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Abstract  

The rise of climate temperatures has led to increase fires in buildings, 

farms, and wheat fields. Fire detection-based smoke sensor is unsuitable for 

open and large buildings, and outdoor areas. This thesis proposes a fire 

detection and localization system based on a suitable video camera for indoor 

and outdoor areas that can withstand environmental changes such as 

illuminance and color correlation to fire flames and smoke. 

The proposed fire detection system combines color and motion 

detection approaches for accurate results. It uses RGB video input, which is 

decomposed using wavelet transform to reduce data processing while 

preserving fire features. The decomposed frames are then processing for color 

and motion detection to identify fire characteristics. Morphological post-

processing removes unwanted pixels, and the detected fire area is calculated 

and bounded if it meets the threshold conditions. The system employs three 

threshold types, including static multi-threshold, non-adaptive threshold for 

different color spaces, and adaptive threshold using optimization algorithms 

based on objective functions like Otsu and Kapur. 

The fire localization is achieved through the inverse camera parameters 

calibration and position of fire in pixels. The approach uses the projective 

transformation matrix that is mapped between frame pixels and real-world 

positions.  

MATLAB R2021b used to implement the proposed fire detection 

system. The experimental results of the proposed system are achieved offline 

and online. The offline tests utilize the datasets, including KMU, VisiFire, and 

FireSense, as well as our recorded videos. The downloaded datasets include 

92 fire videos, both smoke- and flame-based. The offline test achieved about 
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92.1% average rate of the correct fire detection for the static multi-threshold 

smoke detection system. In contrast, the flame detection system-based non-

adaptive threshold achieved about 94%. Moreover, the adaptive thresholds 

flame detection system achieved approximately 96%.  

Online fire detection is tested in indoor and outdoor places. The indoor 

average accuracy was 90% for the static multi-threshold smoke detection 

system and 97.5% for the adaptive threshold flame detection system. The 

average outdoor fire detection accuracy for the static multi-threshold smoke 

detection system, non-adaptive, and adaptive thresholds flame detection 

systems was 94.1%, 94.4%, and 92.4%, respectively. The error of fire 

localization is achieved at less than 0.42 meters. 

The proposed system can be successfully used for fire detection in real-

time with high accuracy, whether indoors or outdoors, and for different 

environmental conditions. 
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Chapter One:  Introduction  

 

1.1 Overview  

Climate change and temperature increases have significantly impacted 

the environment in recent years. These increasing temperatures directly effect 

to occur fires. The impact of fires on local and global ecosystems is severe, 

resulting in damage to infrastructure, injuries, and the loss of human, plant, 

and animal lives. 

The Iraqi government statistics of fire incidents in the different regions 

of Iraq reached more than 32,477 fire incidents in 2022 (Iraqi Ministry of 

Interior 2023). These fires happen indoors, such as in restaurants, hotels,  

government offices, and houses, and outdoors such as in farms, forests, and 

wheat fields. Therefore, many economical and life losses as the result of these 

fires. Early fire detection and localization are very important issues and are 

requested for indoor and outdoor areas. Efforts have been exerted to curb the 

negative effects of fires by identifying them early on and creating maps of 

fire-prone areas (Pradhan, Suliman, and Awang 2007). 

1.2 The Methods of Fire Detection  

Traditional fire protection for outdoor areas uses mechanical equipment 

and tower monitoring by humans. While for indoor areas such as houses, 

buildings, and offices, the most common fire detection method is temperature 

sampling, particle sampling, and air transparency testing. The fire alarm is not 

activated unless the particle of smoke reaches the sensor roof. The most 

common fire detection  are listed below. 
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1.2.1 Fire Watch Tower 

In watch towers, it is crucial for people to constantly monitor the 

surroundings and promptly report any fires that occur. However, human 

observation can be affected by factors such as operator fatigue, time of day, 

season, and location, which may compromise the accuracy of detecting fires. 

1.2.2 Wireless Sensor Networks 

The conventional sensors that detect heat, flame, smoke, and gas 

usually take time to activate particles when reaching the sensor point. 

Furthermore, these sensors have relatively narrow ranges, and many must 

cover large areas. As well as, charging the battery is a great challenge. Also, 

it is required high cost.  

1.2.3 Satellite and Aerial 

Satellite-based monitoring systems can monitor large areas, but satellite 

images are low resolution. Since fire is only discovered after it has spread 

considerably, real-time detection is impossible. These systems are also highly 

pricey. The extended scanning time and limited resolution of satellites would 

severely reduce the accuracy of satellite-based forest fire monitoring due to 

weather conditions (such as clouds). 

1.2.4 Video-based Smoke and Flame Detection  

Video-based smoke and flame detection is an advanced technology that 

uses video cameras and intelligent algorithms to identify and locate smoke 

and flames in real-time. By analyzing the visual characteristics of the video 

feed, this technology offers a more reliable and comprehensive approach to 

fire detection, especially in large and open spaces. The combination of color 

and motion detection algorithms enables accurate and efficient identification 

of potential fire incidents. Video-based smoke and flame detection systems 



Chapter One 

3 

 

provide improved coverage and early detection, leading to prompt response 

and minimizing fire-related risks. 

1.3 Literature Review 

In recent years, several works have been proposed in the field of fire 

detection based on the vision system. As with the current relatively new 

subject of vision research, it is progressing and producing promising results. 

This section provides an overview of the state-of-the-art technology for 

fire detection methods and fire localization algorithms. The review of fire 

detection is divided into three sub-sections based on a group of methods: 

1.3.1 Color Detection of Fire 

Color detection was the first technique used for video-based fire 

detection and is still used in most detection methods. Most color-based fire 

detection methods in video-based fire detection use RGB color space and 

sometimes combine (Hue-Saturation-Intensity/Hue-Saturation-Value) (J. 

Chen, He, and Wang 2010; T. C. Chen, Wu, and Chiou 2004; Günay et al. 

2010; Yang et al. 2010). RGB format is commonly used in visible camera 

sensors as it displays the spectrum content corresponding to this color space, 

which is the primary reason for its usage in detecting video. 

Phillips et al. (Phillips, Shah, and Da Vitoria Lobo 2002) used RGB 

color space and temporal variation. The Gaussian smooth color histogram 

detects the fire color pixel, then uses temporal changes in the pixel to 

determine which of these pixels is actually the fire color. The flame detection 

rate is 93.5%. 

Liu et al. (Liu and Ahuja 2004) interduced Gaussian distributions in 

HSV color spaces to model fire colors and Fast Fourier transformations to 

describe fire contours for fire detection. The detection rate is 0.999. 
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Toreyin et al. (Toreyin, Dedeoglu, and Cetin 2006) utilized a hidden 

Markov model and wavelets to examine a recurring pattern in smoke 

boundaries. The behavior of the chrominance components U and V in the YUV 

color space was investigated, revealing a tendency for their decrease in a 

grayish scene with smoke. To model a smoke flicker, they studied the high-

frequency behavior of the smoke boundaries. The delay to detect flame in 

frames is 97 frame with distance 25m. 

Çelik et al. (Çelik, Özkaramanl, and Demirel 2007) studied different 

video sequences and images and presented fuzzy color models using statistical 

analysis YCbCr/RGB. Combined with spectral analysis and fire flicker, it is a 

property of detecting the existence of flame or smoke in the scene. The model 

enables a good distinction between fire and objects similar to fire. The 

detection rate is 99%. 

Qi and Ebert (Qi and Ebert 2009) presented a cumulative fire matrix 

defined by combining RGB color and HSV saturation. Starting with the 

assumption that the green component of fire pixels changes widely compared 

to the red and blue components, this method evaluates the variation in spatial 

color in the pixel value to distinguish between non-fire-moving objects and 

uncontrolled fires. The system is able to correctly detect 60 kinds of fire 

videos. Table 1.1 shows a brief comparison between the above-explained 

methods. 

Table 1.1 State-of-the-art of fire detection methods based on color detection. 

References  
Flame 

detection 

Smoke 

detection 

Color 

detection 
Remarks Results 

(Phillips, Shah, 

and Da Vitoria 

Lobo 2002) 

✓  RGB 
Used temporal 

variation 

The flame 

detection rate is 

93.5% 
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(Liu and Ahuja 

2004) 
✓  HSV Used FFT 

The detection 

rate is 99.9% 

(Toreyin, 

Dedeoglu, and 

Cetin 2006) 

 ✓ YUV 

Used a hidden 

Markov model and 

wavelets 

The delay to 

detect flame in 

frames is 97 

frame with 

distance 25m. 

(Çelik, 

Özkaramanl, 

and Demirel 

2007) 

✓ ✓ 
YCbCr 

RGB 
Fuzzy color models 

The detection 

rate is 99%. 

(Qi and Ebert 

2009) 
✓  RGB/HSV 

cumulative fire 

color  matrix 

The system is 

able to correctly 

detect 60 kinds 

of fire videos 

 

1.3.2 Motion Detection of Fire 

The detection of moving objects is also widely used in video-based fire 

detection since flame and smoke are moving objects. Additional analysis of 

the video-moving regions is necessary to differentiate between movement 

caused by fire and that caused by ordinary moving objects.  The well-known 

moving object detection algorithm is the Background Subtraction (Günay et 

al. 2010) (J. Chen, He, and Wang 2010) method, optical flow analysis 

(Kolesov et al. 2010) and temporal differencing (Lee and Han 2007).  These 

can be used as a part of video-based fire detection systems. 

Töreyin et al.(Töreyin et al. 2006) used a color model to identify 

possible fire locations, then use wavelet analysis in the spatial and temporal 

dimensions to assess high-frequency activity in the area. Moving pixels and 

regions are determined in the video by using a hybrid background estimation 

method. The detection rate is 100%. 
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Ko et al. (Ko, Cheong, and Nam 2009) suggested a fire detection 

approach based on Support Vector Machines (SVM). Since flames are often 

brighter and contrast more than nearby areas, a luminance map excludes non-

fire pixels. In addition, a two-class SVM classifier with a radial basis function 

kernel and a temporal fire model is employed to finalize the fire pixels. 

Furthermore, it used the color information and temporal variation of the pixel. 

To detect a moving region, a modified hybrid background estimation method 

is used. The detection rate is 86.5%. 

Han and Lee (D. Han and Lee 2009) presented a method for analyzing 

color and movement information in tunnels to detect flames and smoke. 

Smoke detection is based on extracting motion areas using background 

images, image motion history, and invariant moments. In contrast, flame 

detection is based on color information, the intensity of images, erosion, and 

dilation to remove the noise. The total detection performance of flame is 

96.3%, while that of smoke is 91.2%. 

Chen et al. (J. Chen, He, and Wang 2010) interduced a method for 

detecting flames based on multi-feature fusion. Therefore, a flame-flicker 

detection algorithm using the temporal and spatial properties of the flames, 

such as the normal movement of flame by extracting foreground objects that 

move with improved Gaussian mixture modeling methods and color clues, is 

used to detect fire in color video sequences. The algorithm is able to detect 

the fire in a very short time-less than 2 s from the start of the fire. 

Truong and Kim (Truong and Kim 2012) interduced a four-stage 

approach for fire flame detection, which includes: utilizing an adaptive 

mixture of Gaussian models to detect moving regions,  implementing the 

Fuzzy C-Means (FCM) algorithm to identify candidate fire regions based on 

their color compared to other moving regions,  extracting special parameters 
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from the tempo-spatial characteristics of the fire regions, and employing a 

Supper Vector Machine (SVM) to differentiate between fire and non-fire. The 

average true positives is 94.78%. 

Shidik et al. (Shidik et al. 2013) combined a rule-based multicolor 

extraction (including RGB, HSV, and YCbCr) with background extraction to 

generate a fire segmentation area and utilize morphological operation and 

time frame selection. Implementing this method can reduce the erroneous 

detection of the fire zone, resulting in an error rate decrease of approximately 

15.2%. The drawback of this paper is that the algorithm has not been tested in 

real-time. 

Foggia et al. (Foggia, Saggese, and Vento 2015) used YUV color space, 

morphological change, and motion assessment modules to distinguish each 

candidate region and designed a balanced vote strategy for a comprehensive 

decision. Although insufficient, supplementary color features, including 

textures, shapes, and optical flows, can reduce false detection. The accuracy 

of the system 93.55%. 

Han et al. (X. F. Han et al. 2017) used multicolor (RGB, HIS, and YUV) 

models and Gaussian mixture models to detect motion. The results were good 

in the laboratory for detecting the flame, where the average detection rate was 

approximately 96%. On the other hand, Gaussian and color models cannot be 

applied to real-time scenarios, as they require considerable processing effort. 

Gong et al. (Gong et al. 2019) presented a method for identifying fires 

based on several fire characteristics, which extracted the suspected fire area 

by identifying the motion via frame differences method and the images’ color. 

In additional, they calculated the mass center of the fire in each frame to 

identify the fire by extracting the shape, spatial, and area variability of the 

images to improve identification accuracy. The experimental results show that 
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the preposed methodology improves accuracy and reduces false positive rates 

but is not widely used. 

Gagliardi and Saponara (Gagliardi and Saponara 2020) used multi-

steps to smoke detection. The Kalman filter is used for motion detection,  

segmentation of the color (by transforming RGB frames to HSV), time-based 

blob analysis, blob labeling,  and alert generation if at least 7 overlapping 

bounding boxes are observed. The method's performance is assessed using 

several datasets. The approach has been demonstrated to be highly effective 

across the majority of datasets, consistently achieving a 100% recall rate when 

compared to alternative methods. 

Gagliardi et al. (Gagliardi, de Gioia, and Saponara 2021) conducted 

research using image processing and deep learning techniques to locate and 

identify smoke in images and movies. This technique uses a Kalman filter for 

motion detection, color segmentation, the extraction of bounding boxes 

around a gray object in motion, and prediction, which is carried out with the 

assistance of a Convolution Neural Network CNN. The hite rate of method is 

90.49%. 

Khalil et al.(Khalil et al. 2021) interduced multi-space color models and 

motion detection to detect fire objects with fewer parameters. The work 

explored the RGB and LAB color spaces for separating fire and regions similar 

to fire.  In order to eliminate regions similar to fire, Gaussian Mixed Models 

GMMs are used to detect moving (fire) objects. The GMM model has a high 

performance compared to other models. However, the detection accuracy is 

high, the false positive rate remains high (88.81%). 

Wahyono et al.(Wahyono et al. 2022) used fire color characteristics by 

developing probabilistic models using Gaussian multiples.  In addition, other 

fire characteristics, i.e., dynamic fire movements modeled with motion 
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characteristics based on moment-invariant, have also been applied. In the 

experiment, the true positive rate was 89.92 %, which is relatively high.  

However, one of the biggest challenges in implementing a module is that it 

may be difficult to install a camera physically. Table 1.2 shows a brief 

comparison between the above-explained methods. 

Table 1.2 State-of-the-art of fire detection methods based on motion and 

color detection  

Reference

s  

Flame 

detectio

n 

Smoke 

detectio

n 

Color 

detection 

Motion 

detection 
Remarks Results 

(Töreyin et 

al. 2006) 
✓  RGB 

hybrid 

background 

estimation 

method 

wavelet 

analysis in 

temporal 

and spatial 

The detection 

rate is 100% 

(Ko, 

Cheong, and 

Nam 2009) 

✓  RGB 

modified 

hybrid 

background 

estimation 

method 

Luminance 

map 

The detection 

rate is 86.5% 

(D. Han and 

Lee 2009) 
✓ ✓ RGB 

motion 

history, 

invariant 

moments 

Experimen

t study for 

tunnel fire 

The total 

detection 

performance 

of flame is 

96.3%, while 

that of smoke 

is 91.2%. 

(J. Chen, 

He, and 

Wang 2010) 

✓  RGB/HSI 

Gaussian 

mixture 

model0 

Multi-

feature 

fusion 

The 

algorithm is 

able to detect 

the fire in a 

very short 
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time-less than 

2 s from the 

start of the 

fire. 

(Truong and 

Kim 2012) 
✓  

FCM+CIE 

LAB 

Gaussian 

mixture 

models  

Used SVM 

The average 

true positives 

is 94.78%. 

(Shidik et al. 

2013) 
✓  

RGB/HSV

/ 

YCbCr 

Backgroun

d 

subtraction 

Time 

frame 

selection 

The error rate  

is decrease  

approximatel

y 15.2%. 

(Foggia, 

Saggese, and 

Vento 2015) 

✓  YUV 
Optical 

flow 
Real-time 

The accuracy 

of the system 

93.55%. 

(X. F. Han 

et al. 2017) 
✓  

RGB/HSI/ 

YUV 

Gaussian 

mixture 

models  

 

The average 

detection rate 

is about 96% 

(Gong et al. 

2019) 
✓  RGB/HSI 

Frame 

differences  
Real-time 

accuracy and 

reduces false 

positive rates 

(Gagliardi 

and 

Saponara 

2020) 

 ✓ HSV 
Kalman 

estimator 

geometrica

l features 

analysis 

The recall of 

the method is 

100% when 

compared 

with other 

methods 

(Gagliardi, 

de Gioia, 

and 

Saponara 

2021) 

 ✓ HSV 
Kalman 

filter 

CNN 

classifier 

The hite rate 

of method is 

90.49% 

(Khalil et al. 

2021) 
✓  RGB/LAB 

Gaussian 

mixture 

models 

Fire 

growth, 

Static 

high 

performance 
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object 

tracking 

compared to 

other models 

(Wahyono et 

al. 2022) 
✓  

RGB/HSV

/ 

YCbCr 

moment 

invariants 
Real-time 

The true 

positive rate 

is 89.92 % 

 

1.3.3 The Fire Localization 

Most of the algorithms were focused on fire detection, but a few 

focused-on fire localization, so this section shows the prior methods of fire 

localization based camera. 

Verstockt et al. (Verstockt et al. 2011) developed a method for 

calculating 3D models of fire and smoke using cameras distributed around the 

fire. This framework combines multiple cameras' single-view detection 

results with homogeneous projections on several horizontal and vertical 

planes that cut the scene.  The virtual sensor points create a 3D grid when 

these slices are crossed. The location, size, and direction of the fire are 

accurately estimated. This approach only applies to fire fronts that are no more 

than 2×4 m2. One of the most important aspects of fire extraction is detecting 

and extracting the fire area. Achieving this task in an unstructured outdoor 

setting poses a challenge. 

Li et al. (Yimang Li et al. 2023) interducrd a real-time fire detection 

and localization for indoor places. A fully convolutional one-stage CNN is 

presented for fire detection. Two cameras specify the fire localization to locate 

the flame. They used two steps for the fire localization: the first step was for 

camera calibration from two frames. In contrast, the relative coordinates of 

the firing position to the anchor point are computed in the second step. Within 

0.7 m, the localization accuracy could be achieved. The average error in 
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localization was 0.44 meters. Table 1.3  shows a brief comparison between 

the above-explained methods. 

Table 1.3 State-of-the-art of fire localization methods 

References  Flame detection Smoke detection The method 

(Verstockt et al. 

2011) 
✓ ✓ 

The homography-based multi-

view plane slicing is used for 

locating the 3D position and 

volume of the fire. 

(Yimang Li et al. 

2023) 
✓  

Two cameras for calibration 

and used anchor points to 

calculate the coordinate of the 

flame position to anchor 

points 

1.4 Motivation 

Despite its availability and lower cost, technology is not employed to 

control the huge number of fires in Iraq. Although some big buildings have 

sensors and cameras. However, open space monitoring has great challenges, 

especially in our environment, with the harsh sun, constant dust, and light 

change between night and day. It is necessary to propose an adaptive system 

utilizing the camera with continuous monitoring capable of addressing these 

challenges. 

1.5 Problem Statements 

The traditional methods of fire detection rely on sensors, but these 

sensors do not efficiently work in outdoor and huge indoor areas. This has led 

to the development of an alternative fire detection method based on closed 

circuit television (CCTV) cameras.  These methods  analyze the input video 

to detect the color and motion patterns that indicate a fire. This technology 
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has the potential to detect fires in the early stages and provide a quicker time 

response for emergency services. 

However, there are several challenges associated with implementing 

the fire detection-based camera, such as: 

• The continuous variations in the luminance of the sun during the day. 

• The effect of lighting on the flames detection system inside the 

building. 

• Normally, these techniques require intensive algorithms that are 

unsuitable for real-time. 

• A high false alarm can occur. 

• The automatic localization of fire has few studies in the literature. 

1.6 Thesis Objectives 

The main objective of this work is to propose and design an efficient 

system for fire detection and localization that is suitable for real-time, and 

following specifications: 

1. Adaptive detection for fire flames, colors can distinguish colors similar 

to the flame, such as the sunlight. 

2. A multi-threshold detection for the smoke is produced from the fire, 

which can distinguish different densities of the smoke, even for very 

low density of smoke. 

3. Localization of the fire position in open and huge areas. 

4. High accuracy for fire detection, whether flame-based or smoke-based. 

1.7 Contributions  

The proposed work develops a computer vision system for fire 

detection and localization that can be easily employed in open areas, either 
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indoors or outdoors. The scientific contributions to this research can be 

summarized as follows: 

• Propose a fire detection system that has the ability to distinguish and 

solve the problem of the high color similarity between sunlight and fire 

flame. This distinguishing ability is designated based on adaptive light 

intensity thresholds.  

