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Abstract 

   This work consists of three main parts: The first part illustrates the synthesis 

of spinel Molybdenum Ferrite (MoFe2O4) nanoparticles, via the hydrothermal 

method using two types of surfactant:  anionic  is sodium dodecyl sulfate (SDS) 

and cationic is cetramide (CT) as a template and stabilizer. The Molybdenum 

Ferrite -Alumina (MoFe2O4/Al2O3) nanocomposites, was prepared by 

incorporating the spinel MoFe2O4 with synthesis Al2O3 by ultrasonic waves 

technique, which is a simple, fast, environmentally beneficial technique. 

    Part two includes the characterization of the prepared MoFe2O4, synthesis 

Al2O3, and  their nanocomposites,  using the techniques of FT-IR, XRD and 

SEM-EDX. The FT-IR spectra showed the tetrahedral and octahedral locations 

of molybdenum, and iron for all the catalysts prepared. The XRD analysis 

confirmed the spinel MoFe2O4, synthesis Al2O3, and thier nanocomposites are 

successfully prepared with  nano-sizes. The mean crystal size for synthesis 

MoFe2O4   catalysts increase after incorporating with Al2O3. SEM analysis 

indicated the shape of prepared spinel MoFe2O4 in the presence of anionic SDS-

surfactant, which found to be like-caviar, and its composite with Al2O3 is like-

grains, while the shape of the spinel MoFe2O4 in the presence of cationic CT -

surfactant  and its composite with alumina are nanoplate and like-Popcorn 

nanoparticles, respectively. The shape of Al2O3 is ocurred like-brain cells. 

Based on EDX spectra, the elements Fe, Mo, Al, and O demonstrate. The band-

gaps (Bg) determined using Tauc equation, the Bg ranges of all samples are 

proved their photocatalysts  with ranged 2.78 eV to 4.44 eV.  

     The pH of point of zero charge(pHzpc) was determined for all samples using 

titration method under purged nitrogen, and found the ranged from 1.6 to 

5.9.The pHzpc range of synthesis MoFe2O4  calatsts elevale  after synthesis of 
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composites. The quantum yields (Φ) of de-colorization IC dye with studied 

photocatalysts are found less than 1. 

     Part three focuses on the ability and evaluates the effectiveness of the 

MoFe2O4, Al2O3, and its nanocomposites  on the de-colorization of indigo 

carmine IC dye. The effect of various factors on the photo decolorization of 

indigo carmine IC dye utilizing photocatalysts in the presence of SDS and CT 

surfactants were illustrated. Temperature and initial  pH are two of these 

parameters. The best initial pH is occurred equal to 5.3. 

      The thermodynamic parameters were calculated using the Eyring-Polanyi 

equation, the equation of Arrhenius, and the Gibbs equation. The  

photoreactions with using MoFe2O4 in presence CT-surfactant and its composite 

are an exothermic,  spontaneous reaction and less random. On the contrary, the  

photoreactions with using MoFe2O4 in presence SDS-surfactant is endothermic 

more random and nonspontinous, and its composite are an exothermic,  

spontaneous reaction and less . 
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1.1. General Introduction  

     The ecological environment of people and other living things has been 

severely impacted by organic contaminants in groundwater, which has increased 

interest in wastewater treatment methods. Most methods applied to remove or 

degrade such as adsorption [1]. Fenton and photofenton [2], [3], photolysis [4], 

and photocatalysis [5], [6]. The photocatalytic process is one of the promising 

effluent treatment technologies. Which could remove or degrade the organic 

toxic pollutants using an environment-friendly and efficiently [7], [8], hence,  

many scientists are devoted to developing new photocatalysts with high 

efficiency to address the challenges of water pollution [9], [10], Semiconductor 

photocatalyst, especially visible light-driven photocatalysts have received 

signifcant attention because visible light radiation occupies half of the total 

solar energy on earth [11]. Thus, designing and implementing high-efficiency, 

low-cost, and stable photocatalysts driven by visible light is highly desirable for 

practical application. So there are a variety methods to remove dyes from 

wastewater due to their toxicity and danger, including adsorption, 

photocatalysis, photodegradation, membrane filtering, oxidation, and irradiation 

[12].  

1.2. Advanced Oxidation Process (AOPs) 

     AOPs are one of the most recent technologies, which have the potential to 

transform organic pollutants into harmless elements including carbon dioxide 

(CO2), H2O, and mineral salts [13]. This approach is useful since it avoids the 

need for further by product separation in an aqueous solution [14], [15]. The 

term (AOPs) refers to a group of procedures that frequently make use photon 

oxidizing species such as hydroxyl-radicals (
.
OH), which have a high in situ-

produced oxidation potential (Eo = 2.8 V) and then kick off a chain of processes 

that break down big molecules into smaller, less hazardous pieces. As shown in 
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Figure (1-1), the AOPs technique produces hydroxyl radicals (
.
OH) in a variety 

of ways [16], [17].  

 

Figure (1-1). Schematic diagram of the most applications for advanced 

oxidation processes as a 
.
OH source [18]. 

AOPs are declared to be capable and effective ways for pollutant elimination, 

however a novel methodology must be developed to safeguard human health 

and the environment from the harmful consequences of water contamination. 

AOPs techniques have evolved as a very inexpensive process that may be useful 

for removing pollutants from soil and water resources and turning them into 

toxic-free compounds [19]. They are increasingly being reported as a highly 

effective wastewater treatment solution for getting rid of contaminants with a 

high chemical constancy or low biodegradability [20]. Although these 

techniques are effective at removing pollutants that have high chemical 

persistence, complete mineralization is said to be substantially more expensive. 
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The technique can thus be used with other biological therapy techniques to 

reduce expenses [21]. Although the last approach to industrial wastewater 

treatment is intriguing, the discussion that follows only covers AOPs. 

1.3. Semiconductors and Synthesized Nanophotocatalysts 

Semiconductors (SCs) are solids with electrical conductivity ratings that can be 

crystalline or amorphous with band gap (Bg) ranged from 0.5 eV to 5 eV. The 

values of the intermediate states, which lie between a metal and an insulator, 

can be changed by altering the impurity, temperature, quantum dot size, or 

illumination. Understanding the properties of SC requires knowledge of the 

electrical conductivity band theory. At absolute zero Kelvin, the valence band 

of a semiconductor is filled with all of its electrons, while the conductive band 

is devoid of electrons. The band gap is the area that exists between the 

conductive band and the valence band [22],[23]. When the Bg between 1.1 to 5 

eV the semiconductors are called photosemiconductors or photocatalysts[5].The 

photocatalyst can be classified depended on position of fermi level to n-

type(Fermi level is close to the conductive band) and p-type(Fermi level is close 

to the valance band) [24]. Based on Figure (1-2), the electrons (e
-
) in valence 

band will travel to the conduction band when a photocatalyst is exposed to light 

with energy equal to (or greater than) the band gap energy, leaving a hole (h
+
) in 

the valence band (step I). Step II: The electron-hole pairs may combine once 

more, releasing the input energy as a heat and having no chemical consequence. 

However, if the electrons and holes go to the surface of the photocatalyst, they 

can participate in redox reactions with adsorbed species such oxygen, water, 

and organic or inorganic species (steps III and IV) [25], [26]. The major 

reactions responsible for the cationic photocatalytic effect are interfacial redox 

reactions of electrons and holes that are generated upon bandgap excitation, 

despite the fact that the physics underlying the parting of charge carriers varies 
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with different applications and the surface-electronic structure of the 

photocatalyst [27], [28]. 

 

Figure (1-2) Schematic illustration of the main reactions taking place on a 

bulk or  a nano photosemiconductor under light irradiation. 

The following steps that might be described above could be briefly expressed : 

Light absorption            SC + hν  →  SC
*
                        Step I 

Recombination             e
-
CB + h

+
VB  → heat                     Step II 

Reduction reaction          A + e
-
CB → A-

                           Step III 

Oxidation reaction         D + h
+

VB  → D+
                          Step IV 

Where, A is accepter, D is doner 

However, these redox processes are the fundamental mechanism of 

photocatalytic processes. Valence band (VB) holes are crucial components that 

stimulate the oxidative breakdown of environmental contaminants in 

photocatalytic decolorization [29]. When the holes and water interact, an 

oxidation process known as valence band oxidation results in the formation of 

the hydroxyl radical (
•
OH) as a very active oxidant with an oxidation potential 
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of 2.8 V. Surface pollutants may be quickly targeted by 
•
OH and transformed 

into H2O and CO2. The organic contaminants are broken down in water by 

photocatalysis has been widely addressed in the literature [29], [30], [31]. In the 

photocatalysis process, the surface species that function as traps by adsorbing 

them on the photo-catalyst surface increase with increasing in the 

photocatalyst's efficiency, whereas the main component that lowers efficiency is 

photo electron-hole recombination, there are  three important recombination 

routes exist [31],[ 32]. Firstly direct recombination occurs when a photoelectron 

in a conducting band falls into an empty state in the valance band and, by 

electrostatic attraction, joins a photo hole, secondly due to the surface species' 

capacity to collect photogenerated charge carriers (photo-electron-holes) and 

performs chemical reaction, surface recombination has a reduced likelihood 

Finally, because the recombination centers are at lattice sites transition within 

the bulk of the crystal and transition beyond the initial ground state, 

recombination at recombination centers (volume recombination) is highly likely 

[22], as shown in Figure (1-3). 

 

Figure (1-3). a) Photocatalytic mechanism using a photosemiconductor b) 

Types of recombination Processes. (Modified from References [33], [34]). 
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1.4.  The Synthesized Spinal ( MoFe2O4 ) Nanophotocatalyst   

    The spinel semiconductor is having  aformula AB2O4, where the ions A
2+

 and 

B
3+

 have tetra (A) and octa [B] voids. [35], [36]. Due to their electrical 

resistance and magnetic characteristics when utilized as high-frequency devices, 

ferrite composites are receiving increased attention [37]. Chemical substitution 

can be used to change the magnetic and electric properties [38]. Although n-

type (SC) make up the majority of spinel-type Fe3O4, p-type conduction can 

also be achieved by substituting high valence ions like Mo
3+

/
4+

, Ti
4+, 

and Ge
4+ 

[39]. MoFe2O4 is one of the p-type spinel magnetites that is gaining attention 

from researchers [40]. The inverse spinel structure of MoFe2O4 is composed of 

half of the Fe ions at tetrahedral (Td) A sites and the remaining Fe and Mo ions 

at octahedral (Oh) B sites Figure (1-4).  

 

Figure 1-4. Crystal structure of spinel-type oxide consisting of tetrahedral 

(Td) A and octahedral (Oh) B [41]. 

Spinel nanoferrites are effective for a variety of oxidations of organic 

compounds in wastewater due to their photocatalytic capabilities also strong 

interest in biomedical applications [42], [43]. Molybdenum ferrites typically 

exhibit an anion selectivity barrier and poor solvency, which make them 

resistant to corrosion in sour environments [44], [45]. The spinal Molybdenum 

Ferrite (MoFe2O4) is regarded as one of the most important materials because of 



Chapter One                                     Introduction 
 

7 
 

its exceptional redox characteristics, low cost, and thermal and chemical 

durability [46]. Molybdenum Ferrite (MoFe2O4) is a significant n-type binary 

metal oxide semiconductor that has drawn increasing attention in the fields of 

industrial catalysis, lithium/sodium batteries, supercapacitors, and gas sensors 

due to its excellent redox properties, catalytic activity, and chemical stability 

compared to corresponding single metal oxides [47], [48]. There is relatively 

little evidence between (MoFe2O4) morphologies with photocatalytic 

capabilities. However, considering prospective applications with large-scale in 

daily life, it is not advised due to the high cost of UV light during the 

photocatalytic processes. Visible light illumination (400 nm) is mostly regarded 

as a low-cost light source [49], [46]. Therefore,  efficiently utilizing the 

abundant and natural solar energy, various attempts have been made to promote 

photocatalysts with narrow band gaps by visible light illumination. Sol-gel, co-

precipitation, solid-state reactions, hydrothermal, and solvothermal processes 

have all been used to create (MoFe2O4) powder [50]. Because it is crucial to the 

performance of the photocatalyst, the control of the Mo/Fe ratio and structure 

has received good attention; however, the morphological control of the 

(MoFe2O4) structure has received little research [51], [52]. In the table (1-1), 

some of the key characteristics of MoFe2O4 crystals are shown. 

Table (1-1). Physiochemical properties of MoFe2O4 Crystals. 

Crystalline 

Structure type 
Orthorhombic Monoclinic Triclinic 

 

Crystal structures 

   



Chapter One                                     Introduction 
 

8 
 

 

Lattice Constant (Å) 

a = 9.46 

b = 9.55 

c = 13.18 

a = 16.18 

b = 9.52 

c = 16.24 

a = 6.93 

b = 8.66 

c = 10.38 

Stability Stable Metastable less Stable 

Color Brown Powder Brown Powder Brown Powder 

Band gap Direct (2.66 eV) Direct(2.50 eV) Direct(2.43 eV) 

Density 3.30 g·cm⁻³ 3.32 g·cm⁻³ 3.63 g·cm⁻³ 

Possible Oxidation 

States 

Mo⁶⁺,Fe³⁺,O²⁻ O²⁻,Mo⁶⁺,Fe³⁺ O²⁻,Fe³⁺,Mo⁶⁺ 

Apllication Nanophotocatalyst Nanophotocatalyst Nanophotocatalyst 

Ref. [53] [54] [55] 

 

1.5.  Synthises Al2O3 as photocatalysts 

    Aluminum oxide (Al2O3 ) nanoparticles are utilized in a variety of adsorbent 

and catalyst applications, such as the adsorption of catalysts in the 

manufacturing of polyethylene, hydrogen peroxide, and as a selective adsorbent 

for numerous compounds, such as arsenic and fluoride, as well as the removal 

of sulfur from gas streams. Due to its hardness, chemical inertness, high melting 

point, non-volatility, and resistance to oxidation and corrosion, aluminum oxide 

materials are widely utilized in ceramics, refractories, and abrasives [56],[57]. 

