

University of Kerbala
 College of Computer Science & Information Technology

 Computer Science Department

2024 A.D. 1445 A.H.

Ancient Textual Restoration Using Deep Neural

Networks

A Thesis

Submitted to the Council of the College of Computer Science &

Information Technology / University of Kerbala in Partial Fulfillment of

the Requirements for the Master Degree in Computer Science

Written by

Ali Abbas Ali Abo Aloaub

Supervised by

Prof. Dr. Baheeja Khudair Shukur and Prof. Dr. Asia Mahdi Naser

 صدق الله العلي العظيم

 ﴾۱۱﴿ آیٓة ا�اد�

2024 A.D. 1445 A.H.

2024 A.D. 1445 A.H.

i

Dedication

I’d like to dedicate this work :

To The Prophet Mohammed and his Ahl al-Bayt, and Imam Al-Mahdi;

Peace & blessings be upon them .

To my parents, brothers, supervisor and friends.

To everyone who supported me.

ii

Acknowledgement

At the first, I would like to thank Allah the one above all of us and the

omnipresent God, for answering my prayers and giving me the strength and

courage to do this work.

I want to express my profound gratitude to my supervisors for their boundless

dedication, guidance, and encouragement during this work. their efforts were

invaluable, and I am blessed to be advised by them .

Special thanks go to all the staff members of the College of computer science

and information technology for their faithful efforts to give us the utmost

scientific topics and endless support in all directions .

Finally, I would like to state that no amount of words could adequately convey

how grateful I am to my parents and thank my brother, sisters, and my friends

for encouraging and supporting me.

Ali Abbas Ali

iii

Abstract

Ancient texts are important because they connect us with ancient

civilizations, through which we gain cultural, religious and scientific

knowledge. Ancient texts, whether on papyrus, parchment, or other substrates,

are often fragmented, degraded, or partially erased due to the passage of time.

Restoration of these texts presents a significant challenge to historians and

scholars, requiring meticulous manual effort and expertise.

Ancient text restoration is a specialized branch of the text restoration that

focuses on recovering and preserving textual content from historical or ancient

documents.

Traditional restoration methods rely heavily on manual intervention by

experts, which is time-consuming and often subjective. In recent years, the

application of machine learning (ML) and artificial intelligence (AI) techniques

has shown promise in automating and enhancing the restoration process.

Deep learning techniques have shown remarkable success in various

domains, including image processing and natural language processing. In this

thesis, different models were proposed for the restoration of ancient texts by

using deep neural networks.

Two datasets used for training and testing the models the first dataset

being “Codex Sinaiticus” a manuscript dating back to the fourth century, it is a

significant artifact as it provides the earliest extant complete copy of the New

Testament in the Christian Bible. The handwritten material is written in the

Greek language.

The second dataset being “Argonautica 3” which refers to an epic poem

written by the ancient Greek poet Apollonius of Rhodes in the 3rd century BCE

which is written in the Greek language too.

iv

The dataset has been preprocessed by encoding dataset. New lines,

numbers, symbols and special characters have been removed. After that the

result text has been tokenized, generate missing character, class label obtained,

augmentation performed to support dataset, and normalization process

performed.

Three prediction models were used as proposed models for retrieving

missing ancient texts, Long Short-Term Memory (LSTM), Recurrent Neural

Networks (RNN), and Generative Adversarial Networks (GAN) and the results

were testing accuracy 86%, 92% and 98.3% according to the first dataset and

94%, 88% 98.7% according to the second dataset respectively.

Comparing the performance of each model, GAN gave the best accuracy

results, and thus it proved its effectiveness in the field of restoring missing text.

The results of the proposed system were also compared with other restoration

techniques, where the results showed that the proposed technique had higher

accuracy results than others.

Overall, this work contributes to the interdisciplinary intersection of

deep learning and digital humanities, offering a promising solution for the

restoration and preservation of ancient textual artifacts.

v

Declaration Associated with this Thesis

[1] A. A. A. Alkhazraji, B. Khudair and A. M. N. Alzubaidi, "Ancient

Textual Restoration Using Deep Neural Networks: A Literature Review," in

2023 Al-Sadiq International Conference on Communication and Information

Technology (AICCIT), Al-Muthana, Iraq, 2023.

[2] A. A. A. Alkhazraji, B. Khudair and A. M. N. Alzubaidi, "Ancient

Textual Restoration Using Deep Neural Networks," in Fifth International

Scientific Conference of Alkafeel University (ISCKU 2024), Al-Najaf Al-

Ashraf, Iraq, 2024.