• Also, the other system for fire smoke detection features has the ability 

to distinguish different smoke densities and colors; even very low-

density smoke uses multi-thresholds to be an adaptive system for 

different smoke color detection. 

• Find the approximate area of fire detection with localization of the fire 

position using simple algorithms that meet for real-time processing. 

1.8 Thesis Outline 

The remaining chapters of the thesis are organized as follows: 

Chapter 2: Background and Theory 

In this chapter, background and theory for image processing, clustering, and 

optimization are described in detail. 

Chapter 3: The Proposed System of Fire Detection  

The proposed system of fire detection with three models is presented along 

with localization for fire in the real world. 

Chapter 4: Results and Discussions. 

Includes a description of the results of the suggested methodology and 

comparisons with previous research. 

Chapter 5: Conclusions and Future Works. 

Includes the conclusions reached about fire detection and proposals for future 

work. 
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Chapter Two:  Background and Theory  

 

2.1 Introduction  

Like other computer vision-related tasks, video-based smoke and flame 

detection are also composed of multiple steps that use computer vision 

technology at each stage. This chapter presents some techniques used for 

computer vision in image processing, clustering color, and optimization 

algorithms. 

2.2 Digital Representation of Image 

An image may be described as a two-dimensional function f(x, y), 

where x and y are spatial coordinates, and f is the amplitude of a pair of 

coordinates, which at this time is called image intensity. When coordinates 

and amplitudes are digitalized, the image is called digital. The digitization of 

coordinate values is called sampling, and the digitization of amplitude is 

called quantization. Therefore, x, y, and f are discrete and finite quantities. A 

real numbers matrix will be the outcome of sampling and quantization. If an 

image f(x, y) were sampled to produce an image with M rows and N columns, 

the image size would be M × N, and the digital image might be represented as 

a matrix as in Equation (2.1). A digital image is represented by an array on 

the right side of this equation, and each item of that array is referred to as an 

image element (also known as a picture element or pixel) (Gonzalez, Woods, 

and Eddins 2009) 

𝑓(𝑥, 𝑦) =  [

𝑓(0,0) 𝑓(0,1) … 𝑓(0, 𝑁 − 1)
𝑓(1,0) 𝑓(1,1) … 𝑓(1, 𝑁 − 1)

⋮ ⋮  ⋮
𝑓(𝑀 − 1,0) 𝑓(𝑀 − 1,1) … 𝑓(𝑀 − 1, 𝑁 − 1)

] (2.1) 
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2.3 Digital Image Types 

The image processing toolbox can give different kinds of images: 

• RGB Images 

RGB colors are the M × N × 3 color pixel array, consisting of red, green, 

and blue at a certain spatial point. 

• Binary Images 

A binary image is a black-and-white representation of a logical array of 

0s and 1s. 

• Gray Scale Images 

Gray scale images, also called grayscale or black and white images, are 

digital images that use shades of gray to represent the intensity or brightness 

of each pixel. The pixel values range from 0 (black) to 255 (white), with 

varying shades of gray in between. 

• Index Image 

Indexed images are composed of color maps and an image matrix, with 

color components specified in each row. Pixel values are computed by 

mapping them to the colors of the color map. 

2.4 Types of Image Color Space Conversion  

Almost all visible range cameras have sensors that can detect video in 

RGB format. Clear spectral content is associated with this color space, which 

is the major rationale for utilizing RGB (A Enis Çetin et al. 2013).  

Despite the benefit of RGB color space, different color spaces exist 

because they represent color information in a way that makes certain 

calculations more convenient or provides a more intuitive way to recognize 
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colors. For example, the RGB color space defines color as a percentage of red, 

green, and blue hues mixed. Other color models describe color in terms of hue 

(color shade), saturation (amount of gray or pure color), and lightness 

(intensity or overall brightness): 

2.4.1 RGB Color Space to Gray Scale Conversion 

To convert RGB values to grayscale values by taking a weighted sum 

of the R, G, and B components in Equation (2.2) (Wan and Xie 2016): 

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵 (2.2) 

2.4.2 RGB Color Space to HSV Color Space Conversion 

An image is referred to as an m-by-n-by-3 numeric array with values in 

the range [0, 1]. Each pixel's hue, saturation, and value are determined by the 

third dimension of HSV. Hue is a value from 0 to 1 corresponding to a color's 

position on the color wheel. As the hue increases from 0 to 1, the color moves 

from red to orange, yellow, green, cyan, blue, magenta, and eventually back 

to red. Saturation refers to the amount of hue or deviation from neutral. A 

neutral shade is indicated by 0, while 1 represents maximum saturation. The 

value refers to the maximum value between a given color's red, green, and 

blue components (Image Types in the Toolbox - MATLAB & Simulink 

2022). The RGB color model is inferior to the HSV color space. In portraying 

human perception and outlining the sense of color. In the HEXCONE Model 

(Smith 1978), the RGB values can be converted to the HSV color space using 

Equations (2.3) to (2.5). Figure 2.1 illustrates the RGB color space and 

HEXCONE Model. 

𝑉 = max (𝑅, 𝐺, 𝐵) (2.3) 

𝑙𝑒𝑡: 𝑋 = min (𝑅, 𝐺, 𝐵)  

𝑆 = (𝑋 − 𝑉) 𝑉⁄  (2.4) 
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𝑙𝑒𝑡: 𝑟 = (𝑉 − 𝑅) (𝑉 − 𝑋)⁄

      𝑔 = (𝑉 − 𝐺) (𝑉 − 𝑋)⁄

      𝑏 = (𝑉 − 𝐵) (𝑉 − 𝑋)⁄
    

 

𝐼𝑓 𝑅 = 𝑉 𝑡ℎ𝑒𝑛 𝐻 = (𝑖𝑓 𝐺 = 𝑋 𝑡ℎ𝑒𝑛 5 + 𝑏 𝑒𝑙𝑠𝑒 1 − 𝑔)

𝐼𝑓 𝐺 = 𝑉 𝑡ℎ𝑒𝑛 𝐻 = (𝑖𝑓 𝐵 = 𝑋 𝑡ℎ𝑒𝑛 1 + 𝑟 𝑒𝑙𝑠𝑒 3 − 𝑏) 

                   𝑒𝑙𝑠𝑒 𝐻 = (𝑖𝑓 𝑅 = 𝑋 𝑡ℎ𝑒𝑛 3 + 𝑔 𝑒𝑙𝑠𝑒 5 − 𝑟)
 

𝐻 = 𝐻/6 
 

(2.5) 

 

 

                        (a)                                                                  (b) 

Figure 2.1 RGB cube and HSV hexcone representations (a.) RGB. (b.) HSV 

2.4.3 RGB Color Space to YCbCr Color Space Conversion 

The YCbCr color scheme is one of the most popular color schemes used 

to define digital video components. A color scheme represents the color as a 

luminance and two-color-difference signal, where Cb and Cr represent the 

Chrominance-blue, and Chrominance-red components, respectively. The 

advantage of the YCbCr color scheme is a better distinction between lightness 

and Chrominance. 

 RGB color spaces can be used to identify different colors, but the 

drawback is that it is light-dependent. As a result, color rules may not function 

accurately when lighting conditions change. To resolve this, conversion of the 
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RGB color space to a color space with a clearer distinction between 

chrominance and intensity is necessary. The following formula is used to 

convert RGB color space to YCbCr color space (Celik et al. 2007) in Equation 

(2.6): 

[
𝑌

𝐶𝑏
𝐶𝑟

] = [
    0.2568     0.5041     0.0979
−0.1482 −0.2910     0.4392
    0.4392 −0.3678  −0.0714

] [
𝑅
𝐺
𝐵

] + [
16

128
128

] (2.6) 

where Y is luminance, Cb is Chrominance-blue, and Cr is 

Chrominance-red components. 
 

2.4.4 RGB Color Space to CIE L*a*b Color Space Conversion 

The International Commission on Illumination, also known as CIE, 

invented the device-independent color spaces (CIE 1976 XYZ and CIE 1976) 

L*a*b*. These color spaces simulate hues using the three kinds of cone cells 

in the human eye, which are often sensitive to different hues. 

The basic model produced by the CIE is the XYZ color space. The Y 

channel represents the color's luminance brightness. The Z channel roughly 

refers to how much blue is in the image, but Z's value in the XYZ color space 

is not the same as B's value in the RGB color space. This is because the X 

channel in the XYZ color space does not have a corresponding color attribute; 

it is represented by an axis orthogonal to the Y brightness and Z axes in the 

3D coordinate system. 

The L*a*b* color space offers a uniform representation of colors 

compared to the XYZ model. Some colors in the L*a*b* color space may not 

be representable in the RGB color space (the set of valid RGB colors). For 

example, if the L*a*b* values [100, 100, 100] are converted to RGB color 

space, the returned values are [1.7682, 0.5746, 0.1940] is not an acceptable 

RGB color. 
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L* refers to the image's brightness or luminance. Values fall between 

[0, 100], where (0) designates black and (100) designates white. Colors get 

brighter as L* rises; a* stands for the percentage of red or green tones in the 

image. Red or magenta is represented by a high positive a* value. Green has 

a significant negative a* value. Although a* does not have a single range, 

values frequently lie between [-100, 100] and [-128, 127), and b* represents 

the proportion of yellow or blue tones in the image. Yellow is represented by 

a high positive b* value. Blue is represented by a significant negative b* 

value. Although b* does not have a single range, values frequently lie between 

[-100, 100] and [-128, 127) (Understanding Color Spaces and Color Space 

Conversion - MATLAB & Simulink - MathWorks Switzerland 2022). The 

transformation method from the RGB color space to L*a*b* is a direct model 

method (León et al. 2006), which includes two steps with Equations (2.7) and 

(2.8). 

The first step is the transformation of RGB → XYZ color space: 

[
𝑋
𝑌
𝑍

] = [

𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

] [

𝑅
𝐺
𝐵
1

] (2.7) 

The second step is the transformation of XYZ → L*a*b* color space: 

𝐿∗ =  {
116 × (

𝑌

𝑌𝑛
)

1

3
− 16 ,        𝑖𝑓 (

𝑌

𝑌𝑛
) > 0.008856

903.3 × (
𝑌

𝑌𝑛
) ,                𝑖𝑓 (

𝑌

𝑌𝑛
) ≤ 0.008856

                 

𝑎∗ = 500 ×  {(
𝑋

𝑋𝑛
)

1

3
− (

𝑌

𝑌𝑛
)

1

3
 }                                                    

           𝑏∗ =  200 ×  {(
𝑌

𝑌𝑛
)

1

3
− (

𝑍

𝑍𝑛
)

1

3
 } 

(2.8) 
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Mij is a linear transformation matrix between the spaces RGB and XYZ, and 

Xn, Yn, and Zn are the values of the reference blank. 

2.5 Image Preprocessing 

Directly collected sensor images often contain incomplete and 

inconsistent noise, which must be preprocessed to achieve correct 

classification. The basic preprocessing methods are sampling, discretization, 

noise elimination, transformation, and integration (KC and Nattee 1970). 

Preprocessing images is similar to the scientific standardization of data sets; 

this is a general step in many descriptive techniques of features. The 

preprocessing of the image is used to process the degradation of the image. It 

is, therefore, necessary to obtain some previous data or detailed information, 

such as details of the degree of degradation, characteristics of the imaging 

system, and the environment in which the images were taken (Chaki and Dey 

2019). Some complications can be resolved by using image preprocessing 

techniques: 

2.5.1 Image Intensity Histograms 

In image processing, intensity transformation functions, which are 

based on data obtained from image intensity histograms, play a crucial role. 

Equation (2.9) defines the histogram of a digital image with L total potential 

intensity levels in the range [0, G], where rk is the kth intensity level in the 

interval [0, G], and nk  refers to the number of pixels in the image with intensity 

level rk (Gonzalez, Woods, and Eddins 2009) 

ℎ(𝑟𝑘) =  𝑛𝑘 (2.9) 

An image histogram is a graph that show the distribution of intensities 

in a grayscale image or index. In the histogram, details can be used to select 

the appropriate amelioration operation. An example would be if an image 



Chapter Two 

23 

 

histogram displays a limited range of values, use a function to spread the 

values over a larger range. By default, Figure 2.2 displays an image with a 

histogram. The histogram displays a peak at 251, which corresponds to the 

dark gray background in the image (Image Processing Toolbox 

Documentation 2022). There are various ways to represent histograms, such 

as bar charts, plot, and stem (Gonzalez, Woods, and Eddins 2009). 

(a)  

(b) 

Figure 2.2 Histogram of images (a.) grayscale image (b.) image histogram 

(Image Processing Toolbox Documentation 2022). 

2.5.2 Image Filtering 

Filtering is an image modification or enhancement technology. The 

image filter can be used to highlight or delete some features. 

The median filter is nonlinear. The values of a relative pixel's nearby 

pixels are used to conditionally determine the difference in the nonlinear 

filtering. It works by sorting pixel values in a range, averaging and changing 

the median of the range between the original values (Marques 2011) and 

(Chaki and Dey 2019). The median filter is very good at reducing "salt and 

pepper" noise (a form of noise that produces very bright so-called salt and 

very dark so-called pepper outliers in an image). Figure 2.3 shows the median 

filter of images with pepper and salt noise.  
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(a) 

 

 

 

 

 

 

                             

 

                          (b) 

Figure 2.3 Image filtering (a.) image with salt and pepper noise (b.) The noise 

elimination by median filter. 

2.6 Wavelet Transform  

The wavelet transform is a method that uses a wavelet function (called 

the "mother wavelet") to decompose an image into lower resolution levels 

(Torrence and Compo 1998). This is done by adjusting the scaling and shifting 

factors of the wavelet function. A wavelet function has a wave shape, a limited 

but flexible length, and a zero mean value that is localized in both the time 

and frequency domains. The wavelet transformation of an image generates a 

wavelet coefficient set at different scales (Nalley, Adamowski, and Khalil 

2012). The high scale refers to the extended version of the wavelet, and the 

corresponding wavelet coefficient provides information about the low-

frequency components of the image. The lower scales of a mother wavelet 

function represent a compressed version of the wavelet and are used to 

identify the high-frequency components of the analyzed signal. Since the 

wavelet transform can be used to analyze time series data by breaking it down 

into shorter, medium, and longer periods and identifying the main components 

that influence the trend in the series (Kim 2004), this can help to understand 

and detect patterns in the data. There are two main approaches to the wavelet 

transform: the discrete wavelet transforms (DWT) and the continuous wavelet 

transform (CWT).  
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The CWT works with smooth, continuous functions and can decompose 

and analyze images at all scales (Nalley, Adamowski, and Khalil 2012). On 

the other hand, the DWT is a method of analyzing discrete digital images using 

scales represented by integer powers of two (a dyadic arrangement). This 

makes the transformation process simpler and more efficient than the CWT, 

which generates a large amount of redundant information and is more difficult 

to implement (Percival 2008). 

2.6.1 The Discrete Wavelet Transform (DWT) 

The DWT is a method for decomposing an input image x(n) into low 

and high-frequency components. This is done by filtering the image with a 

low-pass filter, L, and a high-pass filter, H. The outputs of these filters are 

then sub-sampled by two to produce the low-frequency (approximation, a) 

and high-frequency (detail, d) coefficients. These filters are known as the 

decomposition filter bank, and the method is called the convolution-based 

DWT approach (Mallat 1989). 

To reconstruct the image, the low- and high-frequency coefficients (a 

and d) are up-sampled by inserting zeros between each pair of samples. Next, 

the up-sampled coefficients are filtered with reconstruction low-pass and 

high-pass filters (L’ and H’), respectively. Finally, the outputs of these filters 

are added together to produce the reconstructed signal x’(n). The 

reconstruction filter bank, consisting of filters (L’ and H’), has inverse transfer 

functions compared to the decomposition filters L and H.  

Similarly, for a multiresolution DWT decomposition, the low-pass sub-

band a is further analyzed to find the second level of decomposition, and the 

process is repeated. The inverse of this process follows similar multi-stage 



Chapter Two 

26 

 

synthesis filtering, reconstructing the output image by reconstructing low-pass 

L and high-pass filters H (Shahadi, Jidin, and Way 2013). 

2.6.2 Integer Lifting Scheme Based on DWT 

The lifting scheme, proposed by (Sweldens 1996), is a method for 

implementing the DWT that allows all operations to be executed in parallel, 

making it faster than the convolution-based DWT. The discrete wavelet 

transform DWT is calculated using the following three steps in the lifting 

scheme: splitting, predicting, and updating. The split step separates the input 

image x(n) into even and odd samples. The predict step estimates the value of 

the odd samples using the even samples to find the details coefficients, and 

the update step adjusts the even samples using the predicted values (Shahadi, 

Jidin, and Way 2013). 

2.6.3 Integer Haar Lifting Wavelet Transform  

The Haar filter is a bank filter commonly used with the DWT. In the 

Haar DWT, the approximation coefficients are obtained by taking the average 

of pairs of adjacent samples in the input image. The details coefficients are 

then calculated by finding the difference between these adjacent samples. 

Generally, the approximation coefficients (which represent the smooth 

components of the image) are similar to the original input samples due to the 

high correlations between neighboring samples in the input image. However, 

on the other hand, the details coefficients have lower power compared to the 

original image due to the same correlations (Shahadi, Jidin, and Way 2013). 

The analysis of images of size (n×m) using wavelet transform involves 

the classification of data (image) into two categories: estimation and relevant 

data (sub-image). 
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 This process utilizes two types of filters, namely high-pass and low-

pass filters, which are illustrated in Figure 2.4. Through these filters, the image 

is modified. Next, the image's foreground and background components can be 

segregated by considering their relative frequencies (approximation). This 

results in the generation of four distinct signals from each tier (Bamerni and 

Al-Sulaifanie 2019). 

 

Figure 2.4 (2D) discrete wavelet transform decomposition image (DWT) (Parida and 

Bhoi 2017) 

The Haar wavelet transform breaks down a image into four sets of 

coefficients, as illustrated in Figure 2.5 (a): the approximation coefficients 

(LL), horizontal detail coefficients (HL), vertical detail coefficients (LH), and 

diagonal detail coefficients (HH).  The computation of these coefficients 

involves the calculation of the low-pass (L) and high-pass (H) subbands 

obtained through the application of the 1D Haar wavelet transform (Al Jumah 

2013). The equations for calculating these subbands are as follows (Bamerni 

and Al-Sulaifanie 2019): 

𝐻11 = [𝑋11−𝑋21] ×
1

√2
=  

𝑋11−𝑋21

√2
 (2.10) 

𝐿11 = [𝑋21−
1

2
𝐻11] × √2 =  

𝑋11−𝑋21

√2
 

 

(2.11) 

In the same way 
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𝐻12 = [𝑋21−𝑋22] ×
1

√2
=  

𝑋21−𝑋22

√2
 (2.12) 

𝐿12 = [𝑋21−
1

2
𝐻12] × √2 =  

𝑋21−𝑋22

√2
 (2.13) 

  To create the subbands LL, LH, HL, and HH, the 1D transform is 

applied in the row direction on both L and H. 

𝐿𝐻11 = [𝐿11−𝐿21] ×
1

√2
=  

𝑋11−𝑋21 + 𝑋12−𝑋22

2
 (2.14) 

𝐿𝐿11 = [𝐿12+
1

2
𝐿𝐻11] × √2 =  

𝑋11+𝑋21 + 𝑋12+𝑋22

2
 (2.15) 

𝐻𝐻11 = [𝐻11−𝐻12] ×
1

√2
=  

𝑋11−𝑋21 − 𝑋12+𝑋22

2
 (2.16) 

𝐻𝐿11 = [𝐻12+
1

2
𝐻𝐻11] × √2 =  

𝑋11+𝑋21 − 𝑋12−𝑋22

2
 (2.17) 

  

 

 

 

 

 

 

 

In this scenario, all subbands necessitate the same set of sample 

components (X11, X21, X12, and X22) simultaneously, forming a 2 × 2 sample 

block. These sample components are sequentially moved line by line to cover 

the entire input matrix. 

The Haar wavelet transform can be computed iteratively, commencing 

with the original signal as the approximation coefficients LLo. At each 

Figure 2.5 DWT  image (a.) One-level (b.) Tow-level 



Chapter Two 

29 

 

decomposition level, the LL coefficients are further decomposed into the 

horizontal, vertical, and diagonal detail coefficients HL, LH, and HH, 

respectively, utilizing the aforementioned equations. This process is repeated 

until the desired level of decomposition is achieved (Anutam and Rajni 2006). 

Figure 2.6 demonstrates the further decomposition of the LL1 subband 

used to acquire the subsequent coarse level of wavelet coefficients by 

analytical sampling (Chandrasekaran 2021). 

 

 

 

 

 

 

 

 

 

2.7 Thresholding 

Thresholding is defined as the process of converting a grayscale image 

into a binarized image or an image with a new range of grayscales using a 

specified threshold (Araki et al. 2015) and (Chaki and Parekh 2011). 