Alumina's significance as a catalyst or catalytic support for several chemical 

processes has also been well acknowledged [58]. According to Figure (1-5), 

aluminum oxide are chemical formula Al2O3. In the fields of mining, ceramics, 

and materials science, it is sometimes referred to as alumina or aloxite. 

Anhydrous Al2O3 comes in two different forms: α-Al2O3 and γ-Al2O3. Alpha-

Al2O3 is indefinitely metastable at low temperatures and stable at high 
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temperatures. It may be made by heating Al2O3 or any hydrous oxide to 

temperatures exceeding 1000°C. It naturally occurs as the mineral corundum. 

Al2O3 is tough, resistant to hydration, and to acid assault. 

 

Figure (1-5). The 3D molecular structure of Alumina [57]. 

     Due to their advantageous textural qualities and inherent acid-base 

properties, aluminas are often employed as catalyst supports. For example, in 

the automotive and petroleum sectors, γ-alumina, which has a crystalline 

structure and a huge surface area, is frequently utilized as catalysts, catalytic 

supports, and adsorbents. Large-surface-area alumina supports with the 

appropriate acidic-basic surface characteristics can frequently lead to improved 

catalytic performance. Aluminum oxide is an insulating substance with band 

gap energies exceeding 5 eV [59]. By modifying the amount of flaws on its 

surface, the energy in this gap may be decreased to as little as 2.5 eV, previous 

studies have shown that the transformed surface might be thought of as a new 

phase with distinct characteristics connected to novel surface chemistry and 

chemical activity  [60]. It is important to note that the band gap value varies on 

the synthesis process, It is well known that various metastable polymorphs of 

Al2O3 exist (transition aluminas phases such as γ, η, δ, θ, and χ ) except the 

thermodynamically stable form of α-Al2O3 (corundum) [61]. Table (1-2).  
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Table (1-2). Physiochemical properties of synthises Al2O3 Crystals. 

Type α-Al2O3 γ-Al2O3 

Crystal structures 
 

  

Color white powder white powder 

Stability Stable Stable 

Band gap Indirect 

4.42 eV 

Direct 

5.85 eV 

 

Lattice Constant (Å) 

a = 11.79 

b = 2.91 

c = 5.62 

a = 4.81 

b = 4.81 

c = 13.12 

Density 3.63 g·cm⁻³ 3.87 g·cm⁻³ 

Apllication Catalyst or 

catalytic support 

Catalyst or catalytic 

support 

Ref. [62] [63] 

 

1.6. Surfactants 

     Surfactants are chemical compounds that decrease the surface tension or 

interfacial tension between two liquids, a liquid and a gas, or a liquid and a 

solid. It is important to note that well-structured photocatalysts can promote 

electronic transfer, improve optical absorption, and improve photocatalytic 

performance by having a core-shell structure, uniform spherical structure, and 

hierarchical multilayer structure [64], [65]. In the synthesis of photocatalysts, 

surfactants, an amphiphilic substance with hydrophilic and hydrophobic groups, 



Chapter One                                     Introduction 
 

11 
 

have been shown to be an effective shape-directing agent, primarily by 

controlling their overall shape by adsorbing surface active molecules on various 

crystal faces of the nucleation center [66].  The kinds of surfactants can be 

classified to four types according to the table (1-3) [67]. 

Table (1-3). The classified of surfactants  with common used and examples 

[68], [69],[70] 

Types Info. Examples and used 

Cationic surfac-

tants 

These molecules contain at least one 

hydrophobic hydrocarbon chain bond-

ing with a positively charged nitrogen 

atom, or other alkyl groups. 

-Cetrimide (CT), Quaternary ammoni-

um compound (QAC), and Cetyltrime-

thylammonium brmide (CTAB) 

-Used in detergents, fabric softeners, 

and hair conditioners. 

Anionic surfac-

tants 

The hydrophobic part of the molecule is 

mostly an alkyl chain, alkylphenyl ether 

or alkylbenzene bonding carboxyl, sul-

phate,sulphonate, or phosphate. 

-Sodium dodecyl sulphate (SDS), So-

dium lauryl sulphate (SLS), and. Stea-

ric acid (SA). 

-Used in pharmaceutical formulations 

to increase the effi ciency of the active 

ingredients by direct binding to the 

drug 

Amphoteric sur-

factants 

They are dependent on the pH. This 

molecules can changed its  charge from 

net cationic to anionic from low to high 

pH, with zwitterionic behaviour at in-

termediate pH 

-Amine oxide (AO) 

-Used in textile industry as anti-static 

agents, in rubber industry as foam sta-

bilisers and polymerisation catalysts, 

and in deodorant bars as antibacterial 

agents 

Nonionic The hydrophobic part of nonionic sur-

factants is mostly an alkylated phenol 

derivative, fatty acid, or long-chain lin-

ear alcohol, but the hydrophilic part is 

mostly an ethylene oxide chain of vari-

ous lengths. 

-Fatty acid ethoxylate (FAE), Alcohol 

ethoxylate (AE),  and hexamethylene-

tetramine (HMTA) 

-Used as emulsifiers, wetting agents, 

and foam stabilisation agents. 
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 However, the mechanism of the surfactant-assisted synthesis of photocatalysts 

is slightly different with different Synthesis methods. Therefore, we summarize 

the mechanism in combination with the synthesis method and analyze them by 

the reaction process reported in literature. Surfactant-assisted such as SDS, CT 

and CTAB, etc.  There are four types of surfactants 

1.7. The Effect of Surfactant Type 

    The type impact of surfactant is important in the synthesis of photocatalysts 

and has been utilized to influence the form of these catalysts. The charge, shape, 

hydrophobic chain length, and functional groups of surfactants are the major 

factors that determine the kind of surfactants [71]. There are two main and most 

common types of surfactants. 

1.7.1 Anionic Surfactant as a Sodium Dodecyl Sulfate (SDS) 

    Sodium dodecyl sulfate (SDS or NaDS), commonly known as sodium 

laurilsulfate or sodium lauryl sulfate (SLS), is an anionic surfactant that belongs 

to the alkyl sulfates surfactants family. An artificial organic molecule (salt) with 

an amphiphilic structure, organosulfate with a tail chain made up of 12 carbon 

atoms and the chemical formula a CH3(CH2)11SO4Na figure (1-6) [72]. Sodium 

dodecylsulphate SDS, like other surfactants, contains an amphiphilic molecule 

with both hydrophilic and hydrophobic moiety, due to its chemical, 

physicochemical, and utilitarian qualities, is widely employed for both basic 

research as well as industrial applications. This anionic surfactant was used in 

several personal care items, including toothpaste, detergents, and synthesis 

goods [72], [73].  
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Figure (1-6). Chemical structure of sodium dodecyl sulfate (SDS). 

1.7.2. Cationic Surfactant as a Cetrimide (CT) 

    Cetrimide (CT) is a three-cationic surfactant, dodecyl-, tetradecyl-, and 

hexadecyltrimethylammonium bromides, which are mixed to create cationic 

surfactants. By weight, tetradecyltrimethylammonium bromide constitutes the 

bulk of the combination and serves as the only surfactant [74]. CT is a cationic 

charge on the micelle surfaces in an aqueous solution caused by the cationic 

surfactant. Because phosphate (PO4
3-

) ions and micelles are attracted to one 

another electrostatically, the anionicly charged PO4
3-

 ions join with the surfaces 

of the cationicly charged micelles to create a network structure. The network 

gradually transforms into rod-shaped micelles, which then serve as the 

nucleation center. Figure (1-7). 

 

Figure (1-7). Chemical structure of Cetrimide (CT). 
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1.8. dyes 

     Many different industries, including the textile, paper, plastic, food, printing, 

cosmetic, and pharmaceutical sectors, employ dyes extensively. The majority of 

dyes are organic compounds with complicated aromatic structures and a range 

of functional groups [75]. However, some colors emitted from industrial 

effluents into receiving streams are sources of water pollution. The majority of 

dyes and the byproducts of their degradation are highly toxic, mutagenic, 

carcinogenic, and allergenic, the environment's unfitness for humans and 

aquatic life, which is brought on by the dyes in water effluents, causes chronic 

and acute illnesses [76], [77]. The majority of the dye molecules are soluble in 

water and may be stable to heat and light. It may be seen with the naked eye 

since its light has wavelengths between 400 and 800 nm. The degradation of 

dyes in wastewater can be accomplished through a variety of biological, 

chemical, and physical processes, including photolysis, adsorption, chemical 

precipitation, sonochemical degradation, and electrochemical precipitation 

because dyes typically have a complex structure and altered stability [78], [79]. 

Moreover, according to their chemical makeup, dyes may also be divided into 

categories such as xanthenes, heterocyclic, nitro, stilbene, phthalocyanine, 

indigoid, polymethine, and anthraquinone [80].  

1.8.1. Indigo Carmine (IC) 

     Indigotin or indigo carmine (IC) is one of the most widely used synthetic 

dyes. Although it was formerly made from a plant of the genus Indigofera, it is 

nonetheless harmful to the environment. This dye is mixed with Patent Blue V 

to turn food blue. These two shades of blue are used in coatings, 

pharmaceuticals as dye of drug capsol, ice cream, and confectionery [81]. 

Although indigo carmine may be created naturally by the indigo sulfonation 

process, indigo is often also created synthetically through the fusion of the 
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chemical N-phenyl glycine in a solution of sodamide, sodium hydroxide, and 

potassium hydroxide while being compressed by ammonia. Consequently, 

indigo carmine should be regarded as a man-made food dye [82]. According to 

current knowledge, dye molecules consist of a mixture of unsaturated organic 

compounds with auxochromes acting as color binders with fibers and 

chromophores acting as color transporters [83]. This chromophore group 

imparts color to a molecule. Unsaturated organic molecules including aromatic 

hydrocarbon compounds and their derivatives, phenolic compounds and their 

derivatives, and nitrogen-containing hydrocarbon compounds all play a role in 

the synthesis of colors in a molecule. Because indigo carmine is poisonous to 

rats, pigs, and people, it can have an adverse effect on the aquatic environment. 

Waste containing this substance must be handled to reduce or remove its 

detrimental effects on biota due to its toxicity to nature [84]. The treatment and 

eradication of color from textile waste can be accomplished using a variety of 

conventional methods, including glass, chemical, and biological processes, 

membrane purification, chemical precipitation, adsorption, electrochemical 

degradation, advanced oxidation processes (AOPs), and others [85]. The 

chemical structure of Indigo Carmine dye is illustrated and some of the 

properties in the scheme (1-2).  
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Scheme (1-2). Chemical structure of indigo carmine (IC) and some 

important properties [86].  

1.9. Photocatalytic Decolorization of  Dyes 

    Currently, the formation of Reactive Oxygen Species (ROS) by One of the 

most efficient dye decolorization processes is photocatalysis, organic ligands, 

and metal-organic ligand complexes are examples of organic-colored 

compounds [87]. Photodecolorization is an abiotic decolorization process in the 

aquatic environment [88]. In recent years, a great deal of study has been done to 

remove these pollutants using optical catalysts, and it has been concluded that a 

photocatalytic decolorization process is an ecologically friendly technology that 

does not result in secondary pollution. During the exposure to light, 

photocatalysts and electron-hole pairs were formed, and they are now helping to 

the process of speeding up dye decolorization [89]. Additionally, to remove 

chlorinated phenolic chemicals, incredibly secure and efficient photocatalytic 
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technologies are used under certain parameters, such as temperature, pressure, 

and concentration. Usually, the photocatalytic process's by-products are 

harmless or just mildly harmful [90]. Direct photo-decolorize in aquatic 

environments, analogous to dye degradation, is an important pathway for 

pesticide deterioration [91]. In conclusion, photo-decolorization includes 

procedures like photochemical mineralization, photopriming, and 

microbiological photo-inhibition [92]. Thus, Heterogeneous photocatalysis 

offers a highly efficient means of addressing environmental issues [93]. It paved 

the way for the development of innovative semiconductor photocatalysts 

capable of photochemical activity. The high rate of recombination of 

photogenerated electron-hole pairs made during the photo decolorization 

process, however, hampers effective de-colorization. The dye degradation 

procedures were performed as shown in Figure (1–13) under light [46]. 

 

Figure (1-8). Diagram depicts the degradation mechanism of dye on the 

catalyst's surface (Modified from Ref.) [94]). 
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1.10. Literature Review  

    There are a several of studies research on the Synthesis of Spinel MoFe2O4 

and their nanocomposites. In 2017 Jintao Li and co-workers [95],synthesized 

MoO3/MoFe2O4 heterostructure nanomaterials by Hydrothermal method and 

findings the surface of the MoO3 nanobelts was evenly covered with MoFe2O4 

nanoparticles. At the ideal working temperature of 250 °C, the 

MoO3/MoFe2O4nanocomposites demonstrated improvement sensing 

responsiveness and selectivity to toluene vapor compared to bare MoO3 

nanobelts.  

     In 2018 Shuang Zou and co-workers [96], used polyvinyl pyrrolidone (PVP) 

as a surfactant, the hydrothermal technique was used to create the MoFe2O4 

nanoparticles. The findings showed that monoclinic nanocrystals with an 

average size of 50 nm made up the MoFe2O4 nanoparticles. The MoFe2O4 

nanoparticle-based sensor performs well at detecting gases, particularly acetone. 