vi

Table of Contents

Dedication ... i

Acknowledgement ... ii

Abstract ... iii

Declaration Associated with this Thesis .. v
Table of Contents .. vi

List of Tables .. ix

List of Figures .. x

List of Abbreviations .. xi

1.1 Review …………………………………………………...…………………........1

1.2 Introduction…………………………………………………………………........1

1.3 Problem Statement .. 2

1.4 Aim of the research .. 3

1.5 Challenges and limitations .. 3

1.6 Thesis layout .. 4

2.1 Reveiw .. 5

2.2 Introduction .. 5

2.3 Ancient languages .. 6
2.3.1 Ancient language background ……………………………………………………….... 7

2.3.2 Importance of ancient language restoration ……………..………………..………....... 8

2.4 Text processing .. 8

2.5 Deep Learning .. 11

2.5.1 Activation Function ... 12

2.5.1.1 Rectified Linear Activation (ReLU) .. 13

2.5.1.2 Sigmoid .. 14

2.5.1.3 SoftMax .. 14

2.5.2 Loss Function .. 15

2.5.3 Optimization Algorithms .. 15

2.5.3.1 Adam .. 16

2.5.4 Back Propagation Technique in Neural Networks .. 17

2.5.5 Dimensionality Reduction ... 20

vii

2.5.6 CNN with 2D Architecture ... 21

2.5.6.1 Generative Adversarial Network (GAN) ... 21

2.5.6.2 Long Short-Term Memory (LSTM) .. 22

2.5.6.3 Recurrent Neural Networks (RNNs))... 24

2.6 Evaluation Measures .. 26

2.7 Literatire Review .. 28

3.1 Review ... 36

3.2 The proposed system .. 36

3.2.1 Dataset Cleaning .. 38

3.2.1.1 UTF-8 Encoding ... 38

3.2.1.2 Remove new lines, numbers, and special characters 39

3.2.2 Tokenization ... 39

3.2.3 Missing Random Character Generation ... 42

3.2.4 Tokens Augmentation ... 42

3.2.5 Text encoding ... 42

3.2.6 Reshape .. 43

3.2.7 Normalization ... 43

3.2.8 Long Short-Term Memory (LSTM) ... 44

3.2.9 Recurrent Neural Network (RNN) .. 47

3.2.10 Generative Adversarial Network (GAN) .. 48

4.1 Review ... 54

4.2 Hardware requirement .. 54

4.3 Dataset ... 54

4.3.1 Codex Sinaiticus ... 54

4.3.2 Argonautica, 3 ... 55

4.4 Case study .. 55

4.4.1 Dataset preprocessing.. 55

4.4.1.1 UTF-8 Encoding .. 55

4.4.1.2 Removing numbers and special characters .. 56

4.4.1.3 Remove newline symbol .. 56

viii

4.4.1.4 Tokenization ... 57

4.4.1.5 Compute language characters .. 57

4.4.1.6 Generate missing character .. 57

4.4.1.7 Compute target class characters ... 58

4.4.1.8 Augmentation process .. 59

4.4.1.9 Text encoding ... 59

4.4.1.10 Reshpe .. 59

4.4.1.11 Normalization ... 59

4.4.2 Prediction models .. 59

4.4.2.1 LSTM model .. 59

4.4.2.2 RNN model .. 63

4.4.2.3 GAN model .. 67

4.5 Discussion .. 72

5.1 Review ... 73

5.2 Conclusions .. 73

5.3 Suggestions for future works ... 74

REFERENCES ... 75

ix

List of Tables

Table 2-1: Studies summarization.. 34

Table 4-1: The precision, recall, f1 score, and support measures for the LSTM model 62

Table 4-2: The precision, recall, F1-score, and support measure for the RNN model 66

Table 4-3: The precision, recall, F1-score, and support measure for GAN model 70

Table 4-4: Studies comparison .. 71

x

List of Figures

Figure 2-1: ReLU Activation Function. ... 13

Figure 2-2: Logistic (Sigmoid) Activation Function .. 14

Figure 2-3: Figuring out the relationship between the gradient and the loss function 18

Figure 2-4: GAN network .. 22

Figure 2-5: LSTM network .. 24

Figure 2-6: RNN network .. 26

Figure 2-7: Confusion matrix .. 27

Figure 3-1: The proposed system for ancient text restoration ... 37

Figure 4-1: Removing '\n' from the dataset ... 56

Figure 4-2: A sample tokenization process .. 57

Figure 4-3: The character of language indicates 41 characters. .. 57

Figure 4-4: Sample of missing values and their classes .. 58

Figure 4-5: Target class character list appointed to 26 classes .. 58

Figure 4-6: Summary of LSTM model layers ... 60

Figure 4-7: Training process for LSTM model .. 60

Figure 4-8: LSTM training and validation accuracy... 61

Figure 4-9: Training and validation loss ... 61

Figure 4-10: LSTM model confusion matrix .. 63

Figure 4-11: The summary of RNN layers ... 63

Figure 4-12: The training process of the RNN model ... 64

Figure 4-13: The training and validation accuracy for the RNN model 65

Figure 4-14: The training and validation loss for RNN model ... 65

Figure 4-15: The confusion matrix for the RNN model ... 67

Figure 4-16: The summary of GAN layers ... 67

Figure 4-17: The training process of the GAN model ... 68

Figure 4-18: The training and validation accuracy of the GAN model 69

Figure 4-19: The training and validation loss of GAN model ... 69

Figure 4-20: The confusion matrix for the GAN model ... 71

xi

List of Abbreviations

Abbreviation Description

BRNN Bidirectional Recurrent Neural Network

BPTT Backpropagation Through Time

CM Confusion Matrix

CNN Convolution Neural Network

CRF Conditional Random Field

GAN Generative Adversarial Networks

GPT Generative Pre-trained Transformer

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MAP Mean Average Precision

NLP Natural Language Processing

ReLU Rectified Linear Activation

RNN Recurrent Neural Networks

SGD Stochastic Gradient Descent

UTF-8 Unicode Transformation Format 8-bit

CHAPTER ONE
GENERAL

INTRODUCTION

Chapter One General Introduction

1

1.1 Review

This chapter presents an introduction about ancient text restoration,

problem statement, aim of the research, challenges and limitations, and

thesis layout.

1.2 Introduction

Ancient texts are written records or documents that date back to

ancient civilizations and societies. They serve as valuable windows into

the past, offering insights into the history, culture, literature, religion,

politics, science, and daily life of ancient peoples [1].