Thresholding aims to extract some pixels from an image while removing 

others. The idea is to group similarly bright pixels from the first pixel with 

similarly bright pixels from the background pixel (Chaki and Dey 2019). The 

basic problem with a threshold is converting the image from several gray 

levels to a lower gray level, usually two levels. This conversion is usually 

performed when the pixel's intensity is compared to the reference value and 

Figure 2.6 DWT with different–level  (a.) one level  (b.) two level (c.) three 

level  
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replaced by a value, which means white or black according to the comparison 

results. Equation (2.18) is a mathematical representation of the threshold 

process,  f(x,y) is an input image, g(x,y) is a binarized image, and thr is a 

threshold value (Marques 2011). 

𝑔(𝑥, 𝑦) = {
1   𝑖𝑓  𝑓(𝑥, 𝑦) > 𝑡ℎ𝑟 

0   otherwise         
 (2.18) 

One method for determining a threshold is to examine the image histogram 

visually. Another way to select thr is by trial and error, choosing different 

thresholds until find that the observer's judgment gives a good result. 

2.7.1 Otsu Algorithm 

Otsu's method is a type of image threshold segmentation (OTSU 1979). 

It is an effective criterion for image processing to convert gray image to binary 

image. 

The Otsu technique divides the image into two bright and dark areas, 

T0 and T1, where region T0 is a set of intensity levels ranging from 0 to the 

threshold value, l is the maximum image region T1= {t, thr+1…, l-1, l} and 

T0= {0,1….thr} where thr represents the threshold value and l the image 

maximum gray level (for instance 256). T0 and T1 can be applied to both the 

object and the background or vice versa (the object does not always occupy 

the light region). The thresholding method developed by Otsu scans all 

potential thresholding values and determines the minimum value for each 

pixel level on either side of the threshold. The aim is to identify the threshold 

value for the sum of foreground and background with the lowest entropy. The 

variance of clusters T0 and T1 may be determined using Otsu's approach, 

which determines the threshold value based on the statistical information of 

the image. The best threshold value is determined by minimizing the sum of 
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the weighted group variances, where the weights represent the individual 

groups' probabilities. 

Given: 𝑝(𝑖) is the probability histogram of the observed gray value  

𝑖 = 1, . . . , 𝑙. 

𝑃(𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟{(𝑟, 𝑐)|𝑖𝑚𝑎𝑔𝑒(𝑟,𝑐)=𝑖}

(𝑅, 𝐶)
 (2.19) 

where r, c is the image's row, and column indexes and R, C is the image's 

number of rows and columns, respectively. 

For intensity values ranging from 0 to thr, 

𝑤𝑏(𝑡ℎ𝑟), 𝜇𝑏(𝑡ℎ𝑟), 𝑎𝑛𝑑 𝜎𝑏
2(𝑡ℎ𝑟) represent the weight, mean, and variance of 

class T0. For intensity values ranging from 𝑡ℎ𝑟 + 1 to l, 

𝑤𝑓(𝑡ℎ𝑟), 𝜇𝑓(𝑡ℎ𝑟), 𝑎𝑛𝑑 𝜎𝑓
2(𝑡ℎ𝑟) represent the weight, mean, and variance of 

class T1. 𝜎𝑤
2  as the summed weighted variances of the groups. 

The lowest within-class variation value is the optimum threshold value, 

thr* (Yousefi 2011). The variance inside a class is defined as follows: 

𝜎𝑤
2 = 𝑤𝑓(𝑡ℎ𝑟) ∗ 𝜎𝑓

2(𝑡ℎ𝑟) + 𝑤𝑏(𝑡ℎ𝑟) ∗  𝜎𝑏
2(𝑡ℎ𝑟)  (2.20) 

where 

𝑤𝑏(𝑡ℎ𝑟) = ∑ 𝑃(𝑖)
𝑡ℎ𝑟

𝑖=1
 (2.21) 

𝑤𝑓(𝑡ℎ𝑟) = ∑ 𝑃(𝑖)
𝑙

𝑖=𝑡ℎ𝑟+1
 (2.22) 

𝜇𝑏(𝑡ℎ𝑟) =
∑ 𝑖 ∗ 𝑃(𝑖)𝑡ℎ𝑟

𝑖=1    

𝑤𝑏(𝑡ℎ𝑟)
 (2.23) 

𝜇𝑓(𝑡ℎ𝑟) =
∑ 𝑖 ∗ 𝑃(𝑖)𝑙

𝑖=𝑡ℎ𝑟+1    

𝑤𝑓(𝑡ℎ𝑟)
 (2.24) 

𝜎𝑏
2(𝑡ℎ𝑟) =

∑ (𝑖 − 𝜇𝑏(𝑡ℎ𝑟))2 ∗ 𝑃(𝑖)𝑡ℎ𝑟
𝑖=1    

𝑤𝑏(𝑡)
 (2.25) 
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𝜎𝑓
2(𝑡ℎ𝑟) =

∑ (𝑖 − 𝜇𝑓(𝑡ℎ𝑟))2 ∗ 𝑃(𝑖)𝑙
𝑖=𝑡ℎ𝑟+1    

𝑤𝑓(𝑡ℎ𝑟)
 (2.26) 

An illustration of Otsu thresholding is shown in Figure 2.7. 

 

(a) 

 

(b) 

Figure 2.7 Otsu’s thresholding (a.) original image (b.) result of Otsu’s 

method. 

2.7.2 Kapur Algorithm  

Another type of image threshold segmentation is Kapur's entropy 

(Kapur, Sahoo, and Wong 1985). Entropy-based thresholding is an effective 

segmentation approach based on the gray-level histogram's probability 

distribution. Entropy is at its highest when the optimal thresholds for 

distinguishing the classes are correctly allocated. Finding the best thresholds 

that produce the most entropy is the goal. It is common practice to calculate 

the entropy of a discrete source using the probability distribution p = pi, where 

pi is the probability that the system might exist in state i (Portes de 

Albuquerque et al. 2004). When normalized by the total number of gray levels 

L, the probability of each gray level i is equal to the gray level's relative 

occurrence frequency Equation (2.27). 

𝑝𝑖 =
ℎ(𝑖)   

∑ ℎ(𝑖) 𝐿−1
𝑖=0

  ,    i = 0,…… L-1 (2.27) 

The separability and compactness of classes are gauged using Kapur's 

entropy. According to Equation (2.28), Kapur's entropy may be explained by 

bi-level thresholding. 
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𝐻0 = − ∑
𝑝𝑖

𝑤0
ln

𝑝𝑖

𝑤0

𝑡ℎ𝑟−1

𝑖=0

,    𝑤0 = ∑ 𝑝𝑖

𝑡ℎ𝑟−1

𝑖=0

  

𝐻1 = − ∑
𝑝𝑖

𝑤1
ln

𝑝𝑖

𝑤1

𝐿−1

𝑖=𝑡ℎ𝑟

,    𝑤1 = ∑ 𝑝𝑖

𝐿−1

𝑖=𝑡ℎ𝑟

 

(2.28) 

The threshold is optimal when the sum of class entropy is the maximum 

Equation (2.29). 

𝑡ℎ𝑟∗ = arg max (𝐻0 + 𝐻1) (2.29) 

An illustration of Kapur thresholding is shown in Figure 2.8. 

 

(a) 
(b) 

Figure 2.8 Kapur thresholding (a.) original image (b.) result of Kapur 

method. 

2.7.3 Threshold-Based Optimization Techniques 

The most crucial step in image thresholding algorithms is choosing the 

optimal threshold value, while determining multiple thresholds is a common 

problem. One threshold value divides the image into two classes in bi-level 

thresholding techniques: foreground and background, but the bi-level 

thresholding method is ineffective when the image is quite complex and 

contains a variety of objects (Díaz-Cortés et al. 2018; Ewees, Abd Elaziz, and 

Oliva 2018). As a result, multilevel thresholding methods are frequently 

utilized for image segmentation (Ashish Kumar Bhandari et al. 2014; 

Manikandan et al. 2014). In recent years, numerous thresholding methods 

have been proposed, including Otsu's method (OTSU 1979), Kapur's entropy 
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(Kapur, Sahoo, and Wong 1985), minimum cross-entropy (J. Li et al. 2019), 

fuzzy entropy (Pare et al. 2018), and Tsallis entropy (A. K. Bhandari, Kumar, 

and Singh 2015). These methods enable multilevel thresholding segmentation 

through the use of optimization algorithms. For example, for the maximum 

entropy criterion, Horng and Jiang (Horng and Jiang 2010) introduced a 

firefly optimization algorithm, while Maitra and Chatterjee (Maitra and 

Chatterjee 2008) used a particle swarm optimization algorithm to create a 

hybrid cooperative in-depth learning model. Additionally, Sathya and 

Kayalvizhi (Sathya and Kayalvizhi 2011b) developed a bacterial foraging 

algorithm to enhance Otsu's minimal variance criteria and the maximum 

entropy criterion. For the maximum entropy and minimum variance criteria, 

Sathya and Kayalvizhi (Sathya and Kayalvizhi 2011a) proposed a modified 

bacterial foraging algorithm. Oliva and others (Oliva et al. 2013) suggested 

multilevel image thresholding for the related approaches based on the 

harmony search optimization algorithm. The maximum entropy criterion was 

then optimized using the artificial bee colony (ABC) algorithm, as described 

by Horng (Horng 2011). 

2.7.3.1 Particle Swarm Optimization (PSO) Algorithm 

Kennedy presented the PSO in 1990 (Eberhart and Kennedy 1995) to 

emulate the natural swarming of fish and birds. A collection of particles 

moving through search space in PSO is called a swarm. In order to locate the 

global optimal, the particles shift their positions following their prior 

experience and the swarm's best experience. It makes use of the swarm 

particles' global communication and real-number randomness. The PSO 

begins by generating a random population, after which the velocity and 
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current position of all particles are updated for each iteration as described in 

the following equations: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑅1𝐶1(𝑃𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖)

+ 𝑅2𝐶2(𝑔𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖) 

 (2.30) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)  (2.31) 

At each iteration t, the position and velocity of each particle are represented 

by xi and vi, respectively. R1 and R2 are the random values of two integers 

between 0 and 1, w is a weight that determines the particle's inertia, and C1 

and C2 are factors that control the influence of the personal best and global 

best positions on the particle. Pi
best represents the best position found by the 

ith particle. At last, gbest is the best position in the population discovered thus 

far. Algorithm 2.1 provides the PSO's steps (Ewees, Abd Elaziz, and Oliva 

2018): 

Algorithm 2.1 

Input: the size of population N, the values of w, R1, R2, C1, and C2. 

Generate a random population x and its velocity v. 

The current iteration t = 1. 

Output: optimal solution for objective function 

while criterion do 

for all n particles do  

Compute the new velocity 𝑣𝑖(𝑡 + 1) using Equation (2.30). 

Update the position using Equation (2.31). 

Evaluate objective function 𝑓𝑖[𝑥𝑖(𝑡 + 1)] of 𝑥𝑖(𝑡 + 1). 

Find the minimum or maximum function of the current particle.  

end for 

Find the global fitness function fg
best and its corresponding position gbest. 
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t = t+1. 

end while  

Output: fg
best  and g best . 

end. 

2.7.3.2 Forest Optimization Algorithm (FOA) 

The Forest Optimization algorithm is a process of evolutionary 

algorithm inspired by several trees in the forest (Ghaemi and Feizi-Derakhshi 

2014). To solve problems in continuous search space, FOA is proposed. The 

FOA process consists of three main phases: "local seeding of the trees, 

population limiting, and global seeding of the trees." Figure 2.9 depicts the 

FOA flowchart. FOA's starting point is the initial population of trees 

(solutions) that make up this algorithm's forest. Each tree depicts a possible 

solution to the issue. In addition to its values, a tree has an attribute 

representing its age. This attribute, called "Age," is used to track the age of 

the association tree. Each newly generated tree has its "Age" set to "0" 

(Ghaemi and Feizi-Derakhshi 2014). 

When trees begin seeding, some seeds fall just beneath the parent tree, 

where they mature into young trees (Ghaemi and Feizi-Derakhshi 2014), 

which is simulated in FOA through local seeding. The local seeding stage will 

operate on trees with "Age" ‘0’ following the initialization of the trees in order 

to simulate the nearby seeds of the parent trees. The trees then age, and their 

"Age" increases by one, except for newly generated trees. This stage is a 

simulation of the algorithm's local search.  

The next step is population limiting, in which trees whose "Age" value 

is greater than their "lifetime" value are removed from the forest and become 

the candidate population (Ghaemi and Feizi-Derakhshi 2014). The remaining 
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forest trees are also sorted according to their fitness value during the 

population-limiting stage. If the total number of forest trees exceeds the pre-

defined "area limit" parameter, additional trees will also join the candidate 

population. 

 

Figure 2.9 Flowchart of FOA (Ghaemi and Feizi-Derakhshi 2014). 

Finally, the percentage of the candidate population is chosen through 

the global seeding phase. The selected trees from the candidate population 

will be utilized during the global seeding stage. The global search for FOA is 

modeled after the global seeding stage (Ghaemi and Feizi-Derakhshi 2014). 

The next step in FOA is to update the best tree by selecting the best solution 

based on its fitness value, setting its "Age" to 0 to prevent aging, and removing 

the best tree from the forest. These phases will progress iteratively until the 

termination requirement is satisfied. The Forest Optimization Algorithm has 

five parameters that must be set up at the beginning (Ghaemi and Feizi-

Derakhshi 2014): 
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1. “Local Seeding Changes,” also known as "LSC." 

2. The forest's limitation or "area limit." 

3. The maximum allowed “Age” of a tree is named the “lifetime” 

parameter. 

4. The "transfer rate," or percentage of the candidate population, will be 

used in the global seeding stage. 

5. "Global Seeding Changes" or "GSC" is the number of variables whose 

values will change during the global seeding stage. 

Algorithm 2.2 provides the FOA’s steps (Ghaemi and Feizi-Derakhshi 2014): 

Algorithm 2.2 

Algorithm FOA (lifetime, LSC, GSC, transfer rate, area limit) 

 Input: lifetime, LSC, GSC, transfer rate, area limit 

 Output: near-optimal solution for objective function f(x) 

  Initialize the forest with random trees 

Each tree is a (D+1)-dimensional vector x, x= (age, x1, x2…. xD)                                                    

a D-dimensional problem 

The "age" of each tree is initially zero  

   While the stop condition is not satisfied, do 

Perform local seeding on trees with age 0 

For =1: "LSC" 

Randomly choose a variable of the selected tree 

Add a small amount dx- dx ɛ [-Ax, Ax]- to the randomly 

selected variable 

Increase the age of all trees by 1 except for new generated    

trees in this stage 

       Population limiting 
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Remove the trees with ages bigger than "life time" parameter 

and add them to the candidate population 

Sort trees according to their fitness value  

Remove the extra trees that exceed the "area limit" parameter 

from the end of the forest and add them to the candidate 

population 

      Global seeding 

Choose "transfer rate" percent of the candidate population 

 For each selected tree 

Choose "GSC" variables of the selected tree randomly 

Change the value of each variable with other randomly 

generated values in the variable's range and add a new tree 

with age 0 to the forest 

     Update the best so far tree 

Sort trees according to their fitness value 

Set the age of the best tree to 0 

 Return the best tree as the result. 

In order to use the FOA algorithm in problem estimation, each solution 

is represented as shown in Figure 2.10. If a problem has Nvar dimensions, 

each tree in the representation will have Nvar+1 variables, with the "Age" 

part indicating the age of the corresponding tree. 

 

Figure 2.10 A solution representation of FOA (Ghaemi and Feizi-Derakhshi 

2014). 
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2.8 Clustering  

In computer vision, image segmentation is an important aspect. The 

main purpose of segmentation is to obtain the resulting object in the image. 

Clustering is a dominant technology used to segment images. Cluster analysis 

involves partitioning image data sets into numerical disarticulated clusters 

(Aslam et al. 2020). Alternatively, clustering is putting similar image pixels 

into a single cluster based on some property so that the output cluster has few 

inter-cluster and high intra-cluster similarities. The clustering process is an 

unsupervised grouping or clustering of data elements (Elavarasi, 

Akilandeswari, and Sathiyabhama 2011). Clustering algorithms may be 

divided into two main categories:  

Hard clustering, in which each data point is only in one cluster, like the 

well-known k-means method in Figure 2.11, while employing soft clustering, 

in which each data point can be part of more than one cluster, as in Gaussian 

mixture models. Phonemes in speech, which can be represented as a collection 

of different base sounds and genes, which can be involved in a variety of 

biological processes, are the examples in Figure 2.12 (Cluster Analysis and 

Clustering Algorithms - MATLAB & Simulink 2022). 

 

Figure 2.11 K-means clustering represents groups by their centroid - each 

member's average (Cluster Analysis and Clustering Algorithms - MATLAB & Simulink 

2022). 
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Figure 2.12 Gaussian mixture model, which assigns cluster membership 

probabilities, representing the strength of association with different clusters (Cluster 

Analysis and Clustering Algorithms - MATLAB & Simulink 2022). 

 

Many popular clustering algorithms include the K means, FCM-fuzzy 

C-Mean, Hierarchical clustering, and K-Medoids Clustering. 

2.8.1 K-Means Clustering  

J.B. MacQueen presented the K-Means algorithm, a type of cluster 

algorithm based on dividing (Youguo Li and Wu 2012). Data mining and 

pattern recognition typically make use of this unsupervised algorithm. This 

algorithm aims to minimize the cluster performance index and squre the error 

criterion. This method seeks the optimizing result by looking for K divisions 

that meet a particular requirement. First, select a point to represent the initial 

cluster center (usually, select the first K sample point to represent the initial 

cluster center); Secondly, we will gather the remaining sample dots to their 

focal points following the minimum distance criterion. If the classification is 

unreasonable, we will modify it (calculate each cluster focal point once more) 

and repeatedly iterate until we obtain a reasonable classification. 

2.8.2 FCM- fuzzy C-Mean clustering  

A technique for processing data that assigns a partial membership value 

to each image pixel is known as fuzzy logic. The fuzzy set's membership value 
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ranges from 0 to 1. Fuzzy clustering is essentially multi-valued logic that 

makes it possible to use intermediate values, like when members of one fuzzy 

set are also members of other fuzzy sets in the same image. The distinction 

between full membership and non-membership is gradual. The image's 

fuzziness and the information it contains are both defined by the membership 

function. The membership function is defined by three primary fundamental 

characteristics: boundary, support, and core. The boundary and support 

determine the extent of the fuzzy set, while the core represents the full 

inclusion of the set. The boundary is the partial or intermediate membership 

between 0 and 1, while the support is the set's non-membership value 

(Selvakumar, Lakshmi, and Arivoli 2012). 

2.9 Motion Detection 

Even though a still image contains much information, 

cinematographers, home video fans, and video (vloggers) have been drawn to 

sequences of still images.  The popularity of video as a medium is mostly due 

to its ability to capture motion; a single image offers a snapshot of the scene, 

whereas a succession of images also records the dynamics of the scene.  The 

captured movement provides a robust signal for human vision, enabling us to 

readily identify objects as soon as they start moving, even if they are difficult 

to discern when stationary. There are two reasons why motion is equally 

important to video compression and processing. First, information about the 

spatiotemporal relationships between objects in a camera's field of view is 

carried by motion. This data can be used by traffic monitoring and security 

surveillance applications to figure out what is moving and who is entering and 

leaving a scene. Secondly, image properties such as brightness and color have 

very high correlations with the direction of movement, i.e., they do not change 
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significantly with time (car colors do not change when moving along the 

camera field) (Konrad 2009). 

The ideal goal of segmentation is to group pixels that belong to 

semantically meaningful parts of an image. While it is currently hard to 

separate static objects from moving ones in an image, using the motion 

information in the image makes it more practicable to separate moving ones 

from a dynamic scene. In image sequence processing and analysis, important 

functions include segmenting moving objects into an image sequence. The 

moving objects can be used for various purposes once detected or extracted. 

It has important applications in medical diagnosis and treatment, remote 

sensing, and video surveillance (D. Zhang and Lu 2001). 

There are many algorithms used to detect motion, such as background 

subtraction, frame differences, and optical flow: 

2.9.1 Background Subtraction Method 

The background subtraction method (BSM) is a frequently used 

technique for identifying objects in a video. This algorithm compares the 

video's moving parts to a foreground and background image. 

The purpose of this technique is to separate the foreground object from the 

background and then compare it to a reference frame without the object 

present. The disparities between the two frames will be computed, resulting 

in a distance matrix. Basically, the difference in the values of two frames, one 

without an object and the other counting an object, is compared, as well as the 

threshold value. The first few video frames serve as the basis for the 

predetermined threshold, and if the difference between the pixel values of the 

two frames exceeds this threshold, a moving object is detected. The threshold 
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value differentiates between stationary background elements and moving 

objects. 