Acetone greatly outperformed other gases in terms of responsiveness. At the 

sensor's ideal working temperature of 340 °C, the responses to 1 ppm and 100 

ppm acetone were 2.45 and 24.7, respectively.  

     In 2019 Tsukasa Katayama and co-workers [41] employed the Pulsed laser 

deposition (PLD) to effectively create high-quality MoFe2O4 epitaxial films that 

show p-type conductivity and room-temperature ferrimagnetismThe outcome 

demonstrates that films with cation-vacant spinel structures displaying n-type 

conductivity are created by utilizing the MoFe2O6 target even under reductive 

deposition circumstances, in contrast to films with spinel MoFe2O4 epitaxial 

films obtained by employing the MoFe2O4 target. 

     In 2020 Adel A Ismail and co-workers [46], developed unique green 

approach to create mesoporous Ag2O/MoFe2O4 nanocomposites for tetracycline 

(TC) photodegradation under visible light irradiation. The procedure was based 
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on a straightforward sol-gel route with the presence of nonionic surfactant. 

Compared to the bulk material that is typically manufactured, the resulting 

Ag2O/MoFe2O4 has a higher surface area thanks to its 2D mesoporous structure. 

On the mesoporous MoFe2O4 surface, Ag2O Nanoparticles with a particle size 

of 3 nm are evenly distributed in a spherical shape.  

     In 2022 P. Santhoshkumar and co-workers [97], reported the Glycerol was 

used to facilitate the Synthesis of iron molybdate (Fe2(MoO4)3) materials, and a 

variety of physicochemical methods were used to corroborate the materials' 

structural and chemical composition. It breakdown of Congo red and methylene 

blue, attaining 91% and 96% . 

     In 2023 Selvam Thulasi and co-workers [98], made the MoFe2O4/reduced 

graphene oxide (RGO) nanocomposites  using a straightforward hydrothermal 

method, and it was utilized to create highly effective dye-sensitized solar cells 

(DSSCs).  

In the same year 2023, Lian Chang and co-workes [99], created the MoFe2O4 

using environmentally friendly method. It used to eliminate RodanminhB (RhB) 

via peroxymonosulfate activation. Results from UV-vis and XPS experiments 

showed that the high valence Mo(VI) was the active center that started the 

nonradical-dominated pathway. 
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1.11. The aim of the work  

This work includes many aims: 

1. The bare spinel Molybdenum ferric nanoparticles were prepared by the 

hydrothermal method in the precence  of two types of surfactant (cationic 

and anionic). 

2.  The Nanocomposites from spinel Molybdenum ferrite and synthesis 

Alumina were Prepared using indirect ultrasonic waves as a firendly 

method.  

3. The fourier transform infrared (FT-IR), X-ray diffraction(XRD), Scan 

Electronic Microscope(SEM), Energy Dispersive X-rays(EDX), 

Zeropoint charge (pHZPC ) and band gap (Bg) were used to identificate . 

4.  Studied the photoactivity of prepared MoFe2O4, synthesis Al2O3, and 

their prepared Nanocomposites by mesuring the effects of the following 

parameters on decolorized of Indigo Carmine  dye: 

a. Dose of photocatalyst samples 

b. Temperature. 

c. Initial pH Solution. 
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2.1. Chemicals  

All chemicals and materiales that used in this study are of chemical market and 

used without purification as showned in Table (2-1) 

  Table (2-1): Sources and purities of the used chemicals 

Purity and 

percentage 

Company supplied Chemicals No. 

(98-99%) J.K. Baker, Netherlands. 

Hydrochloric acid (HCl) 

(38.0-36.5) % 

1.  

(99.97) % 
Seelze, Hannover, Germany: Riedel-

De-Haen AG. 
1,10- Phenanthroline (C12H8N2) 2.  

(99.98) % 
Seelze, Hannover, Germany: Riedel-

De-Haen AG. 
potassium oxalate (K2C2O4.H2O) 3.  

(99.99) % CDH, India Sulphuric acid (H2SO4) 4.  

(99.99)% BDH Nitrogen (N2) 5.  

96-101% CDH, India Cetrimide (CT) C17H38BrN 6.  

98-99.9% Merck, Switzerland Alumina (Al2O3) 7.  

99.9% Chem.lab, Belgium. Absolute Ethanol (C2H5OH) 8.  

99.9% CDH, India. 
Indigo Carmine  (IC ) dye 

(C16H8N2Na2O8S2) 
9.  

99.9% CDH, India 
Sodium Dodecyl Sulfate (SDS) 

NaC12H25SO4 
10.  

99.98% USA-based Sigma Chemical Company Sodium hydroxide (NaOH) 11.  



Chapter Two                             Experimental 
 

27 

99.99% BDH Potassium chloride (KCl) 12.  

99.99% Merck, Switzerland Potassium hydroxyl (KOH) 13.  

99% Sigma cheml co. USA. Sodium molybdate (Na2MoO4.2H2O) 14.  

(99.98) % Evans, Mf-Dica, England Iron (III) sulfate hydrate (Fe2(SO4)3.H2O) 15.  

99% Sigma cheml co. USA. Ferric nitrate  (Fe(NO3)3.9H2O) 16.  

 

2.2. Instruments 

All Instuments and rools are used in this study was shwon in Table (2-2). 

Table (2-2). Instuments and rools , company and places that are used in 

this study 

Place Company Instrument No. 

University of Kerbela, College 

of Science, Dep. chemistry 

AA-1800, 

Shimadzu, Japan. 

Double-beam-UV-Visible 

spectrophotometer 
1.  

University of Kerbela, College 

of Science, Dep. chemistry 

FT-IR-8400S, 

Shimadzu, Japan 

Fourier-transform infrared 

spectroscopy (FTIR) 
2.  

University of Kerbela, College 

of Science, Dep. chemistry 

Heido MrHei 

Standard, Germany 
Magnetic Stirrer for Hotplates 3.  

University of Kerbela, College 

of Science, Dep. chemistry 
Memmert, Germany Oven 4.  

University of Kerbela, College 

of Science, Dep. chemistry 

Singapore 2100 

OAICTON 
pH meter with digital display 5.  

Alkhora Company , Iraq (kyky EM) 320., 
Scanning Electron Microscopy 

(SEM), Energy-dispersive X-ray 

6.  
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Baghdad – Alyarmook USA spectroscopy (EDX) 

University of Kerbela, College 

of Science, Dep. chemistry 

BL 210 S, Sartorius 

Germany 
Sensitive balance 7.  

University of Kerbela, College 

of Science, Dep. chemistry 

Spectro SC, 

LaboMed, Inc 

Single-beam-UV-Visible 

Spectrophotometer 
8.  

University of Kerbela, College 

of Science, Dep. chemistry 

TOPT-HP100 

TOPTION UNITED 

KINGDOM 

Steeliness steel Teflon tube 

autoclave 
9.  

University of Kerbela, College 

of Science, Dep. chemistry 

Germany-Hettich 

Universal II 
The centrifuge 10.  

University of Kerbela College 

of Science, Dep. chemistry 

DAIHAN Scientific, 

Korea. 
Ultrasonic bath 11.  

University of Kerbela, College 

of Science, Dep. chemistry 
China of Rudium. 

UV(A) source ,High-Pressure 

Mercury Lamp (400W) 
12.  

Ministry of Science and 

Technology .Iraq 
Rigaku-Ultima IV X-ray diffraction 13.  
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2.3. Set of Synthesized Nanophotocatalyst Reactors 

The photocatalytic reactor unit shown in figure (2-1) was utilized for all 

photocatalyst studies. 

 

Figure (2-1): Homemade photo reactor contents from the wooden box (1), 

High-pressure mercury lamp(400W) (2), vacuum fan (3) 500 cm
3
 Pyrex 

glass beaker (4), Teflon bar (5), and magnetic stirrer (6). 

2.4. Synthesis of MoFe2O4 nanoparticles in the presence of surfactants 

   Bare MoFe2O4 nanoparticles were prepared in presence the surfactant by a 

facile hydrothermal method. In a typical synthesis, 2.828 g Ferric Nitrate 

(Fe(NO3)3.9H2O) was dissolved in 35 mL distilled water, and 0.846 g sodium 

molybdate (Na2MoO4.2H2O) a dissolve separately, in 10 mL of HCl and 25 mL 

of distilled water. The Na2MoO4 solution was step by step added into the 
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Fe(NO3)3 solution with vigorous stirring at room temperature, as the equation 

(2-1 and 2-2)  

                                                                     …(2-1)  

                                                              

                                                                                                 …(2-2) 

Then 0.5g of surfactants (Sodium Dodecyl Sulfate (SDS) or Citermide (CT) was 

added separately. After stirring for 15 minutes, the resulting yellow mixture was 

put in a 100 mL Teflon-lined autoclave. The autoclave was then sealed and 

maintained at 180°C for 5 h. Subsequently, the autoclave was cooled to room 

temperature for 2 h. After filtration, the obtained solid sample  that light and 

dark brown color was washed with distilled water and then ethanol several 

times to ensure all the amounts of cationic ions of precursor salts and humidity 

were removed. The  figure (2-2) depicts the entire process of preparing 

Molybdenum Ferrite. 
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Figure (2-2). Schematic digram of Molybdenum Ferrite nanoparticles 

synthesis in presence positive and negative surfactant by hydrothermal 

method. 

This precipitate was light thrown  and brown in precence SDS and CT, to dry 

using silica gel inside a desiccator overnight. The MoFe2O4 sample was finally 

obtained after grinding the dry precipitate to a uniform powder. The steps of 

MoFe2O4 synthesis using the hydrothermal method. The proposed method for 

utilizing a surfactant during the production of molybdenum ferrite.  

2.5. Synthesis of Nanocomposites  

    The 1:2 ratio was prepared from MoFe2O4 : Al2O3  nanocomposites  in the 

presence of CT and SDS-surfactant, as w/w ratio using ultrasonic wave 

separately. The MoFe2O4 solution and Al2O3 solution were dispersed for 2h at 

75 
o
C using ultrasonic waves at 65 kHz. The MoFe2O4 solution was gradually 

added to the Al2O3 solution and went on for 2h at 75 
o
C to perform the binding 
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process between MoFe2O4 and Al2O3. The precipitate that brown light with CT-

surfactant and brown dark with SDS-surfactant of nanocomposites was filtered 

and washed with water and ethanol, then stored overnight in a desiccator. The 

steps of the composite are explained in Figure (2-4). According to equation 2-3, 

the suggested chemical equation for the binding of  MoFe2O4 with Al2O3 

nanoparticles was obtained   :  

                                                             …  -3) 

 

 

 Figure (2-3).  Schematic diagram for the Nanocomposites Synthesis steps. 
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2.6. Characterization of Synthesized Nanophotocatalyst 

2.6.1. FT-IR Spectral Analysis 

    The FT-IR spectral of Synthesized Nanophotocatalyst samples the CsI 

powder is used to obtain in the range (250 - 4000 cm
-1

) utilizing (FT-IR 

Spectroscopy, Shimadzu). 

2.6.2. XRD Analysis  

    An X-ray diffraction (XRD) pattern is widely used to determine the 

crystalline form of Synthesized Nanophotocatalysts, which are primarily 

inorganic solid materials that are typically crystals [100]. XRD is considered to 

be a good method for determining the properties of crystal substances and their 

constituent parts, whether in the form of a thin coating of crystal or powder. The 

strength of a diffracted beam, which depends on how much of the 

corresponding crystalline substance is present, affects how well Scherrer's 

equation may be used, to use the XRD data, calculate the mean crystallite size 

(D] [2],[ 3].  

       
    

         
                                                   …                       

Here: k is the dimensionless Scherrer shape constant (used in the range of  0.89- 

0.94), λ is the wavelength of Cu k α (used in the range of 0.15406 nm ), β is the 

intensity width of the full half-maximum  (FWHM), This must be changed to 

radians by multiplying by (π/180), and 2θ is the Bragg diffraction angle. 

2.6.3. HR-SEM (High-Resolution Scanning Electron Microscopy) Studies 

     High-resolution scanning electron microscope (HR-SEM) analysis (FEI 

Nova Nano SEM 450 FESEM-USA) was used to analyze the nanostructure and 

surface morphology of a prepared MoFe2O4, nano-composite surfaces 

(Nanocomposites ) samples, and synthesis Al2O3.  
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2.6.4. Energy Dispersive X-ray (EDX) Analysis 

    By using energy dispersive X-ray (EDX) analysis, the elemental and 

percentage element compositions of the as-synthesized MoFe2O4, Al2O3, and 

nanocomposites  were validated. 

2.6.5. Bandgap energy measurements 

    Direct and indirect band gap energy was measured in (eV) for all Synthesized 

Nanophotocatalyst samples using a UV-visible spectrophotometer to determine 

the absorbance coefficient (α) from absorbance (A) and thickness (I) for all 

samples using the equation (2-5). Using the Tauc equation (2-6) [4,5].  

                                      …                    

                                 …        

   Where the Planck's constant, h, is equal (6.63x10
-34

 J sec), the light frequency, 

v, is equal to (C/λ), here, where C, is the speed of light, which is 2.998x10
8
 ms

-

1
, A is the optical constant, and m is always equal to 12 in a direct transition and 

2 in an indirect transition. 

