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Abstract 

        Thermal images play a crucial role in object detection for various 

applications, including surveillance, security, industrial automation, and 

vehicle navigation, as they can capture thermal signatures. However, 

challenges such as low contrast, fluctuating thermal patterns, and the 

absence of specific thermal datasets require specialized algorithms to 

accurately identify the object and its location. This research explores the 

field of object detection in thermal images, which is a vital aspect for 

applications such as surveillance and autonomous systems.  

     The images used are from Kaggle's website, FLIR ADAS. We used it 

in two different ways for classification and segmentation models.         

This thesis used the Contrast Limited Adaptive Histogram Equalization 

(CLAHE) approach in image processing to improve contrast. This pre-

processing phase attempts to enhance the performance of subsequent 

object recognition algorithms by addressing contrast related issues in 

thermal images 

       The first section of this study is to define a convolutional neural 

network model that can be used in classification situations. Using 659,2 

thermal images, the study evaluates the accuracy, precision, F1 score, 

and recall of the MobileNetV6 and VGG19 architectures. 

      The results showed us that MobileNetV6 had an accuracy of 979 and 

F1 score of 92.69, while VGG19 had an accuracy of 979 and an F1 

score of 92.29.  

This study provides valuable insights into the application of transfer 

learning methods for thermal image classification and provides a 

comprehensive overview of the effectiveness of different algorithms in 

meeting the challenges posed by thermal imaging conditions. 
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         In second section of this study, we take advantage of the YOLOv6 

approach, which has been widely recognized for accurate real-time 

object detection, enhancing detection performance in the challenging 

region of thermal images. The technique was trained using a selected 

dataset contain 1696 images, of which 15,,1 were used for training, 163 

for validation, and 7, for testing. We used this approach to segment 

objects in thermal images. The average accuracy (mAP,3) of 669 of the 

algorithm shows how effective it is. These results confirm that YOLOv6 

is suitable for thermal imaging applications, which are new areas that 

require accurate object detection under extremely hot conditions. 
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1.1 Overview  

        In recent years, thermal cameras have grown more prevalent in 

surveillance systems[1] . Due to its ability to locate objects in low-light and 

nighttime conditions, thermal imaging is a helpful addition to visual imaging 

[1]. Visible imaging differs slightly from thermal imaging in that the former is 

created by the object's reflection of light, whereas the latter is created when 

infrared rays are focused on a specific area by the thermal camera. Thermal 

images of that specific area are created as color maps of images, which vary 

from thermal camera to thermal camera with respect to the intensity of various 

colors[3].  

      Object detection has been attracting increasing amounts of attention in 

recent years due to its wide range of applications and recent technological 

breakthroughs[1]. Object detection and identification are critical components 

for most computer vision systems, determining the effectiveness of many 

applications such as tracking, video surveillance, and images captioning. The 

performance of object detection and recognition is greatly impacted by the 

quality of the extracted features and the robustness of the classifiers. This is 

because there are many factors that can affect how an image appears, such as 

lighting, pose, object reflectance, and intrinsic camera characteristics [1]. 

        In computer vision, object detection is the process of locating an item by 

scanning an image or video [1]. Among the various applications for object 

recognition and classification that have garnered attention are pedestrian 

detection and surveillance. Standard imaging equipment for classic detection 

procedures consists of cameras that operate in the visible area because to the 

strong silhouettes and dramatic contrast in the pictures. Visual cameras are 
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more sensitive to changes in light than thermal cameras, which may operate in 

complete darkness[7].  

        Classification and object localization are the two main elements of object 

detection. Object localization defines the position and size of an object 

instance or instances by defining a bounding box around them[1]. The 

objective of object detection is to ascertain whether an image includes any 

objects of the provided classes and to pinpoint their locations within the picture 

given an image and a collection of object classes, picture classification, which 

solely considers the existence or absence of these objects. Thus, object 

identification is a subtask of semantic segmentation, which is a subtask of 

image classification[9]. Although the detectors provide trade-offs in terms of 

their speed, accuracy, and granularity of the outcomes of detection, the 

decision about the object detection approach is still based on the issue that has 

to be resolved[11]. 

        In the past decade, artificial intelligence (AI) has a significant influence 

on every aspect of human existence. Deep learning is one area of AI that uses 

Artificial Neural Networks(ANNs) for representation learning. In the wider 

family of deep learning architectures, CNNs which are composed of a 

collection of neural network layers, are used for image processing and 

computer vision[11].  A set of hidden layers, an input layer, and an output 

layer make up the structure. After receiving an image as input, CNN analyzes 

and categorizes it. The CNN object detection application was applied in years 

when an arbitrary number of hidden layers were employed for face detection 

[11]. 
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1.1 Problem statement  

       The central research problem is to detect and classify objects within 

thermal images. Thermal imaging presents unique challenges, including 

limited texture information, low spatial resolution, and variations in 

temperature intensity. Consequently, current image analysis techniques, 

primarily designed for visible light images, often struggle to provide reliable 

results in thermal imaging applications. 

1.3 Research aim and objective  

        The main aim to develop deep learning based model. For object detection 

and recognition on thermal images to achieve this aim the following objectives 

should be achieved. 

a. To classify the selected dataset into four main object (person, car, None, 

Mixed (person and car)). 

b. To segment the select data person and car. 

1.1 Challenges  

        The study explores the future possibilities and obstacles in object 

detection in thermal imaging, highlighting the unique challenges compared to 

visual pictures: 

1- Low resolution: Thermal cameras frequently struggle with object 

detection, especially when objects are small and far away. The process 

can also be made more difficult by hazy or unclear boundaries in low-

quality photos. 

1- Limited color information: Thermal images use heat signatures in place 

of color information, and since color information is missing, it may be 
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challenging to distinguish between similar items or minute variations 

within an object class. 

3- Variability in thermal signatures: Various materials have variable 

thermal properties, which lead to diverse thermal signatures for the same 

thing. This makes developing algorithms that can reliably identify and 

classify objects across a broad temperature range difficult. 

1- Background noise: It can become more challenging to correctly identify 

items against their backdrop when using object recognition algorithms 

since thermal photos show heat signatures in their backgrounds. 

1- Environment and lighting effects: Thermal cameras can be affected by 

environmental factors such as changes in the surrounding temperature, 

humidity, and air quality. Accurately identifying and classifying objects 

can be challenging due to noise and distortions caused by these elements 

in thermal images. 

1- Data Scarcity: Lack of big, well-annotated thermal imaging datasets is a 

major obstacle. To build strong machine learning models for thermal 

imaging object detection and segmentation, access to such datasets is 

essential [13],[11]. 

7- Cross-Modality Adaptation: Since thermal images record temperature 

Changes rather than color, effective methods for using existing 

algorithms designed for visible light images to the thermal domain are 

required  [11]. 

1- Object Detection and Localization: Accurate object localization and 

detection in thermal photos pose considerable challenges due to the 

fluctuations in the appearance of objects and the presence of thermal 

noise [1],[11]. 
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9- Semantic Segmentation: Accurate semantic segmentation in thermal 

pictures is a difficult [11],[11]. 

 

1.1 Contributions   

        This thesis focused on improving object detection (classification and 

segmentation) using two separate models to address these problems. These 

barriers include: 

 Classification of objects using MobileNetV1 and VGG19 

 Segmentation of objects using Yolov1 

1.1 Thesis Organization   

         Chapter 1 provides a literature review and an overview of the entire 

argument. The theoretical underpinnings of the working model, which explain 

the organization of the models used in this thesis, an explanation of stacked 

layers and pooling approaches is provided, and the system is assessed using the 

metrics. Chapter Three provides specifics on the proposed technique for 

automatically classifying and segmenting thermal pictures to identify people 

and cars. Chapter Four reports the experimental results of the human and 

automobile segmentation and classification models. The thesis conclusion and 

future initiatives will be discussed in chapter five. 
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 CHAPTER TWO

THEORETICAL BACKGROUND 
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1.1 Overview  

       The object detection system is covered in this chapter. It also explains the 

concept of the techniques used in this system, which are the pre-trained 

convolutional neural network model is (MobileNetV1 and VGG19) and (yolov1), 

in addition to problems with network training. Lastly, the proposed model 

methodology, software testing, and metrics will be discussed. 

1.1 Machine learning 

      A branch of artificial intelligence known as "machine learning" is used to 

simulate or replace human behavior in order to solve issues or implement 

automation [17]. When handling and forecasting huge data, machine learning uses 

learning algorithms to describe the data [11]. Machine learning is distinct from 

traditional programming, where the computer requires input in the form of data and 

instructions in order to create an output. In contrast, for machine learning, 

computers require inputs and outputs in order to create a program [19].  