The background subtraction technique considers that the input video 

frame, labeled "I," is composed of a static background, labeled "B," which 

remains constant throughout the scene and is in front of a moving object being 

observed. Because of this, every moving object is colored differently from the 

static background, making it possible to calculate the value difference 

between two frames in Algorithm 2.3. 

Algorithm 2.3 

 Input frame (I(x,y,t)) 

 Initialize frame as background (B(x,y,t)) 

If Difference (I,B) > Threshold value Then 

       Return (foreground object exists) 

    Else   

Return (No foreground object exits)   

Applications like traffic monitoring, object tracking, and human action 

recognition systems extensively use the background subtraction method BSM. 

Determining the threshold value is crucial for the effectiveness of the 

background subtraction method. Various methods exist for choosing a 

threshold value. Automatic thresholding refers to the process of manually 

selecting a threshold value. Its primary drawback is the BSM's inability to 

adapt to a sudden shift in lighting and illumination. As a result, care should be 

taken when selecting the threshold parameter (Alzughaibi, Hakami, and 

Chaczko 2015). 
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2.9.2 Frame Differences  

Frame differences are one of the most common methods used to detect 

the movement of objects. The frame difference method detects every object's 

motion; the camera captures that. This method is flexible in the sense that it 

can be modified and adjusted to match the requirements of the system. The 

frame difference algorithm compares every pixel within two frames 

sequentially, adding their differences to a block. The differential pixel values 

are depicted in Equation (2.32), with ∆n representing the differential value on 

the nth frame and In representing the pixel intensity on the nth frame (Singla 

2014). 

∆𝑛= |𝐼𝑛 − 𝐼𝑛−1| (2.32) 

By comparing the value of ∆n to a threshold that has been specified, the 

object's motion can be calculated after the value of ∆n has been obtained. Most 

of the time, the threshold value is within 15 percent of the range of the 

observed pixel intensity. Therefore, the threshold that will be utilized will be 

rounded up to 40 if the range falls within 0-255. The equation below can be 

used to determine the motion represented by (Mn): 

𝑀𝑛 = {
𝐼𝑛, ∆𝑛≥ 𝑡ℎ𝑟
0,          ∆𝑛≤ 𝑡ℎ𝑟

 (2.33) 

Using more than two frames to compare or an adaptive threshold value 

can improve this method. The frame difference method can be broken down 

into a few steps: first, video inputs are collected and converted into frames 

that will be compared; then, the algorithm creates pixel values that represent 

the motion detected on each frame through binarization. This binarization 

would produce frames in black-and-white, with white pixels representing the 

captured motion (Husein et al. 2019). 
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2.9.3 Optical Flow 

Optical flow is a method used to estimate the motion of objects in an 

image. It is based on the idea of tracking the movement of pixels between two 

or more frames of an image sequence. Objects in an image can be identified 

using optical flow, tracking their motion, and estimating their speed and 

direction. It can also be used to estimate the motion of a camera, allowing for 

the creation of smooth transitions between frames (Kolesov et al. 2010). 

2.10 Morphological Operations-Based Image Segmentation  

The term "morphology" usually refers to the biological divisions of 

animal and plant types and structures. In mathematical morphology, the same 

word is used to extract the image components that are useful for describing 

and defining regions such as boundaries, skeletons, and convex shells. 

Morphological processes such as morphological filtering, thinning, and 

pruning are applicable for pre and post-processing (Gonzalez, Woods, and 

Eddins 2009). 

In morphological techniques, small shapes or models called structural 

elements are used. Structural elements are located at every possible location 

in the image and are comparable to the corresponding pixel neighborhood. 

Structural elements are composed of small matrices of pixels and binary 

images, where each pixel has a value of either 0 or 1. The shape of a structural 

element is determined by the arrangement of its 0s and 1s, and typically, one 

of the pixels is designated as the origin of the structural feature. The size and 

center pixel is often called the pattern's origin. The size and center pixel is 

commonly called the structuring feature's origin (Chaki and Dey 2019). 
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2.10.1  Dilation and Erosion 

Morphological image processing involves two important operations: 

dilation and erosion. Dilation involves increasing the size or thickness of 

objects in an image using a structuring element, which determines the specific 

manner and extent of thickening. The dilation of set A by set B, denoted as 

A⊕B, is obtained by translating and reflecting set B and overlaying it on set 

A. The process of dilation is similar to spatial convolution (Gonzalez, Woods, 

and Eddins 2009). A sample of the dilation result is depicted in Figure 2.13. 

 

Figure 2.13 Example of using dilation (a.) original image (b.) binary image 

(c.) dilated image (Chaki and Dey 2019). 

On the other hand, erosion involves decreasing the size or thickness of 

objects in an image using a structuring element, which determines the specific 

manner and degree of shrinkage. The erosion of set A by set B, denoted as 

A⊖B, is defined as the collection of all origin locations for structuring 

elements in which no part of B overlaps the background of A (Gonzalez, 

Woods, and Eddins 2009). An example of erosion is shown in Figure 2.14. 

 

Figure 2.14 Example of using erosion (a.) original image (b.) binary image 

(c.) eroded image (Chaki and Dey 2019). 

2.10.2  Opening and Closing 

Dilation and erosion are frequently used in combination in image 

processing applications. The image is submitted to a series of dilations and/or 

erosions with the same or sometimes different structural elements. The 
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morphological opening of set A by set B, denoted as A○B, is obtained by first 

performing erosion on set A using set B and then dilating the result using set 

B (Gonzalez, Woods, and Eddins 2009). The opening operation creates gaps 

between connected regions within an image. Once the connected regions 

within an image are opened using a particular structuring element, further 

image opening using the same structuring element has no effect (Chaki and 

Dey 2019). 

On the other hand, the morphological closing of set A by set B, denoted 

as A●B, is obtained by first performing dilation on set A using set B and then 

erosion of the result using set B (Gonzalez, Woods, and Eddins 2009). The 

closing operation is used to fill or connect holes in image regions while 

preserving the initial size of the region. Once the holes are connected in the 

image using structural elements, further closing the image using the same 

structural element has no effect (Chaki and Dey 2019). Figure 2.15 illustrates 

the differences between opening and closing. 

 

Figure 2.15 Example of opening with closing (a.) original image (b.) opening 

result (c.) closing result (Gonzalez, Woods, and Eddins 2009). 

2.10.3  Filling Holes 

The Morphological Reconstruction technique has numerous practical 

uses, including selecting marker and mask images. For example, suppose a 

binary image is represented by I and a marker image is represented by F. F 

will be set to 0 everywhere except on the image's border, where it is set to 1- 
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I (Gonzalez, Woods and. Equation (2.34) can represent this. The result is a 

binary image with all holes filled and equal to I, as shown in Figure 2.16. 

𝐹(𝑥, 𝑦) = {
1 − 𝐼, 𝑖𝑓 𝑓(𝑥, 𝑦) 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑜𝑟𝑑𝑒𝑟 𝑜𝑓  𝐼

0,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (2.34) 

 

(a)                                             (b) 

Figure 2.16 Example of filling effect (a.) original image (b.) filling holes result 

(Morphological Operations (Image Processing Toolbox) 2022). 

2.11 Camera Parameter Calibration  

Calibrating a camera is important for many computer vision and image 

processing applications, such as 3D reconstruction, object tracking, and 

augmented reality. Accurate calibration allows for precise measurements, 

accurate reconstructions of 3D scenes from 2D images, and robust tracking 

and registration of objects in different images. 

There are several methods for calibrating a camera, such as Tsai’s 

method (Tsai 1987) and Sturm’s method (Sturm and Maybank 1999) but one 

of the most widely used and convenient methods involves using a 

checkerboard pattern (Z. Zhang 2000) of known dimensions and orientations.  

2.11.1  Checkerboard Calibration  

Calibration pattern (Z. Zhang 2000) is a fundamental technique in 

computer vision and image processing used to estimate the intrinsic and 

extrinsic camera parameters. It involves using a  pattern of known dimensions 
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and orientations. There are several patterns, such as asymmetric circles grid 

patterns, symmetric circles grid patterns, and regular checkerboards 

(Calibration Patterns - MATLAB & Simulink 2023). The pattern choice 

depends on the specific application and the calibrated camera characteristics. 

However, regular checkerboards are the most commonly used pattern because 

they are simple to generate and provide accurate results for many applications. 

It consists of a grid of black and white squares arranged in a regular pattern. 

The size of the squares and the number of squares in each row and column 

can vary depending on the application and the camera resolution, as shown in 

Figure 2.17. 

 

Figure 2.17 Regular checkerboard pattern  

The method of detecting corners in the regular checkerboard pattern for 

camera calibration is typically done using  the "corner detection algorithm." 

This algorithm works by identifying the points in the image where the gradient 

of the image changes sharply, indicating the presence of an edge or corner. 

One commonly used corner detection algorithm is the Harris corner 

detector (Harris and Stephens 1998), which is based on computing the 

eigenvalues of the image gradient matrix. The algorithm first computes the 

gradient of the image using the Sobel or Scharr operator. Then, each pixel in 
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the image computes a score based on the gradient values in the surrounding 

neighborhood. Pixels with high scores are considered corners. 

To apply the corner detection algorithm to the regular checkerboard 

pattern, the algorithm looks for the corners where the black and white squares 

meet in the checkerboard. Once the corners are detected, the algorithm can 

compute the intrinsic and extrinsic camera parameters using mathematical 

models, such as the pinhole or perspective projection models. Estimating 

these parameters involves minimizing the reprojection error, which measures 

the difference between the observed image points and the corresponding 

projected points from the estimated camera parameters. 

2.11.2  Pinhole Camera Model 

The pinhole camera model is a mathematical representation of how 

light travels through a small aperture and forms an image on a flat surface. 

This model is used extensively in computer vision and image processing 

applications, including camera calibration, as shown in Figure 2.18. 

The pinhole camera model has two main components: intrinsic 

parameters and extrinsic parameters. The intrinsic parameters describe the 

internal properties of the camera, such as the focal length, principal point, and 

distortion coefficients. The extrinsic parameters describe the position and 

orientation of the camera relative to the world coordinate system. 
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Figure 2.18 Pinhole camera model 

2.12 Performance Measurements 

Quality indicators concerning previous related work must be measured to 

determine new technologies' effectiveness and reliability. 

Four elements forms are typically considered when measuring 

performance using confusion matrix criteria (Saponara, Elhanashi, and 

Gagliardi 2021):  

• The true positives (TP) refer to the number of flame/smoke frames that 

were correctly identified as flame/smoke. 

• The true negatives (TN) refer to the number of non-flame/smoke frames 

that were correctly identified as non-flame/smoke. 

• The false positives (FP) refer to the number of flame/smoke frames that 

were incorrectly identified as non-flame/smoke. 

• The false negatives (FN) refer to the number of non-flame/smoke 

frames that were incorrectly identified as flame/smoke. 
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Equations (2.35) – (2.37) are used to calculate performance measures. 

These measures include recall, precision, and accuracy, which respectively 

refer to the percentage of real positive frames correctly identified as positive, 

the ratio of true positive frames correctly detected, and the ability to 

discriminate between true positive and true negative pixels.  

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.35) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.36) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃
 (2.37) 
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Chapter Three:  The Proposed System of Fire Detection 

 

3.1 Introduction  

Fire is a significant source of danger and destruction, with the potential 

to cause significant harm to property, lives, and the environment. One of the 

main problems with fire is its ability to spread rapidly, making it challenging 

to contain or extinguish once it starts. Additionally, fires can be highly 

destructive, causing extensive damage to buildings and other structures and 

harm to people and animals. 

Traditional methods of fire detection systems are based on smoke 

detectors. Although this method is reliable for buildings with low ceilings, it 

is inefficient for huge closed sectors with high ceilings and open areas. 

Recently, artificial intelligence technologies, computer vision, and image 

processing have been widely used in many applications; One of these 

applications that can employ these techniques is fire detection. So, the 

proposed approach in this work is based on computer vision to detect fire at 

the first moments of occurrence automatically. Therefore, the proposed 

approach is suitable and efficient for outdoor and huge indoor areas.  

The proposed system of fire detection combined two approaches flame 

and smoke detection. The first approach detects the color of the fire, whether 

flame or smoke. The second approach detects the motion of fire elements such 

as flame and smoke. Figure 3.1 shows a general block diagram of the proposed 

method. First, the input video in RGB color space is captured from online 

cameras or entered from the computer's storage. Next, it is framed as separated 

RGB images and decomposed in the preprocessing stage. Then, the 

decomposed frames are entered into the color and motion detection stages to 
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obtain specific fire features. After that, the processed frames for the color and 

motion stages are processed morphologically to remove small and unwanted 

objects. Finally, the area of the detected fire is computed to decide, based on 

the threshold, if it is a real fire or not. 

 

Figure 3.1 Block diagram of the proposed system  

3.2 Preprocessing 

The preprocessing stage is used to facilitate the next stage of operation. 

It includes video file entering and framing, LWT, and noise removal. Figure 

3.2 shows the steps of the preprocessing stages. The steps  of preprocessing 

are shown below: 

 

Figure 3.2 The steps of the preprocessing 
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3.2.1 Video File Entering and Framing 

When a video file is entered into the system, it is typically broken down 

into individual frames from 1 to Z, each with  a size J×K×3. Where Z 

represents the video length and J, K represent the row and column frames. 

Each frame represents an RGB image, which is further processed to extract 

specific information or features. One common way to process video frames is 

to extract the individual red, green, and blue (RGB) layers. 

Each pixel in an image can be represented by a combination of red, 

green, and blue values. These values can be extracted from the video frames 

using the following equations: 

𝑅𝑒𝑑𝑖 = 𝐹𝑟𝑎𝑚𝑒𝑖(1: 𝐽, 1: 𝐾, 1), 𝑖 = 1,2, … . . , 𝑍 (3.1) 

𝐺𝑟𝑒𝑒𝑛𝑖 = 𝐹𝑟𝑎𝑚𝑒𝑖(1: 𝐽, 1: 𝐾, 2), 𝑖 = 1,2, … . . , 𝑍 (3.2) 

𝐵𝑙𝑢𝑒𝑖 = 𝐹𝑟𝑎𝑚𝑒𝑖(1: 𝐽, 1: 𝐾, 3), 𝑖 = 1,2, … . . , 𝑍 (3.3) 

3.2.2 Lifting Wavelet Transform 

The integer lifting wavelet transform is a fast and efficient method for 

decomposing a signal or image into its frequency components. It is 

particularly useful for image and video compression, and signal processing 

applications. In the first stage of the preprocessing, the one-level integer Haar 

lifting wavelet transform (Int-to-Int-HLWT) is applied to each layer of the 

RGB color space in 2D form, as shown in Figure 3.2. The purpose of using 

the Int-to-Int-HLWT was to reduce the input frame size and data to 75% while 

saving the important data features; Figure 3.3 shows the applied Int-to-Int-

HLWT on the original frame. 

A few steps are required to be followed when using Int-to-Int-HLWT  

transformer in a proposed system;  they are the following steps: 
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(a) 

                   (b)                           (c) 

 

 

 

 

 

                                          (d) 

 

 

 

 

 

                        (e) 

Figure 3.3 Example of the LWT process (a.) The original RGB Framei  (b.) 

lower band (c.) horizontal band (d.) vertical band (e.) diagonal band. 

1.  Each layer (Redi, Greeni, and Bluei) from the Framei is divided into 

blocks of size 2 × 2. 

2. Employ Equation (2.15) to transform blocks based 2D Int-to-Int-

HLWT. 

3. From each transformed block, four sub-bands are obtained. The first 

one represents the approximation sub-band that contains the most 
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important information. This band contains whole features of low 

frequencies, as shown in Figure 3.3 (b). The remaining sub-bands, 

which include the horizontal, vertical, and diagonal detail sub-bands in 

Figure 3.3 (c, d, and e), contain high-frequency information and 

represent the fine details in the image. 

4. The resulting approximation sub-bands are combined to reconstruct the 

compressed new layers to form the new RGB frame with a size of 25% 

of the original size without losing any important feature of the original 

frame. 

3.2.3 Median Filter 

The median filter is a common digital non-linear filter for removing 

noise from an image. It replaces each pixel in the image with the median value 

of the pixels in a neighborhood around it. In the second preprocessing stage, 

the median filter removes noise or eliminates a single or few pixels. To use 

the median filter in the proposed system, the following steps are followed: 

1. Each layer (Redi, Greeni, and Bluei) from Framei has "salt and pepper" 

noise that added to demonstrate median filter processing. 

2. Define the neighborhood size around each pixel that will be used to 

calculate the median value. The suitable window size is 3 × 3. 

3. Iterate through each pixel in the layer and calculate the median value of 

the pixels within the defined neighborhood for that pixel. 

4. Replace the original value of each pixel with the calculated median 

value. 

5. Repeat the process for all pixels in the layer. 



Chapter Three 

 

59 

 

6. The filtered Framei in the new RBGN color space can be used for further 

analysis or processing. Figure 2.3 shows the removal of noise by using 

the median filter. 

3.3 Fire Color Detection 

This work proposes two approaches for detecting the color of the flame 

depending on the type of threshold: the first is characterized by the ability to 

detect the color of the flame in outdoor locations. In contrast, the second is an 

adaptive method for different locations (indoor and outdoor). For smoke 

detection, a multi-threshold method is suggested for detecting different colors 

of smoke. 

3.3.1 Smoke Color Detection  

Smoke is characterized by its color, which can vary from a whiteish 

gray to a blackish gray. Despite the wide range of colors within the smoke 

class, color remains a prominent feature for smoke detection. RGB frames are 

commonly used for this purpose, as is seen in Figure 3.5. However, one 

drawback of using this color space for detecting flames and smoke is that the 

sky and flame pixels may appear oversaturated in the R and G channels due 

to the lack of separation between luminance and chrominance, as is seen in 

Figure 3.4. International Commission on Illumination CIE L*a*b* color space 

transformation is used to solve this problem in a new and better way.  

To detect the color of smoke in a proposed system, these steps have 

been performed as shown in Figure 3.5: 
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Figure 3.4 The flame and smoke RGBN frame and splitted R-G-B layers at outdoors. 

(a.) ogrinal RGBN frame (b) R layer. (c) G layer. (d) B layer. 

 

Figure 3.5 Flowchart of the smoke detection based color. 

1. The color space transformation from RGBN color space to CIE L*a*b* 

color space and the transformation equations are written in Equations 

(2.7) and (2.8). 

2. Use the CIE L*a*b* color space's multi-threshold to segment the frame. 

The result is the region of the smoke-based color (Regcolor) in CIE 
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L*a*b* color space, which represents the foreground, while the 

background represents non-color smoke, as shown in Figure 3.6 for 

indoor and outdoor places. Then, the multi-thresholds are applied for 

each frame according to the following Equations: 

 
 

 
 

(a) 

  

(b) 

Figure 3.6 Smoke detection based on CIE L*a*b*. (a.) RGBN and detected 

smoke frames for outdoor (b) RGBN and detected smoke frames for indoor 

             𝑡ℎ𝑟𝑙𝑜𝑤𝑗 ≤ 𝐿𝑚𝑎𝑠𝑘𝑗
 ≤   𝑡ℎ𝑟ℎ𝑖𝑔ℎ𝑗        𝑗 = 1,2,3 

             𝑡ℎ𝑟𝑙𝑜𝑤𝑗 ≤ 𝑎𝑚𝑎𝑠𝑘𝑗
 ≤   𝑡ℎ𝑟ℎ𝑖𝑔ℎ𝑗        𝑗 = 1,2,3 

                             𝑡ℎ𝑟𝑙𝑜𝑤𝑗 ≤ 𝑏𝑚𝑎𝑠𝑘𝑗
 ≤   𝑡ℎ𝑟ℎ𝑖𝑔ℎ𝑗        𝑗 = 1,2,3 

(3.4) 

           𝐿𝑎𝑏𝑚𝑎𝑠𝑘𝑗
=  𝐿𝑚𝑎𝑠𝑘𝑗

 ×  𝑎𝑚𝑎𝑠𝑘𝑗
 ×  𝑏𝑚𝑎𝑠𝑘𝑗

       𝑗 = 1,2,3 
 

(3.5) 

       𝑅𝑁𝑒𝑤𝑗
=   𝐿𝑎𝑏𝑚𝑎𝑠𝑘𝑗

 ×  𝑅𝑒𝑑            𝑗 = 1,2,3  (3.6) 
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  𝐺𝑁𝑒𝑤𝑗
=   𝐿𝑎𝑏𝑚𝑎𝑠𝑘𝑖

 ×  𝐺𝑟𝑒𝑒𝑛         𝑗 = 1,2,3            

       𝐵𝑁𝑒𝑤𝑗
=   𝐿𝑎𝑏𝑚𝑎𝑠𝑘𝑗

 ×  𝐵𝑙𝑢𝑒             𝑗 = 1,2,3 
 

𝑅𝐺𝐵𝑁𝑒𝑤 𝑗 = 𝑐𝑜𝑚𝑏𝑖𝑛 (𝑅𝑁𝑒𝑤𝑗
,   𝐺𝑁𝑒𝑤𝑗

, 𝐵𝑁𝑒𝑤𝑗
) 

𝑅𝐺𝐵𝑁𝑒𝑤 =  ∑ 𝑅𝐺𝐵𝑁𝑒𝑤𝑗
         𝑗 = 1,2,3 

(3.7) 

where thrlow and thrhigh represent the low and high thresholds that give 

the binary mask and are used to select certain values from the original 

data. New represents the new value of R, G, and B, where some value 

was selected from the overall value after applying the binary mask. 