Study and interpretation of ancient texts, known as philology, play

a crucial role in understanding the development and evolution of human

societies. Scholars and researchers in fields such as history, archaeology,

anthropology, linguistics, and religious studies rely heavily on these texts

to reconstruct narratives of ancient civilizations and to piece together

stories of their ancestors [2].

Those documents are typically written on materials such as

papyrus, parchment, clay tablets, bamboo slips, or other ancient media,

and may be thousands of years old. The restoration process involves

overcoming the challenges posed by the passage of time, physical

damage, decay, and fading of the writing, which often makes the text

difficult to decipher [3].

The importance of ancient text restoration lies in its ability to

unlock the knowledge and wisdom of past civilizations. These ancient

texts offer valuable insights into the history, culture, language, beliefs, and

practices of societies that have long since disappeared. By restoring these

Chapter One General Introduction

2

texts, researchers, historians, archaeologists, and linguists can shed light

on ancient traditions, literature, scientific discoveries, religious practices,

and much more [4] .

The restoration of ancient texts is a multidisciplinary endeavor that

brings together experts from various fields. It requires a combination of

skills, including paleography (the study of ancient writing systems),

epigraphy (the study of inscriptions), philology (the study of language and

linguistic history), and material science. Additionally, technological

advancements in imaging, spectroscopy, and other analytical tools play a

significant role in examining and deciphering ancient texts [5].

Artificial intelligence and machine learning play crucial roles in the

restoration of ancient texts by offering innovative tools and techniques for

digitizing, analyzing, and reconstructing fragmented or damaged texts [6].

1.3 Problem Statement

The problem of predicting the missing part of text is a common task

in Natural Language Processing (NLP) and is often referred to as ‘text

completion’ or ‘text generation.’ It involves predicting the most likely

continuation or missing words in a given sentence or text fragment. This

task is a form of language modeling, where the model learns statistical

patterns and relationships between words to make accurate predictions

about the missing part [7].

The restoration of ancient texts is of immense importance for

several reasons, as it offers numerous benefits for scholars, historians,

linguists, and society as a whole such as Preserving Cultural Heritage,

Understanding History, Advancing Scholarship, Revealing Lost

Knowledge, Resolving Historical Debates, Fostering Cultural Exchange,

Chapter One General Introduction

3

Correcting Biases and Misconceptions, Enhancing Language Studies,

Enriching Literature and Arts, and Strengthening Cultural Identity.

Those texts, “inscriptions”, are often damaged over the centuries,

and illegible parts of the text must be restored.

1.4 Aim of the research

The main aim of this study is to develop ancient text restoration

model .

To achieve the main aim, the following procedures should be

outlined:

1. How to identify the main component of the proposed model.

2. To develop the proposed model using deep neural networks.

3. To evaluate the proposed model in terms of accuracy.

1.5 Challenges and Limitations

Ancient text restoration is a complex and challenging task due to

various factors related to the nature of texts and conditions in which they

have survived over time. Some of key challenges of ancient text

restoration include:

1. Deterioration and damage: ancient texts are often physically

degraded due to the passage of time, exposure to environmental

elements, and other natural or human-made factors. This

deterioration can lead to missing or illegible portions, making

the restoration process difficult.

2. Fragmentation: Many ancient texts are fragmented, with pieces

scattered across different locations or collections. Reassembling

Chapter One General Introduction

4

these fragments to reconstruct the original text can be a

laborious and time-consuming task.

3. Ancient scripts and languages: ancient texts may be written in

scripts and languages that are no longer in common use, making

decipherment and translation challenging. Some scripts may not

have a clear relationship with modern languages, adding

complexity to the restoration process.

4. Limited availability of source materials: Access to ancient texts

and artifacts may be restricted due to their fragility, location, or

ownership, making it difficult for researchers to study and

restore them.

5. Data limitations: Incomplete or limited data on the original text

and historical context can hinder the accuracy and completeness

of the restoration process.

1.6 Thesis Layout

The remnant of the thesis is ordered as follows:

Chapter Two: It introduces an introduction about ancient text, text

preprocessing, CNN models for text prediction, and model evaluation.

Chapter Three: It presents the proposed system, discusses the

practical stages of the suggested model, and explains the details of each

step in these stages.

Chapter Four: It contains the results of the proposed system.

Chapter Five: It introduces conclusions and suggestions for future

works.

CHAPTER TWO
THEORETICAL
BACKGROUND

Chapter Two Theoretical Background

5

2.1 Review

This chapter will present an introduction, ancient languages, text

preprocessing, deep learning, prediction models such as GAN, LSTM and

RNNs, optimization algorithms, and literature review.

2.2 Introduction

 The discipline of the ancient text restoration is a captivating

and essential area of academic inquiry that focuses on the safeguarding

and retrieval of historical documents and manuscripts from past epochs.

Ancient books frequently function as portals to the past, offering unique

perspectives on the history, culture, language, and knowledge of

civilizations that before. The restoration of ancient writings necessitates a

meticulous approach that integrates interdisciplinary knowledge and

cutting-edge technologies [8] .

The aforementioned writings encompass several forms of written

records throughout antiquity, including inscriptions on stone tablets,

papyrus scrolls, parchment manuscripts, and other mediums employed for

the purpose of documenting knowledge. Over the course of time, the

degradation of these materials occurs as a result of various circumstances,

including environmental conditions, natural disasters, and intentional acts

of destruction. Consequently, the textual content may have a deterioration

in legibility, sustain damage, or ultimately face full loss. [9]

The field of ancient text restoration involves a variety of tasks, such

as the interpretation of eroded or partially impaired writing, the

reconstruction of absent sections of text, and the conservation or

safeguarding of delicate materials. A collaborative effort is undertaken by

scholars, archaeologists, linguists, and conservators to decipher the

Chapter Two Theoretical Background

6

enigmatic content enshrined within these antiquated manuscripts. A

diverse range of methodologies is utilized, including multispectral

photography, chemical analysis, and consideration of historical context,

in order to reconstruct the intricate tapestry of historical events and

cultural phenomena [10].