        The process of learning, or training, is what sets machine learning apart from 

other forms of artificial intelligence. In machine learning algorithms, three 

common forms of data that are used are training, validation and test data. When 

use testing data, algorithms that have already been trained are tested against the 

newly discovered training data to assess how well they perform [11]. 

        Machine learning uses the classification technique to categorize items 

according to specific traits. Based on the data that was learned, prediction or 

regression is used to forecast outputs from input data [11]. Machine learning may 

be applied in a variety of situations, including supervised learning, unsupervised 
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learning. When training data includes outputs that have been recognized is tagged, 

the learning is supervised [11]. 

1.3 Supervised Learning 

        The input and output characteristics are predetermined and labeled in 

supervised machine learning [11]. This strategy is simpler to utilize in learning 

processes since it handles categorize data in this manner. This technology's ability 

to produce data outputs based on current data is most advantageous feature. When 

using this strategy, there is a chance that the classification method will be overly 

rigorous if the training collection does not contain instances that are typical of the 

target class [13]. 

1.1  Deep Learning 

       Deep learning is a branch of machine learning that develops algorithms with 

inspiration from the architecture of the human brain[11]. Alternatively said, deep 

learning is a novel approach to machine learning where a model learns to do 

categorization tasks directly from data (pictures, text, or voice). The term "deep" 

refers to the amount of layers in the neural network, and a neural network design is 

typically utilized to execute deep learning. While deep networks, also known as 

convolutional neural networks (CNN), might contain hundreds of layers, standard 

neural networks typically only have two or three [11].  

     Deep learning can offer accurate results by automatically extracting features 

[11]. Due to the fact that they may run on specialized computer hardware, deep 

learning algorithms are able to handle vast volumes data and is capable of 

continuously enhanced through adding new data. Applications like product 

categorization, software for translation, and natural language processing all require 
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a substantial amount of data [17]. Input layer, hidden layer, and output layer are 

the three layers that make up deep learning, as shown in Figure 1.1. Nodes in the 

input layer hold the input value throughout training and are only able to alter when 

a new input value is supplied. Hidden layers are used for all training and 

recognition tasks, and the number of layers relies on the architecture used to 

discover the best algorithmic mix and reduce output mistakes. In the meanwhile, a 

hidden layer activation function in the output layer shows the outcomes of system 

computations depending on input received [11]. 

 

 

Figure 1.1: General Deep Learning Architecture [19]. 

1.1 Convolutional neural networks (CNN) 

        Convolutional neural networks is the term used to describe networks that 

employ the convolution mathematical methods [31]. CNN is one of the most 

popular deep learning subcategories, is particularly useful for high-dimensional 

data, such photos and movies [31],[31]. CNNs are neural networks that, used 

processing input, give the impression of having a grid-like structure. It includes, 

for instance, data in time series, which depicts a one-dimensional network that is 



 

11 

 

periodically sampled, and digital image data, which displays a pixels-in-two 

dimensions network [31]. As with the formation of the human brain's neural 

communication pattern, the CNN's architecture is influenced by how the visual 

cerebral cortex is organized [33]. Both supervised and unsupervised learning 

methods employ the CNN [31]. The channels, width, height, and number of filters 

are the dimensions in which neurons are put in the layers of CNNs in the most 

fundamental 1D case. A convolution neural network is composed of a number of 

layers, each of which employs a differentiable function to modify the activations or 

outputs of the layer below [31]. 

      In order to overcome image processing challenges when the computer 

recognizes the object in the image, a CNN is utilized. CNN modeling may be 

applied to identification, recognition, classification, and image processing. Data is 

transmitted by the software to patterns that replicate how the nervous system in 

humans works. One kind of deep learning architecture is the CNN, which are 

extensively used in many real-world applications, including image classification 

and pattern recognition [31]. 

       As shown in Figure 1.3, the supervised learning model maps characteristics, 

such as picture categorization, between inputs and outputs that are known to the 

model. 
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Figure 1.3: Building blocks of a CNN [37] 

 

      When a computer has trouble identifying an object in a picture, it uses a CNN 

to address the problem. Image processing, categorization, recognition, and 

identification might all be done using CNN modeling. The program sends data in 

patterns that are similar to how the nervous system functions in humans. Pattern 

recognition and picture classification are two examples of practical applications 

where CNNs, a kind of deep learning architecture, have been frequently used [31]. 

It is a neural network that, for at least one layer, employs a particular 

"convolutional" layer as opposed to a fully connected layer [39]. A special kind of 

linear process is convolution. Convolutional networks are basic neural networks 

with at least one layer that employ convolution instead of conventional array 

multiplication. With convolutional networks, inputs may be processed at various 

spatial scales. Traditional neural networks based on matrix multiplication are 

unable to represent these forms of input [31],[11]. Convolutional layers are 

regarded as the fundamental components that convolutional neural networks 

possess. These layers are made up of a number of filters, whose settings must be 
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learnt. Depending on the input picture, each filter's (kernel's) weights are either 1-

dimensional or 3-dimensional [11],[11]. The filter's dimension is less than the 

input dimension. In order to calculate every filter is applied to the image from left-

top to right-bottom by taking the dot products between the kernel and the input 

image at each spatial position. Each kernel is calculated formally as [31], 

y =∑     
 
  1                                                 (1.1) 

         And this means,   represents the output, ∑   
  1 denotes the summation over   

terms,     is the input image at the  -th spatial location,    is the filter (kernel) at 

the  -th spatial location. 

3.6.2 Convolutional Layer 

        The first layer, referred to as the convolutional layer, extracts information 

from the input image by applying convolution operations to the output of the 

preceding layer [13]. The most crucial primary layers in CNN are convolutional 

layers. Convolution is the process of repeatedly applying one function to the results 

of another. When applying a filter to an 1*1 picture, for example, the 3*3 filter, the 

filter first calculates at the current pixel position, then shifts to the right and 

calculates once again until all pixel locations are computed [11]. As a result of the 

convolution, the input data are transformed linearly in accordance with the spatial 

information included in the data. The convolution kernel utilized is specified by the 

layer's weights so that the CNN may train it using input [11]. Figure 1.1 depicts the 

convolution process. 
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Figure 1.1 CNN Convolution Process [11] 

3.6.3 Pooling Layer 

         The convolutional layer's excessively vast picture data will be reduced in size 

by the use of pooling layers, making the data smaller, more manageable, and easier 

to maintain [13]. The input will be divided into many grids by this layer. There are 

several types of pooling layers, including both average and maximum pooling. The 

most popular strategy is max pooling. Average pooling takes the average value of 

the individual pixel sections in the image, whereas max pooling takes the 

maximum value from each grid [17]. Figure 1.1 illustrates the distinction between 

the maximum pooling and average pooling methods.  
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Figure 1.1 Process for Maximum and Average Pooling [11]. 

3.6.4 Global Average Pooling Layer (GAP) 

       Global average pooling is average pooling that can convert a tensor of size  

w* w*d into the form 1*1*t where the average value is taken in each pool [19].  

After the final convolutional layer, the GAP layer is applied. The feature map's 

average values are calculated using the global average pooling technique. To 

lessen the storage needed by the matrix and the substantial weight of the fully 

linked layer, GAP can replace it [11]. Figure 1.1 illustrate the Global Average 

pooling   methods.   
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Figure 1.1 Process for GAP. 

3.6.5 Fully Connected Layer 

       In classification issues, a few (often one or two) fully-connected layers are put 

on top of a CNN and utilized as the final layers. This is accomplished by flattening 

the CNN output and seeing it as a single vector [31]. Usually, the CNN has a 

number of entirely connected layers. Dense layers are created by adding more 

neural network layers and coupling each input and output with a learnable weight 

[11]. Features extracted down sampled by pooling layers and convolution layers 

are transported regarding the network's ultimate outputs, using a portion of the 

fully connected layers to calculate probabilities for every category in classification 

tasks [11]. In the fully-connected layer, neurons are grouped similarly to how they 

are in a conventional neural network. As a result, as illustrated in Figure 1.1, every 

node in a completely linked layer is directly connected to every node in both the 

preceding and subsequent layers [13]. 
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Figure 1.7 : Architecture of Fully Connected Layers [11] 

3.6.6 Activation function 

        In artificial neural networks, activation functions are utilized specifically to 

convert input signals into output signals which sent as input to the subsequent layer 

in the stack. In an artificial neural network, we add up the inputs and their 

corresponding weights, then apply an activation function to generate the layer's 

output, which will use as the input for the subsequent layer [11]. ReLU and 

SIGMOID were the two methods we employed in this investigation.  