       Table 3.1 includes the value of the multi-thresholds (static 

thresholds) of the CIE L*a*b* depended on the trial-and-error method. 

These thresholds represent the smoke color gradation from whitish gray 

to blackish gray. The steps of the smoke color detection-based CIE 

L*a*b* color space are shown in Figure 3.7.  

Table 3.1 The multi-thresholds of CIE L*a*b* to detect smoke colors 

Thresholds 

The rules 

First thresholds Second threshold Third threshold 

𝑹𝒖𝒍𝒆 𝟏 : L (
Low: 0.058
High: 98.32

) (
Low: 87.955

High: 100
) (

Low: 8.876
High: 63.748

) 

𝑹𝒖𝒍𝒆 𝟐 : a (
Low: −8.067
High: 4.853

) (
low: −2.211
high: 5.546

) (
Low: −2.377
High: 2.773

) 

𝑹𝒖𝒍𝒆 𝟑 : b (
Low: −24.653 
High: −9.788

) (
Low: −9.359

High: 3.12
) (

Low: −10.399
High: 4.065

) 
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Figure 3.7 The smoke color detection based on CIE L*a*b* color space 

3. Convert the frame to binary to qualify for the morphological processes 

and combine it with motion detection. The bitwise AND operation is 

used to merge the results of these two detection processes. It operates 

on the corresponding bits of two binary numbers. Compares each bit of 

the first operand to the corresponding bit of the second operand. If both 
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bits are 1, the corresponding result bit is set to 1. Otherwise, the 

corresponding result bit is set to 0. 

             Figure 3.8 shows the binary frames in which the white pixels 

represent the smoke color or a color similar to the smoke color. 

 

(a) 

 

(b) 

Figure 3.8 Binary frame represents the smoke color  (a.) For outdoor place. 

(b.) For indoor place. 

3.3.2 Flame Color Detection based on Non-Adaptive Thresholds 

Fire is characterized by its color, which can change depending on the 

material burned. The RGB color model has less computational complexity 

than other color models, but the HSV and YCbCr color models are often 

preferred due to their ability to provide a more human-centric way of 

describing colors. The proposed method for flame color detection integrates 

the HSV and YCbCr color spaces to determine potential fire zones using a 

static or non-adaptive threshold. The integration of the two colors increases 
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the accuracy of fire color detection. In outdoor places, the static threshold is 

used to detect the color of the flame because it requires less complexity and, 

thus, less processing time. To detect the color of the flame in the proposed 

system, these steps have been performed as shown in Figure 3.9: 

 

1. The color space transformation from RGBN color space to HSV color 

space and YCbCr color space, for which the transformation equations 

are written in Equations (2.3), (2.4), (2.5), and (2.6). 

2. Segment the frame using a static threshold in the HSV color space. The 

result is the region of the flame-based color (Regcolor) in HSV color 

space, representing the foreground, while the background represents 

non-color flame, as shown in Figure 3.10. The static thresholds are 

applied for each frame according to the Equations below: 

 

 

 

 

 

(a) (b) 

Figure 3.10 Flame detection based on HSV (a.) RGBN for outdoor (b.) 

detected flame. 

Figure 3.9 Flowchart of the non-adaptive flame color detection 
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             𝑡ℎ𝑟𝑙𝑜𝑤 ≤ 𝐻𝑚𝑎𝑠𝑘  ≤   𝑡ℎ𝑟ℎ𝑖𝑔ℎ 

             𝑡ℎ𝑟𝑙𝑜𝑤 ≤ 𝑆𝑚𝑎𝑠𝑘  ≤     𝑡ℎ𝑟ℎ𝑖𝑔ℎ  

                                           𝑡ℎ𝑟𝑙𝑜𝑤 ≤ 𝑉𝑚𝑎𝑠𝑘  ≤   𝑡ℎ𝑟ℎ𝑖𝑔ℎ  

(3.8) 

           𝐻𝑆𝑉𝑚𝑎𝑠𝑘 =  𝐻𝑚𝑎𝑠𝑘   ×  𝑆𝑚𝑎𝑠𝑘  ×  𝑉𝑚𝑎𝑠𝑘 
 

(3.9) 

       𝑅𝑁𝑒𝑤 =  𝐻𝑆𝑉𝑚𝑎𝑠𝑘  ×  𝑅𝑒𝑑    

𝐺𝑁𝑒𝑤 =   𝐻𝑆𝑉𝑚𝑎𝑠𝑘  ×  𝐺𝑟𝑒𝑒𝑛          

       𝐵𝑁𝑒𝑤 =   𝐻𝑆𝑉𝑚𝑎𝑠𝑘  ×  𝐵𝑙𝑢𝑒  

𝑅𝐺𝐵𝑁𝑒𝑤 = 𝑐𝑜𝑚𝑏𝑖𝑛 (𝑅𝑁𝑒𝑤 , 𝐺𝑁𝑒𝑤 , 𝐵𝑁𝑒𝑤) 
 

(3.10) 

where thrlow and thrhigh represent the low and high thresholds that give 

the binary mask and are used to select certain values from the original 

data. New represents the new value of R, G, and B, where some value 

was selected from the overall value after applying the binary mask. The 

values of the thresholds are written in Table 3.2 depended on the trial-

and-error method: 

Table 3.2 The threshold of HSV to detect flame color 

           Threshold 

The rules  
thrlow thrhigh 

Rule 1: H 0 0.2 

Rule 2: S 0.47 0.98 

Rule 3: V 0.7 0.98 

 

The steps for flame color detection in the HSV color space are 

illustrated in Figure 3.11. 
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3. Segment the frame using the YCbCr color space equations; the color of 

flames can be represented in the YCbCr color space, with the 

foreground representing the color of the flames and the background 

representing non-flame colors, as shown in Figure 3.12. Since the 

brightness of the flame is greater than chrominance-blue, and 

chrominance-red is larger than chrominance-blue, this can easily be 

observed from the frames shown in Figure 3.13 for flame regions. 

Therefore, rule one can be formulated as follows: 

Figure 3.11 The flame color detection based on HSV color space. 

 

 

 

 

 



Chapter Three 

 

68 

 

 

 

 

 

 

 

 

(a)              (b)            (c) (d) 

Figure 3.13 The flame and smoke RGBN frame and splitted Y-Cb-Cr layers 

at outdoors. (a.) original RGBN  frame. (b.) Y layer. (c.) Cb layer. (d.) Cr layer 

 

            𝑅𝑢𝑙𝑒 1 ∶ 

𝐹(𝐽, 𝐾) = { 
1, 𝑖𝑓 𝑌(𝐽, 𝐾) >  𝐶𝑏(𝐽, 𝐾) 𝑎𝑛𝑑  𝐶𝑟(𝐽, 𝐾) > 𝐶𝑏(𝐽, 𝐾)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑎𝑖𝑠𝑒                                                            
 
(3.11) 

(a)  (b) 
 

Figure 3.12 Flame detection based on YCbCr (a.) RGBN for 

outdoor (b) detected flame. 
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In addition to Equation (3.11), the average values of the Y, Cb, and Cr 

components in the overall frame, Y-mean, Cb-mean, and Cr-mean, also 

contain valuable information. The flame region is often the brightest 

area in the image. Specifically, the value of the Y component in the 

flame region is greater than the average Y component of the entire 

frame. In comparison, the value of the Cb component is typically less 

than the average Cb value of the overall frame. Additionally, the Cr 

component in the flame region is larger than the average Cr component 

(Çelik and Demirel 2009), which can be summarized in the following 

rule: 

            𝑅𝑢𝑙𝑒 2: 

𝐹(𝐽, 𝐾) = {
1, 𝑖𝑓 𝑌(𝐽, 𝐾) > 𝑌𝑚𝑒𝑎𝑛  𝑎𝑛𝑑 𝐶𝑏(𝐽, 𝐾) < 𝐶𝑏𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝐶𝑟(𝐽, 𝐾) > 𝐶𝑟𝑚𝑒𝑎𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑎𝑖𝑠𝑒                                                                                              
 

(3.12) 

     𝑌𝑚𝑒𝑎𝑛 =
1

𝑞
∑ 𝑌(𝐽𝑖𝑖 , 𝐾𝑖𝑖)

𝑞
𝑖𝑖=1 ,  𝐶𝑏𝑚𝑒𝑎𝑛 =

1

𝑞
∑ 𝐶𝑏(𝐽𝑖𝑖 , 𝐾𝑖𝑖)

𝑞
𝑖𝑖=1  

and 𝐶𝑟𝑚𝑒𝑎𝑛 =
1

𝑞
∑ 𝐶𝑟(𝐽𝑖𝑖 , 𝐾𝑖𝑖)

𝑞
𝑖𝑖=1  

(3.13) 

The coordinates represent the spatial position of a pixel (𝐽𝑖𝑖 , 𝐾𝑖𝑖), and 

the mean values of the luminance (Y-mean) and chrominance (Cb-

mean, Cr-mean) are also given, with q being the total number of pixels 

in the frame. The number of pixels in frame denoted ii. The region of 

the flame-based color (Regcolor), which corresponds to the pixel indices 

identified by the YCbCr color space, can be obtained by combining 

rules 1 and 2 in the following manner: 

𝑅𝑢𝑙𝑒 3 =  𝑅𝑢𝑙𝑒 1 ∩  𝑅𝑢𝑙𝑒 2 (3.14) 
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Figure 3.14 illustrates the steps for pixel indices identified by the 

YCbCr color space. N represents the new values of YCbCr color space 

obtained by applying the rules to the overall values. 

 

Figure 3.14 The flame pixel indices identified by the YCbCr color space. 

Flame color detection after using the rules of YCbCr color space 

involves the following steps: 

a. Identify the indices of the pixels that satisfy each rule 3. 

b. Create a new zero frame owns the same size as the original RBGN 

frame. 
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c. The pixels that satisfy the rules are copied from the original 

frame RBGN to the new zero frame. 

d. The resulting frame only shows the flame regions. 

4. Convert frames of the flame color detection based on HSV and YCbCr 

color spaces to binary in order to prepare them for morphological 

processing and combining. As shown in Figure 3.15, the resulting 

binary frames have white pixels representing the flame color or similar 

colors to the flame. 

 (a) (b) (c) 
 

Figure 3.15 Binary frame represents the flame color. (a.) orginal frame. (b.) 

HSV; (c.) YCbCr. 

3.3.3 Flame Color Detection based on Adaptive Thresholds 

The second method for detecting flame colors is similar to the first 

method regarding work steps. Still, it uses different methods to calculate the 

threshold (Farshi, Demirci, and Feizi-Derakhshi 2018), as shown in Figure 

3.16. This system is designed to be adaptable to different light intensities to 

distinguish fire from similar objects in any indoor or outdoor environment. 

This is achieved through multi-threshold estimation methods such as Otsu’s 

and Kapur’s criteria objective functions-based particle swarm optimization 

(PSO) and forest optimization algorithm (FOA).  To detect the color of the 

flame in the proposed system, these steps have been performed as shown in 

Figure 3.16: 
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Figure 3.16 Flowchart of the adaptive flame color detection 

1. Find the probability histogram for each layer (Redi, Greeni, and Bluei) 

for the Framei of each gray level from 0 to GG-1. The probability of a 

specific gray level (e) can be defined as: 
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𝑝𝑒 =
ℎ𝑒

(𝐽 × 𝐾)⁄  (3.15) 

where J and K are the dimensions of the frame, and he is the number of 

pixels with gray level e, 0 ≤ 𝑒 ≤  (𝐺𝐺 −  1). 

2. Otsu's between-class variance technique and Kapur's entropy criterion 

approach are the thresholding functions that are most frequently 

chosen. Maximizing the objective function extends Kapur's entropy 

criterion for multilevel thresholding. The histogram's partial 

probabilities range from w0 to wm, and the histogram's partial entropies 

range from H0 to Hm. The number of thresholds is represented by m. 

𝑈(𝑡ℎ𝑟1, 𝑡ℎ𝑟2, … , 𝑡ℎ𝑟𝑚) = 𝐻0 + 𝐻1 + 𝐻2 + ⋯ + 𝐻𝑚 (3.16) 

where    𝐻0 = − ∑
𝑝𝑒

𝑤0
ln

𝑝𝑒

𝑤0

𝑡1−1
𝑒=0 ,    𝑤0 = ∑ 𝑝𝑒

𝑡1−1
𝑒=0   

              𝐻1 = − ∑
𝑝𝑒

𝑤1
ln

𝑝𝑒

𝑤1

𝑡2−1
𝑒=𝑡1

,    𝑤1 = ∑ 𝑝𝑒
𝑡2−1
𝑒=𝑡1

  

              𝐻2 = − ∑
𝑝𝑒

𝑤2
ln

𝑝𝑒

𝑤2

𝑡3−1
𝑒=𝑡2

,    𝑤2 = ∑ 𝑝𝑒
𝑡3−1
𝑒=𝑡2

 

⋮ 

                   𝐻𝑚 = − ∑
𝑝𝑒

𝑤𝑚
ln

𝑝𝑒

𝑤𝑚

𝐺𝐺−1
𝑒=𝑡𝑚

,    𝑤𝑚 = ∑ 𝑝𝑒
𝐺𝐺−1
𝑒=𝑡𝑚

 

 

 

3. Otsu's between-class variance algorithm can also estimate the 

multilevel thresholds for any grayscale image. As a result, the following 

is a description of an objective function with multi-levels thresholding: 

𝑈(𝑡ℎ𝑟1, 𝑡ℎ𝑟2, … , 𝑡ℎ𝑟𝑚) = 𝜎0 + 𝜎1 + 𝜎2 + ⋯ + 𝜎𝑚 (3.17) 

         where                          𝜎0 = 𝑤0(𝜇0 − 𝜇𝑇)2  

                 𝜎1 = 𝑤1(𝜇1 − 𝜇𝑇)2  

              𝜎2 = 𝑤2(𝜇2 − 𝜇𝑇)2 

    ⋮ 
                𝜎𝑚 = 𝑤𝑚(𝜇𝑚 − 𝜇𝑇)2 
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          with 

                   𝑤0 = ∑ 𝑝𝑒
𝑡1−1
𝑒=0 ,    𝜇0 = ∑

𝑒𝑝𝑒

𝑤0

𝑡1−1
𝑒=0  

                   𝑤1 = ∑ 𝑝𝑒
𝑡2−1
𝑒=𝑡1

,    𝜇1 = ∑
𝑒𝑝𝑒

𝑤1

𝑡2−1
𝑒=𝑡1

 

    ⋮ 

                     𝑤𝑚 = ∑ 𝑝𝑒
𝐺𝐺−1
𝑒=𝑡𝑚

,    𝜇𝑚 = ∑
𝑒𝑝𝑒

𝑤𝑚

𝐺𝐺−1
𝑒=𝑡𝑚

 

           and                

               𝜇𝑇 = ∑ 𝑒𝑝𝑒
𝐺𝐺−1
𝑒=0  

Both the means of the classes µ0 to µm and the mean of the entire image 

µT have constraints, where thr1 < thr2 < thr3 < . . . < thrm. 

4. The most common and most recent algorithms have been used even 

though there have been numerous optimization methods. The first 

algorithm is PSO, which is widely used and inspired by the social 

behavior of birds and fish. The PSO method randomly initializes the 

locations of particles in the swarm, and all particles are updated 

according to a specific set of rules in each iteration. Equations (2.43) 

and (2.44) show the rules of PSO, while Table 3.3 includes the values 

of the parameters for PSO used in the proposed system. These values 

selected based on the trial-and-error method. 

Table 3.3 The used parameters of PSO. 

Parameters Values 

Size of the swarm " Number of 

particles." 
Np = 240 

Maximum Iteration Value T-max = 100 

Upper band Ub = 255 

Lower band Lb = 1 

POS momentum or inertia W = 0.98 

PSO parameter R1 R1 = Random [0,1] 
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PSO parameter R2 R2 = Random [0,1] 

PSO parameter C1: individual cognitive C1 = 1.87 

PSO parameter C2: social cognitive C2 = 1.87 

 

5. FOA is the second method used for finding multi-level thresholds. The 

concept behind it draws inspiration from the survival mechanisms of 

trees in a forest. Like some trees that persist for several decades and 

propagate over time, while others have a shorter lifespan, FOA 

simulates the natural method of seed dispersal to recognize exceptional 

trees in a forest that have germinated in the most advantageous 

geographical locations. The steps of FOA are explained in Algorithm 

2.2, and the values of the parameters are listed in Table 3.4 for the 

proposed system. These values selected based on the trial-and-error 

method. 

Table 3.4 The used parameters of FOA. 

Parameters Values 

Maximum number of iterations T-max = 200 

Local seeding changes LSC =1 

Global seeding change GSC =1 

Upper band Ub = 255 

Lower band Lb = 1 

The limitation of the area forest area_limit = 200 

The maximum allowed Age of a tree Life_time = 15 

The percentage of the candidate population for global seeding Transfer_rate = 10 

             Image histogram segmentation uses the optimization 

algorithms listed to find the best threshold values. The process is as 

follows: 
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a. Set the minimum and maximum threshold limits using the 

optimization algorithm's lower and upper bounds. 

b. Initialize m-dimensional positions for each member of the 

population, with dimension values indicating the number of 

thresholds in the order thr1 < thr2 < thr3 < ... < thrm. 

c. Evaluate the objective function of each member of the population 

using Equations (3.16) and (3.17). 

d. Update the threshold values for the individual member. 

e. If the termination conditions are met, the process ends; 

otherwise, return to step c. 

f. The optimal threshold values are the ones that correspond to the 

global best member. 

6. The threshold values calculated for each channel produce subsets of 

color space by dividing the color cube RGBN into smaller cubes or 

prisms. Each pixel in one of the sub-cubes or prisms is part of the same 

cluster. The thresholds of each channel determine the volume of each 

smaller cube or prism, which is unique to each image. As a result, the 

image's pixel intensity distributions are linked to the shapes of sub-

cubes and prisms. Larger volume clusters have less homogeneity. So, 

increasing thresholds to increase cluster homogeneity solves this 

problem. Therefore, the max number of clusters that may be produced 

for a color image is: 

𝑐𝑚 = (𝑚 + 1)3 (3.18) 

Eight sub-clusters are created when one threshold is applied to each 

channel (m = 1). Increasing the threshold to (m = 2) results in 27 sub-
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clusters and (m = 3) in 64 sub-clusters. This pattern continues as the 

threshold value increases. 

7. The color space transformation from RGBN color space to HSV color 

space is used, for which the transformation equations are written in 

Equations (2.3), (2.4), and (2.5). Figures 3.17 and 3.18 illustrate the 

application of three thresholds to each layer in the transformation to the 

HSV color space for all cases, including Otsu, Kapur, POS, and FOA 

for indoor and outdoor places. The region of the flame-based color 

(Regcolor) is shown in blue sky color. 

Figure 3.17 Flame detection is based on HSV clusters with three thresholds for 

outdoors. (a.) Frames1 in RGBN (b.) based on POS-Otsu; (c.) based on POS-Kapur; 

(d.) based on FOA-Otsu; (d.) based on FOA-Kapur. 

 

 (a)  
 (b) 

(c) 

 

 

 

 

                                                                    (d) 

 

                      (e) 
 



Chapter Three 

 

78 

 

          (a)                   (b)                     (c)                   (d)                    (e) 

Figure 3.18 Flame detection is based on HSV clusters with three thresholds 

for indoors. (a.) Frames1 in RGBN (b.) based on POS-Otsu; (c.) based on POS-

Kapur; (d.) based on FOA-Otsu; (e.) based on FOA-Kapur. 

8. Segment the frame using the YCbCr color space equations; all 

information about the process is explained in Section 3.3.2. Figure 3.19 

shows the region of the flame-based color (Regcolor) for indoor and 

outdoor places in the YCbCr color space. 

                                             

 

 

 

 

   (a) 
 

 

 

 

 

 

 

 

(b) 

Figure 3.19 Flame detection based on YCbCr. (a.) RGBN and detected flame 

frames for outdoor (b) RGBN and detected flame frames for indoor. 