2.7. Determination of zero Point charge(pHzpc) 

    The pH of zero point charge(pHzpc) was determined for all samples. The 

titration method was adopted, and the technique was an easy method to 

determine the pHzpc of the studied materials. The data of pHzpc of the 

Synthesized Nanophotocatalysts give information about the attraction and 

repulsion between catalysts and dye. Titration was carried out using 0.3 g of 

prepared Synthesized Nanophotocatalyst sample powder with 100 mL from 

three different ionic strengths  solutions (0.001, 0.01 and 0.1 M KCl). The 

solution by N2 was purged into the system to expel CO2 contamination for 30 
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minutes. The initial pH was determined using a pH meter before addition. The 

KOH titrant solution was used to carry out the titration by adding 1mL every 3 

min, using the three concentrations (0.1, 0.01, and 0.001M) to change the ionic 

strength of solutions in the presence of the Synthesized Nanophotocatalysts 

prepared separately. The values of the change in the pH after using this solution 

were measured. The process of adding the KOH is repeated until the change in 

the pH value is stable, as shown in figure (2-5). After the completion of the 

titration process, The zero point charge (zpc) was determined by locating the 

common point of intersection of the  titration ionic strength curves at different 

pH [105].  

 

Figure (2-5) Schematic digram for steps of determining the point of zero 

chargeof Synthesized Nanophotocatalyst samples. 
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2.8. The calibration curve of Indigo Carmine IC dye 

    To create the calibration curve, a series of standard indigo carmine IC dye 

solution solutions ranging from 1 to 50 ppm were prepared. At the wavelength 

(600 nm), the absorbance of these concentrations was measured. Data from 

Tables (2-3) demonstrated a relationship between concentration and absorption, 

as explained in Figure (2-6). 

Table (2-3). Indigo Carmine IC dye calibration curve data 

C/ppm Abs. 

1 0.0847 

5 0.2383 

10 0.4561 

20 0.9153 

30 1.3438 

40 1.6519 

50 1.9652 
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λ/nm 

  

 

Figure (2-6). (a) Spectrum of UV-visible absorption for indigo carmine IC 

dye (b) Calibration curve of Indigo Carmine at various dye concentrations  

at 1-50 ppm. 

2.9. Photocatalytic de-colorization reaction of Indigo Carmine  IC dye 

    The exam the activity of Synthesized Nanophotocatalysts (MoFe2O4, 

Nanocomposites and synthesis (Al2O3) materials, the photo reaction was 

performed using the homemade  photo-reactors unit , as shown in figure (2-1). 

UV-A iradiation source in the photo-reactors unit was used a high-pressure 

mercury lamp (400W, λ = 365 nm) in these experiments. 100 mL of 25 ppm 

from Indigo Carmine dye solution was mixed with synthesized 

nanophotocatalysts. The solution produced required 15 minutes of magnetic 

stirring to reach an equilibrium adsorption state. Periodically, the produced was 

exposed to UV-A light with light intensity equal to  3.195x 10
-7

 enstine s
-1

. 

After that, 3 mL aliquots were taken out every 10 minutes for up to 100 minutes 

of irradiation intervals. Centrifuging the obtained twice for 15 minutes at 4000 

y = 0.0409x 
R² = 0.9935 
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rpm was used to remove all fine Synthesized Nanophotocatalyst particles. The 

absorbance of the dye solution was determined at 600 nm Using UV-visible 

spectroscopy. The residue dye  was found depending on the calibration curve in 

Figure (2-4). The Langmuir-Hinshelwood model may be used to calculate the 

rate constant of apparent reaction (kapp) for low dye concentrations with time 

intervals (t), based on equation (2-7). The photo-decolorization efficiency of 

dye was calculated using equation (2-8) [5].  

      
   

  
 ) =   𝑝𝑝t                                                         …(2-7)  

 𝑃   % =   
        

  
                                             …(2-8) 

Here: Co, the initial concentration of IC and Ct, the concentration of IC, after ‗t‘ 

minutes respectively.  

2.10. Light Intensity Measurements  

    The chemical actinometric approach was used to determine the light intensity 

of the UV-light light source used in this investigation [106]. A precise 100 mL 

of the actinometric solution was exposed to the UV-A light of the photoreactor. 

Under the illumination of a UV-A lamp, 40 mL of 0.15 M Fe2(SO4)3.H2O, 50 

mL of 0.45 M K2C2O4.H2O, and 10 mL of 0.05 M H2SO4 were combined under 

ambient oxygen to make the actinometric solution. The resulting solution, K3[Fe 

(C2O4)3.H2O was produced as a yellowish-green color complex after radiation 

exposure. To evaluate the actinometric complex and gauge the light intensity, 3 

mL of the irradiation solution must be centrifuged (4000 rpm in 10 minutes) at 

regular intervals of (5, 10, and 15) minutes. Exact 0.5 mL of (1%) 1, 10-

phenanthroline was added to 2.5 mL of filtered solutions at different times. The 

reddish-orange complex was obtained and the absorbance can be read at10 nm.  
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An explanation of the processes and reactions that occurred is given in the 

equations that follow [107].  

[Fe
3+

 [(C2O4)3]
3-

 + hv                 [Fe
2+

 (C2O4)2] 
2-

 +C2O4
.-
                    … (2-9) 

[Fe
3+

 [(C2O4)3]
3-

 + hv                  Fe
2+ 

+2(C2O4) 
2- 

+C2O4
.-
                  … (2-10) 

[Fe
3+

 (C2O4)3]
3-

 + C2O4
.-
           [Fe

2+
 (C2O4)2] 

2-
 +C2O4

.-
 +2CO2         …  (2-11) 

2[Fe
3+

( C2O4)3]
3-

                        2[Fe
2+

 (C2O4)2]
2-

 + C2O4
2-

 + 2CO2     … (2-12) 

Additionally, the light intensity (Io) was estimated using the following formulae 

[108]. 

Moles of Fe
2+

   
                   

                       

                          
                        … (2-13) 

 Io  
                    

       
                                                                  … (2-14) 

Iο = 3.195×10
-7

 Enstine s
-1

   

    Where: V1 = 100 mL is the total of irradiation volume, V2 = 2.5 mL is 

volume of irradiation solution, V3 = 3 mL is a summation of adding the 

volumes of the irradiation solution (2.5 mL) and the 1, 10-phenanthroline 

solution (0.5 mL), the length of the optical path (1 cm), A510 represents the 

average absorbance of ferrio-xalate solution after different times of internal 

irradiation, a mixture of 1,10-phenonethroline, (the molar absorptivity ε = 1.045 

x 10
4 

L mol
-1

 cm
-1

) , the quantum yield is (Фλ = 1.2), and (t) is the time 

irradiation average (10 min). 
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2.11. Activation Energy  

    The Arrhenius equation was used to calculate the apparent activation energy 

(Ea) of photocatalytic de-colorization of the photoreaction. The apparent 

activation energy of the photo decolorization process of IC dye was calculated 

using the graph's linear to the Arrhenius Equation (2-15) [109].  

ln kapp   
   

  
                                                             …(2-15)  

Where: R is a constant gas equal to 8.314 J mol
-1

 k
-1

, kapp is an apparent constant 

rate, T is the temperature of the reaction, and A is a frequency constant. 

2.12. Thermodynamic Parameters  

    The thermodynamic parameters can affect the kind and direction of this 

photoreaction. It was discovered using the Eyring-Polanyi equation equation (2-

16) [110], and the Gibbs equation (2-17) are used for calculate the values of 

change enthalpy (ΔH
#
), change entropy (ΔS

#
), and free energy (ΔG

#
), 

respectively[111].  

   (
     

 
)  

    

  
 (  (

  

 
)  

   

 
)                              …                        

                                                                          …            

In this equation, kapp is the apparent rate constant, T is the reaction's 

temperature, kB is the Boltzmann constant, which is equal to (1.382 x 10
-23

 J k
-

1
), R is the gas constant, which is equal to (8.314 J mol

-1
.k

-1
), and h is the Plank 

constant, which is equal to (6.63 x 10
-34

 J.s). 
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2.13. The quantum yield  

    The quantum yield is a measure of the photocatalytic reaction's efficiency and 

is based on how many molecules of the probe dye disintegrate for each photon 

that is absorbed [112], [113]. The following equation may be used to determine 

the quantum yield (Φ) in the presence of a UV-A lamp: kapp (in sec
-1

) of the 

pseudo-first-order of the photodecolorization of the Indigo Carmine (IC) dye 

with light intensity (Io)λ  incident light intensity at  specific wave length in 

Enstine L
-1

 s
-1

  [114], [115].  

      
    

              
                                               …                             

Here: ε is the molar absorptivity of Indigo Carmine (IC) dye (84.469 mol
-1

 L 

cm
-1

) and l is the path length term of the cell (cm). 
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3.1. Synthesis  of synthesiszed Nanometrials    

  After using hydrothermal method to synthesize of two spinel MoFe2O4 

nanophotocatalysts one in  presence of  positive surfactnt (CT) and other in 

precence negative surfactant (SDS) and given brown and light brown powder 

respectivily, the nanocomposites were synthesis by combined them with 

alumina using indirect ultrasinic waves. The charecterizations  such as FT-IR,  

XRD, SEM, EDX, ZPC, and Bg can be invistgated to prove the synthesis of 

these nanophotocatalysts are really happend. 

The step of adding the surfactant during the hydrothermal technique is essential 

because it acts as a stabilizer agent, a template  and capping agent at the same 

time, preventing the hydrolysis of metal by water and ensuring that MoFe2O4 

Nanoparticles  morphology develops uniformly. Additionally, the surfactant is 

crucial to ensuring that the produced nano-compound is stabilized during the 

storage procedure[102], [116]. 

 

3.2. Characterization Synthesized Nanophotocatalysts 

There are many important analysis can be perfomed. 

3.2.1. FT-IR Spectra of Synthesized Nanophotocatalysts  

     In order to analysis the samples and gain an understanding of chemical 

bonds, FT-IR analysis was performed. The measured spectral span ranged from 

250 to 4000 cm
-1

. The FT-IR spectra of MoFe2O4 Nanoparticles  the presence of 

the SDS-Surfactant, Al2O3 synthesis, and Nanocomposites  nanocomposites , are 

shown in Figures (3-1 to 3-3). The observed peak at 1624.12 cm
-1

 is related to 

the Mo-O-Mo stretching vibration of molybdenum molecules, as well as the 

peak at 3429.55 cm
-1 

is attributed to the O-H stretching vibration due to the 

adsorption of H2O from the environment [117], [118]. The vibrational bands 

between 705.97 and 837.13 cm
-1 

were stretching vibrations of the Mo-O bonds 

at nonequivalent tetrahedral positions, and vibrational bands in the region 



Chapter Three                         Results and Discussion 
 

43 
 

435.93 to 478.36 cm
-1 

were attributable to the FeO6 octahedra. Moreover, the 

weak and narrow band at 1114.89 cm
-1 

were assigned to Fe-O-Mo [119]. 

 

 

 

Figure (3-1). FT-IR spectrum of the spinal MoFe2O4 Nanoparticles in 

presence the SDS-Surfactant.  

      Figure (3-2) explains the spectrum of synthesis Al2O3, Al-O-Al stretching 

vibrations can be attributed to the peaks at 644.25 and 678.97 cm
-1

. Al-O-Al 

bending is responsible for the band at 597.95 cm
-1

 [120], and Al-O also 

displayed a band nearly at 1150 cm
-1

, were resulted from non-bridging Al-O 

terminal group [121]. 
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Figure (3-2). FT-IR spectrum of Al2O3 synthesis. 

 

     FT-IR analysis was used to identify the different bonds present in the 

Nanocomposites , based on the vibrational transition of bonds figure (3-3). In 

Nanocomposites , the peak denoting (Metal-Oxides) for Mo-O, Al-O, and Fe-O, 

Al-O are noted at 594.10 to 648.10 cm
-1

 and 447.50 cm
-1

 respectively 
 

[93 ,]

[122] . The wide peak observed at 1620.26 cm
-1

 was ascribed to stretching Al-O, 

were resulted from the non-bridging Al-O terminal group. However, Low 

wavenumber peaks were caused by the M-O bond [121] . 

 

Figure (3-3). FT-IR spectrum of Nanocomposites in presence the  SDS-

Surfactant.  
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     Figure (3-4), the FT-IR analysis was used to investigate the surface structure 

and gain insights into chemical bonds. The recorded spectrum range was (4000-

250) cm
–1

. Displays the FT-IR spectrum of MoFe2O4. The distinctive band at 

3291 cm
-1

 can be attributed to the stretching of the O-H band caused by the 

nanoparticles' surface hydroxyl group. The vibration band located at 2226.38 

cm
−1

 is evidence for the C–H stretching of carbon, which was formed by the 

carbon residues at the material surfaces that had arisen from the combustion 

process.  The strong and broadband peaks that were positioned around (850–

842) cm
−1

 can be assigned to the tetrahedral species of Mo in MoFe2O4. The 

vibration band, which pointed in the (816-860 cm
-1

) area, revealed the presence 

of the Mo-O-Mo bond [123]. 

 

 

Figure (3-4). FT-IR spectrum of the spinal MoFe2O4 Nanoparticles in 

presence the CT-Surfactant. 

     Figure (3-5) shows the FT-IR spectra of Nanocomposites  in the presence 

CT-Surfactant. The coupling relationship between oxygen and molybdenum 

was confirmed by the vibration band at a distance of 824.14 cm
-1

. The Mo-O 

asymmetrical stretching band was discovered at 541.53 cm
-1

. The weak band at 

(456-486 cm
-1

) is caused by the Fe-O-Mo stretching vibration mode [124]. Also, 
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a weak adsorption band around 722 cm
−1

 is related to the Al–O bond [125]. 

Table (3-1) shows how the vibration bands are assigned together with their 

wavenumber. 

 

Figure (3-5). FT-IR spectrum of Nanocomposites in presence the CT-

Surfactant.  

Table(3-1). FT-IR spectra are used to assign bands and their corresponding 

wavenumbers. 