The diligent endeavors of scholars specializing in the restoration of

ancient texts afford the opportunity to access a vast reservoir of

knowledge that would otherwise remain obscured, thus enhancing the

comprehension of historical events and the intellectual and aesthetic

accomplishments of those who came before. The restoration of these texts

has a dual purpose: illuminating historical events and enhancing the

continuous progression of human understanding while fostering a deeper

appreciation for the rich and varied fabric of human history [11].

2.3 Ancient languages

Languages serve as the foundation upon which human civilization

is built, containing not just proposed methods of communication but also

it is a very essence of culture, thought, and historical development. They

are living reservoirs of accumulated knowledge and expertise that has

been accumulated through countless generations [12].

A rich tapestry of languages has come and gone over the course of

the millennia, and each of these languages has left a distinct mark on the

very fabric of human existence. Research destination will be a place where

ancient languages have left an indelible mark on the course of human

history [13].

Chapter Two Theoretical Background

7

2.3.1 Ancient languages background

Ancient languages are like echoes of long-forgotten conversations,

whispering to the world across the centuries and beckoning to uncover

their secrets. They are the keys to understanding the intricate tapestry of

human civilization, each offering a unique window into beliefs, customs,

and intellectual accomplishments of their respective cultures.

Take, for example, Sanskrit, an ancient Indo-European language

celebrated for its role as the sacred language of Hinduism and the treasure

trove of knowledge contained in texts like the Vedas, Upanishads, and

epics such as the Mahabharata [14]. Its enduring significance lies in its

profound influence on Indian culture and philosophy.

Similarly, Latin, the language of the Romans, was not only the

administrative and literary language of a powerful empire but also the

foundation upon which much of Western thought and scholarship was

built. It shaped disciplines such as law, medicine, and science,

contributing to the richness of scientific nomenclature and legal

terminology [15].

The hieroglyphic script of ancient Egypt, with its enigmatic

symbols, is a testament to the fascination with human history, culture, and

spirituality. Deciphered thanks to the Rosetta Stone, it unveiled the stories

of pharaohs, religious beliefs, and monumental achievements carved into

the stone walls of ancient temples. These examples represent just a

fraction of linguistic treasures that connect us to our ancestors, illuminate

our collective history, and shape our modern world, demonstrating the

inexhaustible depths of knowledge and cultural significance held within

these ancient tongues [16].

Chapter Two Theoretical Background

8

2.3.2 Importance of ancient language restoration

The restoration of ancient texts is of the utmost importance because

it acts as a connection to the cultural and historical history. It also helps to

preserve priceless insights into values, practices, and information that

were held by previous civilizations [17].

These newly restored manuscripts provide a one-of-a-kind view

into annals of history. They reveal historical tales, linguistic intricacies,

and contextual clues that not only deepen the comprehension of the past

but also advance the study of linguistics, archaeology, and

multidisciplinary studies. By cracking codes of these ancient languages,

they make the researchers able to access the vast store of information that

they contain [18].

This information spans fields of science, medicine, and

mathematics, in addition to the artistic and literary traditions of antiquity.

In addition, they frequently hold relevance in realms of law, diplomacy,

and sociology, providing a comprehensive understanding of the

relationships that existed amongst societies of the past. By restoring

ancient texts, we are preserving threads of the cultural tapestry, so re-

establishing the connection to the origins, and ensuring that the voices of

the ancestors will continue to reverberate and inspire people in the current

world [19].

2.4 Text processing

The preparation of text data is an essential stage in the field of

natural language processing (NLP) and data analysis. It encompasses a

sequence of procedures aimed at converting unprocessed textual data into

a refined and organized format that is well-suited for a variety of NLP

Chapter Two Theoretical Background

9

applications. The aforementioned procedure is crucial in enhancing the

quality of data and enabling more precise and efficient analysis [20]. The

fundamental stages involved in the preparation of text data encompass:

1. Data collection: The initial phase entails the acquisition of

unprocessed textual data from many sources, encompassing web

scraping, document retrieval, or social media application

programming interfaces (APIs). Thorough data gathering is crucial

and necessitates careful consideration of the analysis's specific

requirements [21].

2. Text cleaning is a process that aims to remove undesirable

components from a given text, such as HTML tags, special characters

(e.g., punctuation marks), metadata, or non-textual material. The

correction of spelling problems is undertaken in order to enhance the

quality of data [22].

3. Tokenization refers to the procedure of dividing a given text into

discrete units known as tokens, which often correspond to individual

words or other meaningful elements. This stage facilitates the

examination of text at a fine-grained level, hence simplifying the use

of subsequent techniques such as stemming or lemmatization [23].

4. The process of converting all text to lowercase is necessary in order

to maintain consistency. This process serves to eliminate the

distinction between the same term with different letter cases, hence

minimizing redundancy in the data.

5. Stopword removal: Stopwords refer to frequently occurring words,

such as "the," "is," "in," and "and," that contribute minimal semantic

value to the text. By eliminating these phrases, the data's

Chapter Two Theoretical Background

10

dimensionality is reduced, allowing for a greater emphasis on

keywords that provide more meaningful information [24].