9.  Convert the frames of the flame color detection based on HSV and 

YCbCr color spaces to binary in order to prepare them for 

morphological processing and combining. As shown in Figures 3.20, 

3.21, and 3.22, the resulting binary frames have white pixels 

representing the flame color or similar colors to the flame. 
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 (a) 

(b) (c) 

(d) (e) 

Figure 3.20 Binary frames represent the flame color in white pixels for 

outdoor (a.) Orginal RGBN frame (b.) based on POS-Otsu (c.) based on POS-Kapur 

(d.) based on FOA-Otsu (e.) based on FOA-Kapur. 
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         (a)                         (b)                         (c)                        (d)                        (e) 

 

Figure 3.21 Binary frames represent the flame color in white pixels for 

indoor (a.) Orginal RGBN frame (b.) based on POS-Otsu (c.) based on POS-Kapur 

(d.) based on FOA-Otsu (e.) based on FOA-Kapur. 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 3.22 Binary frames represent the flame color in white pixels based on 

YCbCr for (a.) outdoor (b.) indoor. 
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3.4 Motion Detection 

Flames, in general fires, are typically reddish in color. The color model 

can be made to detect flames. Regrettably, some flame-like areas in the image 

may have a similar color as the flame, and these flame-like regions are 

typically extracted from the image as real flames. Two situations cause these 

fire aliases: non-fire objects of a similar color as fire and backgrounds lit by 

fire-like light sources. In the first case, objects with a reddish color led to false 

extractions of flames. The second reason for incorrect fire extraction is that 

backgrounds illuminated by burning flames, sun reflections, and artificial 

light significantly impact the extraction, making the process complex and 

unreliable. The key to distinguishing flames and flame-colored objects from 

smoke and smoke-colored objects is the nature of their physical motion. 

Therefore, in order to verify a real burning flame, in addition to the 

color function, the motion function is usually also used. These dynamic fire 

characteristics include sudden flame movement, changing shape, growth rate, 

and oscillation. Smoke and flames are turbulent phenomena. For turbulence, 

the chaotic nature of fire is an important feature. If the silhouettes of objects 

exhibit fast, time-varying behavior, this is a good sign of the presence of fire 

or smoke in the scene. The flame dances around the fire source, and each 

individual pixel in the intermittent region is only considered a fire pixel for a 

small fraction of the time (Yu, Mei, and Zhang 2013a). A method of frame 

differences is used to capture the motion of flames and smoke, which can aid 

in identifying real fires. As a new way, we adopt the improved frame 

difference method. Instead of subtracting frames in order, the subtraction is 

performed after eight frames, where the pixel's flame has undergone the most 

significant change. To detect the motion of the flame and smoke in a proposed 

system, these steps have been performed as shown in Figure 3.23: 
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Figure 3.23 Flowchart of the fire motion detection 

1. The color space transformation from RGBN color space to gray frame, 

for which the transformation equation is written in Equations (2.2). 

2. The subtraction is performed after eight frames, during which the 

pixel's color changes significantly. The value selected based on the 

trial-and-error method. 

𝐹𝑟𝑎𝑚𝑒𝑑(𝑖,𝑖+7) = |𝐹𝑟𝑎𝑚𝑒(𝑖+7) − 𝐹𝑟𝑎𝑚𝑒𝑖| (3.19) 

In the video, the value of the 𝑖𝑡ℎ the frame is represented as 𝐹𝑟𝑎𝑚𝑒𝑖. 

Similarly, the value of the (i+7)th frame is represented as Frame(i+7). 

The differences between the two frames in Figures 3.24 - 3.27 indicate 

smoke and flame movement in indoor and outdoor places. 

Start 

Input  

Processed 

 Framei 

 

RGBN color space to grayscale frame 

transformation 

 

Framed(i,i+7)  = | Frame(i+7) – Framei | 

Convert to binary image 

 
Morphological process 

 

End 

Motion detection (flame and smoke) 

 



Chapter Three 

 

83 

 

(a) (b) (c) 

Figure 3.24 The frame differences result for outdoor. (a.) RGBN  Frame1. (b.) 

RGBN  Frame 8. (c.) the difference between a and b. 

 

 

(a) 
 

(b) 

 

(c) 

Figure 3.25 The frame differences result for indoor. (a.) RGBN  Frame1. (b.) 

RGBN  Frame 8. (c.) the difference between a and b. 

(a) (b) (c) 

Figure 3.26 The frame differences result for outdoor. (a.) RGBN  Frame1. (b.) 

RGBN  Frame 8. (c.) the difference between a and b. 
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(a) (b) (c) 

Figure 3.27 The frame differences result from indoor. (a.) RGBN  Frame1. 

(b.) RGBN  Frame 8. (c.) the difference between a and b. 

3. Convert the frame to binary to qualify for the morphological processes 

and combine it with color detection. In Figure 3.28, the binary frames 

depict white pixels indicating smoke and flame movement in indoor 

and outdoor places. 

 

Smoke outdoor  
 

Smoke indoor 

Flame outdoor 

Flame indoor 

Figure 3.28 A binary frame represents the motion in for smoke and flame 

movement in indoor and outdoor places from Figures 3.24, 3.25, 3.26, and 3.27, 

respectively. 
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3.5 Morphological Process 

The post-processing step involves closing, opening, and filling 

techniques. The morphological operations aim to fill gaps and remove small 

and unwanted objects. Figures 3.29 – 3.34 illustrate the morphological 

processing applied to color and motion detection for flame and smoke in 

outdoor and indoor places. 

 

 

                                (a) 

 

(b) 

Figure 3.30 The morphological process for smoke color detection-based CIE 

L*a*b by static thresholds for (a.) outdoor place (b.) indoor place. 

                        (a)                                           (b)                                          (c) 

(a)  (b)                                      (c) 

Figure 3.29 The morphological process for flame color detection by non-

adaptive thresholds in outdoor places. (a.) Orginal RGBN frame (b.) based on HSV 

(c.) based on YCbCr  
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                                       (d) 

 

 

 

 

 

 

 

  (e) 

Figure 3.31 The morphological process of the adaptive flame detection for 

outdoor (a.) Orginal RGBN frame (b.) based on POS-Otsu (c.) based on POS-Kapur 

(d.) based on FOA-Otsu (e.) based on FOA-Kapur. 

 

 

 

 

 

 

 

 

 

       (a)                    (b)                       (c)                         (d)                         (e) 

 

Figure 3.32 The morphological process of the adaptive flame detection for 

indoor (a.) Orginal RGBN frame (b.) based on POS-Otsu (c.) based on POS-Kapur 

(d.) based on FOA-Otsu (e.) based on FOA-Kapur. 

 

 

 

 

 

 

 

 

 

Figure 3.33 The morphological process of the proposed flame detection for 

indoor based on YCbCr. 
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(a) 

 

 

 

 (b)          (c) 
 

(d) 

Figure 3.34 The morphological process for motion detection. (a.) flame 

outdoor (b.) flame indoor (c.) smoke outdoor (d.) smoke indoor 

The next step involves combining the two-color detection methods for 

flames to identify the regions of interest where the fire is present, referred to 

as Regcolor (J, K, i). The HSV color space detection at the static threshold is 

combined with the YCbCr color space by bitwise AND in the first method for 

flame color detection. The second method combines the HSV color space 

using various techniques, including POS and FOA, with the YCbCr color 

space using a bitwise AND operation to produce four results. Figures 3.35 - 

3.43 show the combination of two-color flame detection for indoor and 

outdoor places. 

 

 

 

                               (a) 

 

 

 

                                 (b) 

 

 

 

                                (c) 

 

 

 

                      (d) 

Figure 3.35 The combination of two colors. (a.) Outdoor place in RGBN -

Frames1. (b. and c.) The color of flame detection based HSV and YCbCr by non-

adaptive thresholds. (d.) The combination between b and c. 
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                                       (a) 

 

 

 

                               (b) 

 

 

 

                                      (c) 

 

 

 

                               (d) 

Figure 3.36 The combination of two colors of flame. (a.) Outdoor place in 

RGBN -Frames1. (b. and c.) based HSV for POS-Otsu and YCbCr (d.) The 

combination between b and c. 

 

 

 

           (a) 

 

 

 

(b) 

 

 

 

                                        (c) 

 

 

 

    (d) 

Figure 3.37 The combination of two colors of flame. (a.) Outdoor place in 

RGBN -Frames1. (b. and c.) based HSV for POS-Kapur and YCbCr (d.) The 

combination between b and c. 

Figure 3.38 The combination of two colors of flame. (a.) Outdoor place in RGBN 

Frames1. (b. and c.) based HSV for FOA-Otsu and YCbCr (d.) The combination 

between b and c. 

 

 

 

 

 

         (a) 

 

 

 

 

 

(b) 

 

 

 

 

                      

      (c) 

    

 

 

 

 

     (d) 
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(a)  

 

 

 

 

 

 

                           (b) 

 

 

 

 

                                  (c) 

 

 

 

 

                           (d) 

Figure 3.39 The combination of two colors of flame. (a.) Outdoor place in 

RGBN -Frames1. (b. and c.) based HSV for FOA-Kapur and YCbCr (d.) The 

combination between b and c.  

(a) 
(b) (c) (d) 

Figure 3.40 The combination of two colors of flame. (a.) Indoor place in 

RGBN -Frames1. (b. and c.) based HSV for POS-Otsu and YCbCr colors (d.) The 

combination between b and c. 
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(a) 
 

(b)     (c) (d) 

Figure 3.41 The combination of two colors of flame. (a.) Indoor place in 

RGBN -Frames1. (b. and c.) detection-based HSV for POS-Kapur and YCbCr colors 

space by non-adaptive thresholds. (d.) The combination between b and c. 

 

(a) (b) (c)       (d) 

Figure 3.42 The combination of two colors of flame. (a.) Indoor place in 

RGBN -Frames1. (b. and c.) based HSV for FOA-Otsu and YCbCr (d.) The 

combination between b and c.  
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(a) 
 

(b) (c)       (d) 
 

Figure 3.43 The combination of two colors of flame. (a.) Indoor place in 

RGBN -Frames1. (b. and c.) based HSV for FOA-Kapur and YCbCr (d.) The 

combination between b and c. 

3.6 Fire Area Detection 

After thoroughly examining the frame difference and color feature of 

fire, it has been determined that using frame difference or color detection 

alone to identify fire would result in a high rate of false alarms. Therefore, 

additional operations that combine the results of both methods must be 

performed effectively to utilize their properties and accurately identify the fire 

region. In additional, the result of the combination is no longer sequential due 

to the improved frame difference method. This method allows fire detection 

in just four frames within one second instead of the usual 30 frames, so the 

method is called selected frame Ns. The new technique speeds up the 

processing time, maintains accuracy, and provides timely alarm notifications. 

Figures 3.44 - 3.54 show the combination between the color and motion fire 

regions Regfire for all methods by Bitwise AND.  

𝑅𝑒𝑔𝑓𝑖𝑟𝑒(𝐽, 𝐾, 𝑖) =  𝑅𝑒𝑔𝑐𝑜𝑙𝑜𝑟(𝐽, 𝐾, 𝑖) ∩ 𝐹𝑟𝑎𝑚𝑒𝑑(𝐽, 𝐾, 𝑖) (3.20) 

When the fire region has been determined, the fire is bound in binary by 

specifying the regions of the flame or smoke and then inserting the green 
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bounding box for the flame and the red box for the smoke, as shown in Figures 

3.45 - 3.55. Finally, the area of the bounded region is computed, which is 

calculated by subtracting the original frame from the bounding frame as a new 

and simple method. When the results of this area are greater than the threshold 

value, they are considered a fire. The area's threshold is not less than 55 for 

flame and 85 for smoke. These values selected based on the trial-and-error 

method.  

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

(d) 

Figure 3.44 Detection of smoke outdoors (a.) colors of smoke detection (b.) 

motion of smoke (c.) combination between a and b. (d.) result in the red box 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 Figure 3.45 Detection of smoke indoors (a.) colors of smoke detection (b.) 

motion of smoke (c.) combination between a and b. (d.) result in the red box 

Figure 3.46 Detection of non-adaptive flame outdoors by (a.) colors of flame 

detection HSV\YCbCr (b.) motion of flame (c.) combination between  a and b. (d.) 

result in  a green box 

 

 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 
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(a) 

 

 

 

 

 

                       (b) 

 

 

 

 

 

(c) 

 

 

 

 

 

                       (d) 

Figure 3.47 Detection of adaptive flame outdoors (a.) colors of flame 

detection POS-Otsu\YCbCr (b.) motion of flame (c.) combination between a and b. 

(d.) result in  a green box 

 

 

 

 

 

(a) 

 

 

 

 

 

                      (b) 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

                            (d) 

Figure 3.48 Detection of adaptive flame outdoors (a.) colors of flame 

detection POS-Kapur\YCbCr (b.) motion of flame (c.) combination between a and b. 

(d.) result in  a green box 
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(a) 

 

 

 

 

 

                        (b) 

 

 

 

 

 

(c) 

 

 

 

 

 

                        (d) 

Figure 3.49 Detection of adaptive flame outdoors (a.) colors of flame 

detection FOA-Otsu\YCbCr (b.) motion of flame (c.) combination between a and b. 

(d.) result in  a green box. 
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                     (b) 

 

 

 

 

 

                 (c) 

 

 

 

 

 

                       (d) 

Figure 3.50 Detection of adaptive flame outdoors (a.) colors of flame 

detection FOA-Kapur\YCbCr (b.) motion of flame (c.) combination between a and 

b. (d.) result in  a green box 

 



Chapter Three 

 

96 

 

(a) (b) (c) (d) 

Figure 3.51 Detection of adaptive flame indoors (a.) colors of flame detection 

POS-Otsu\YCbCr (b.) motion of flame (c.) combination between a and b. (d.) result 

in  a green box. 

 

(a) (b) (c) (d) 

Figure 3.52 Detection of adaptive flame indoors  (a.) colors of flame detection 

POS-Kapur\YCbCr (b.) motion of flame (c.) combination between a and b. (d.) 

result in  a green box. 
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(a) (b) (c) (d) 

Figure 3.53 Detection of adaptive flame indoors by (a.) colors of flame 

detection FOA-Otsu\YCbCr (b.) motion of flame (c.) combination between a and b. 

(d.) result in  a green box. 

 

(a) (b) (c) (d) 

Figure 3.54 Detection of adaptive flame indoors (a.) colors of flame detection 

FOA-Kapur\YCbCr (b.) motion of flame (c.) combination between a and b. (d.) 

result in  a green box 

3.7 Fire Localization 

Fire localization refers to identifying a fire's location within a building 

or outdoor place. This is a critical task for firefighters and other emergency 

responders, as accurate information about the location of a fire can help them 
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more quickly and effectively deploy resources to contain and extinguish the 

blaze. 

In real-time, the flame and smoke detection systems provide the fire's 

position in the current frame in pixels. So, to determine the site of the fire in 

the actual world, a real-world fire localization method comprising two steps 

is introduced. 

Our two-stage method for identifying the location of a fire in real-time 

is depicted in Figure 3.55. The calibration of the camera is the primary goal 

of the first step of the fire-localization. Camera calibration is the process of 

determining a camera's intrinsic and extrinsic parameters. Intrinsic parameters 

refer to camera-specific properties, such as principal point, focal length, and 

distortion coefficients, denoted in pixels by the fx and fy notation for the focal 

length and cx and cy for the principal points. Extrinsic parameters describe the 

camera's position and orientation in the 3D world, which involves 

coordinating system conversions from 3D world coordinates toward 3D 

camera coordinates. The rotation matrix Rot is used to perform a rotation in 

Euclidean space. The transformation matrix Tr represents the camera-centered 

coordinate system's translation of the world coordinate system's origin. The 

transformation matrix Tr is typically a 3 × 1 matrix. 

In comparison, the rotation matrix is a 3 × 3 matrix. Assume J and K 

represent the position of the fire in the video in pixels, and Xrw, Yrw, and Zrw 

represent where the fire is located in the real world. Equation (3.21) is satisfied 

by the relationship between (Xrw, Yrw, Zrw) and (J, K) by the projective 

transformation (Z. Zhang 2021). 

[
𝐽
𝐾
1

] = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] (𝑅𝑜𝑡 [
𝑋𝑟𝑤
𝑌𝑟𝑤
𝑍𝑟𝑤

] + 𝑇𝑟) (3.21) 
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Furthermore, actual lenses--usually have distortion.--After the camera 

calibration, radial distortion has been removed. The radical distortion 

coefficient can make the localization of fire more accurate. 

 

Figure 3.55 The proposed fire localization method. 

 

The following are the steps involved in the fire localization system: 

1. Use a calibration pattern (checkerboard technique) to calibrate the 

camera. This pattern should be placed at different distances from the 

camera to calculate the camera's intrinsic and extrinsic parameters 

accurately. 

2. Capture multiple images of more than 10 images of the calibration 

pattern from different angles and positions. Make sure that the pattern 

is fully visible in all images. 

3. Use camera calibration software MATLAB (Using the Single Camera 

Calibrator App - MATLAB & Simulink 2023) to calibrate the camera 

using the images captured in step 2. This will give the intrinsic and 

extrinsic parameters of the camera and radial distortion. 
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4.  From the previous flame and smoke detection systems, the fire position 

in each frame is identified according to the centroid of the bounding 

box. 

5. The fire position point in pixels is mapped, and localization. 

6. Find the inverse of the intrinsic and rotation matrix  (Z. Zhang 2021): 

[
𝑋𝑟𝑤
𝑌𝑟𝑤
𝑍𝑟𝑤

] = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]

−1

𝑅𝑜𝑡−1([
𝐽
𝐾
1

] − 𝑇𝑟) (3.22) 

The real-world point of fire localization is computed from Equation (3.22); 

locating this point depends on the accuracy of camera parameters.
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Chapter Four:  Results and Discussion 

 

4.1 Introduction 

Implementing of a fire detection system is crucial to detecting and 

mitigating the potential harm that fires can cause. These systems can greatly 

enhance the safety of people, property, and the environment. In this chapter, 

the experimental results of the work are presented, analyzed, and compared to 

other related work. The proposed system has been evaluated for its 

performance, including fire detection accuracy and reliability of the systems. 

Furthermore, the four elements of the confusion matrix (TPs, TNs, FPs, and 

FNs) are calculated, as shown in Section 2.11, for comparison with the other 

related work. 

The system has been tested using three groups of datasets from trusted 

sites as well as our own dataset. Both offline and online experimental tests 

have been achieved to examine the suitability of the proposed system for real-

time utilization.    

4.2 Materials and datasets 

MATLAB R2021b, operating on a Windows 10 system for PC laptops, 

is used to implement the proposed fire detection system. The laptop has an 

Intel (R) Core (TM) i7 2.70GHz processor and 16GB of RAM. 

A laptop camera has a resolution of 1280 × 720 and a frame rate of 30 

frames per second is utilized for real-time fire detection. Two main groups of 

video datasets are used in this work, from internet sites and our own. The 

downloaded datasets include 92 fire videos, either smoke based, flame-based, 

or both (A.E. Çetin 2014; Grammalidis, Dimitropoulos, and Cetin 2017; 
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KMU Fire & Smoke Database 2012). The own recorded datasets are either 

captured by a smartphone or Laptop camera.  

These tested videos consist of both actual fire and objects resembling 

fire, such as a sunny field and people wearing clothes colors similar to flame 

and smoke. Also, the tested videos have indoor and outdoor environments. 

4.3 Results of Smoke Detection  

Smoke detection results for indoor and outdoor environments are 

categorized into real-time and recorded video results.  

4.3.1 Real-time Smoke Detection Results 

Real-time tests of smoke detection for various indoor and outdoor 

places are presented in Figure 4.1. Six different smoke videos in different 

regions are used in tests. The videos show smoke in various colors, ranging 

from gray to white, as bound in the red boxes for each video shown in Figure 

4.1. Table 4.1 summarizes the real-time experiment results. The average 

accuracy of the smoke detection system for all six videos computed according 

to Equation (2.37) is approximately 93%. The average system accuracy for 

indoors is 90%, while outdoor accuracy is 94.1%. The contrast between 

indoor and outdoor accuracy is due to the effect of changing the light on the 

smoke.  

 The proposed system on Figure 4.1 (Video 1) and (Video 2) 

demonstrate the system's ability to detect the very low density of the smoke. 

Also, the system can detect different colors of smoke, such as the test video 

(Video 3) and (Video 5). Furthermore, the system can distinguish smoke from 

smoke-colored backgrounds, as seen in Figure 4.1 (Video 6), preventing false 

detections. 
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 The timely identification of fires is of utmost importance, and the 

system being proposed effectively addresses this challenge by swiftly 

detecting smoke in real-time. By integrating the LWT into the system, the 

response time has been significantly improved to less than 0.08 seconds. This 

enhancement has led to a substantial reduction in the overall time required for 

smoke detection, effectively reducing it by more than half from the previous 

duration of 1.6 seconds. 

  

(a)Video 1 

 (b)Video 2 

 (c)Video 3 

 (d)Video 4  (e)Video 5  (f)Video 6 

Figure 4.1 Test results of the real-time smoke detection (a and b) indoors. (c-

f) outdoors. 
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Table 4.1 Evaluation of the real-time smoke detection for indoor and 

outdoor. 