 

FT-IR (cm
−1

) Coresponding bands 

456 - 486 Fe–O–Mo stretching vibration 

594.1 - 648.1 O-Al-O stretching 

541.5 Mo–O Asymmetrical Stretching in MoO4 

824.1 Coupling bond between oxygen and molybdenum (O–Mo) 

816 - 860 Mo–O–Mo bond 

850 - 842 Tetrahedral species of Mo in MoFe2O4 

2226.3 C–H stretching 

3293.1 O–H stretching 

293.19 - 385.78  Fe-O-Fe bonding 

 



Chapter Three                         Results and Discussion 
 

47 
 

3.2.2. X-ray diffraction Patterns (XRD) analysis 

     Synthesized Nanophotocatalysts require the proper crystal structure, and 

XRD is one of the finest methods for assessing a crystal's molecular structure. 

According to Figure (3-6), all synthesis and synthetic samples of MoFe2O4, 

Nanocomposites , and Al2O3 underwent XRD analysis. 

The XRD spectra of the Synthesized Nanophotocatalyst samples, the three 

samples show the different diffraction characteristics clearly shows the 

appearance of several patterns related to its basic components, where observed 

the presence of peaks located at 14.127
o
, 15.403

o
, 16.554

o
, 19.589

o
, 20.541

o
, 

21.851
o
, 22.966

o
, 25.806

o
, 27.579

o
, 30.288

o
 and 34.118

o
 which are attributed to 

the indexed plants (210), (003), (020), (31-2), (311), (022), (202), (022), (212), 

(122) and (042) respectively, proving the formation of the and can be well-

indexed to the monoclinic structure of molybdenum ferrite, these results are in 

line with (JCPDS card No. 83-1701) [96]. And, the intensities of the XRD 

patterns suggested that the sample was highly crystalline. No other diffraction 

peaks were observed, which shows the high purity of the as-prepared MoFe2O4 

in the presence SDS-Surfactant. 

The synthesis of the Al2O3 phase is supported by the observed diffraction peaks 

at 25.606
o
, 35.176

o
,  37.799

o
, 43.377

o
, 52.567

o
, 57.516

o
, and 68.22

o
 , which are 

connected to the (311), (400), (511), (440), (444), (731), and (840) reflections, 

respectively. The samples' whole range of diffraction peaks agrees with the data 

from data (JCPDS card 10-0425) [126]. 

When the MoFe2O4 and Al2O3 upon incorporated as a nanocomposites , some 

crucial peaks are moved the high 2θ from 21.851
o
 MoFe2O4 and 25.606

o
 Al2O3 

to 25.724
o
 as nanocomposites, from 22.966

o
 MoFe2O4, 35.176

o
 Al2O3 to 35.282

o
 

also 27.579
o
 of MoFe2O4, and 43.377

o
 of Al2O3 shifted to 43.486

o
 for 

nanocomposites. However,  the very high peak intensity suggests that the 

material is highly crystalline. The mean size of the MoFe2O4 in the presence the 

SDS-Surfactant, Al2O3, Nanocomposites crystals was calculated using the 
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Scherrer equation (2-4) with the (202), (022) and (212). (400), (440) and (731). 

(202), (440), and (731) respectively peaks [127], [128]. Scherrer's equation (2-

3) was used to determine the mean crystallite sizes (L) in nm based on the XRD 

data, the mean size of MoFe2O4 in the presence the SDS-Surfactant was about 

23.83 nm, while the size of Al2O3 and Nanocomposites was about 43.44 nm and 

47.84 nm respectively. The increase in the size of the nanocomposites  crystals 

is attributed to the successful combination of alumina with molybdenum ferrite 

in the presence of SDS surfactant.  

 

 

 

Figure (3-6).  XRD pattern of (a) MoFe2O4 (b) Al2O3 (c) Nanocomposites  

prepared in presence the SDS-Surfactant. 

     After indexing, it was discovered that the crystalline peaks were in good 

accord with the standard monoclinic structure of MoFe2O4 [129], [130]. Figure 

(3-7), the essential diffraction peaks of monoclinic MoFe2O4 appear at 2θ = 

18.36°, 18.91°, 19.60°, 20.56°, 21.20°, 21.86°, 23.01°, 25.79° and 27.54°, with 

miller indicates (200), (220), (-123), (212), (122), (-105), (224), (400) and (503) 

respectively, the stronger intensity at 2θ for 23.01, 25.79, and 27.54 of the 

reflection peaks of (224), (400) and (503) which is in good agreement with the 
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literature values (JCPDS 35-0183) [126]. However, the Al2O3 peaks appear at 

diffractions (311), (400), (511), (440), (444), (731) and (800) with 2θ positions 

are 35.17°, 43.37°, 52.56°, 57.51°, 66.53°,  68.22° and 76.88° respectively, 

These results are consistent with the typical diffraction data (JCPDS card 10-

0425) [31]. When the MoFe2O4 and Al2O3 upon incorporation as a 

nanocomposites , some crucial peaks are moved the high 2θ from 23.01° 

MoFe2O4 and 43.37° Al2O3 to 43.52°, from  52.56° Al2O3) to 52.71°, from 

25.79° MoFe2O4 to 27.54° [131]. The very high peak intensity suggests that the 

material is highly crystalline. This shift in the position of peaks indicates to 

metallic bond form and incorporates MoFe2O4 with Al2O3 as a Nanocomposites  

composite. 

The average crystallite size of the MoFe2O4, Al2O3, and Nanocomposites  

samples was calculated using the Debye Scherrer formula given in Eq. (2-4). 

[127], [132]. The average crystallite sizes of MoFe2O4  particles, synthesis 

Al2O3, and Nanocomposites  as a nanocomposites  were found to be 23.97 nm, 

43.44 nm, and 47.41 nm respectively. The value of the lattice parameter 

depends on the disparity between the ionic radii of Fe
3+ 

and Mo
5+ 

ions. While 

the octahedral ionic radius of Mo
5+ 

ions (0.61 ) is larger than the octahedral 

ionic radius of Fe
3+ 

ions (0.55 ) and Al
3+ 

(0.535 ), Mo
5+ 

ions' tetrahedral ionic 

radius (0.46 ) is smaller than that of Fe
3+ 

ions and Al
3+ 

[36]. That mentality 

causes a metallic bond to form between two metals. 
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Figure (3-7).  XRD pattern of (a) MoFe2O4 (b) Al2O3 (c) Nanocomposites  

prepared in presence the CT-Surfactant. 

3.2.3. SEM Analysis   

   The scanning electron microscope (SEM) has long been the preferred 

technology for determining the surface shape and fundamental physical 

characteristics of materials. This technique determines the particle shape and 

size distribution of the substance. The spinel MoFe2O4, Al2O3, and 

Nanocomposites  composite SEM spectra were used, to examine the surface 

morphology of the materials. The MoFe2O4 with the presence SDS-Surfactant 

sample in Figure (3-8) shows a compressed order of homogenous nanoparticles 

with a form that is approximately spherical granules and has aggregated into a 

like-caviar nanoparticle structure. 
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Figure (3-8). SEM Images of MoFe2O4 nanoparticles in presence the SDS-

Surfactant. 

    The particle size is 50.9 nm, which is more significant than the average 

crystal size [133], [134]. As a result of the majority of particles being 

constructed as polycrystalline. This effect might be explained by the 

nanoparticles' tiny size and high density [127]. The MoFe2O4 nanoparticles are 

described as proof that the structure is polycrystalline. 

 

 

Figure (3-9). SEM Images of synthesis Al2O3. 

 

    In figures (3-9) and (3-10) the Al2O3, had the appearance of brain cells, and 

the MoFe2O4 when it is coupled with Al2O3 appeared highly agglomerated sub-

micron sized particles with nanograin-like secondary particles on the surface,      
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because of the high proportion of Al2O3 in comparison to spinel MoFe2O4, 

which is used to make spinel MoFe2O4 more lightweight during the Synthesis of 

the nanocomposites, they can act as a Synthesized Nanophotocatalyst to 

improve their optical characteristics. The spheres average 83.64 nm, for Al2O3 

and Nanocomposites , is 55.22 nm [133], due to the high percentage of Al2O3 in 

comparison to spinel MoFe2O4, increased the size of nanocomposites , which is 

employed to make spinel MoFe2O4 in presence SDS-surfactant more 

lightweight when nanocomposites s are created Nanocomposites surfaces Al2O3 

and Nanocomposites surfaces feature what seems to be a homogeneous 

distribution of spherical particles with a crystals structure; these spheres have 

relatively smooth surfaces. MoFe2O4 and its composite partial sizes are not 

subject to the nano-size restrictions that apply to polycrystalline materials. 

 

 

 

Figure (3-10). SEM Images of Nanocomposites in presence the SDS-

Surfactant.  

 

    According to figure (3-11) (a,b) for the SEM study, find that the shape of the 

synthesis MoFe2O4 is Nano-plates. While an incorporation of the spinel 

MoFe2O4 with Al2O3 the shape resembles a like-Popcorn shape. all samples 

nanoparticles are aggregated into larger particles and the average particle size of 
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MoFe2O4 Nanoparticles, Al2O3, and Nanocomposites  was shown the average 

have the following: (41.81 nm), (45.53 nm), and (83.64 nm) respectively. which 

leads to an increase in the prepared MoFe2O4 particle size in the 

nanocomposites, which is attributed to the Al2O3 big particle size, which ranges 

from (76.49 – 89.15) nm as shown above in figure (3-9), and Al is more ionic 

radius than the ionic radius of Mo and Fe  [5], [102], [135].  

 

 

Figure (3-11). SEM images of a) MoFe2O4 Nanoparticles b) Nanocomposites 

in presence the CT-Surfactant. 
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3.2.4 EDX Analysis  

      The elemental compositions of the as-synthesized materials were confirmed 

by energy dispersive X-ray (EDX) analysis MoFe2O4, Al2O3, and 

nanocomposites  with the presence of SDS, CT-surfactants as shown in Figures 

(3-12) and (3-13) (a-c), respectively. The findings showed that all of the 

compounds Fe, Mo, Al, and O were present. That demonstrated that MoFe2O4 

and its nanocomposites were formed without the presence of any contaminants 

(C serves as a substrate) [136]. The Mo, Fe, Al, and O signals are well-defined, 

showing the active processing of metal oxides involving iron, molybdenum, and 

aluminum. The peak strength of Al has grown for samples generated using 

larger Al precursor ratios, which is in good accord with the Synthesis 

procedure's stoichiometry Synthesis ratio (2:1) [137]. 
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 Figure (3-12). EDX spectra of (a) MoFe2O4 Nanoparticles, (b) Al2O3 and 

(c) Nanocomposites with presence the SDS-surfactant. 

  

  

  

Figure (3-13). EDX spectra of (a) MoFe2O4 Nanoparticles, (b) Al2O3 and (c) 

Nanocomposites with presence the CT-surfactant. 
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3.2.5. Measurement of Band Gap Energy 

     Based on equations (2-5) and (2-6) of the Tauc system [138], [139], the band 

gap (Eg) value for each Synthesized Nanophotocatalyst sample was calculated 

using information regarding the material's potential as a Synthesized 

Nanophotocatalyst. The plotted Tauc equation in figures (3-14) and (3-15), that 

observed the band gap for MoFe2O4 is direct [129], and equal to 2.78 eV 

(445.986nm), while it is an indirect band gap for the α-Al2O3, and 

MoF2O4/Al2O3 nanocomposites  with magnitudes equal to 4.44 eV 

(279.243nm), and 4.05 eV (306.133nm) respectively, in the presence of CT-

surfactant. While in the presence of the SDS-surfactant, the band gap for 

MoFe2O4 is direct is 2.95 (445.986 nm), and Nanocomposites it is an indirect 

band gap of 3.45 eV (306.133nm) respectively. The coupling α-Al2O3 during 

the production of a composite is useful due to raising the lightness of spinel 

MoFe2O4, this vital step to improves, when utilized as a Synthesized 

Nanophotocatalyst, they retain their optical characteristics. Because the spinel 

MoFe2O4 has a small band gap that may be increase the recombination process 

the coupling process will decline via an increase in the charge separation and 

increase the hydroxyl radical life [5], [139].  
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Figure (3-14). The band gap as an direct a) The spinal MoFe2O4 

Nanoparticles (b) Al2O3 Synthesis and (c) Nanocomposites as an indirect in 

presence the SDS-surfactant. 
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Figure (3-15). The bandgap as an direct a) The spinal MoFe2O4 

Nanoparticles (b) Al2O3 Synthesis and (c) Nanocomposites as an indirect in 

presence the CT-surfactant. 

 

3.2.6. The pH Point of zero charge (pHpzc) 

The initial pH of a solution is critical in photocatalytic decolorization because it 

influences the surface charge of the catalyst. The type of pollutant and the pH 

zero point charges (pHpzc) are the two factors that have the biggest effects on the 

optimal pH. The term pH zero point charges (pHpzc), which refers to a situation 

when the surface is neutrally charged, is used to describe the point where the pH 

curve and the titration curve cross. Finding the point of zero of the 

nanocomposites s is essential for figuring out how much photocatalysis is 

occurring at a specific pH. The appropriate pH settings for the 

photodecolorization process are estimated by the pHpzc data. Since H
+
 ions 

prefer to remain on surfaces at low pH rather than in solutions, MoFe2O4 to 

cationicly charged, a property that at low pH will readily adsorb anions. 

However, at high pH, H
+
 ions prefer to be in solution rather than in the material, 

therefore the anionicly charged MoFe2O4 surface will readily adsorb cations 

[140]. 

     Based on table (3-2) and figures (3-16) to (3-17) the pHpzc values  2.9-3.6, 

2.3-5.4, and 4.2-5.9 is obtained of MoFe2O4 in the presence of SDS, 
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Nanocomposites , and Al2O3 respectively. While the pHpzc of MoFe2O4 is equal 

to 1.6-2.8 and Nanocomposites  is 3.2-5.2 in the presence of CT- surfactant. 