6. Stemming and lemmatization are two techniques used in natural

language processing. Stemming involves reducing words to their root

form by deleting prefixes or suffixes, such as transforming "running"

to "run". On the other hand, lemmatization involves mapping words

to their base form using a lexicon, for example, transforming "better"

to "good". These strategies aim to establish a standardization of word

variants, providing a uniform treatment of related words [25].

7. Exclusion of numerical characters: Numeric characters are often

omitted unless the analysis pertains to numerical data. The exclusion

of numerical values simplifies the text and aids in directing attention

towards the textual content.

8. Handling missing data: The management of missing or null values in

textual data is of utmost importance in order to mitigate errors and

uphold the integrity of the data. Depending on the characteristics of

the data, the process may entail either imputing missing values or

eliminating incomplete records [26].

9. The process of encoding and decoding involves the proper utilization

of encoding schemes, such as UTF-8, to enable accurate interpretation

of textual data, particularly in scenarios involving diverse character

sets and languages. The inclusion of this phase is crucial in effectively

managing text that is written in multiple languages.

10. Normalization involves several tasks, such as the conversion of

abbreviations into their expanded forms (e.g., transforming "don't"

into "do not") and the management of terminology specific to a certain

domain. This modification enhances the coherence and

Chapter Two Theoretical Background

11

comprehensibility of the text [27]. Equation (2.1) represents the z-

score normalization.

 𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (2.1)

Where x is the value

𝜇𝜇 : the mean

𝜎𝜎 : the standard deviation.

11. The removal of irrelevant information: Textual data frequently

encompasses data that is not germane to the analysis. The exclusion

of extraneous content, such as metadata or boilerplate text, guarantees

that the analysis remains centered on the pertinent textual information.

12. Text length filtering: The application of filtering techniques to exclude

texts that are too short or long is crucial in ensuring data quality by

mitigating the risk of inadequate information or the introduction of

noise.

13. Customized data-unique cleaning: This stage involves the execution

of cleaning tasks that are tailored to the unique data, such as the

elimination of jargon specific to a certain company or words relevant

to a particular industry. The utilization of custom cleaning techniques

is vital for conducting domain-specific studies [28].

2.5 Deep Learning

The extraction of meaningful and relevant features is crucial in

machine learning. Traditional machine learning cannot understand or

process raw natural input, making AI problem-solving problematic.

Chapter Two Theoretical Background

12

These issues were addressed by deep Learning approach which

combining AI with machine learning [29],[30].

Deep learning uses many processing layers to build computer

models that can recognize subtle structures in big datasets by learning data

representations at different abstraction levels. How a computer may

change the parameters needed to generate each layer from the preceding

layer is a concern [31].

With large increases in data, deep learning algorithms are the most

used. CNN is popular in deep learning where a layer-based neural network

is used. Each layer does convolution, loss, aggregating, computation, etc.

[32]. Previous layer output becomes next layer input. CNNs have been

used in computer vision for a long time, but the 2012 ImageNet

competition revolutionized graphics processing unit (GPU) use and data

augmentation [33].

Deep learning had several uses. In [34], authors proposed a deep

learning age and gender classification model. Deep learning was used to

classify face expressions in [35]. The researchers created a deep learning

algorithm to detect cranial anomalies while driving. Deep learning was

used to classify a driver's eyes open or closed to prevent accidents [36].

In [37], deep learning identified head movement to diagnose illness.

2.5.1 Activation Function

The activation functions are a fundamental component used with

artificial neural networks (ANNs) to transform input signals to output

signals. Later strata receive this output signal as input. In an ANN, count

the input products and their weights, then add an activation function to

calculate the layer output and send it to the next layer [38].

Chapter Two Theoretical Background

13

Most activation functions are linear or nonlinear. When using linear

activation, output matches input. It can only adjust to linear changes and

solve basic issues with some mistake. The complex and nonlinear

equations of backpropagation cannot be solved by the input because its

derivative value must remain constant [39].

The nonlinear activation functions with multi-degree curves.

Multiple-layer neural networks must learn, represent, and comprehend

input-output data and complex issues. Non-linear input-output mappings

require an activation function. Due to backpropagation, the nonlinear

activation function reduces flaws [38]. Essential activation functions for

concealed layers are below .

2.5.1.1 Rectified Linear Activation (ReLU)

The ReLU is a type of neural network that is often used, especially in

deep learning models. It works by putting the threshold to 0. Simply put,

it gives back 0 when x is zero or negative and the same number when x

is not zero or negative. The function that the equation (2.2) stands for.

The plot of the ReLU activation function [40] is shown in Figure (2.1).

 Figure (2.1) ReLU Activation Function [41]

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐱𝐱) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) (2.2), [40]

Chapter Two Theoretical Background

14

2.5.1.2 Sigmoid

Since the sigmoid is a nonlinear function, it is very most popular,

especially in binary classification. As seen in Figure (2.2), the sigmoid

function modifies values in the interval 0 to 1; it can be expressed as

equation (2.3) [42]:

f(x) = 1 (1 + e − x)⁄ (2.3), [42]

The sigmoid function is a smooth S-shaped function that is

continuously differentiable [38]. The function's derivative is given by

equation (2.4), and Figure (2.2) depicts the sigmoid activation function.

f ′(x) = 1 − sigmoid(x) (2.4), [42]

Figure (2.2) Logistic (Sigmoid) Activation Function [38]

2.5.1.3 SoftMax

The SoftMax function is one type of activation function. It is often

used in neural computing at the last layer to calculate the multiple

probability distributions of multi-classes with more than two classes by

Chapter Two Theoretical Background

15

using a list of real values. The result of the Softmax function is a number

between 0 and 1 where the sum of all the probabilities is 1, and the class

with the highest value is the goal class. Softmax is shown in equation

(2.5), which is [39].

f(xi) = exp (xi)
∑ exp (xi)j

 (2.5), [39]

2.5.2 Loss Function

Earlier models of neural networks measured error by comparing the

actual output to the predicted output. Numerous formulae, known as Loss

Functions [43], for calculating neural network error have emerged.