 

 

Figure 1.1: Formats for activation functions[11]. 
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1.1.1.1 Rectified Linear Unit (ReLU) 

       One of the mechanisms for activation employed in this work is the rectified 

linear unit (ReLU), which is one of the most well-known AF in deep learning. A 

rapid activation function called ReLU seeks to provide cutting-edge performance 

and superior outcomes. With reference to the efficiency and deep learning's 

flexibility [17]. Gradient-descent optimization algorithms are made significantly 

more straightforward to apply given that the function is almost linear, and 

preserves the features of linear models [11]. The ReLU function has the benefit of 

preventing simultaneous activation of all neurons [11]. The most significant 

advantage of using the ReLU function in the calculation is that it increases 

computation speed by eliminating the need of compute divisions and exponents, 

which eventually results in a speedier total computation [19],[17].  Because the 

negative portion is always zero, the ReLU function also maintains that the output 

mean value of the function is higher than zero [11]. It can be formally defined as: 

 

                                                  f(x) = max (1, x)                             (1.1) 

 

Figure 1.9: A ReLU function plot illustration [11]. 
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1.1.1.1 Sigmoid Function 

         The logistic function or squashing function are other names for the sigmoid 

activation function that have been used in certain publications [11]. Additionally, 

the sigmoid function is not symmetric around zero, which implies that all of the 

output values from the neurons will have the same signs. By scaling the sigmoid 

function, this problem can be resolved [11]. The input values are mapped by this 

activation function into the range of 1 to 1. Equation 1.3 displays the equation for 

the activation function, while Figure 1.9 displays the typical response [11]. 

                                                     ( )  
1

1    
                                     (1.3) 

 

 

    Figure 1.11. Sigmoid Activation Function Response Characteristics [13] 
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3.6.7 Optimizer Selection 

         CNN optimizer components keep track of the convergence process and 

improve classification precision. Nowadays, researchers use RMSProp, Adaptive 

Moment Estimation (Adam), and Stochastic Gradient Descent (SGD) as optimizers 

[11]. By frequently modifying learnable network parameters, such weights and 

kernels, gradient descent is a well-known optimization technique that aims to 

reduce loss (the discrepancy between the predicted and actual output) [11]. Using a 

hyperparameter known as the learning rate, the learnable parameters are impacted 

by the gradient's backpropagation in the opposite manner. An illustration of a 

single parameter modification is as follows:  

 

                                              
   ⁄                                        (1.1) 

 

       Where W stands for "learnable parameters," L for "loss function," and 𝛼 for 

"learning rate." It's vital to note that one of the most crucial hyperparameters that 

must be chosen before starting training is the learning rate [11]. 

       In reality, memory constraints are imposed on the parameter changes and the 

gradients of the parameterized loss function are produced using the mini-batch, an 

portion of the dataset used for training [17]. One of the hyper parameters is 

referred to as the Mini-Batch Gradient Descent (MBGD) process, also known as 

the SGD. The parameters of the model are continuously updated during each 

training cycle, and throughout each training epoch, the model repeatedly searches 

for the optimal local solution. The most well-known learning algorithms or 

optimization techniques include SGD, Adam, RMSProp, AdaGrad, AdaDelta, 

Momentum, Batch Gradient Descent, and MBGD. RMSProp, Adam, and SGD 

have been widely employed with great momentum. [11]. 
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1.1 Transfer learning 

       Learning transfer [19] is a kind of machine learning that picks up new skills by 

utilizing the information from an earlier model that was employed for different 

purposes. Using a base, a model that has already been trained using a substantial 

dataset, this approach leverages the model to perform additional activities that 

require the usage among several datasets. Because this technique permits precise 

classification must be performed out with a little dataset, transfer learning is 

commonly employed. This is due to the fact that the trained deep learning model 

entirely starting from begin with a tiny dataset finds it very challenging in order to 

attain great precision because it does not get enough information about the 

variances in the data. It cannot thus learn the important data points. The process by 

which a pre-trained model gathers data from a large dataset and uses it to represent 

it as weights in a neural network is called transfer learning. Next, a second network 

with a different dataset and job is given these weights. Consequently, rather of 

training the second network from scratch, we "transfer" the first network's learned 

features to the second network, frequently with a minimal dataset [71],[71]. 

        When it comes to computer vision, the initial layers of a deep convolutional 

network are typically used to train the network to recognize common 

characteristics in pictures, encompassing forms and lines. When the network 

reaches its final layers for example, picture classification it learns about the exact 

attributes required for a certain task. The model's or base network's weights are 

thus often not that modified (frozen) during transfer learning. The network's last 

layer, which is often a completely linked layer, comes next subjected to learning so 

that it can acquire the precise properties needed to categorize the new dataset [71]. 
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1.7 MobileNetV3 

         The model, originally known as MobileNet, was developed into 

MobileNetV1 [71]. The second version of MobileNet, was made available in 1117 

[73]. A key distinction between the MobileNet design and CNN architectures 

generally is the use of a convolution layer whose filter thickness corresponds to the 

input image's thickness, allowing the MobileNet architecture to conserve the size 

of the generated model [71]. Figure 1.11 illustrates how MobileNet splits the 

convolution layer into depthwise convolution and pointwise convolution using the 

Depthwise Separable convolution (DSP) approach [71]. This layer's goal is to 

decrease computation (parameters) so that the model is smaller [71]. The first layer 

to carry out light filtering is the deep convolution layer, which applies one 

convolutional filter to each input channel. Concurrently, the second layer, known 

as pointwise convolution or 1*1 convolution, computes linear combinations of the 

deep convolution's output to create additional features [71].  

  

 

Figure 1.11 (a) Standard convolution is divided into two layers: (b)  depthwise convolution and 

(c) pointwise convolution, to create a depthwise separate filter [77] 
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         Depthwise Separable Convolution serves as the primary layer in 

MobileNetV1 as well. Linear bottlenecks and connection shortcuts between 

bottlenecks are two new features that set MobileNetV1 apart from the previous 

version [71]. Inputs and outputs are located between the model's bottlenecks, and 

the inner layers include the mechanism that converts inputs from lower-level ideas 

(pixels) to higher-level descriptors (picture categories). While bypass links allow 

for quicker training and increased accuracy, linear bottlenecks guard against 

information tampering [71]. The architectural features, which are based on the 

MobileNetV1 building blocks, include 31 filters in complete convolutional layers, 

19 bottleneck layers left, and ReLU as a non-linear variable because to its cheap 

processing overhead. A typical 3 *3 kernel is utilized; in addition, batch 

normalization is applied during the training phase [71]. Figure 1.11 demonstrates 

the fundamental design of MobileNetV1. 

 

 

Figure 1.11: Architecture of MobileNetV1[79]. 
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1.1 Visual Geometry Group (VGG21) 

        Applying multilayer operations to picture data sets, VGG or VGGNet (visual 

geometry group network) is a deep network learning technique based on the CNN 

model [11]. Because 3*3 convolution layers are used in the top convolution layer 

to improve the network depth, VGG-19 is a basic model. To minimize noise, 

VGG-19 employs a max-pooling layer [11]. VGG-19 comprises three completely 

linked layers and sixteen convolution layers. The VGG architecture is composed of 

layers that are arranged sequentially. A max pooling layer and a 3*3 convolution 

layer will be applied repeatedly to the input picture. Afterward, the picture will be 

categorized under the Fully Connected Layer. 

 

 

 Figure 1.13: Architecture of VGG-19 [11] 

1.9 You Only Look Once (YOLO) 

          Often used multi-object detection technique YOLO, which stands for "You 

Only Look Once," is described [11]. By evaluating the image just once, YOLO 

seeks to offer detection findings, as its name indicates. Many multi-object 

detection algorithms used several steps before YOLO was introduced in order to 

reliably identify the position and class of the item [13],[11]. Nevertheless, the 

requirement for several phases made these techniques unsuitable for real-time 
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applications. YOLO transformed object detection by employing a single neural 

network to concurrently identify an item's position and class. YOLO has been 

acknowledged from its beginnings for its quick speed of inference and great 

accuracy in comparison to other object identification algorithms. From YOLOv1 

through YOLOv1, the most recent cutting-edge version, it has undergone evolution 

[11],[11].  