This result shows that MoFe2O4 and Nanocomposites  have a low pHpzc, which 

allows them to quickly adsorb the IC dye (an anion dye) [141], [142]. The pHpzc 

value is used to determine an effective pH for photocatalytic decolorization. The 

optimum pH is dependent on the kind of pollution and pHpzc. Specifically for 

anion dyes like indigo carmine, a pH value of 5.3 was found. This demonstrates 

that although anion dyes have a pH value of < 7, which is acidic (+), while any 

cation dyes have a pH value >7, which is alkaline (-) [142]. 

Table (3-2). Estimation of the pHpzc for MoFe2O4 Nanoparticles and their 

nanocomposites  in the presence of CT, SDS-surfactant, using simplified 

"Titration Method" 

No. Samples (pHpzc) Surfactant 

1.  MoFe2O4 1.6 - 2.8 Cetrimide (CT) 

2.  Nanocomposites  3.2 - 5.2 Cetrimide (CT) 

3.  Al2O3 4.2- 5.9 Non- Surfactant 

4.  MoFe2O4 2.9 - 3.6 sodium dodecyl sulfate (SDS) 

5.  Nanocomposites  2.3 - 5.4 sodium dodecyl sulfate (SDS) 

 

   

 

Figure (3-16). The pHPZC of (a) MoFe2O4 (b) Nanocomposites  (c) Al2O3 at 

different pH values in presence the SDS-sufactant. 
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Figure (3-17). The pHPZC of (a) MoFe2O4 (b) Nanocomposites  at different 

pH values in presence the CT-sufactant. 

 

3.3. The photocatalytic reaction of Indigo Carmine IC dye 

    Following the success of the prepared spinel MoFe2O4 Nanoparticles, their 

nanocomposites , and Al2O3 synthesis with the presence of SDS, CT-surfactant 

had been established, these samples were employed to photo-decolorize the 

Indigo Carmine IC dye. In order to do that, and  by taking the amount of weight 

from the Synthesized Nanophotocatalyst, use it at various temperatures to 

determine the thermodynamic functions, alter the dye's initial pH to see how 

that affects the course of the reaction, and calculate the point of zero chargefor 

the surfaces of all samples. All photoreaction studies were conducted with a 

light intensity of (3.195 x10
-7

 Einstein.s
-1

). 

3.3.1. The parameters effect of on photocatalytic reaction of de-colorization 

of Indigo Carmine IC dye 

3.3.1.1 The effect of nanophotocatalyst doses 

This effect is vital studied  to detect if this work is economy or no. This 
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ppm of IC dye solution and found the 0.05g is given low responsible because 

low active site but 0.1 g is demonstrates a best activity.  Moreover, the used 

doses more than 0.1 g of  samples are caused low activity also because the 

screen effect that prevent reach the light to surface of nanophotocatalyst. 

3.3.1.2. The effect of Initial pH 

1. The effect of initial pH of IC dye solution Nanophotocatalyst Studies 

with the presence of the CT-surfactant 

    The effect of initial pH was studied in the following conditions: 25 ppm dye 

concentration in 100mL at 293.15 K, 0.1 g dose of synthesis Al2O3, spinal 

MoFe2O4, and Nanocomposites  in the presence of the CT and the SDS-

surfactant, all at the same light intensity. 

Tables (3-3) to (3-8) and figures (3-17) to (3-20) exhibit the findings 

demonstrate that these photo reactions' efficiency and rate constant rose as the 

dye's starting pH, which was determined to be 5.3, was raised. This occurs as a 

result of the acidic composition of the dye increasing the attraction force 

between the catalyst surface and the dye molecule. Additionally, the amount of 

hydroxyl radicals •OH in the solution rises, which results in increased 

photocatalytic activity throughout the decolorization process [143], [144]. The 

efficacy of decolorization was found to diminish with an increase in pH 

between 7 and 9, which indicated that the indigo carmine IC dye cannot 

decolorize in an alkaline environment. 

    The initial pH of the solution will typically have an impact on the ionization 

state, the acid-base property of the Synthesized Nanophotocatalyst surface, and 

the reactant dye [145], [146]. The lower value of the initial pH of the dye 

solution (pH = 5.3) gives the maximum decolorization of IC. Because the dye 

has an acidic nature. The percentages of photo decolorization (PDE) of IC were 

obtained at 293.15 K for 50 min and equal to 76.47%, 93.27% and 89.91% 

using spinal MoFe2O4, synthesis Al2O3, Nanocomposites  respectively. It can be 
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explained by the solid acid characteristics of MoFe2O4, which are proved by 

both the low point of zero charge(pHPZC) and the presence of strong acid sites.  

The (pHPZC) of MoFe2O4 is 1.6-2.8, beyond this deprotonation occurs and an 

acidic microenvironment is formed on the surface of MoFe2O4 particles [105]. 

Also, the using of CT as a cationic surfactant gives the best photo decolorization 

results which is due to the acidity of the dye so the attractive forces will 

increase on MoFe2O4 Nanoparticles, which was prepared in the presence of the 

CT-surfactant [147]. Moreover, by increasing the pH of the solution, more 

protons are subtracted from the surface of the MoFe2O4 Nanoparticles in the 

presence of the CT, leading to a more acidic medium. It compensates for the 

anionic influence due to an increase in solution pH. In this case, the surface of 

spinal MoFe2O4 Nanoparticles in the presence of the CT plays an acid–base 

buffering role. However, the current study found that when the solution pH is 

elevated more than 5.3, 7 to 9, the photocatalysis activity appears to decline. 

The description of a strongly alkaline situation that results from 
•
OH reduced 

capacity to oxidize could provide evidence for this occurrence [148]. 

 

Table (3-3). The change of the ln(Co/Ct) with irradiation time at pH of 

Indigo Carmine IC dye by MoFe2O4 with presence the CT-surfactant 

 

pH 

Time 

(minutes) 

 

ln(Co/Ct)   MoFe2O4 

 

5.3 

 

7 

 

9 

0 0 0 0 

10 0.0255 0.2682 0.1347 

20 0.2904 0.5164 0.2904 

30 0.6682 0.7901 0.4224 

40 1.0414 1.0179 0.5744 

50 1.4469 1.1956 0.8088 

kapp min 
-1

 0.0265 0.0249 0.0169 
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Table (3-4). The variation of (PDE%) with times Irradiation at different 

initial pH of Indigo Carmine IC dye by MoFe2O4 with the presence the CT-

surfactant. 

 

pH 

Time 

(minutes) 

 

PDE% MoF2O4  

 

5.3 

 

7 

 

9 

0 0 0 0 

10 2.5210 23.5294 12.6050 

20 25.210 30.2520 25.2100 

30 48.739 39.4957 34.4537 

40 64.705 47.0588 43.6974 

50 76.470 63.8655 55.4621 
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Figure (3-18). (a) The change of the ln(Co/Ct) with irradiation time at pH 

solutions of spinal MoFe2O4 ,(b) Relationship between the (kapp)  and the 

different pH solution of spinal MoFe2O4, (c) Effect the different pH solution 

of spinal MoFe2O4 on (PDE%) with the presence of CT-surfactant. 

 

Table (3-5). The change of the ln(Co/Ct) with irradiation time at  

different initial pH of IC dye by Synthesis Al2O3. 

 

 

pH 

Time 

(minutes) 

 

ln(Co/Ct)   Al2O3 

 

5.3 

 

7 

 

9 

0 0 0 0 

10 1.0902 0.3132 0.2358 

20 1.1155 0.5164 0.7360 

30 1.4832 0.5596 0.8873 

40 2.0065 0.8472 1.0655 

50 2.6996 1.2527 1.1956 

kapp min 
-1

 0.0555 0.0231 0.0288 
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Table (3-6). The variation of (PDE%) with times Irradiation at different 

initial pH of IC dye by Synthesis Al2O3. 

 

 

pH 

Time 

(minutes) 

 

PDE% Al2O3 

 

5.3 

 

7 

 

9 

0 0 0 0 

10 66.3865 26.8907 21.0083 

20 67.2268 40.3361 52.1008 

30 77.3109 42.8571 58.8235 

40 86.5546 57.1428 65.5462 

50 93.2773 71.4285 69.7478 
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Figure (3-19). (a) The change of the ln(Co/Ct) with irradiation time at pH 

solutions of Synthesis Al2O3,(b). Relationship between the (k app)  and the 

different pH solution of Synthesis Al2O3, (c) Effect the different pH solution 

of spinal MoFe2O4 on (PDE%). 

 

Table (3-7). The change of the ln(Co/Ct) with irradiation time at pH of IC 

dye by Nanocomposites   with the presence of the CT-surfactant 

 

pH 

Time 

(minutes) 

 

ln(Co/Ct)   Nanocomposites  

 

5.3 

 

7 

 

9 

0 0 0 0 

10 0.4886 0.2682 0.0969 

20 0.6519 0.6359 0.3132 

30 0.9079 0.9724 0.5450 

40 1.3133 1.2826 0.7537 

50 2.2942 1.6010 0.9079 

kapp min 
-1

 0.039 0.032 0.019 
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Table (3-8). The variation of (PDE%) with times Irradiation at different 

initial pH of IC dye by Nanocomposites  with the presence of the CT-

surfactant. 

 

pH 

Time 

(minutes) 

 

PDE% Nanocomposites  

 

5.3 

 

7 

 

9 

0 0 0 0 

10 38.6554 23.5294 9.2436 

20 47.8991 47.0588 26.890 

30 59.6638 62.1848 42.016 

40 73.1092 72.2689 52.941 

50 89.9159 79.8319 59.663 
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Figure (3-20). (a) The change of the ln(Co/Ct) with irradiation time at pH 

solution of Nanocomposites ,(b) Relationship between the (kapp) and the 

different pH solution of Nanocomposites , (c) Effect the different pH 

solution of Nanocomposites  on (PDE%) with the presence of CT-

surfactant. 

2. The effect of initial pH of IC dye solution Nanophotocatalyst Studies 

with the presence of the SDS-surfactant 

      Exhibit the findings demonstrate in tables (3-9) to (3-12) and figures (3-21) 

to (3-22). It was shown that the level reduction of indigo carmine IC dye was 

influenced by the pH of the solution. At a lower initial pH of the dye solution 

(pH = 5.3), the decolorization of IC takes place most thoroughly. because of the 

dye's naturally acidic makeup. At a pH of solution = pHpzc, the Nanocomposites  

Synthesized Nanophotocatalyst contains SDS-surfactant and is cationicly 

charged [140]. Additionally, cationic and anionic ions are drawn to one another 

since IC is an ionic dye that becomes anionicly charged when dissolved in 

water.  When the pH ranges of the IC solution declined, the decolorization 

intensified at pH 5.3 and achieved a considerable decolorized state. Under 

neutral and acidic conditions, the catalyst surface and the IC are both cationicly 

and anionicly charged, creating an attractive force that increases the 

decolorization of the IC dye because they can supply the hydroxyl groups 

needed to produce hydroxyl radicals. However, in an alkaline environment, the 

anionicly charged surfaces of the catalyst and IC reject one another, which 
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reduces photocatalytic activity because they are unable to create hydroxyl 

groups and IC dye decolorization. 

Table (3-9). (a) ln(Co/Ct) varying with times irradiation at various initial 

pH of IC dye by MoFe2O4 with the presence of the SDS-surfactant 

 

pH 

Time 

(minutes) 

 

ln(Co/Ct)   MoFe2O4 

 

5.3 

 

7 

 

9 

0 0 0 0 

10 0.1156 0.2682 0.0517 

20 0.3017 0.3602 0.3602 

30 0.5596 0.5024 0.3724 

40 1.0655 0.6359 0.4886 

50 1.4832 1.0179 0.6682 

Kapp min 
-1

 0.0263 0.0168 0.0148 

 

Table (3-10). The variation of (PDE%) with times Irradiation at different 

initial pH of IC dye by MoFe2O4 with the presence of the SDS-surfactant. 

 

pH 

Time 

(minutes) 

 

PDE% MoF2O4  

 

5.3 

 

7 

 

9 

0 0 0 0 

10 10.9243 23.5294 5.0420 

20 26.0504 30.2520 30.2520 

30 42.8571 39.4957 31.0924 

40 65.5462 47.0588 38.6554 

50 77.3109 63.8655 48.7394 
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Figure (3-21). (a) The ln(Co/Ct) variation with  Irradiation time at various 

pH solutions of spinal MoFe2O4 ,(b) Relationship between the (kapp)  and 

the different pH solution of spinal MoFe2O4, (c) Effect the different pH 

solution of spinal MoFe2O4 on (PDE%) with the presence of SDS-

surfactant. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60

pH 5.3

pH 7

pH 9

T / min 

ln
 (

C
o
/C

t)
   

 

T / min 

a) 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10
Initial pH 

k a
p

p
./

m
in

-1
 

b) 

0

20

40

60

80

1 2 3

5.3 7 9 

77.31 

63.86 

48.73 

PH PDE%



Chapter Three                         Results and Discussion 
 

71 
 

Table (3-11). The change of the ln(Co/Ct) with irradiation time at pH of IC 

dye by Nanocomposites   with the presence of the  SDS-surfactant 

 

pH 

Time 

(minutes) 

 

ln(Co/Ct)   Nanocomposites  

 

5.3 

 

7 

 

9 

0 0 0 0 

10 0.3017 0.1541 0.0969 

20 0.4886 0.2793 0.2358 

30 0.8278 0.4483 0.2358 

40 1.3451 0.5744 0.4096 

50 1.8346 1.1415 0.5744 

kapp min 
-1

 0.0347 0.0175 0.0128 

 

Table (3-12). The variation of (PDE%) with times Irradiation at different 

initial pH of IC dye by Nanocomposites  with the presence of the SDS-

surfactant. 