Each loss function will produce a distinct error value for the same

prediction if the network is trained with multiple loss functions. Loss

functions can be categorized as classification loss functions, regression

loss functions, and embedding loss functions [44].

Classification issues are addressed with classification loss

functions. Regression problems employ regression loss functions. While

the embedding loss functions are used to measure the similarity between

two inputs, the embedding loss functions are utilized for tasks that require

measuring the similarity between two inputs. Training a neural network

with widely-used loss functions [45].

2.5.3 Optimization Algorithms

Choosing an algorithm to optimize a neural network is a crucial

step. Batch or deterministic gradient techniques, which manage all

training examples in a large batch at once, and stochastic or online

Chapter Two Theoretical Background

16

methods, which only deal with a single instance at a time, are the most

common types of optimization techniques in machine learning [44].

Optimization algorithms include adaptive learning algorithms and

constant learning rate algorithms, such as stochastic gradient descent

(SGD). In the first category, there is a manual selection of a learning rate.

In this type of algorithm, determining the learning rate is a difficult task.

Selecting a low learning rate slows down the learning process and

lengthens the duration of training. If you select a relatively high learning

rate, which slows down the convergence process, the loss value may

vacillate around the minimum value. The learning rate for the algorithms

in the second group, however, does not need to be manually set. Instead,

they employ a heuristic method that automatically adjusts the learning rate

[46]. Several algorithms that fall into these two categories have been

created, with the most significant one is below:

2.5.3.1 Adam

This adaptive learning rate optimization technique (Adam)

evaluates the rate at which every individual learns a particular parameter

(or set of parameters). Adam utilized first- and second-moment

estimations in order to establish Adam's learning parameters. A random

variable raised to the power of n represents the current expectation. The

moment can be mathematically demonstrated in equation (2.6), [47]:

mn = E[Xn] (2.6), [47]

 Where: m is the_moment, and X is a random_variable.

 The following equations (2.7) ,(2.8) are used to estimate, the first

and second moments Adam [47].

https://arxiv.org/pdf/1412.6980.pdf

Chapter Two Theoretical Background

17

m� t = mt
1−β1t

 (2.7), [47]

v�t = vt
1−β2t

 (2.8), [47]

Where mt is the previous first moment and vt is the previous second

moment. In the first step, both of these values are set to 0.

β1 and β2 are two new parameters that have been added to the

algorithm. They are set to 0.9 and 0.999 as their default values.

After finding out the values of the first and second moments, the network

weights are changed using the following equation (2.9).

 wt = wt−1 − η m� t
�v�t+ϵ

 (2.9), [47]

Where W is network weights, η is Step size, 𝛜𝛜 = 𝟏𝟏𝟏𝟏−𝟖𝟖

2.5.4 Back Propagation Technique in Neural Networks

Back-propagation (BP) is the most important neural network

preparation process. The error rate of the previous epoch is used to fine-

tune neural network weights. Weight adjustments reduce mistakes and

make the model more general, improving precision [45]. The BP

algorithm, which uses the weights update approach, is used to educate

multi-layer networks to recognize patterns. Using the optimization

function, the BP method alters initial weights to lessen the disparity

between intended and predicted output [48]. Most optimization

algorithms assess the partial loss function's weight derivative, the

gradient. Gradient measurements determine the opposing weight

Chapter Two Theoretical Background

18

adjustment. This loop continues until the model fails [44]. Figure 2.3

shows how to calculate gradient and how loss function and network

weights relate.

The BP algorithm includes the following forward and reverse steps:

a. The procedure is depicted in Figure (2.3) of the perceptron.

1. Patterns of input are transmitted into the network.

2. Compute predictions of output.

• Compute the net, which is the sum of the product and

input weights, using the formula: (2.1).

• Using the activation function, calculate f(net), the

expected output denoted as 1 out or 0 for the net in

equation (2.2).

3. Compare desired (target) and predicted (out) outputs, error

differences between the desired and predicted output, for each

Figure (2.3) Figuring out the relationship between gradient

and loss function [76]

Chapter Two Theoretical Background

19

neural output must be calculated using a loss function such as

cross-entropy, which is the preferred one to be used with the

output that is distributed according to the probability of each

class, thus cross-entropy loss function is an appropriate loss

function for softmax or sigmoid classifiers that return the

probability of each class. The expression appears as the formula

(2.10) [49] below.

H(out) = −∑ (𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) 𝐥𝐥𝐥𝐥𝐥𝐥(𝒐𝒐𝒐𝒐𝒕𝒕)
𝒊𝒊 (2.10), [49]

b. The procedure of backpropagation process in NN.

1. Recalculated errors must be propagated in the opposite

direction.

2. Gradient descent, one of the most prevalent optimization

techniques used with the back-propagation method, is

employed to bring the projected output closer to the intended

output. The total error is derived primarily from E(total) in

order to make adjustments. The error with respect to a

particular weight is also referred to as gradient descent with

respect to w1, for example using the chain rule as shown in the

equation below: (2.11). [49], [50].

