more convergence in energy levels among them.
The kind of bosons (hole or particle) affect on the properties of the
nuclei.

B(E2) values decreases as neutron number increases approach to the
close shell (N~50). Also, it can be observed the maximum values of
B(E2) for nuclei of dynamical symmetry O(6) i.e. number of bosons
has an obvious effect in the value of B(E2).

The monopole transition B(M1) and the ratio (5 (E2/M1)) between the
monopole and electric transition give acceptable values as compared
with the available experimental data which are high in some transitions
and low in the others depending on the strength of the transition for
B(E2) and B(M1).

The contour plot of the potential energy surfaces shows all even-even

Ge and Se nuclei are deformed and have O(6) limt y-unstable like

characters which increases with bosons number.
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3.6 Suggestions and Future Works

1. Study of even-even “8Ge and "6-82Se nuclei in other ways to confirme
the values for energy levels predicted in this work.

2. Using the statistical calculation to get the error in the results for
example the mean or st ander deviation and get the error.

3. Study of even-even "#8Ge and "*#2Se nuclei under IBM-1CQF.

4. Study the even-even “8Ge and %®2Se nuclei by odd mass number

using interacting boson-fermion model (IBFM).
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