 

pH 

Time 

(minutes) 

 

PDE% Nanocomposites -SDS 

 

5.3 

 

7 

 

9 

0 0 0 0 

10 26.0504 14.2857 9.2436 

20 38.6554 24.3697 21.008 

30 56.3025 36.1344 21.008 

40 73.9495 43.6974 33.613 

50 84.0336 68.0672 43.697 
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Figure (3-22). (a) The ln(Co/Ct) variation with  Irradiation time at various 

pH solution of Nanocomposites ,(b) Relationship between the (kapp)  and the 

different pH solution of Nanocomposites , (c) Effect the different pH 

solution of Nanocomposites  on (PDE%) with the presence of SDS-

surfactant. 

 

0

0.5

1

1.5

2

0 20 40 60

pH 5.3

pH 7

pH 9

T / min 

ln
 (

C
o
/C

t)
   

 

a) 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 2 4 6 8 10

k a
p

p
./

m
in

-1
 

Initial pH 

b) 

0

20

40

60

80

100

1 2 3

5.3 7 9 

84.03 
68.06 

43.69 

PH PDE%



Chapter Three                         Results and Discussion 
 

73 
 

3.3.1.2. The effect of temperature 

    Temperature's effect on photocatalytic dye decolorization has been studied at 

various temperatures (from 283.15 to 298.15 K). Using an ice-filled water bath, 

temperatures were kept within the prescribed range. 

 

1- Effect of temperature using MoFe2O4, Al2O3 and Nanocomposites   with 

the presence of the CT-surfactant 

    Tables (3-13) to (3-19) and figures (3-23), were observed that the photo 

decolorization values decrease with increasing the temperature from 283.15 K 

to 25 
o
C, In the period from 10 to 50 minutes, due the photoreaction is 

exothermic and this is agreement with results that reported in literature [149]. 

By this behavior, oxygen molecules (O2) will chemisorb on the surface of 

MoFe2O4 and will capture free electrons from the MoFe2O4 conduction band to 

ionize into oxygen ions such as O
2−, 

O
2−

, and O
−
  depending on the temperature. 

In contrast to Al2O3, the decrease in electron concentration on the surface of 

MoFe2O4 results in the formation of an electron depletion layer on the surface 

[150]. 

Table (3-13) Activation energies and thermodynamic functions for 

decoloration IC dye Calculated the spinal MoFe2O4 in the presence of CT-

surfactant, Al2O3 synthesis, and Nanocomposites. 

Parameters 
Ea

*
 

(kJ.mol
-1

) 

∆H
*
 

(kJ.mol
-1

) 

∆S
*
  

(Jk
-1

.mol
-1

) 

∆G
*
  

(kJ.mol
-1

) 

MoFe2O4 -CT  -38.96772 -41.383 -6.0309 -39.628 

Al2O3 -11.3395 -13.755 -4.5935 -12 

Nanocomposites   -26.3928 -26.125 -5.3931 -24.37 
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    According to the activation energy values, Al2O3 has a high activation energy 

because of its large bandgap (the activation energy exceeds the energy required 

to move an electron from the valance band to the conductive band). Spinel 

MoFe2O4 is mixed with it. While the decrease in activation energy is noticeable 

[151]. The spinel MoFe2O4 surface activation energies before and after 

incorporation of Al2O3 were found to be anionic values.  It might mean that the 

photoreaction will take place in several steps, One of which may be exothermic 

and then convert at extremely low cationic activation energy through a number 

of chain reactions [152]. As a result, a quick binding step may occur on the Fe
3+ 

location in the crystal lattice, whereas a slower step (having an extremely low 

activation energy value) may occur on the Mo
6+ 

 a position. The spinel structure 

is studied in this behavior, which involves Fe
3+ 

in tetrahedral hybridization and 

Mo
6+ 

in octahedral hybridization. This condition results in anionic enthalpy 

values when spinel and related compounds are used [153].  

According to the anionic value of entropy, the transition state produced by the 

breakdown of this dye has less structural freedom than the reactant (dye 

molecule). According to discovered thermodynamic theories, photoreaction is 

exothermic and spontaneous. The entropy (ΔS
*
)  is also anionic due to 

depressing in randomness at the solid-solution interface via the (IC) 

decolorization, and indicates that some structural exchange occurs among the 

active sites of the dye and ions [154]. 
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Table (3-14). The change of the ln(Co/Ct) with irradiation time at 

temperatures of spinal MoFe2O4 with the presence of the CT-surfactant via 

Synthesized Nanophotocatalyst de-colorization of IC dye. 

 

T/k 

Time 

(minutes) 

 

ln(Co/Ct)   MoFe2O4 

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 0.5760 0.3209 0.3119 0.1835 

20 0.9699 0.5195 0.5531 0.3718 

30 1.5040 0.7129 0.8257 0.5705 

40 1.9859 0.9529 1.0986 0.7246 

50 2.3913 1.2237 1.2017 0.9705 

kapp min 
-1

 0.049 0.0245 0.0262 0.0189 

 

Table (3-15). The variation of (PDE%) with times Irradiation at different 

temperatures of spinal MoFe2O4 with the presence of the CT-surfactant via 

Synthesized Nanophotocatalyst de-colorization of IC dye. 

 

T /k 

Time 

(minutes) 

 

PDE% MoF2O4  

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 43.7908 27.4509 26.7973 16.7701 

20 62.0915 40.5228 42.4836 31.0559 

30 77.7777 50.9803 56.2091 43.4782 

40 86.2745 61.4379 66.6666 51.5527 

50 90.1960 70.5882 69.9346 62.1118 
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Figure (3-23). (a) The ln(Co/Ct) variation with  Irradiation time at various 

temperatures of spinal MoFe2O4 (b) Effect of the different temperature of 

spinal MoFe2O4 on (PDE%)  with the presence of CT-surfactant. 
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Figure (3-24). (a) Eyring–Polanyi plot ln (kapp/T) VS.1000/T (b) Arrhenius 

plot by spinal MoFe2O4 via Synthesized Nanophotocatalyst de-colorization 

of IC dye. 

 

   Table (3-16). The ln(Co/Ct) variation with times Irradiation at various 

temperatures of Synthesis Al2O3 via Synthesized Nanophotocatalyst de-

colorization of IC dye. 

 

 

t /k 

Time 

(minutes) 

 

ln(Co/Ct)  Al2O3 

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 0.5195 0.6359 0.5645 0.5531 

20 0.9195 0.9873 0.8873 0.7263 

30 1.5040 1.5964 1.3928 1.0986 

40 1.9393 1.9859 1.9859 1.5339 

50 2.2578 2.6325 2.1972 1.9393 

kapp min 
-1

 0.0471 0.0518 0.0463 0.039 
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Table (3-17). The variation of (PDE%) with times Irradiation at different 

temperatures of Synthesis Al2O3 via Synthesized Nanophotocatalyst de-

colorization of IC dye. 

 

 

T /k 

Time 

(minutes) 

 

PDE% Al2O3  

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 40.5228 47.0588 43.1372 42.4836 

20 60.1307 62.7450 58.8235 51.6339 

30 79.7385 79.7385 75.1633 66.6666 

40 85.6209 86.2745 86.2745 78.4313 

50 89.5424 92.8104 88.8888 85.6209 
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Figure (3-25). (a) The ln(Co/Ct) variation with  Irradiation time at various 

temperatures of Synthesis Al2O3 (b) Effect of the different temperature of 

Synthesis Al2O3 on (PDE%). 

 

  

 

Figure (3-26). (a) Eyring–Polanyi plot ln (kapp/T) VS.1000/T (b) Arrhenius 

plot by Synthesis Al2O3 via Synthesized Nanophotocatalyst de-colorization 

of IC dye. 
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Table (3-18). The change of the ln(Co/Ct) with irradiation time at 

temperatures of Nanocomposites  with the presence of CT-surfactant via 

Synthesized Nanophotocatalyst de-colorization of IC dye. 

 

T/k 

Time 

(minutes) 

 

ln(Co/Ct)  Nanocomposites 

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 0.6115 0.2768 0.8109 0.2660 

20 1.0231 0.5418 1.0050 0.3661 

30 1.5040 0.8407 1.1592 0.5255 

40 1.9393 1.0986 1.2237 0.7303 

50 2.4654 1.3928 1.3168 1.0487 

kapp min 
-1

 0.0496 0.0265 0.0299 0.02 

 

Table (3-19). The variation of (PDE%) with times Irradiation at different 

temperatures of Nanocomposites  with the presence of the CT-surfactant 

via Synthesized Nanophotocatalyst de-colorization of IC dye. 

 

 

T /k 

Time 

(minutes) 

 

PDE% Nanocomposites 

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 45.7516 24.1830 55.5555 23.3576 

20 64.0522 41.8300 63.3986 30.6569 

30 78.4313 56.8627 68.6274 40.8759 

40 85.6209 66.6666 70.5882 51.8248 

50 91.5032 75.1633 73.2026 64.9635 
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Figure (3-27). (a) The ln(Co/Ct) variation with  Irradiation time at various 

temperatures of Nanocomposites  (b) Effect of the different temperature of 

Nanocomposites on (PDE%)  with the presence of CT-surfactant. 
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Figure (3-28). (a) Eyring–Polanyi plot ln (kapp/T) VS.1000/T (b) Arrhenius 

plot by Nanocomposites  with the presence of SDS-surfactant via 

Synthesized Nanophotocatalyst de-colorization of IC dye. 

 

2- Effect of temperature using MoFe2O4, Al2O3 and Nanocomposites   with 

the presence of the SDS-surfactant 

 

  Table (3-20) Calculated the spinal MoFe2O4 in the presence of SDS-

surfactant, Al2O3 synthesis, and Nanocomposites , activation energies and 

thermodynamic functions for decolorizing IC dye. 

Parameters 
Ea

* 

(kJ.mol
-1

) 

∆H
* 

(kJ.mol
-1

) 

∆S
* 

(Jk
-1

.mol
-1

) 

∆G
* 

(kJ.mol
-1

) 

MoFe2O4 -SDS  174.460 172.049 4.714 173.847 

Al2O3 -11.339 -13.755 -4.593 -12 

Nanocomposites   -36.520 -60.199 -6.972 -58.455 

 

     Based on the results reported in Tables (3-20) to (3-24) and figures (3-29) to 

(3-32), by using MoFe2O4 Nanoparticles and their nanocomposites  with the 

presence of the SDS-surfactant, found that the decrease in the temperature 

reduced the photocatalytic decolorization of Indigo Carmine IC dye. The 
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removal rate increased as the temperature climbed to 298.15 K because the 

reaction is endothermic, indicating a positive value of (∆H
*
). Furthermore, the 

change in enthalpies (∆H
*
) and Gibbs free energy (∆G

*
) are both positive, 

indicating that the reaction happens nonspontaneously when the solvated 

intermediate between dye and hydroxide radical 
•
OH exists [155]. However, 

after mixing with alumina, the activation energies of molybdenum ferrite in the 

presence of the SDS-surfactant altered to become (-36.520 kJ mol
-1

) for 

composite, where the reaction was spontaneous after incorporation of Al2O3 

with MoFe2O4, These results are consistent with those published in references. 

[156], [157]. Furthermore, the low activation energy values ensure that this 

photoreaction is quick, and the photoreaction employing Nanocomposites  is 

faster than the other prepared Synthesized Nanophotocatalyst with pseudo-first 

order kinetics. 

Table (3-21). The change of the ln(Co/Ct) with irradiation time at 

temperatures of spinal MoFe2O4 with the presence of the SDS-surfactant 

via Synthesized Nanophotocatalyst de-colorization of IC dye.  

 

 

T/k 

Time 

(minutes) 

 

ln(Co/Ct)   MoFe2O4  

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 0.51957 0.2855 0.5877 0.3101 

20 0.79633 0.3957 0.6609 0.3610 

30 0.91956 0.5996 0.8560 0.6751 

40 1.06014 0.7399 1.1386 0.9470 

50 1.26923 1.3168 1.3928 2.6210 

kapp min 
-1

 0.0281 0.0223 0.0285 1.7146 
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Table (3-22). The variation of (PDE%) with times Irradiation at different 

temperatures of spinal MoFe2O4 with the presence of the SDS-surfactant 

via photocatalytic de-colorization of IC dye. 

 

T /k 

Time 

(minutes) 

 

PDE% MoF2O4  

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 40.5228 24.8365 44.4444 26.6666 

20 54.9019 32.6797 48.3660 30.3030 

30 60.1307 45.0980 57.5163 49.0909 

40 65.3594 52.2875 67.9738 61.2121 

50 71.8954 73.2026 75.1633 92.7272 

 

 

 

Figure (3-29). (a) The ln(Co/Ct) variation with  Irradiation time at various 

temperatures of spinal MoFe2O4 (b) Effect of the different temperature of 

spinal MoFe2O4 on (PDE%)  with the  presence of SDS-surfactant. 
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Figure (3-30). (a) Eyring–Polanyi plot ln (kapp/T) VS.1000/T (b) Arrhenius 

plot by spinal MoFe2O4 via Synthesized Nanophotocatalyst de-colorization 

of IC dye. 

 

Table (3-23). The change of the ln(Co/Ct) with irradiation time at 

temperatures Nanocomposites  with the presence of the SDS-surfactant via 

photocatalytic de-colorization of IC dye. 

 

 

T /k 

Time 

(minutes) 

 

ln(Co/Ct)  Nanocomposites 

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 0.6115 0.2346 0.4454 0.1476 

20 1.2017 0.3483 0.7263 0.2346 

30 1.6982 0.5195 0.9529 0.3764 

40 2.2578 0.8407 1.2462 0.7263 

50 2.7278 1.2692 1.5964 1.0791 

kapp min 
-1

 0.056 0.0226 0.0323 0.0212 
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Table (3-24). The variation of (PDE%) with times Irradiation at different 

temperatures of Nanocomposites  in the presence of SDS-surfactant by 

photocatalytic de-colorization of IC dye. 