        YOLO's capabilities have grown beyond its initial goal of identifying the 11 

items that MS-COCO described. It is extensively used in many detection 

disciplines, such as remote sensing, as a foundation or benchmarking model. And 

the discovery of minute flaws [17]. It has significantly influenced study in a 

variety of fields. We thus propose a network in this study that is according to 

YOLOv1, the most recent cutting edge one-stage multi-object identification 

algorithm. This builds the strong foundation of Yolo's successes in a variety of 

detection tasks. The first object detection network to integrate the tasks of class 

label identification and bounding box drawing into a single end-to-end 

differentiable network was the YOLO model. Furthermore, different variations of 

the algorithm have been produced, including YOLOv1, YOLOv1, YOLOv3, 

YOLOv1, YOLOv1, YOLOv1, and YOLOv7 [11].  

        In January 1113, YOLOv1 [19] was formally launched. The YOLO 

collection of algorithms has gained interest in computer vision. Because it 

maintains a high level of accuracy while maintaining a small model size, YOLO is 

quite popular.  YOLOv1, the most advanced and newest YOLO technique, can be 

used for segmentation, object recognition, and image classification, among other 

applications. Yolo v1 was created by Ultralytics, the same company that created 

the important YOLOv1 model that helped to define the market. There are various 

architectural upgrades and improvements in YOLOv1 over YOLOv1 [91].  
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        The YOLOv1 model does not use anchors. It suggests that it directly guesses 

the object's center rather than estimating the item's distance from a known anchor 

box. By reducing the quantity of box predictions, anchor-free detection speeds up 

Non-Maximum Suppression (NMS), a difficult post-processing step that filters 

through possible detections after inference. YOLOv1n, YOLOv1s, YOLOv1m, 

YOLOv1l, and YOLOv1x are the five models for identification, segmentation, and 

classification, respectively. YOLOv1 Nano is the tiniest and fastest of them all, 

while YOLOv1x is the most accurate but slowest of them all [91]. 

1.11 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

        CLAHE, which stands for Contrast-Limited Adaptive Histogram 

Equalization, addresses the limitations inherent in traditional histogram 

equalization. Serving as an enhanced variant of Adaptive Histogram Equalization 

(AHE), CLAHE offers a solution to challenges such as preserving clear field 

edges, minimizing noise, and maintaining high spatial frequency information. It 

achieves this through a combination of adaptive contrast-limited holographic 

equalization methods, incorporating CLAHE median filtration and edge sharpening 

techniques [91]. 

         The fundamental improvement of CLAHE over AHE lies in its approach to 

image processing. The algorithm divides an image into tiles, treating them as 

contextual regions. Within each contextual region, CLAHE constructs a histogram 

and performs clipping at a predetermined value. The clipped portion is then 

redistributed among the histogram bins, resulting in a modified histogram 

compared to the original. This approach effectively mitigates the edge-shadowing 

effect associated with AHE and addresses the problem of over-enhancement [91]. 
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1.11 Evaluation Matrices 

        Numerous categorization metrics are utilized to perform a robust and effective 

analysis, evaluation, and comparison of the results, as well as to determine how 

well the model executes the goal of the test dataset that is new to the model of the 

network. Measures of categorization accuracy, for instance, are employed. Loss is 

connected to both sensitivity and accuracy [93] . 

3.22.2 Accuracy 

       It is often characterized as a measuring unit that forecasts a machine learning 

model's accuracy. Accuracy is defined as the proportion of properly categorized 

testing data, and it is computed as [91]: 

                                                          
     

           
                     (1.1) 

        With a dataset that is unequal in class, accuracy is useless. In order to prevent 

this issue, the accuracy is calculated for each class separately before determining 

the mean accuracy. 

3.22.3  Precision  

       The precision measures how many predicted values turned out to be true. 

Afterward, equation (1.1) was used to compute it. 

                                       
  

     
                                (1.1) 

Additionally, when the main score is high and the majority of ground truth boxes 

are accurately recognized, the recall score falls within ranges (1,1). 
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3.22.4 Recall (Sensitivity) 

It is also known as sensitivity and is another crucial parameter utilized in object 

detection. This ratio, which is the primary true positive of all the positives in the 

ground truth, may be computed using [91]: 

                                                            
  

     
                                            (1.7) 

 

Also, the recall score falls between ranges (1,1), when high main score main most 

ground truth boxes are correctly detected [11].  

1.11.1 Average Precision (AP) and Mean Average Precision(MAP) 

        A measure of the model's performance is its Average Precision (AP). Object 

detection is one of its frequent uses. Additionally, the average precision is the 

result of combining recall and precision [91]. Average precision (AP) is the area 

under the precision–recall curve and is calculated as shown in Equation (1.1). 

 

                     ∑     ,      ( )        (  1)-           ( )  1
  1           (1.1) 

 

MAP11: The model's accuracy in predicting item positions is evaluated using the 

Average Precision (AP) at an Intersection over Union (IOU) criterion of 1.1, which 

is set at 1.1 when the predicted bounding boxes match the ground truth boxes. 

 

                       
                    

                   
                                                                  (1.9) 
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3.22.6 F2 measure 

       The F1-score is a metric used to evaluate a model's accuracy on a dataset. It 

combines recall and Precision, resulting in a weighted average. A low ratio of true 

negatives to false positives results in a better outcome, closer to 1. A high F1-score 

indicates good object detection and minimal false alarm impact, with a range of 1 

to 1. The measure is computed in this manner: 

 

                 1   1   
                  

                  
                                                 (1.11) 

3.22.7 Confusion Matrix 

       A crucial metric for classification that is used to encapsulate the effectiveness 

the model's confusion matrix. When there are disparities in the amount of samples 

in each class and when the dataset contains many classes, the classification 

accuracy of any model may be deceptive [97]. Furthermore, the confusion matrix 

computation provides a more accurate understanding of the classification model's 

performance [31]. For every class, the actual and anticipated values are shown in 

Figure 1.13. Within the framework of this study, the following definitions apply to 

the entries in the confusion matrix: 

• TP is the quantity of accurate predicate indicating a good instance. 

• FP is the quantity of inaccurate predicate that a positive case has. 

• FN is the quantity of false predicate that a given instance is negative. 

• TN is the quantity of accurate predicate indicating a bad incident. 
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Figure 1.11: The classification model's matrix of confusion for two classes [91]. 

1.11 Related work 

        Previous studies have utilized various techniques to study thermal images, 

aiming to identify crucial components for object detection. This study will explore 

conventional and traditional methods for recognizing and classifying thermal 

pictures. 

        Rodin, C.D., et al [99], the study used experimental data to classify and 

identify items at the water's surface for research on the use of unmanned aerial 

systems in maritime Search And Rescue (SAR) operations. The items include 

boats, pallets, people, and buoys. Thermal imaging data is used to differentiate 

foreground items from the background using a Gaussian Mixture Model (GMM). 

A Convolutional Neural Network (CNN) is trained using bounding boxes and an 

estimation of the object's observed area. The k-fold technique with 1 folds results 

in an average accuracy of 91.19. Images of boats from different datasets were 

evaluated using CNN, achieving 1119 certainty of being boats. 
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Figure 1.11: Sample of the dataset used[99] 

         Nam, Y. and Y.-C. Nam [111], A study has proposed new methods for 

identifying and categorizing automobiles using thermal and visible light images. 

These strategies can be applied to in intelligent systems for real-time surveillance. 

The researchers removed headlight and grill areas from the images and used 

textural characteristics to classify different types of vehicles. They assessed 

texture, energy, entropy, homogeneity, and contrast in front view photographs. The 

study found that Classifiers using visible light and thermal pictures have an 

accuracy of 91.7 and 11.19 when divided into six types and 91.9 and 71.19 when 

divided into three groups. However, the accuracy of thermal images at night is 

lower than visual images due to inadequate resolution and fewer similar 

characteristics. 
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Figure 1.11: Sample of the dataset used[133] 

 

       Khalid, B., M.U. Akram, and A.M. Khan [11], The authors propose a method 

for semantically segmenting each person in an image by combining thermal and 

visual images using a CNN. They used an encoder-decoder architecture for fusion, 

and the Resnet-111 architecture for image classification. The Mask-RCNN 

architecture localizes objects using the Resnet-111 architecture. The multispectral 

data set from KAIST is used to train CNNs, with a beam splitter aligning LWIR and 

RGB picture data. The dataset consists of 91,111 optical and thermal image pairs, 

each 111 by 111 in size. A 11:11 split of the data set is used for training and 

testing. The results show that the fused model performs better for object localization 

than the visible model and offers promising results for human identification in 

surveillance applications. The proposed model's miss rate of 1.119 is significantly 

lower than the prior state-of-the-art method applied to the KAIST dataset.
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Figure 1.17: Sample of the dataset used [11] 

         Bhattarai, M. and M. Martinez-Ramon [111], The Santa Fe Firefighting 

Facility in New Mexico is using infrared cameras to improve situational awareness 

among firefighters by classifying objects from thermal imagery. A deep 

convolutional neural network is trained to classify standing, sitting, and crawling 

stances. The results show that the network's accuracy ranges from 97 to 999, but if 

the number of layers is increased to 1, confusion matrices show a 

misunderstanding of 1 to 1.79. A single-layer network achieves 719 accuracy, 

while a four-layer network achieves over 979 accuracy.  