Video 

name 

Number 

of 

frames  

NS  
True 

Positive  

True 

Negative  

False 

Positive 

False 

Negative 

Accuracy 

% 

Video 1 45 6 5 0 0 1 83.3 

Video 2 30 4 4 0 0 0 100 

Video 3 64 8 6 0 2 0 75 

Video 4 50 6 6 0 0 0 100 

Video 5 70 9 9 0 0 0 100 

Video 6 84 11 11 0 0 0 100 

Total 343 44 41 0 2 1 93.1 

Total 

indoor 
75 10 9 0 0 1 90 

Total 

outdoor 
268 34 32 0 2 0 94.1 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 

 

4.3.2 Offline Smoke Detection Results 

Offline tests of our recorded video smoke detection for various indoor 

and outdoor places are presented in Figure 4.2. Three different smoke videos 

in different regions are used in the tests. The videos show smoke in various 

colors, ranging from gray to white, as bound in the red boxes for each video 

shown in Figure 4.2. Table 4.2 summarizes the real-time experiment results. 

The average accuracy of the smoke detection system for all three videos 

computed according to Equation (2.37) is 92.1%. 
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Table 4.2 Evaluation of the offline smoke detection for indoor and outdoor 

Video 

name 

Number 

of frames  
NS  

True 

Positive  

True 

Negative  

False 

Positive 

False 

Negative 

Accuracy 

% 

Video1 30 4 4 0 0 0 100 

Video2 120 15 14 0 1 0 93.3 

Video3 150 19 17 0 2 0 89.4 

Total 300 38 35 0 3 0 92.1 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 

 

The suggested method is compared with previous smoke detection 

systems based on color and other characteristics for the same used dataset in 

this work. The method is compared with the Yang et al. (Jia et al. 2016) 

 (a) Video 1 
 

 

 

 

 

 

 

 

 

(b) Video 2     

 

 

V 

 

 

 

 

 

(c) Video 3 
 

Figure 4.2 Test results of the offline smoke detection for (a) outdoor. (b and c) 

outdoor. 



Chapter Four 

 

106 

 

method, which depends on using CIE L*a*b* color space, optical flow and 

other characteristics where the precision equals 93% for eleven video 

databases from KMU  Fire & Smoke Database and VisiFire (A.E. Çetin 2014; 

KMU Fire & Smoke Database 2012), as shown in Table 4.3. The videos 

features vary smoke colors, shapes, and speeds in indoor and outdoor places, 

as depicted in Figure 4.3. The proposed method's precision  from Equation 

(2.36) reaches up to 96.3% as shown in Table 4.4. The higher precision means 

a lower false alarm. As a result of the poor video quality, videos 6 and 7 had 

lower precision. The precision of the forest videos is nearly 99% in videos 9, 

10, and 11 for both methods (this papers and Yang’s method). These improved 

results are mainly due to using multi-thresholds for smoke color detection. 

Table 4.3 The description of videos. 

 

No. Description 

Video1 Smoke spread quickly across the field. 

Video2 Short distance indoor rapid spread of cotton smoke. 

Video3 Smoke spreads quickly across a field while a person is walking. 

Video4 At a relatively short distance, indoor smoke diffuses slowly. 

Video5 Smoke from a pretty near distance 

Video6 There is smoke in the sky not very far away. 

Video7 Indoor leaf smoke quickly dissipates over a small area. 

Video8 rapid outdoor smoke dispersal at close range. 

Video9 rapid smoke dispersion over a distant low hill. 

Video10 rapid smoke dispersion over a distant low hill. 

Video11 Long distances slow smoke dispersion on low hills. 
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Figure 4.3 The proposed smoke detection using KMU  Fire & Smoke Database and 

VisiFire dataset. 

 

Table 4.4 Results for smoke detection performance comparison. 

Video 

name 

Number of 

frames  
 SN 

True 

Positive  
False Positive 

Precision  

% 

Video1 80 10 8 2 80 

Video2 1446 181 179 1 99 

Video3 2875 359 355 1 99 

Video4 480 60 59 0 100 

Video5 896 112 100 3 97 

Video6 3176 397 345 10 97 

Video7 624 78 70 7 90 

Video8 6084 761 750 9 98 

Video9 2328 291 288 1 99 

Video10 7624 953 366 0 100 

Video11 2888 361 360 0 100 

Total 28501 3563 2880 34 96.3 
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The speed of detecting smoke and recognizing it as a dangerous element 

in camera footage is crucial. Table 4.5 compares the proposed techniques with 

state-of-the-art methods (Gagliardi, de Gioia, and Saponara 2021; Gagliardi 

and Saponara 2020; Toreyin, Dedeoglu, and Cetin 2006; Yu, Mei, and Zhang 

2013b) using the same test video in Figure 4.5. The comparison measures the 

delay in the number of frames to detect smoke. As a result, the new method 

taken in this study is better suited to early detection than the others. 

 

 

 

Table 4.5 Comparison of detection delay in terms of the number of frames 

with the state-of-the-art. 

Videos 

Duration 

(in 

frames) 

Ns 

Delay in smoke detection (in frames) 

(Toreyin, 

Dedeoglu, and 

Cetin 2006) 

(Yu, 

Mei, 

and 

Zhang 

2013b) 

(Gagliardi 

and 

Saponara 

2020) 

(Gagliardi, 

de Gioia, 

and 

Saponara 

2021) 

used 

method 

Video 1 900 113 98 86 9 11 2 

Video 2 244 31 127 121 19 21 3 

Video 3 630 79 132 118 120 39 5 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 

 

                Video 1                              Video 2                                           Video 3 

Figure 4.4 Videos used for comparison with state-of-art smoke detection 

techniques. 
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4.4 Results of Flame Detection based on Non-Adaptive Thresholds 

Flame detection results for the outdoor environment are categorized 

into two types: real-time results and recorded video results. 

4.4.1 Real-time Flame Detection Results 

Real-time tests of flame detection for various outdoor places are 

presented in Figure 4.5. Five different flame videos in different regions are 

used in the tests. The videos depict flames in various places, each with unique 

external factors. The detected flames are enclosed within green boxes. A 

summary of the real-time experimental results are be found in Table 4.6. The 

average accuracy of the smoke detection system for all five videos computed 

according to Equation (2.37) is 94.4%. 

The proposed system on Figure 4.5 (Video 1) and (Video 2) demonstrate 

the system's ability to distinguish the color of the flame from the color of 

sunlight. Furthermore, the system can detect different flame colors, as seen in 

Figure 4.5 (Video 3 and Video 5).  

The timely identification of fires is of utmost importance, and the 

system being proposed effectively addresses this challenge by swiftly 

detecting flame in real-time. By integrating the LWT into the system, the 

response time has been significantly improved to less than 0.12 seconds. This 

enhancement has led to a substantial reduction in the overall time required for 

flame detection, effectively reducing it by more than half from the previous 

duration of 0.24 seconds. 
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Figure 4.5 Test results of the real-time non-adaptive flame detection for outdoors. 

Table 4.6  Evaluation of the real-time non-adaptive flame detection for 

outdoors. 

Video 

name 

Number 

of frames  
NS  

True 

Positive  

True 

Negative  

False 

Positive 

False 

Negative 

Accuracy 

% 

Video 1 49 6 5 0 0 1 83.3 

Video 2 97 12 11 0 1 0 91.6 

Video 3 48 6 6 0 0 0 100 

Video 4 30 4 4 0 0 0 100 

Video 5 67 8 8 0 0 0 100 

Total 291 36 34 0 1 1 94.4 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 

4.4.2 Offline Flame Detection Results 

Offline tests of our recorded video flame detection for various outdoor 

places are presented in Figure 4.6. Three different flame videos in different 

         Video 1 

 

 

 

 

 

 

 

 

 

 

Video 2   Video 3 

 Video 4 

 

 

 

 

 

 

 

 

 

                 Video 5 
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regions are used in these tests. The videos depict flames in various places, 

each with unique external factors. The detected flames are enclosed within 

green boxes. Table 4.7 summarizes the offline experiment results. The 

average accuracy of the flame detection system for all three videos computed 

according to Equation (2.37) is 94.8%. 

Figure 4.6 Test results of the offline non-adaptive flame detection for outdoors. 

Table 4.7 Evaluation of the offline non-adaptive flame detection for outdoors. 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 

 

The system's performance is evaluated using the datasets KMU  Fire & 

Smoke Database and VisiFire (A.E. Çetin 2014; KMU Fire & Smoke 

Database 2012). The datasets have various resolutions, comprising diverse 

scenes, fire environments, and backgrounds. This heterogeneity in the 

environment and background provides an opportunity to effectively assess the 

system's performance. The details of the videos in the dataset are presented in 

 

 

 

 

 

 

Video 1 Video 2 
  

Video 3 

Video 

name 

Number 

of frames  
NS  

True 

Positive  

True 

Negative  

False 

Positive 

False 

Negative 

Accuracy 

% 

Video1 390 49 47 0 1 1 95.9 

Video2 330 41 37 0 1 3 90.2 

Video3 210 26 26 0 0 0 100 

Total 930 116 110 0 2 4 94.8 
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Table 4.8. In order to assess how well the proposed method performs on this 

dataset, a thorough empirical evaluation was conducted, using a total of 7100 

frames sourced from 15 positive and negative video clips found on the 

internet. The frame rate of the video data ranges from 20 to 25 frames per 

second, and the image resolution is 320 × 240 and 400 × 256. A sample of 

these videos is depicted in Figure 4.7. 

Table 4.8 The specification videos used for testing the non-adaptive flame 

detection 

Video 

sequence 

Total 

frames 

Fire 

frames 

Non-Fire 

frames 
Video description 

Video 1 439 433 6 Barbeq 

Video 2 260 260 0 Controlled Environment 1 320 × 240 

Video 3 246 246 0 Controlled Environment 2 320 × 240 

Video 4 208 208 0 Controlled Environment 3 320 × 240 

Video 5 1201 1070 131 Backyard 

Video 6 708 708 0 Fire 1 400 × 256 

Video 7 200 200 0 Forest 1 400 × 256 

Video 8 245 245 0 Forest 2 400 × 256 

Video 9 255 255 0 Forest 3 400 × 256 

Video 10  219 219 0 Forest 4 400 × 256 

Video 11 216 216 0 Forest 5 400 × 256 

Video 12 218 218 0 Forest 6 400 × 256 

Video 13 789 625 164 Highway 640 × 360 

Video 14 1201 1129 72 Field 320 × 240 

Video 15 402 402 0 Farm 320 × 240 

Video 16 357 0 357 Fire moving color car 320 × 240 

 Video 17 306 0 306 Person with fire colored shirt 320 × 240 

Total 7470 6434 1036  
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 The first 15 videos contain a multi-environment fire, while the 

reminder videos contain moving items with fire-like regions to evaluate the 

accuracy of the proposed method. High detection rates and low false alarms 

are crucial for thoroughly evaluating the proposed method.  

 Two different groups of evaluation metrics are employed to assess the 

performance of each method comprehensively. The first set of metrics, which 

includes false negatives, false positives (also referred to as false alarm rates), 

and accuracy from Equation (2.37), is used to compare the proposed system 

with related work (T. C. Chen, Wu, and Chiou 2004; X. F. Han et al. 2017; 

Khalil et al. 2021; Shidik et al. 2013). The second set of metrics, precision and 

recall, from Equations (2.36) and (2.35), is used when the cost of false 

positives is very high. Table 4.8 compares the proposed method's accuracy, 

true negative rate, and false negative rate with state-of-the-art methods. 

Figure 4.7 The proposed non-adaptive flame detection using KMU and VisiFire 

datasets.  

 

The experimental results demonstrate that the method's accuracy about 

98.22%, indicating that the proposed method has good accuracy and performs 

well in various settings. In order to assess the effectiveness of the suggested 
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approach more comprehensively, standard performance evaluation metrics 

such as precision and recall are employed. As seen in Table 4.9, the recall and 

precision of the proposed method exhibit the most favorable performance 

compared to existing methods, except for the recall in the Khalil method 

(Khalil et al. 2021). Based on the experimental results, our proposed method 

demonstrates high accuracy and stability, with a correct rate of approximately 

98%. It has been confirmed that our new approach exceeds previous methods 

in precision. Nevertheless, it is important to note that our algorithms have 

limitations, and low-quality videos may result in a false negative. 

 

 

Table 4.9 Comparison of the proposed system with the related work 

 

Table 4.10 Comparison of the proposed system with the related work in terms of 

recall and precision  

Refrences 
True 

Positive  

True 

Negative  

False 

Positive 

False 

Negative 

Accuracy 

% 

(T. C. Chen, Wu, 

and Chiou 2004) 
5791 643 382 746 85.08 

(Shidik et al. 

2013) 
5167 1267 347 791 78.68 

(X. F. Han et al. 

2017) 
6278 189 431 697 92.59 

(Khalil et al. 2021) 6293 137 1087 41 97.42 

proposed work 790 15 42 86.75 98.22 

Refrencse Recall Precision 

(T. C. Chen, Wu, and Chiou 2004) 0.8859 0.9381 

(Shidik et al. 2013) 0.8672 0.9371 

(X. F. Han et al. 2017) 0.9001 0.9358  
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4.5 Results of Flame Detection based on Adaptive Thresholds 

Flame detection results for indoor and outdoor environments are 

categorized into real-time and recorded video results. 

4.5.1 Real-time Flame Detection Results 

Real-time tests of flame detection for various indoor and outdoor places 

are presented in Figure 4.8. Five different flame videos in different regions 

are used in the tests. The videos depict flames with different backgrounds and 

external influences, and the detected flames are highlighted with green boxes. 

The real-time experiment results are summarized in Tables 4.11 and 4.12. 

These tables included flame detection average accuracy results according to 

Equation (2.37) using Otsu and Kapur objective functions-based PSO and 

FOA criteria.   

 

 (a)Video 1 

 

(b)Video 2 
 (c)Video 3 

(Khalil et al. 2021) 0.9935 0.8527 

proposed work 0.9015 0.9495 
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                            (d)Video 4  

      (e)Video 5 

Figure 4.8 Test results of the real-time adaptive flame detection for (a, b, and 

c) indoor. (d and e) outdoor. 

Table 4.11 Evaluation of adaptive flame detection in real-time by PSO with 

objective functions (Outs and Kapur). 

Video 

name 

Frame 

number 
Ns 

Otsu Kapur 

TP TN FP FN ACC% TP TN FP FN ACC% 

Video 

1 
246 49 48 0 1 0 97.9 48 0 1 0 97.9 

Video 

2 
270 23 23 0 0 0 100 23 0 0 0 100 

Video 

3 
330 41 40 0 1 0 97.5 40 0 0 1 97.5 

Video 

4 
390 31 30 0 0 1 96.7 29 0 2 0 93.5 

Video 

5 
640 80 74 0 2 4 92.5 73 0 3 4 91.2 

Total 1876 224 215 0 4 5 95.9 213 0 6 5 95 

Total 

indoor 
846 113 111 0 2 0 98.2 111 0 1 1 98.2 

Total 

outdoor 
1030 111 104 0 2 5 93.6 102 0 5 4 91.8 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 
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Table 4.12 Evaluation of adaptive flame detection in real-time by FOA with 

objective functions (Outs and Kapur) 

Video 

Name 

Frame 

number 
Ns 

Otsu Kapur 

TP TN FP FN ACC% TP TN FP FN ACC% 

Video 1 246 49 48 0 1 0 97.9 46 0 2 1 100 

Video 2 270 23 23 0 0 0 100 22 0 0 1 95.6 

Video 3 330 41 40 0 1 0 97.5 40 0 0 1 97.5 

Video 4 390 31 30 0 0 1 96.7 28 0 1 2 84.8 

Video 5 640 80 74 0 2 4 92.5 73 0 3 4 91.2 

Total 1876 224 215 0 4 5 95.9 209 0 6 9 93.3 

Total 

indoor 
846 113 111 0 2 0 98.2 108 0 2 3 95.5 

Total 

outdoor 
1030 111 104 0 2 5 93.6 101 0 4 6 90.9 

*Note: Ns the number of the selected, tested frame (see Section 3.6) 

Tables 4.11 and 4.12 show that the Otsu algorithm gives a better 

threshold for flame detection than the Kapur algorithm. The flame detection 

system's accuracy (ACC) about 96% for Otsu and 94% for Kapur.  

The reason for outperforming the Otsu results of Kapur in fire detection 

is the method for calculating the thresholds. First, Otsu's method is based on 

maximizing the between-class variance, which means it tries to find a 

threshold that maximizes the difference between the foreground and 

background regions. This approach is particularly suitable for fire detection 

because fires typically contrast strongly with their surroundings, making it 

easy to differentiate them from the background. On the other hand, Kapur's 

method is based on the concept of entropy, which tries to find a threshold that 

maximizes the entropy of the foreground and background regions, where a 

uniform distribution of intensity fire values. 
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The average accuracy of indoor flame detection beats the average 

outdoor accuracy because the flame seems more visible in low light. The 

system's average accuracy of the indoors is 97.5%. In comparison, the average 

outdoor accuracy about 92.4%.  

The tests for videos such as Figure 4.8 (Video 4) and (Video 5) prove 

the ability of the proposed system to distinguish the color of the flame from 

the color of sunlight. Also, the system can ignore the effect of lights similar 

to fire, as shown in the test video (Video 1). Furthermore, the system can 

detect the small size of a flame, as seen in the test video (Video 3).  

The timely identification of fires is of utmost importance, and the 

system being proposed effectively addresses this challenge by swiftly 

detecting flame in real-time. The integration of the LWT into the system has 

resulted in a significant improvement in response time, reducing it to less than 

0.6 seconds. This enhancement has led to a substantial reduction in the overall 

time required for flame detection, effectively reducing it by more than half 

from the previous duration of 1.2 seconds. 
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4.5.2 Offline Flame Detection Results  

Offline tests of our recorded video flame detection for various indoor 

and outdoor places are presented in Figure 4.9. Three different flame videos 

in different regions are used in the tests. The videos depict flames in various 

places, each with unique external factors. The detected flames are enclosed 

within green boxes. Table 4.13 summarizes the offline experiment results. The 

average accuracy of the flame detection system for all three videos computed 

according to Equation (2.37) for each one is above 96%. Also, the Otsu 

algorithm gives a better threshold for flame detection than the Kapur 

algorithm. The flame detection system's accuracy is more than 97% for Otsu 

and 96% for Kapur. 

 

 

Table 

4.13 

Evaluation of the offline adaptive flame detection for indoor and outdoor. 

 
    (a)Video 1 
 

 
 

(b)Video 2  

 
(c)Video  3 

Figure 4.9 Test results of the offline adaptive flame detection for  (a 

and b) indoor. (c) outdoor. 

Methods 
Video 

name 

Number 

of 

frames  

NS  TP  TN  FP FN 
Accuracy 

% 
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*Note: Ns the number of the selected, tested frame (see Section 3.6) 

 

The system's performance is evaluated using the datasets FireSense 

(Grammalidis, Dimitropoulos, and Cetin 2017) and VisiFire (A.E. Çetin 

2014). The datasets have various resolutions, comprising diverse scenes, fire 

environments, and backgrounds. This heterogeneity in the environment and 

background provides an opportunity to effectively assess the system's 

performance. The details of the videos in the dataset are presented in Table 

4.14. The first 11 videos containing a firing frame are collected from VisiFire 

(A.E. Çetin 2014), while the others have non-fire videos from FireSense 

(Grammalidis, Dimitropoulos, and Cetin 2017). A sample of these videos is 

depicted in Figure 4.10. 

Otsu-PSO 

Video1 60 8 8 0 0 0 100 

Video2 630 79 78 0 0 1 98.7 

Video3 330 41 39 0 0 2 95.1 

Total 1020 128 125 0 0 3 97.7 

Otsu-FOA 

Video1 60 8 8 0 0 0 100 

Video2 630 79 78 0 0 1 98.7 

Video3 330 41 38 0 1 2 92.6 

Total 1020 128 124 0 1 3 96.8 

Kapur-PSO 

Video1 60 8 8 0 0 0 100 

Video2 630 79 77 0 1 1 97.5 

Video3 330 41 38 0 1 2 92.8 

Total 1020 128 123 0 2 3 96 

Kapur-FOA 

Video1 60 8 7 0 1 0 87.5 

Video2 630 79 77 0 1 1 97.5 

Video3 330 41 39 0 2 0 95.1 

Total 1020 128 123 0 4 1 96 
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Table 4.14 The specification that utilized to evaluate the proposed adaptive 

flame detection. 

Video Frame rate Frames Resolution  Fire Notes 

Vid 1 15 260 400 × 256 Yes Controlled1 

Vid 2 15 246 400 × 256 Yes Controlled2 

Vid 3 15 208 400 × 256 Yes Controlled3 

Vid 4 15 200 400 × 256 Yes Forest1 

Vid 5 15 245 400 × 256 Yes Forest2 

Vid 6 15 255 400 × 256 Yes Forest3 

Vid 7 15 219 400 × 256 Yes Forest4 

Vid 8 15 216 400 × 256 Yes Forest5 

Vid 9 2 241 320 × 240 Yes fBackYardFire 

Vid 10 5 236 320 × 240 Yes Fire1 

Vid 11 29.97 140 320 × 240 Yes 
40m PanFire 

20060824 

Vid 12 10 155 320 × 240 No negsVideo2.859 

Vid 13 10 160 320 × 240 No negsVideo3.860 

Vid 14 30 439 480 × 368 No negsVideo5.862 

Vid 15 30 541 640 × 368 No negsVideo7.864 

Vid 16 25 645 640 × 480 No negsVideo9.866 

Vid 17 25 246 360 × 288 No negsVideo10.1072 

Vid 18 25 180 320 × 240 No negsVideo11.1073 

Vid 19 24.46 272 352 × 288 No negsVideo13.1075 

Vid 20 18.51 196 1600 × 1200 No negsVideo16.1077 
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Figure 4.10 The proposed adaptive flame detection using VisiFire datasets. 