 

T /k 

Time 

(minutes) 

 

PDE% Nanocomposites 

 

283.15 

 

288.15 

 

293.15 

 

298.15 

0 0 0 0 0 

10 45.7516 20.9150 35.9477 13.7254 

20 69.9346 29.4117 51.6339 20.9150 
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Figure (3-31). (a) The ln(Co/Ct) variation with  Irradiation time at various 

temperatures of Nanocomposites  (b) Effect of the different temperature of 

Nanocomposites  on (PDE%)  with the presence of SDS-surfactant. 

 

  

 

Figure (3-32). (a) Eyring–Polanyi Equation plot ln (kapp/T) VS.1000/T (b) 

Arrhenius Equation plot by Nanocomposites  with the presence of SDS-

surfactant via Synthesized Nanophotocatalyst de-colorization of IC dye. 
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recombination processes that trigger reversible reactions [158], [159]. Where, 

the quantum yield of MoFe2O4 Nanoparticles is low compared to its 

combination with Al2O3, as the efficiency ratio of the nanocomposites  

improved, due to the separation of charges and the increase in surface acidity, 

which leads to the formation of 
.
OH for 

-
OH adsorption.  

Table (3-25). Values quantum yields of all Synthesized Nanophotocatalysts 

for decolorization IC dye. 

Samples 

Synthesized 

Nanophotocatalysts 

Type surfactant Quantum yield 

Φ 

MoFe2O4 SDS 0.644  

Al2O Non.surf.. 1.35  

Nanocomposites  SDS 0.669 

MoFe2O4 CT 0.527 

Nanocomposites  CT 0.943 

 

 

Figure (3-33). The relation of the quantum yield of IC dye photo-

decolorization with samples studied in the presence of SDS-surfactant at 

pH 5.3, temperature 293.15 K. 
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 Figure (3-34). The relation of the quantum yield of IC dye photo-

decolorization with samples studied in the presence of CT-surfactant at pH 

5.3, temperature 293.15 K. 

 

3.5. Suggested Decoloriztion Mechanism of IC Dye 
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these carboxylic acids. Based on these observations, they applied the same 

degrading procedure as in (Figure (3-35) [163]–[165]. 

 

 

 

Figure (3-35). Schematic diagram of the photocatalytic system, hydroxyl 

radical-mediated to decolorization and degradation of IC dye. 
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3.6. Conclusion 

    This study focused on nanoparticle catalysts that were prepared with 

Hydrothermal technology, the nanocomposites were produced from using 1:2 

w/w ratio from MoFe2O4 to Alumina using the Ultrasonic method. They were 

then tested for dye decolorization effectiveness as a Synthesized 

Nanophotocatalyst using Indigo Carmine IC dye solution. Based on this 

research, the following results were obtained:  

1. The spinel MoFe2O4 in the presence of the SDS-surfactant and normal 

spinel MoFe2O4 in the presence of the CT-surfactant as nanoparticle 

different shapes and sizes by hydrothermal method were successfully 

Prepared. 

2. Using surfactants (SDS and CT) as a template in hydrothermal technique, 

and a stabilizer agent at the same time. 

3. The synthesis of Nanocomposites  was successfully produced from 

incorporated of MoFe2O4 with Al2O3, in aqueous solutions, an ultrasonic 

technique is used. 

4. The FT-IR spectra occured, the tetrahedral site position (lowest frequency 

band v2), and octahedral site position (highest frequency band v1) were 

found for prepared spinel and their composites. The spinel MoFe2O4 with 

SDS-surfactant, is found to be normal, while, the spinel MoFe2O4 with 

CT-surfactant, is found to be inverse. 

5. The mean crystallite sizes of MoFe2O4 with SDS and CT-surfactant, were 

calculated depending on the XRD data.  The mean crystallite sizes and 

crystallite sizes of both MoFe2O4 with SDS and CT-surfactant increased 

after being incorporated with Al2O3, due to high aggregation. 

6. SEM images revealed that the morphologies of MoFe2O4 with SDS-

surfactant as Nano-grain, while in the presence of CT-surfactant is have 

Nano-plates shape. Additionally, this suggests that the spherical forms of 



Chapter Three                         Results and Discussion 
 

92 
 

Al2O3 and its nanocomposites . due to the large amount of Al2O3 binding 

and dispersive with MoFe2O4. 

7. The Tauc result showed that the band gap of MoFe2O4 Nanoparticles in 

the presence of SDS, and CT-surfactants is direct, while indirect after 

incorporation with synthesis Al2O3 as a nanocomposites  and to be low 

band gaps. 

8. Coupling of alumina with molybdenum ferrite the bandgap decrease and 

thus excited the electron–hole pair with visible light. 

9. Pairing alumina with  molybdenum ferrite decreased the recombination 

rate of the electron–hole pair thereby enhancing photocatalytic efficiency. 

Also, the optical properties of the catalyst were increased. 

10.  The photoactivity of MoFe2O4 with SDS, CT-surfactant, and their 

composites was done with 0.025 g in 100mL of Indigo Carmine IC Dye 

solution at 293.15 K at pH = 5.3. The photoreaction obeyed pseudo-first 

order exothermic reaction of kinetic with low activation energy of 

MoFe2O4 with CT-surfactant with all their composites, except for 

MoFe2O4 with SDS-surfactant is endothermic reaction. 

11.  The point of zero charge(pHpzc) point produced the most activity was  

achieved. Where the activity of the catalyst changed when the pH 

changed. 

12.  The quantum yields are low values of IC dye decolorization in the 

following sequence:Φ synthesis Al2O3> Φ Nanocomposites > Φ MoFe2O4 

Nanoparticles in the presence of CT or SDS-surfactant.  

 

 

 

 

 

 



Chapter Three                         Results and Discussion 
 

93 
 

3.6. Future Works 

1. Synthesis of MoFe2O4 replacing D.W. solvent as the solvent for the 

precursor materials (Na2MoO4.2H2O) and (Fe(NO3)3.9H2O), in the 

autoclaving step, using a Hydrothermal method, to modify the obtained 

MoFe2O4 and Nanocomposites  nanocomposites 's shape and optical 

characteristics. 

2.  Calcination process for prepared MoFe2O4 Nanoparticles and 

Nanocomposites  to obtain a new crystal size. 

3. Altering the temperature, solvent, phase and pH to increases the quantum 

yield Φ. 

4. Improved the properties of MoFe2O4 by loading different types of certain 

transition metals such as TiO2 and SiO2 on the surface of MoFe2O4, then 

studied the nanoparticle's characterizations and compared the photo-

decolorization efficiency. 

5. Application of the different conditions such as different such as varied 

catalyst dosages and the Fenton reaction, to determine the optimum 

conditions using the MoFe2O4 Nanoparticles. 

6. The use of these catalysts as a gas sensor. These catalysts can be used as 

an anode in solar cells. 
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 الخلاصة

ٌٕضخ رصٍُع جغًٍبد الإعجٍُم انًٕنٍجذٌُٕو  الجزء الأولٌزكٌٕ ْزا انعًم يٍ ثلاثخ أجضاء سئٍغٍخ: 

( ثبنطشٌقخ انذشاسٌخ انًبئٍخ ثبعزخذاو َٕعٍٍ يٍ كجشٌزبد MoFe2O4أكبعٍذ انذذٌذٌك انُبٌَٕخ ) –

(. كقبنت CT( راد انفبعهٍخ انغطذٍخ الإٍٍََٔخ ٔانكبرٍٍَٕخ نهغٍزشايٍذ )SDSدٔدٌغٍم انصٕدٌٕو )

( MoFe2O4/Al2O3الأنٕيٍُب )-أكبعٍذ انذذٌذٌك-انًٕنٍجذٌُٕؤيثجذ. رى رذضٍش انًشكجبد انُبٌَٕخ 

ثزقٍُخ انًٕجبد فٕق انصٕرٍخ, ًْٔ رقٍُخ  Al2O3انًخهقّ يع  MoFe2O4يٍ خلال ديج الإعجٍُم 

 ثغٍطخ ٔعشٌعخ ٔيفٍذح ثٍئٍبً.

, ٔكًشكجبد َبٌَٕخ, Al2O3  انًخهقخانًذضش, ٔ MoFe2O4 رٕصٍف  ٌتضون الجزء الثانً

يٕاقع سثبعً انغطٕح  FT-IR أظٓش أطٍبف .FT-IR    ٔXRD ٔ SEM-EDX  رقٍُبدثبعزخذاو 

 أٌ الإعجٍُم XRD ٔثًبًَ انغطٕح نهًٕنٍجذٌُٕو ٔانذذٌذ نجًٍع انًذفضاد انًذضشح. أكذ رذهٍم

MoFe2O4 ٔانًخهقخ Al2O3  ٔيشكجبرّ انُبٌَٕخ قذ رى رذضٍشْب ثُجبح عهى أعبط أدجبو َبٌَٕخ رجهغ

 SDSَبَٕيزش فً ٔجٕد انخبفض نهزٕرش انغطذً الإًٍََٔ 47.84َبَٕيزش ٔ 43.44َٔبَٕيزش  23.83

 .انكبرٍٍَٕخ. , عهى انزٕانىانخبفض نهزٕرش انغطذً َبَٕيزش فً ٔجٕد  47.41َبَٕيزش ٔ 23.97ٔ

انًذضش فً ٔجٕد يبدح خبفضخ نهزٕرش  MoFe2O4إنى أٌ شكم الإعجٍُم  SEMأشبس رذهٍم    

عجبسح عٍ خلاٌب ديبغٍخ  Al2O3 ٔMoFe2O4جذ أَّ ٌشجّ انكبفٍبس, ٔأشكبل ٔ SDSانغطذً إٍٍََٔخ 

كشٌٔخ ٔدجٍجبد يزشبثٓخ, فً دٍٍ أٌ الأشكبل عجبسح عٍ صفبئخ َبٌَٕخ. ٔانجغًٍبد انُبٌَٕخ انًشبثٓخ 

 Fe, Mo, Al, Oنهفشبس فً ٔجٕد انخبفض نهزٕرش انغطذً انًقطعً. كًب رى إظٓبس ٔجٕد انعُبصش 

 Tauc( انًذذدح يٍ يعبدنخ Bg. رٕضخ فجٕاد انُطبق )EDXفً انعٍُبد انًُزجخ ثٕاعطخ أطٍبف 

 انًخهقخثٓب فجٕح َطبق يجبششح, نكٍ  MoFe2O4أٌ جًٍع انًذفضاد عجبسح عٍ يذفضاد ضٕئٍخ ٔأٌ 

Al2O3  4.05فٕنذ ٔ 4.44فٕنذ ٔ 2.78ٔانًشكجبد انُبٌَٕخ نٓب فجٕاد َطبق غٍش يجبششح ثقٍى 

انُبٌَٕخ فً ٔجٕد انخبفض  MoFe2O4عهى انزٕانً. , ٔرى انعثٕس عهى جغًٍبد الإعجٍُم  فٕنذ

 .فٕنذ 4.05ٔ  2.78نهزٕرش انغطذً انكبرًٍَٕ ٔيشكجبرٓب انُبٌَٕخ يع الأنٕيٍُب ثـ 

نجًٍع انعٍُبد انزً رى انعثٕس عهٍٓب  (pHpzc) رى رذذٌذ انشقى انٍٓذسٔجًٍُ نُقطخ انشذٍ انصفشي

أقم يٍ  انًذغٕة انكبرًٍَٕ, ٔٔجذ أٌ انفبعم ثبنغطخ SDS  انًذفضاد انضٕئٍخ فً ٔجٕدنجًٍع 

ثبعزخذاو انًذفضاد  IC لإصانخ رهٌٍٕ صجغ (Φ) انشقى انٍٓذسٔجًٍُ الأٔنً. إٌ انعٕائذ انكًٕيٍخ

 .انضٕئٍخ انًذسٔعخ يُخفضخ



 

 

ٔيشكجبرٓب انُبٌَٕخ عهى إصانخ  MoFe2O4 ٔAl2O3 عهى قذسح ٔرقٍٍى فعبنٍخ ٌركز الجزء الثالث      

  انقشيضي انٍُهً. رى رٕضٍخ رأثٍش انعٕايم انًخزهفخ عهى إصانخ انهٌٕ انضٕئً نصجغخ IC رهٌٍٕ صجغخ

 IC انقشيضي انٍُهً ثبعزخذاو انًذفضاد انضٕئٍخ فً ٔجٕد SDS  , CT انغطذً. دسجخ انذشاسح

 .ٔدسجخ انذًٕضخ الأٔنٍخ ًْب اثُبٌ يٍ ْزِ انًعهًبد

ٔيعبدنخ  Eyring-Polanyiرى دغبة انًعهًبد انذٌُبيٍكٍخ انذشاسٌخ ثبعزخذاو يعبدنخ     

Arrhenius  ٔيعبدنخGibbs  يًب ٌثجذ أٌ انزفبعم انضٕئً ْزا ْٕ رفبعم طبسد نهذشاسح ٔغٍش

انخبفض  -CTٔانًشكجبد انُبٌَٕخ فً ٔجٕد  MoFe2O4 ٔAl2O3عفٕي ٔأقم عشٕائٍخ ثبعزخذاو 

انخبفض نهزٕرش انغطذً فقظ, ْٕ رفبعم -SDSفً ٔجٕد  MoFe2O4ًٍُب ثبعزخذاو ثنهزٕرش انغطذً 

 يبص نهذشاسح ٔغٍش عفٕي ٔأقم عشٕائٍخ.
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