 

Figure 1.11: Sample of the dataset used [111] 
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           Ivašić-Kos, M., M. Krišto, and M. Pobar [111], Researchers have developed 

a convolutional neural network called YOLO to automate person detection in 

thermal recordings and photos. They trained the YOLO network on a portion of 

their dataset, using a dataset of thermal movies that can show up to three people. 

The researchers compared the performance of the YOLO network, pre-trained on 

the COCO image dataset of RGB photos, with the YOLO network after extra 

training on thermal images from their dataset. The bYOLO model received training 

using thermal pictures from their proprietary dataset to improve performance. The 

average precision (AP) metric was employed to evaluate the models' performance, 

the bYOLO model has an accuracy of 979 and a recall of 199, but the tYOLO 

model has an accuracy of 979 and a recall of around 719. This implies that the 

tYOLO model finds a lot more individuals in the photographs with the same 

accuracy. 

 

Figure 1.19: Sample of the dataset used [111] 

       Ippalapally, R., et al.  [1], the study compared two models (SSDMobileNetV1 

and SSDMobileNetV1) for object detection and classification in thermal camera 

pictures. Both models performed well in identifying objects from three classes: 

cars, bicycles, and people. Model 1 outperformed Model 1 in most assessment 

parameters, with 139 and 999 accuracy levels for automobiles and 919 and 999 for 
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people. Models 1 and 1 had 19 and 719 accuracy rates for bicycles, respectively. 

Model 1 had a detection rate of 199, while Model 1 had 19 and 719 accuracy rates 

for bicycles. Despite the majority of items in photos being small and medium-

sized, both models were able to accurately recognize objects with detection rates of 

919 and 999. Model 1 often had the best success rates in accurately recognizing 

items of all kinds. 

 

 

Figure 1.11: Sample of the dataset used [1] 

         The study by Mittal, U., S. Srivastava, and P. Chawla [1], compared visible-

spectrum and thermal images using a faster region-based convolutional neural 

network. The dataset consisted of 1,111 visible-spectrum photographs and 1,111 

thermal images, divided into 111 training photos and 111 testing photos. The study 

found that visible spectrum images were as accurate as thermal camera images 

during the day, while thermal images were more accurate at night. Accuracy for 

thermal photos of a four-wheeler is 71.99, compared to only 11.39 for visible 

spectrum photographs. Similar to this, the accuracy of thermal photos in scenarios 

like 1-wheeler, traffic-light, and person is 11.19, 11.79, and 77.19, respectively, 

whereas the accuracy of visible spectrum images is 3.99, 1.99, and 11.99, 

respectively. However, thermal pictures generally deliver better outcomes. The 



 

37 

 

study suggests that considering various times, seasons, and weather conditions can 

improve the system's overall usefulness. 

  

Figure 1.11: Sample of the dataset used [1] 

       Zhang, H., X.-g. Hong, and L. Zhu [113], DDSSD, a feature-fusion module-

enhanced SSD, has been proposed as a revolutionary solution for tiny item 

recognition. The technique involves adding semantic information to the shallow 

layer of SSD using a dilatation convolution module, also known as transpose 

convolution or up-sampling layer. DDSSD contains DE-convolution layers, which 

expand the receptive field of features from shallow layers. However, SSDs cannot 

save both local detailed characteristics and global semantic features. The detector 

must incorporate context, and feature maps are up-sampled at higher resolution 

using DE-convolution layers.  

    The FLIR ADAS dataset, which includes 11,111 frames and 9,119 images with 

MS COCO annotations, is used to test the model. The dataset benchmark includes 

11,371 instances of people, cars, and bicycles, with 119 belonging to small objects 

under 31 × 31. The training strategy is similar to PASCAL VOC. On the PASCAL 
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VOC1117 test, the network achieves 79.79 mAP, while on the MS COCO test-

dev, it achieves 11.39 mmAP. Particularly for small items, DDSSD outperforms 

several cutting-edge object detection algorithms in terms of accuracy and speed, 

achieving 11.19 on MS COCO and 11.19 on FLIR infrared dataset. 

 

 

 

Figure 1.11: Sample of the dataset used [113] 
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Table 2.2: Summary of the Related Work. 

 

An overview of some current deep learning-based object detection studies in thermal images 

Year Study Proposed solution Dataset object 

detection 

method 

Results 

3122 Rodin, C.D., 

et al [99] 

The Gaussian Mixture Model 

(GMM) is utilized to 

distinguish between objects in 

the foreground and 

background. 

The CNN is trained using 

bounding boxes that enclose 

the object. 

thermal camera 

images taken by 

Unmanned Aerial 

Systems (UAS) 

 

 

segmentation 

The average accuracy was 91.19 with a 1.119 standard 

deviation 

3122 Nam, Y. and 

Y.-C. Nam 

[111] 

From front-view images, they 

evaluated the energy, entropy, 

homogeneity, texture, and 

contrast. To extract features 

they collected 

videos during the 

day and atnight 

using FLIRONE. 

 

 

Classification  

When cars were categorized, the accuracy of the thermal 

image classifier was 11.19, whereas that of the visual 

image classifier was 91.79. 

3121 Ivašić-Kos, 

M., M. 

Krišto, and 

M. Pobar 

[111] 

YOLO Their own dataset segmentation The bYOLO model has an accuracy of 979 and a recall 

of 199, but the tYOLO model has an accuracy of 979 

and a recall of around 719. 

3121 Mittal, U., S. 

Srivastava, 

and P. 

Chawla [1] 

Faster R-CNN FLIR (released in 

July 1111). The 

dataset contains 

the thermal 

images as well as 

visible spectrum 

images 

segmentation The accuracy for 1-Wheeler thermal imaging was 71.99, 

compared to 11.39 for visible spectrum photos. Thermal 

pictures had 11.19, 11.79, and 77.19 accuracy for two-

wheelers, traffic lights, and humans, compared to 3.99, 

1.99, and 11.99 for visible spectrum photos, 

respectively. 
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Year Study Proposed solution Dataset object 

detection 

method 

Results 

3131 Khalid, B., 

M.U. 

Akram, and 

A.M. Khan 

[11] 

 

The fusion of visible and 

thermal pictures is performed 

using CNN, and the resulting 

image is then fed into the 

Resnet-111 architecture for 

image classification. For the 

purpose of locating people, 

images from Resnet-111 are 

subsequently put into Mask-

RCNN. 

KAIST multi-

spectral 

semantic 

Segmentation 

Compared to the prior state-of-the-art technique used on 

the KAIST dataset, the suggested model's miss rate of 

1.119 is substantially superior. 

3131 Bhattarai, M. 

and M. 

Martinez-

Ramon 

[111] 

Employ a trained CNN system 

to categorize and pinpoint 

interesting things. 

Thermal images  

Classification 

A single-layer network achieves 719 accuracy, while a 

four-layer network achieves over 979 accuracy. 

3131 Ippalapally, 

R., et al [1] 

a comparative study of two 

different models  

SSDMobileNetV1 and 

SSDMobileNetV1 

FLIR dataset segmentation Both models achieved 139 and 999 accuracy in the 

automobile class and 919 and 999 in the person class, 

respectively. Models 1 and 1 had 19 and 719 accuracy 

rates in the bicycle class, respectively. Model 1 had the 

highest detection rate at 199, despite the majority of 

items being small and medium-sized 

3132 H., X.-g. 

Hong, and L. 

Zhu [113] 

DDSSD VOC6337 

 and  

MS COCO 

segmentation On the PASCAL VOC1117 test, the network achieves 

79.79 mAP, while on the MS COCO test-dev, it achieves 

11.39 mmAP. Particularly for small items, achieving 

11.19 on MS COCO and 11.19 on FLIR infrared dataset. 