 𝝏𝝏 𝑬𝑬(𝒕𝒕𝒐𝒐𝒕𝒕𝒕𝒕𝒕𝒕)
𝝏𝝏 𝒘𝒘𝟏𝟏

= 𝝏𝝏 𝑬𝑬(𝒕𝒕𝒐𝒐𝒕𝒕𝒕𝒕𝒕𝒕)
𝝏𝝏 𝒐𝒐𝒐𝒐𝒕𝒕(𝒐𝒐𝟏𝟏)

∗ 𝝏𝝏 𝒐𝒐𝒐𝒐𝒕𝒕(𝒐𝒐𝟏𝟏)
𝝏𝝏 𝒏𝒏𝒕𝒕𝒕𝒕(𝒐𝒐𝟏𝟏)

∗ 𝝏𝝏 𝒏𝒏𝒕𝒕𝒕𝒕(𝒐𝒐𝟏𝟏)
𝝏𝝏 𝒘𝒘(𝒊𝒊)

 (2.11), [49]

3. Weight difference value (ΔW) is derived by multiplying the

resultant gradient descent with regard to a particular weight

value by the learning rate (η), as shown in the following

equation (2.12) [50].

 ΔW = η 𝝏𝝏 𝑬𝑬(𝒕𝒕𝒐𝒐𝒕𝒕𝒕𝒕𝒕𝒕)
𝝏𝝏 𝒘𝒘(𝒊𝒊)

 (2.12), [50]

Chapter Two Theoretical Background

20

4. The present weight will be modified by subtracting the weight

difference, as stated in the following equation (2.13) [50].

[50] ,)2.13(ΔW –= W(i) newW(i)
By substituting (2.12) with (2.13), the new weight can be obtained by

applying the following equation (2.14) [49].

W(i)new = W(i) - η (∂ E(total))/(∂ w(i)) (2.14), [49]

In a multi-layer or deep network, the weight-adjustment process

returns to the concealed layer to update the weights before returning to the

input layer from the output layer until the error difference falls below the

upper error bound (Emax). This section is called the backward phase

because a gradient learning process begins at the output node and

continues going backward [51].

It is essential to note that the gradient vanishing is the greatest back-

propagation concern. The vanishing gradient problem is the difficulty

encountered when training a neural network as a result of a small weight

update received from the preceding layer, resulting in a small weight shift

that, in the worst-case scenario, can completely cease the training process.

Due to the variety of activation functions, some can exacerbate the issue

while others can remedy it. Due to its ability to maintain only positive

values while keeping negative values close to zero, ReLU is currently the

most important or default activation function [52].

2.5.5 Dimensionality Reduction

Numerous disciplines, including numerical analysis, data

processing, and machine learning, confront the issue of curse dimensions.

The prevalent theme of curse dimensional problems is that as the

dimensionality increases, the quantity of available data decreases

Chapter Two Theoretical Background

21

precipitously. Due to the tremendous capacity of its algorithms to manage

multiple dimensions, deep learning has circumvented this problem [53].

2.5.6 CNN with 2D Architecture

This topic concentrates on the architecture required to manage a

particular type of data. Convolutional Neural Networks (CNN) are a

biologically inspired form of feed-forward networks in which the

connections between neurons attempt to record input data distortion or

shift pattern invariances. The vast majority of CNN architectures

presumed networks would operate with two-dimensional input data

(typically images). Each layer of a conventional CNN converts one

activation volume to another [54].

2.5.6.1 Generative Adversarial Network (GAN)

Ian Goodfellow and colleagues established a deep learning model

Generative Adversarial Network (GAN) in 2014. GANs generate new

data instances in various domains, including pictures, writing, music, and

others. Their ability to produce realistic, high-quality content has made

GANs popular [55].

The GAN model has two parts:

1. The generator is a neural network that uses random noise or input

data to generate data that closely resembles valid data. The

generator generates authentic-looking images from random noise

[56].

2. The discriminator is a neural network that analyzes data to

distinguish between legitimate (e.g., actual photos) and synthetic

(made) data. It mostly classifies binary data [57].

Chapter Two Theoretical Background

22

Due to their adversarial training, GANs are named such. Operations

work as follows:

• The generator and discriminator are trained simultaneously, but in

an adversarial manner.

• The generator aims to generate data with high realism, making it

indistinguishable from authentic data, leaving the discriminator

unable to distinguish between the two.

• The discriminator aims to improve its ability to separate authentic

data from synthetic data.

• Training improves the generator's ability to generate data that

closely resembles genuine samples and the discriminator's ability

to identify real from created instances. The feedback loop this

creates improves data quality continuously.

GAN training aims to reach an equilibrium state where the

generator generates data that cannot be distinguished from genuine data

and the discriminator makes random guesses [58].

Figure (2.4) GAN Network

2.5.6.2 Long Short-Term Memory (LSTM)

LSTM solve the vanishing gradient problem, a common difficulty

in standard RNNs. LSTM models excel in sequential data and time-series

Chapter Two Theoretical Background

23

analysis, making them popular in natural language processing, speech

recognition, and other fields [59].

Essential LSTM traits and principles include:

1. Memory cells: LSTM models can capture and retain information

over long sequences. This makes LSTMs ideal for long-term

context comprehension and preservation.

2. LSTM models use gates to regulate information flow, with three

types [60].

• The forget gate mechanism discards information from the cell

state.

• The input gate selects new information for storage.

• The output gate controls information selection for prediction

[61].

3. The cell state is the internal state of the LSTM unit, located

horizontally at the top. Data can be transmitted over long

sequences.

4. The hidden state is the output of an LSTM cell used for prediction.

The technique preferentially propagates cell state information.