 

During the experiment, several metrics were used to evaluate the 

performance of the detection system. These metrics included the true-positive 

rate (TPR) or recall from Equation (2.35), true-negative rate TNR, false-

positive rate (FPR), and false-negative rate (FNR). The (TPR) is determined 

by dividing the number of correctly detected fire frames by the total number 

of video frames as well as the overall number of flame-filled frames. 

Similarly, the (TNR) is calculated by dividing the number of correctly detected 

non-fire frames by the total number of video frames as well as the overall 

number of non-flame-filled frames. On the other hand, the (FPR) is the ratio 

of false positives (instances that are mistakenly classified as positive) to the 

total number of actual negatives. It measures the proportion of negative 

instances that are incorrectly classified as positive. Lastly, the (FNR) is the 

ratio of false negatives (instances that are mistakenly classified as negative) 

to the total number of actual positives. It measures the proportion of positive 

instances that are incorrectly classified as negative. 

Two different groups of evaluation metrics are employed to assess the 

performance of each method comprehensively. The first set of metrics, which 
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includes TPR and FNR, are used to compare the proposed system with related 

work (Ko, Cheong, and Nam 2009; Töreyin et al. 2006; Truong and Kim 

2012; Wahyono et al. 2022). The related work is named as Meth1, Meth2, 

Meth3, and Meth4, respectively. Table 4.15 compares the TPR and FNR of 

the proposed method with state-of-the-art methods for Otsu and Kapur 

objective functions-based PSO and FOA criteria. The second set of metrics, 

which includes TNR and FPR, compares the proposed system with related 

work (Wahyono et al. 2022). Table 4.16 compare the TNR and FPR of the 

proposed method with state-of-the-art methods for Otsu and Kapur objective 

functions-based PSO and FOA criteria. 

Unfortunately, we could not compare our suggested approach to other 

methods for all testing videos due to limited resources and the difficulties of 

doing additional research. Instead, we compared them using the movie they 

used in their experiment. For video testing, 11 VisiFire video were utilized, 

and the results were compared with Wahyono (Wahyono et al. 2022). The 

TPR for our methods outperforms the Wahyono method, as shown in Table 

4.15. Furthermore, compared with three videos, our methods beat Töreyin 

(Töreyin et al. 2006) and Ko (Ko, Cheong, and Nam 2009).  
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Table 4.15 Results of the VisiFire dataset's TPR and FNR comparison, 

expressed as a percentage 

  Video 

 

 

method 

Vid 

1 

Vid 

2 

Vid 

3 

Vid 

4 

Vid 

5 

Vid 

6 

Vi

d 7 

Vid 

8 

Vid 

9 

Vid 

10 

Vid 

11 
Avg 

Meth1 
TPR 34 87.5 73.7 - - - - - - - - 65.1 

FNR 0 4.9 10 - - - - - - - - 4.96 

Meth2 
TPR 55.2 77.7 97.7 - - - - - - - - 76.9 

FNR 2 0 0 - - - - - - - - 0.66 

Meth3 
TPR 94.9 - 95 - - - - - - - - 94.9 

FNR 5.02 - 5 - - - - - - - - 5.01 

Meth4 
TPR 100 100 100 100 100 92.2 100 98.6 98.6 74.8 88.8 95.7 

FNR 0 0 0 0 0 7.8 0 1.4 1.4 25.2 11.2 4.3 

POS-

Otsu 

TPR 100 100 100 100 100 95.4 100 98.9 100 73.9 94.8 96.6 

FNR 0 0 0 0 0 4.6 0 1.1 0 26.1 5.2 3.4 

POS-

Kapur 

TPR 100 100 100 100 100 93.4 100 98.8 100 73.8 92.4 96.2 

FNR 0 0 0 0 0 6.6 0 1.2 0 26.2 7.6 3.8 

FOA-

Otsu 

TPR 100 100 100 100 100 95.4 100 98.9 100 73.9 94.8 96.6 

FNR 0 0 0 0 0 4.6 0 1.1 0 26.1 5.2 3.4 

FOA-

Kapur 

TPR 100 100 100 100 100 93 100 98.7 100 73.7 92.4 96.2 

FNR 0 0 0 0 0 7 0 1.3 0 26.3 7.6 3.8 

 

Also, it is important to test how well the method works with videos 

without fire. In this regard, the proposed method is evaluated using FireSense 

videos and compared with the Wahyono method (Wahyono et al. 2022). The 

presented results in Table 4.16 demonstrate that our proposed method has 
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achieved a TNR value about 96%, surpassing the TNR value of the Wahyono 

approach (Wahyono et al. 2022) of around 38.73%. The proposed system 

reduced the FPR to less than 3.5%, which achieved one of our objectives. 

Table 4.16 Results of TNR and FPR comparison on the FireSense Dataset  

Video 
Wahyono 

Proposed methods 

POS-Otsu POS-Kapur FOA-Otsu FOA-Kapu 

TNR FPR TNR FPR TNR FPR TNR FPR TNR FPR 

Vid 12 27.74 72.26 100 0 100 0 100 0 100 0 

Vid 13 20.62 79.38 100 0 100 0 100 0 100 0 

Vid 14 38.72 61.28 100 0 100 0 100 0 100 0 

Vid 15 33.46 66.54 100 0 100 0 100 0 100 0 

Vid 16 21.71 78.29 91.32 8.68 92.5 7.5 91.32 8.68 92.5 7.5 

Vid 17 34.55 65.45 93.55 6.45 93.55 6.45 93.55 6.45 93.55 6.45 

Vid 18 59.44 40.56 100 0 100 0 100 0 100 0 

Vid 19 66.42 33.58 100 0 100 0 100 0 100 0 

Vid 20 45.92 54.08 83.33 16.67 83.33 16.67 83.33 16.67 83.33 16.67 

Avrg 38.73 61.27 96.467 3.533 96.598 3.402 96.467 3.533 96.598 3.402 

 

4.6 Comparison between the Proposed methods of Flame Detection  

This section compared the accuracy of the two flame detection methods 

from Equation (2.37). The first method depended on the static thresholds of 

the HSV color space, while the second method depended on the adaptive 

thresholds of the HSV color space. The test videos are shown in Figure 4.11. 

Table 4.17 shows the results for accuracy for the two method for indoor and 

outdoor places. For this proposed method, a total of 300 frames are captured 

for each video, and specific frames, namely the four frames, are chosen as an 

example. 
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From Table 4.17, the average accuracy of the indoor test video for static 

thresholds is low compared with adaptive thresholds test video. Furthermore, 

the Otsu algorithm gives better accuracy for flame detection than the Kapur 

algorithm.  

Although the accuracy of the adaptive method is high, the time 

consumption for processing is higher than that of a non-adaptive method. The 

average time spent on fire detection for the adaptive method is 0.6 seconds, 

while the other method is 0.12 seconds. 

 

1 

 

2 

 

3 

(a) 

  

 

4 
 

 

1 

 

2 

 

3 

(b) 

  

 

4 

Figure 4.11 The test video frames (a.) indoor (b.) outdoor 
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Table 4.17 Comparison between the static thresholds HSV and adaptive 

thresholds HSV  

F
ra

m
es

 

la
y
ar

s 
HSV 

static 

threshold 

HSV adaptive 

thresholds POS-

Otsu 

HSV adaptive 

thresholds 

POS-Kapur 

HSV adaptive 

thresholds FOA-

Otsu 

HSV adaptive 

thresholds FOA-

Kapur 

thr1 thr2 thr3 thr1 thr2 thr3 thr1 thr2 thr3 thr1 thr2 thr3 

indoor 

1 

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.15        

0.17 

0.17 

0.35 

0.35 

0.35 

0.52 

0.51 

0.52 

0.17        

0.17 

0.17 

0.36 

0.36 

0.36 

0.53 

0.53 

0.52 

0.17    

0.16 

0.17 

0.35 

0.34 

0.34 

0.52 

0.51 

0.51 

0.17        

0.18 

0.18 

0.34 

0.35 

0.36 

0.52 

0.53 

0.54 

2 

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.17        

0.17 

0.17 

0.35 

0.35 

0.35 

0.52 

0.51 

0.52 

0.17        

0.17 

0.17 

0.36 

0.36 

0.36 

0.52 

0.53 

0.53 

0.18  

0.17 

0.16 

0.35 

0.35 

0.35 

0.52 

0.52 

0.51 

0.18        

0.18 

0.18 

0.36 

0.36 

0.36 

0.54 

0.53 

0.53 

3 

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.17 

0.18 

0.17 

0.35 

0.34 

0.35 

0.52 

0.51 

0.52 

0.17        

0.17 

0.17 

0.36 

0.36 

0.36 

0.53 

0.53 

0.52 

0.17 

0.17 

0.18 

0.34 

0.35 

0.35 

0.51 

0.51 

0.52 

0.18        

0.18 

0.18 

0.35 

0.36 

0.36 

0.53 

0.53 

0.53 

4 

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.17 

0.18 

0.18 

0.35 

0.34 

0.34 

0.52 

0.51 

0.51 

0.16        

0.16 

0.16 

0.35 

0.35 

0.35 

0.52 

0.52 

0.52 

0.16

0.18 

0.17 

0.34 

0.36 

0.36 

0.51 

0.52 

0.53 

0.18        

0.17 

0.18 

0.36 

0.35 

0.36 

0.54 

0.53 

0.53 

ACC 55% 97.5% 96.8% 97.3% 96.6% 

outdoor 

1 

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.19 

0.18 

0.18 

0.36 

0.35 

0.34 

0.52 

0.51 

0.50 

0.16        

0.17 

0.17 

0.35 

0.38 

0.38 

0.53 

0.54 

0.54 

0.19     

0.19 

0.19 

0.36 

0.35 

0.35 

0.52 

0.52 

0.51 

0.16        

0.18 

0.18 

0.34 

0.35 

0.36 

0.53 

0.54 

0.54 

2 

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.19 

0.18 

0.17 

0.36 

0.35 

0.35 

0.52 

0.51 

0.50 

0.17        

0.18 

0.17 

0.35 

0.36 

0.36 

0.53 

0.54 

0.50 

0.19     

0.18 

0.19 

0.36 

0.35 

0.35 

0.53 

0.54 

0.54 

0.18        

0.18 

0.18 

0.36 

0.36 

0.37 

0.53 

0.54 

0.53 

3  

H 

S 

V 

0, 0.2 

0.47, 0.98 

0.7, 0.98 

0.17 

0.16 

0.18 

0.36 

0.35 

0.35 

0.52 

0.51 

0.50 

0.17        

0.18 

0.16 

0.36 

0.35 

0.35 

0.53 

0.54 

0.55 

0.18    

0.19 

0.17 

0.35 

0.35 

0.35 

0.53 

0.53 

0.52 

0.18        

0.18 

0.19 

0.36 

0.36 

0.37 

0.54 

0.54 

0.54 

4 
H 

S 

0, 0.2 

0.47, 0.98 

0.19 

0.16 

0.36 

0.35 

0.52 

0.51 

0.17        

0.18 

0.35 

0.37 

0.53 

0.55 

0.19     

0.19 

0.36 

0.34 

0.52 

0.51 

0.17        

0.18 

0.36 

0.35 

0.54 

0.54 
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V 0.7, 0.98 0.16 0.35 0.51 0.18 0.37 0.55 0.19 0.35 0.52 0.19 0.36 0.54 

ACC 96.4% 98.2% 97.8% 98% 97.7% 

*thr represents the threshold  

4.7 Real-World Fire Localization 

 Actual Coordinates Predicted Coordinates 
Error 

(Meters) 

Place 1 (2.5, 4.7, 0) (2.3, 4.6, 0) 0.22 

Place 2 (3, 3.4, 2.2) (3.3, 3.1, 2) 0.47 
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The proposed system's localization accuracy was evaluated in the final 

experiment by selecting three outdoor locations and employing the laptop 

camera for camera calibration and fire detection to determine the fire's real-

world coordinates. The three different places of fire are shown in Figure 4.12, 

where the camera serves as a reference. Table 4.18 displays the results, which 

indicate an average localization error of 0.42 m. It can also be deduced from 

the table that the error increased as the test location moved further from the 

camera, although the localization error remained under 5 m.  

Place 3 (4.3, 4, 1.5) (3.8, 4.2, 1.3) 0.57 

 Table 4.18 The actual and predicted coordinates of three random locations. 

Figure 4.12 Different videos for fire localization in three places. 

place1 

place 2 
 

Place 3 
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Chapter Five:  Conclusions and Future Work 

 

5.1 Conclusions  

The proposed methods to detect the flame and smoke have used color 

detection in combination with motion detection as well as some 

morphological operation to enhance the detection results. The following 

conclusions can be depicted: 

1. The proposed fire detection system combines color and motion 

detection approaches. It uses RGB video input, which is decomposed 

using LWT to reduce data processing while preserving fire features. The 

decomposed frames are then processing for color and motion detection 

to identify fire characteristics. Morphological post-processing removes 

unwanted pixels, and the detected fire area is calculated and bounded if 

it meets the threshold conditions.  

2. The system employs three threshold types, including static multi-

threshold for smoke detection, non-adaptive threshold for different 

color spaces, and adaptive threshold using optimization algorithms 

based on objective functions like Otsu and Kapur for flame detection. 

3. The proposed approaches of fire detection are suitable for real-time 

indoor and outdoor areas and for multi-fire places with high detection 

rate accuracy.  

4. Using the Int-to-Int-HLWT in preprocessing is reduces the processing 

time without effect to accuracy. The processing time is reduced about 

about 50% compared to the case without using Int-to-Int-HLWT. 
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5. The offline tests utilize the datasets, including KUM, VisiFire, and 

FireSense, as well as our recorded videos. The downloaded datasets 

include 92 fire videos, both smoke- and flame-based.  

6. The offline test achieved about 92% average rate of the correct fire 

detection for the static multi-threshold smoke detection system. In 

contrast, the flame detection system-based non-adaptive threshold 

achieved about 94%. Moreover, the adaptive thresholds flame detection 

system achieved approximately 96%.  

7. Online fire detection is tested in indoor and outdoor places. The indoor 

average accuracy was 90% for the static multi-threshold smoke 

detection system and 97.5% for the adaptive threshold flame detection 

system. The average outdoor fire detection accuracy for the static multi-

threshold smoke detection system, non-adaptive, and adaptive 

thresholds flame detection systems was 94.1%, 94.4%, and 92.4%, 

respectively. The error of fire localization is achieved at less than 0.42 

meters. 

8. The proposed system can detect the smoke of the fire, for different 

densities of the smoke, even for very low densities of smoke under 

sunlight. Furthermore, it can detect smoke for gray and white 

backgrounds. This is because the combination of both color and motion 

detection. 

9. The proposed systems can detect the flame of the fire under the sunlight 

and also for the background that is similar to the flame colors. The 

superiority of the proposed system for flame detection is because the 

color threshold used, which is based on optimization techniques.   

10. The proposed approach of fire localization satisfies high identicality to 

the real word. The approach employs a projective transformation matrix 
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that has the ability to map between frame pixels and real-world 

positions.  

11. The proposed adaptive fire detection system has significantly improved 

in reducing false positives compared to previous work. Implementing 

an optimized thresholding method has enabled the system to distinguish 

between a real fire and a non-fire more accurately, reducing false 

positives by 5%. 

           

5.2 Future Work  

To develop the performance of the present work, we suggest the 

following points of view for future work: 

1. Extend the input of the proposed system to have a multi-camera instead 

single camera in order to increase the accuracy of fire localization in 

the real world. 

2. Thermal camera can be merged with a digital camera for fire detection 

algorithms. 

3. Replace the computer with an advanced microcontroller and the 

Internet of Things (IoT) that controls a complete fire detection and 

fighting system with the help of a special vehicle or drone. 

4. Send firefighters a reliable fire alarm; cellular, Wi-Fi, and satellite 

networks can provide this alarm. Images of the scene, fire status, 

burning materials, and other information can be sent via 

communication channels and the fire alarm message. These 

informations help firefighters themselves prepare before arriving. 
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 الخلاصة

الحرائق في   إلى زيادة  المناخ  القمح.  أدى ارتفاع درجات حرارة  المباني والمزارع وحقول 

مستشعر الدخان القائم على الكشف عن الحرائق غير مناسب للمباني المفتوحة والكبيرة ، والمناطق  

الخارجية. تقترح هذه الرسالة نظامًا لاكتشاف الحرائق وتحديد موقعها استناداً إلى كاميرا فيديو مناسبة  

تحمل التغيرات البيئية مثل الإضاءة والارتباط اللوني بألسنة  للمناطق الداخلية والخارجية التي يمكنها  

 .اللهب والدخان

يعتمد  دقيق.  الحصول على كشف  أجل  نهجين من  بين  المقترح  الحرائق  الكشف عن  يجمع 

الأسلوب الأول على الكشف عن الألوان والثاني يعتمد على كشف الحركة سواء لهب النار أو الدخان. 

من الكاميرا ويتحلل باستخدام مستوى واحد من رفع   RGB م التقاط فيديو إدخاللكلا الطريقتين ، يت 

٪ من حجم الإدخال دون فقدان ميزات النار. 57لتقليل البيانات المعالجة إلى    (LWT)تحويل الموجة  

بعد ذلك ، يتم إدخال الإطارات المتحللة في خوارزميات الكشف عن اللون والحركة لتحقيق ميزات 

لإزالة الكائنات    بالعمليات المورفولجية دة. بعد ذلك ، تتم معالجة إطارات الفيديو الناتجة  حريق محد 

يتم حساب مساحة الحريق المكتشف وتحديدها   إذا كانت ضمن   بمربعغير المرغوب فيها. أخيرًا ، 

العتبة   حد   العتبات مثلحد  تستخدم مناهج النظام المقترحة ثلاثة أنواع من  عتبة الحريق.  حد  شروط  

و  ، الثابتة  و حد  المتعددة   ، المختلفة  الألوان  لمساحة  التكيفية  غير  التكيفية  حد  العتبة  باستخدام  العتبة 

المعتمدين على دالتي    (FOA)وخوارزمية تحسين الغابة    (PSO)خوارزمية تحسين سرب الجسيمات  

 . (Kapur)وكابور (Otsu)اوتسوالهدف 

  النار من خلال معايرة معلمات الكاميرا العكسية وموضع النار بالبكسل.   تحديد موقعتم تحقيق  

العالم   الإطار ومواضع  بكسلات  بين  تعيينها  يتم  التي  الإسقاطي  التحويل  الأسلوب مصفوفة  يستخدم 

ن صور رقعة الشطرنج لتحقيق معلمات الحقيقي. في البداية ، يتم تدريب الخوارزمية على العديد م

 .المعايرة التي تتناسب مع المواضع الحقيقية

لتنفيذ نظام الكشف عن الحرائق المقترح. يتم تحقيق النتائج   MATLAB R2021bتستخدم  

مجموعات البيانات    للفديوات المسجلة. تستخدم الاختبارات  للفيديوات المسجلةالتجريبية للنظام المقترح  

الخاصة  ، بالإضافة إلى مقاطع الفيديو المسجلة    FireSenseو    VisiFireو    KUM، بما في ذلك  

مقطع فيديو نار ، يعتمد على الدخان واللهب. حقق   92البيانات التي تم تنزيلها . تتضمن مجموعات بنا

لنظام  92.1الاختبار في وضع عدم الاتصال حوالي   الحريق  الكشف الصحيح عن  ٪ متوسط معدل 
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اكتشاف الدخان متعدد العتبات الثابت. في المقابل ، حققت العتبة غير التكيفية القائمة على نظام الكشف 

 ٪.96٪. علاوة على ذلك ، حقق نظام كشف اللهب التكيفي حوالي  94لهب حوالي  عن ال

في الأماكن الداخلية والخارجية. كان متوسط    في الوقت الفعلييتم اختبار الكشف عن الحرائق  

٪ لنظام اكتشاف   97.5٪ لنظام الكشف عن الدخان متعدد العتبات الثابت و    90الدقة في الأماكن المغلقة  

لتكيفي. كان متوسط دقة الكشف عن الحرائق الخارجية لنظام الكشف عن الدخان الثابت متعدد اللهب ا

٪ على التوالي. تم  92.4٪ و  94.4٪ و  94.1العتبات ، وأنظمة اكتشاف اللهب غير التكيفية والتكيفية  

 .متر 0.42الحريق عند أقل من  تحديد موقعتحقيق خطأ 

لاكتشاف الحرائق في الوقت الفعلي وبدقة عالية ، سواء   يمكن استخدام النظام المقترح بنجاح

 .في الداخل أو الخارج ، ولظروف بيئية مختلفة
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