 

 

3.24 Summary 

       The theoretical underpinnings of detecting and recognizing objects 

are outlined in this chapter. It also describes other techniques, including 

convolutional deep learning and neural networks. The design and 

execution of the system will be covered in the upcoming chapter. The 

efficiency of algorithms in addition to the proposed model is also 

evaluated using a set of criteria, such as accuracy, recall, precision, and 

F1-score, in order to gauge the rate method as a whole. 
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 CHAPTER THREE

PROPOSED METHODOLOGY  
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3.1 Overview 

      The thesis' primary aim is to create an intelligence system for object 

detection and segmentation based on thermal images. Within this 

section, the presented suggested system is implemented training and test 

modes are the two primary modalities. Every mode has several phases 

and actions. 

3.1 Models Implementation  

     The proposed model execution consists of two steps, or modes: 

training and testing: 

- Training stage: The proposed model trains each training existing 

datasets for learning on samples with their class by feeding 

sample training samples with appropriate labels. This stage also 

includes the validation process. 

- Testing stage: The proposed trained model is put into practice this 

stage is to simulate the use of the system by predicting the output 

class from unseen dataset. 

3.3 Proposed System 

        The proposed system presented an object classification and 

segmentation system using deep neural networks. The primary objective 

of the suggested system is object detection in thermal images. Two 

different classification and segmentation systems have been built. The 

proposed system for classification is Transfer learning (MobileNetV1 

and VGG19) and (yolov1) for segmentation, each one preceded by a 
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pre-processing step, as well as every stage contains several steps that 

perform different functions. 

      Phases involved in developing the model include preparing the data, 

building the model, training it, evaluating it, and testing it. The block 

diagram of the suggested deep neural networks models is seen in Figure 

3.1 to classification model and to segmentation model. 

 

Figure 3.1: Diagram for the workspace. 
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3.3.1 Classification Model  

      The classifying model in thermal images using MobileNetV1 and 

VGG19 pre-trained. The central objective is to establish a robust 

classification system that remains effective despite fluctuations in 

thermal patterns. Prior efforts encountered challenges like limited data, 

artifacts, and one-way adaptability. Making use of the advancements in 

the VGG19 and MobileNetV1 architecture offers a workable option. 

     By capturing important thermal properties, the model seeks to 

accurately classify objects in thermal images, ensuring accurate 

classification of objects even in the presence of temperature fluctuations. 

     Using the capabilities of VGG19 and MobileNetV1, we modified the 

architecture to include thermal images in this section in order to build a 

model that accurately classifies objects and regulates temperature 

changes. 

3.3.1 Segmentation Model 

    We applied the object segmentation technique using YOLOv1 in the 

second stage. This method's primary objective is to create a dependable 

system that can precisely identify and segment objects in thermal 

pictures. Previous segmentation approaches have struggled with border 

precision, class confusion, and model efficiency and accuracy. 

      This method's main objective is to precisely identify object 

boundaries in thermal pictures. To reduce class confusion, the model has 

to be extremely precise in segmenting and classifying objects.  

      We utilized YOLOv1's ability to segmentation objects in thermal 

pictures using this architecture. This application facilitates the process of 
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creating a model that is very proficient in identifying and segmenting 

object boundaries by tackling certain problems that are brought about by 

thermal imaging. 

      The model attempts to improve the precision and effectiveness of 

object segmentation in thermal photos by utilizing YOLOv1 and 

tackling issues particular to thermal photography. 

3.1 Dataset  

       Data collection is an important stage in the process since 

contemporary deep learning approaches require less feature extraction 

and large amounts of data. Even when the Since training methodologies 

cannot completely clean data, we can make due with less-than-ideal data 

for model training. 

We have used dataset from kaggle: 

(‘https://www.kaggle.com/datasets/albertofv/flir-thermal-images-

dataset-reduced’). FLIR ADAS proposes 11111 images with 11111 

annotations. These images have been acquired during a large period, 119 

by day and 119 by night in various scenes. The images of the FLIR 

dataset are available under different formats: the raw images directly 

issued from the sensor and the modified and enhanced ones thanks to 

specific FLIR algorithms. Due to the difficulty of obtaining thermal 

images that are appropriate for our work, after obtaining this raw data 

set, we cut the images to obtain images of a separate person and car, as 

well as images that do not contain objects. 

 

https://www.kaggle.com/datasets/albertofv/flir-thermal-images-dataset-reduced
https://www.kaggle.com/datasets/albertofv/flir-thermal-images-dataset-reduced
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Original image Images after crop 

  

  

  

  

Figure 3.1: Examples taken from the dataset. 
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3.1.1 Dataset for classification 

         Within this set, the dataset was created using part of the FLIR 

ADAS datasets, by manually segmenting and sorting the images, and the 

data contains two categories of objects, person and car, and contains four 

image files (person), car, mixed (person and car), None (None) Each of 

these files contains 739 thermal images. The images in the classification 

dataset have different sizes. The total number of images used is 1911 

images. 

4.5.3 Dataset for segmentation 

      The second group used 1,191 thermal images, and the autodistill 

package released by roboflow in the June month of 1113 was used to 

generate annotations and associate them with two categories of people 

and cars.  

3.1 Dataset preprocessing 

        Data preparation for neural network modeling is contingent upon 

the input requirements of the model. Initializing and converting raw data 

could be a crucial stage in the pre-processing procedure for efficient 

model training. These pre-processing steps include picture conversion to 

grayscale pixel grids, image values rescaling from 1 to 111 to [1,1] 

interval, and image enhancement. Since it's frequently required to 

change a picture's size, an important part of image processing is picture 

rescaling. 
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3.1.1 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

       We produced an improved image that is superior to the originals by 

applying an algorithm that was used especially for thermal photos. Using 

the CLAHE technique, each picture is subjected to histogram 

equalization after being divided into contextual areas. The distribution of 

gray values employed is produced by these equalizations, which 

enhances the visibility of the image's hidden characteristics. The 

enhanced algorithm for AHE is called CLAHE. The following 

outcomes, displayed in the pictures below, are the product of the 

optimization approach. The visual findings of the thermal pictures are 

shown in Figure 3.3. When compared to the adaptive histogram, the 

suggested approach enhances the image more precisely. 
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Before using CLAHE  After using CLAHE 

Figure 3.3: Sample pictures before and after using CLAHE 
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     A sample of images after using CLAHE. The results of the images 

had better resolution and clarity than before, as shown in the histogram. 

3.1 Dataset splitting 

      In the machine learning process, datasets for testing, validation, and 

training are kept apart. Each set has a specific purpose during the 

model's training, fine-tuning, and assessment stages. While the training 

set helps identify patterns and correlations in the data, the validation set 

improves performance and optimizes hyper-parameters without affecting 

generalization to new data. The testing set is used for the final analysis 

as a reliable indicator of the model's ability to generalize. The model's 

efficacy in handling real-world events is increased by this three-way 

separation, which guarantees rigorous training, refinement, and 

assessment processes. 

        Three groups were identified in classification and segmentation of 

the data collection: 

 

 

 

Table 3.1: Divide the image data into three groups. For both segmentation and 

classification 

 Train Validation Testing 

Classification 719 119 119 

Segmentation 71% 119 19 
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3.7 Dataset Augmentation 

        One of the main issues with training models for deep learning, such 

convolutional neural networks (CNNs), is the scarcity of data. Stated 

differently, a sizable training dataset is required for deep learning 

networks.  

          Through altering the initial data's shape and getting additional 

unseen data augmentation technique, training data is used to enhance the 

amount of the dataset during network training. It uses a number of 

techniques, the most common being zoom, rotation, translation, scale, 

and flip. These techniques are intended in order to lessen the possibility 

of overfitting and improve the display of the generated model. In certain 

cases, only a limited training dataset is available for the majority of 

critical real-life situations (e.g., medical datasets). This is what 

distinguishes more advanced machine learning algorithms from others. 

 

Table 3.1: The utilized Data Augmentation hyper-parameter values 

Parameter Value 

rescale 15111 

rotation_range 11 

width_shift_range 1.1 

height_shift_range 1.1 

shear_range 1.1 

zoom_range 1.1 

horizontal_flip True 

fill_mode 'nearest' 
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3.1 Normalization 

      The intensity of each pixel in the picture data is represented by its 

pixel values, which are integer values between 1 and 111. When 

processing inputs, modest weight values are handled by neural network 

models. Large integer value inputs might cause disruptions or slow 

down the learning process. The process of normalizing modifies the 

pixel values' intensity range when seen properly, giving every pixel has 

a value between 1 and 1. No matter how wide the image's pixel values 

actually are, the procedure of normalizing the values of all the pixels is 

carried out by splitting all of the data across all channels of the pixels by 

the greatest pixel value, which is 111. When normalizing values of 

intensity within the range of (Min, Max), as follows: 

The transformation from   *      +    *          +  results in the 

new image IN, whose intensity values fall between (newMin, newMax). 

    
 

111
     *       +   * 1    1+                        (1) 

A portion of the picture is shown in Figure (3.1) to explain the 

normalizing procedure. 

3.9 Building the classification Model 

        In this architecture, pre-trained MobileNetV1 and VGG19 base 

models which have acquired features from ImageNet data are integrated 

to facilitate transfer learning. Since grayscale pictures only have one 

channel and the original MobileNetV1 and VGG19 architectures are 

made for three-channel (RGB) inputs, adapting these models for 

grayscale images is difficult. In order to solve this, the single-channel 
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grayscale pictures are transformed into 3-channel RGB images using a 

Lambda layer before being sent via the MobileNetV1 and VGG19 base 

models. This conversion guarantees that models built originally for color 

pictures can handle grayscale inputs efficiently. 

       Additionally, the final classification layers (fully connected layers) 

of MobileNetV1 and VGG19 are omitted by setting the `include_top` 

argument to `False` during model initialization. Excluded are the layers 

that are utilized for single-label classification on datasets like as 

ImageNet. Overlaying custom layers, the MobileNetV1 or VGG19 

architecture is repurposed for a particular task: multi-label categorization 

of grayscale photos. Using pre-trained features from the base model and 

fine-tuning it for the new job is made possible by this technique, called 

transfer learning. 

      In order to minimize spatial dimensions and preserve important 

information, the design uses layers of Global Average Pooling. For high-

level abstraction learning, Dense layers are used, and for multi-label 

prediction, the last two dense layers apply sigmoid activation. This 

design caters to grayscale images, and the multi-label setup 

accommodates scenarios where multiple class labels can be present 

simultaneously. Tables 3.3 and 3.1 show the layers and number of 

parameters used in MobilNetV3 and VGG19 respectively. 
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Figure 3.1: Architecture of The Modified MobilNetv1 model. 

 

 

Figure 3.1: Architecture of The Modified VGG19 model. 

3.11 Training the segmentation 

      YOLOv1 models were used in this study's transfer learning process 

to create a detection network that can make accurate detections in real-

time and inference. There are five distinct models available in the 

YOLOv1 architecture namely (YOLOv1n), (YOLOv1s), (YOLOv1m), 

(YOLOv1l), (YOLOv1x) . To ensure consistency, the trained base 
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model, a YOLOv1 model, was trained using the base models Yolov1l. 

Twenty percent of the train dataset was randomly selected to serve as the 

validation dataset and five percent for testing, which was used to track 

training progress. The pretrained parameters officially given by 

YOLOv1 were used to determine the beginning values of each model's 

parameters. The trained base model was trained with the hyper-

parameters: The learning rate (Lr) of a stochastic gradient descent 

(SGD) optimizer with a learning rate of 1.11 was used, an image size of 

111*111, and 111 epochs. The default settings for all other parameters 

were maintained. 

        The training function of YOLOv1 assesses the model's learning 

efficiency using the four loss functions. The outcomes of these three—

Box loss, Classification loss, and Segmentation loss—will be shown in 

the section on training results. The difference between the ground truth 

bounding box and the anticipated bounding box is known as the box 

loss. The discrepancy between an object's real class and its anticipated 

class is known as classification loss. The Segmentation Loss quantifies 

the dissimilarity between the predicted segmentation mask and the 

ground truth mask. 
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 CHAPTER FOUR

RESULTS AND DISCUSSION 
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1.1 Overview  

       Resulting of the two systems that are discussed in this chapter. Also 

the global accuracy of the segmentation and classification models on 

thermal images test dataset. On test data, however, each model's 

accuracy is shown as a confusion matrix. Additionally, the final report of 

the visualization model is shown, together with the data analysis and 

performance evaluation of the two systems. 

1.1 System Requirement 

1.1.1 System Requirement to classification 

        The following will be utilized in order to put the recommended 

approach into practice: Hardware/Central Processor Unit (CPU): 

1.71GHz Intel(R) Core(TM) i7-11711H CPU. 31GB RAM and a 1GB 

GDDR1 NVIDIA GeForce RTX3111. The operating system is Windows 

11 (11-bit), and the programming language is Python. 

1.1.1 System Requirement to segmentation 

      We utilized Google's colab developed hosted runtime to conduct the 

research. The GPU utilized for training and testing was the Tesla T1 

from Nvidia. 

    Our use of Google Colab was due to our computer's GPU being 

underpowered 
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1.3 Proposal classification Models 

1.3.1 Classification Model based on MobileNetV1 

     Figure 1.1 illustrates the suggested method's process. The 

foundational model used in this study is the MobileNetV1 network. We 

augment the MobileNetV1 convolutional layers with many layers, 

referred known as the head model. The feature map, that is to say the 

base model's output, is the input for the global pooling layer, which is 

the first layer of the head model. The dimension of the data is greatly 

reduced by the global pooling layer, a pooling procedure that creates a 

vector of one-dimensional features. In the global pooling layer, the 

suggested approach makes use of an average pooling procedure. 

        Two fully-connected or dense layers come after the global pooling 

layer. The fully-connected layers used an activation function of Rectified 

Linear Unit (ReLU) and had 1111 and 111 nodes, respectively. The 

output layer comes next, when the dataset is divided into four classes: 

people, car, None, mixed (person and car). The activation function used 

in the output layer is sigmoid. 

       The pre-trained weights are used in the basic model, and the layers 

are frozen. As a result, only the head model's weights were trained 

throughout the training phase. Due of its rapid convergence, the SGD 

optimizer is the optimization technique employed during the training 

phase. As a result, we only employ 111 epochs, there are 11 in the batch 

size. Where network has to minimize a cost function called categorical 

cross-entropy during the training phase. 
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      We did data augmentation on the training set in order to enhance the 

model's capacity for generalization. Data augmentation modifies the 

provided data—in this example, the training set's images—using one or 

more of the identified processes. The data augmentation procedure in 

this study involves the following operations: rotation up to 11, flip, 

zoom, and shift. The network is then fed with the enriched data 

throughout every training cycle iteration to ensure that it doesn't always 

view the same data. As a result, the quantity of data that is sent into the 

network during each training cycle remains constant. But every 

repetition procedure will utilize different data, and the final model will 

be more capable of generalization. The ability of the model to handle 

testing data that has not been previously trained if it has strong 

generalization capabilities.  As shown in figure1.1. 
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Figure 1.1: Proposed MobileNetV1 Models. 
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      Figure 1.1 shows a neural network's accuracy and loss after 111 

epochs of training and validation, with Figure 1.1a illustrating model 

accuracy and Figure 1.1b illustrating model loss. 

  

(a) Model accuracy                                                        (b) Model loss 

Figure 1.1 : The suggested architecture's accuracy and loss function 

 

Table 1.1:  Hyperparameter of the MobileNetV1 Model in Implementing. 

Hyper parameter  Value architecture 

Optimizer      SGD    

Learning rate  1.1111 

Batch size    11 

Early Stopping 11 

Epochs     111 
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Figure 1.3: The Proposed Architecture's Confusion matrix 

 

Table 1.1: Specifics of the Outcomes attained During Model Testing. 

Type model  Accuracy F1-score Precision Recall 

MobileNetV1  1.17 1.172 1.171 1.172 

 

Table 1.3: Classification Report for Each Object in the MobileNetV1   

Type class precision     recall  f1-score 

Person  1.99 1.97 1.91 

car 1.91 1.97 1.91 

None 1.99 1.97 1.91 

Person and car 1.91 1.91 1.91 
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1.3.1 Classification Model based on VGG-19  

        The top three dense (totally linked) layers of the original VGG19 

had been eliminated and added Global Average Pooling 1D layer in the 

proposed model. It transforms the input tensor into a 1*1*d shape from 

h*w*d. Due to the much lower number of parameters, this layer not only 

helps to minimize dimensionality but also over-fitting in the model. Two 

more dense layers were added following the addition of the Global 

Average Pooling 1D layer. The sizes of these dense layers were 111 and 

111, respectively. The suggested model's design is seen in Figure 1.1. 

          The Activation Function All of the convolutional layers and the 

dense layers—aside from the last dense layer—use the "Rectified Linear 

Unit (ReLU) ". The sigmoid is employed as the activation function in the 

last dense layer. Since it provides the probability of each target class, the 

sigmoid function is typically included in the final layer of a neural 

network. The projected class has the highest likelihood of all. Basically, 

a range of numbers between 1 and 1 is what it outputs. 
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Figure 1.1: Proposed VGG-19 Models. 

 

Table 1.1: Hyperparameter of the VGG19 Model in Implementation. 

Hyper parameter   Value architecture 

Optimizer      SGD    

Learning rate  1.111 

Batch size    31 

Early Stopping 11 

Epochs     111 

 

        Figure 1.1 shows the training and validation accuracy and loss of 

the neural network for 111 epochs, where Figure 1.1a shows the model 

accuracy and Figure 1.1b shows the model loss. 
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(a) Model accuracy                                                        (b) Model loss 

Figure 1.1 The proposed architecture's accuracy and loss function. 

 

 

Figure 1.1: The Proposed Architecture's Confusion matrix. 
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Table 1.1: Specifics of the Outcomes attained While Testing the Model. 

Type model  Accuracy F1-score Precision Recall 

VGG-19 1.17 1.177 1.172 1.177 

 

Table 1.1: Classification report for each object by using VGG19 

Type class precision     recall  f1-score 

Person  1.99 1.97 1.91 

car 1.91 1.99 1.91 

None 1.99 1.97 1.91 

Person and car 1.99 1.91 1.91 

1.1 Test Results of the Segmentation Model 

      The segmentation model following testing on a dataset made from of 

1191 images. Training images has 1113 and validation images 311 

images. And test images have 71 image, this dataset has comparable 

ground truth and was not used in the training procedure. An example of 

the testing dataset for the detection model with matching ground truth is 

displayed in Figure (1.1). 

 

Table 1.7: Information on the Outcomes of the YOLO Model Testing. 

Algorithm MAP11 MAP11-91 P R F1 score 

Yolov1l-seg 1.11 1.193 1.711 1.711 1.77 
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Original image Ground truth Predict 

   

   

   

   

Figure 1.7: Sample of Test Dataset. 
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Figure 1.1: Confusion Matrix of The Proposed Architecture 

 

 

 

Figure 1.9: Average Precision (AP) of Detection Model. 
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Figure 1.11: depicts the F1 Confidence of the YOLOv1 algorithm 
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Figure 1.11 Model training result 

1.1 Summary      

      This chapter assesses the output of classification and segmentation. 

The following four performance metrics were determined: recall, 

accuracy, precision, and f1-score. Future works and the conclusion will 

be explained in the upcoming chapter. 
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CONCLUSION AND FUTURE WORKS  
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1.1 Overview  

      This section concludes the ideas discussed in the thesis and makes 

reference to upcoming projects. 

1.1 Conclusion 

       Numerous observations may be made regarding the study's duration, 

and the following are the conclusions drawn from the data: 

 Deep neural network-based classification systems are can to be the 

most accurate method available, outperforming other conventional 

methods in terms of accuracy and loss functions. 

 Transfer learning leverages pre-trained models, reducing the 

computational burden and allowing for faster training and 

deployment of models on new tasks. 

 Using CLAHE increased image resolution. 

 Using GlobalAveragePooling1D in this classification model is an 

accomplishing spatial summarization, lowering dimensionality, 

boosting the model's capacity for generalization, and increasing 

computing efficiency. 

 In classification model, Use SGD instead of the Adam optimizer. 

Help increase precision and eliminate overfitting. 

 

 

 



 

 

 

1.3 Future work 

        While many issues have been resolved by effectively 

implementing our suggested techniques for classification and 

segmentation (person, automobile), our study has encountered other 

challenges. When we improve the model in the near future, we wish 

to eliminate all constraints: 

 Using Slicing Aided Hyper Inference (SAHI) with YOLO to 

detect and segment small-sized objects. 

 Using CNN for feature extraction and Single Shot MultiBox 

Detector (SSD) for classification. 

 Using mobilenetv1 to extract features and using U-NET for 

segmentation. 
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 ةـــلاصـــالخ

ا فٙ اكرشاف الأشٛاء نًخرهف انرطثٛماخ، تًا فٙ رنك  ًً ذهعة انصٕس انحشاسٚح دٔسًا حاس

انصُاعٛح ٔيلاحح انًشكثاخ، حٛث ًٚكُٓا انرماط انرٕلٛعاخ انحشاسٚح. انًشالثح ٔالأيٍ ٔالأذًرح 

ٔيع رنك، فئٌ انرحذٚاخ يثم انرثاٍٚ انًُخفض، ٔالأًَاط انحشاسٚح انًرمهثح، ٔغٛاب يدًٕعاخ 

انثٛاَاخ انحشاسٚح انًحذدج ذرطهة خٕاسصيٛاخ يرخصصح نرحذٚذ انكائٍ ٔيٕلعّ تذلح. ٚسركشف 

شٛاء فٙ انصٕس انحشاسٚح، ْٕٔ خاَة حٕٛ٘ نرطثٛماخ يثم ْزا انثحث يدال اكرشاف الأ

 .انًشالثح ٔالأَظًح انًسرمهح

 (CLAHE) اسرخذيد ْزِ الأطشٔحح يُٓح يعادنح انشسى انثٛاَٙ انركٛفٙ انًحذٔد نهرثاٍٚ      

فٙ يعاندح انصٕس نرحسٍٛ انرثاٍٚ. ذحأل يشحهح يا لثم انًعاندح ْزِ ذحسٍٛ أداء خٕاسصيٛاخ 

 عهٗ انكائُاخ انلاحمح يٍ خلال يعاندح انًشكلاخ انًرعهمح تانرثاٍٚ فٙ انصٕس انحشاسٚح انرعشف

انمسى الأٔل يٍ ْزِ انذساسح ْٕ ذحذٚذ ًَٕرج انشثكح انعصثٛح انرلافٛفٛح انز٘ ًٚكٍ         

صٕسج حشاسٚح، لايد انذساسح ترمٛٛى انذلح  1,911اسرخذايّ فٙ حالَخ انرصُٛف. تاسرخذاو 

 .MobileNetV1 ٔVGG19 ٔاسرذعاء تُٛاخ F1 ٔدسخحٔانذلح 

، فٙ حٍٛ F1 91.1% % ٔدسخح97تهغد  MobileNetV1 أظٓشخ انُرائح أٌ دلح       

ذٕفش ْزِ انذساسح سؤٖ لًٛح حٕل ذطثٛك  .F1 91.1% ٔدسخح  VGG19 97% تهغد دلح

اسصيٛاخ طشق ذعهى انُمم نرصُٛف انصٕس انحشاسٚح ٔذٕفش َظشج شايهح عٍ فعانٛح انخٕ

 .انًخرهفح فٙ يٕاخٓح انرحذٚاخ انرٙ ذطشحٓا ظشٔف انرصٕٚش انحشاس٘

، انز٘ ذى الَعرشاف تّ YOLOv1 فٙ انمسى انثاَٙ يٍ ْزِ انذساسح، َسرفٛذ يٍ َٓح          

عهٗ َطاق ٔاسع نهكشف انذلٛك عٍ انكائُاخ فٙ انٕلد انفعهٙ، يًا ٚعضص أداء انكشف فٙ 

صعثح. ذى ذذسٚة ْزِ انرمُٛح تاسرخذاو يدًٕعح تٛاَاخ يخراسج ذحرٕ٘ يُطمح انصٕس انحشاسٚح ان

 71نهرحمك يٍ انصحح، ٔ 311يُٓا نهرذسٚة، ٔ 1113صٕسج، ذى اسرخذاو  1,191عهٗ 

نلاخرثاس. اسرخذيُا ْزا انُٓح نرمسٛى انكائُاخ فٙ انصٕس انحشاسٚح. ٚظُٓش يرٕسظ دلح 

يُاسة  YOLOv1 ٓا. ذؤكذ ْزِ انُرائح أٌ% يذٖ فعانٛر11انثانغح  (mAP11) انخٕاسصيٛح



 

 

 

نرطثٛماخ انرصٕٚش انحشاس٘، ْٔٙ يُاطك خذٚذج ذرطهة اكرشافاً دلٛماً نلأشٛاء فٙ ظم ظشٔف 

 .شذٚذج انحشاسج



 

 

 

 

 

 

 خايعح كشتلاء

ٔذكُهٕخٛا انًعهٕياخكهٛح عهٕو انحاسٕب                 

 لسى عهٕو انحاسٕب            
 

و 1111                  ْـ                                                                                                                            1111  
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