5. The LSTM model uses Backpropagation Through Time (BPTT), a

modified version of the backpropagation technique. This method

lets the neural network learn and adjust its parameters over time

[62].

LSTM models can manage and capture long-term dependencies in

datasets better than RNNs. This is especially important in language

modeling, because preceding words that came far earlier in the sequence

might affect the semantic interpretation of a word in a phrase. Traditional

Chapter Two Theoretical Background

24

RNNs struggle to store information over long periods because to the

vanishing gradient problem [63].

LSTM models are important in machine translation, text

production, and speech recognition. These methods are also used in

financial time series forecasting, video analysis, and other fields. More

recently, LSTM counterparts like GRUs offer a comparable advantage

while reducing computational complexity.

LSTMs are powerful, but Transformer-based models, a recent deep

learning breakthrough, have received attention in NLP. This is due to their

parallel processing and greater performance across NLP applications.

However, LSTM models remain a key concept in neural networks and are

still used in sequential input applications [64].

Figure (2.5) LSTM network

2.5.6.3 Recurrent Neural Networks (RNNs)

RNNs are a class of artificial neural networks designed for handling

sequences and time-series data. Unlike feedforward neural networks,

where information flows in one direction from input to output, RNNs have

Chapter Two Theoretical Background

25

connections that loop back on themselves, allowing them to maintain a

form of memory or context [65].

Key features and concepts of RNNs include:

1. Time-dependent processing: RNNs can process sequences of data,

such as time-series data, natural language, and sensor data, by

taking into account the order and context of the elements in the

sequence.

2. Hidden state: RNNs have a hidden state that serves as an internal

memory. The hidden state at a given time step is influenced by the

input at that time step and the previous hidden state. This allows

RNNs to maintain context and remember information from

previous time steps [66].

3. Recurrent connection: The recurrent connection in RNNs allows

information to be passed from one time step to the next. This is

achieved by creating a loop in the network, with the output at one

time step serving as input to the same network at the next time step

[67].

4. Vanishing gradient problem: RNNs are prone to the vanishing

gradient problem, which occurs when gradients become too small

during training, making it difficult for the network to learn long-

range dependencies. This can lead to issues in retaining information

over long sequences [68].

Chapter Two Theoretical Background

26

Figure (2.6) RNN network

2.6 Evaluation Measures

When constructing a machine learning model, the evaluation of

performance and efficiency is crucial. For the machine learning model to

be trustworthy, an assessment method must be selected that is

proportional to the model's work. Frequently, while assessing machine

learning models, many scales are employed to guarantee accurate

evaluation. In machine learning, there are three primary types of

evaluation measures: those used to assess classification, Regression and

clustering tasks. Classification tasks may be evaluated using a variety of

metrics, including accuracy, confusion matrix, recall, precision, and F1-

score [69].

1. Accuracy measure

As demonstrated in equation (2.15), accuracy is the ratio of the

average number of correct predictions to the total number of input

samples.

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 = 𝐍𝐍𝐀𝐀𝐍𝐍𝐍𝐍𝐍𝐍𝐀𝐀 𝐥𝐥𝐨𝐨 𝐀𝐀𝐥𝐥𝐀𝐀𝐀𝐀𝐍𝐍𝐀𝐀𝐜𝐜 𝐩𝐩𝐀𝐀𝐍𝐍𝐩𝐩𝐩𝐩𝐀𝐀𝐜𝐜𝐩𝐩𝐥𝐥𝐩𝐩𝐩𝐩
𝐓𝐓𝐥𝐥𝐜𝐜𝐀𝐀𝐥𝐥 𝐩𝐩𝐀𝐀𝐍𝐍𝐍𝐍𝐍𝐍𝐀𝐀 𝐥𝐥𝐨𝐨 𝐩𝐩𝐀𝐀𝐍𝐍𝐩𝐩𝐩𝐩𝐀𝐀𝐜𝐜𝐩𝐩𝐥𝐥𝐩𝐩𝐩𝐩

 (2.15)

Chapter Two Theoretical Background

27

Figure (2.7) Confusion matrix [81]

2. Confusion Matrix (CM)

 CM is one of the most significant tools for providing a full

explanation of the classification model's performance. The confusion

matrix for a binary classification model is depicted in Figure (2.7).

Each prediction will fall into one of four categories:

• True positive (TP): a correctly predicted positive outcome.

• False positive (FP): a positive prediction that is inaccurate.

• True negative (TN): the correct forecast of a negative outcome.

• False negative (FN): a negative forecast that is incorrect.

The matrix accuracy can be obtained by averaging the main diagonal
values using the equation (2.16) [71].

 𝑨𝑨𝑨𝑨𝑨𝑨𝒐𝒐𝒕𝒕𝒕𝒕𝑨𝑨𝑨𝑨 = 𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻+𝑭𝑭𝑻𝑻+𝑻𝑻𝑻𝑻

 (2.16)

3. Recall

The Recall is the ratio of correct positives to the sum of correct positives

and incorrect negatives; it is used to quantify the classifier's capacity to

recognize all positive cases; and it is one of the most essential metrics

utilized with models including unbalanced datasets. This metric was

calculated using the following formula: (2.17).

𝑹𝑹𝒕𝒕𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

 (2.17)

Chapter Two Theoretical Background

28

4. Precision

 Precision is defined as the capacity of a classifier to not label a negative

instance as positive and is described by the ratio of right positives to the

total of right and incorrect positives. a measure of precision that can be

determined using the equation shown below (2.18) [69].

 𝐏𝐏𝐀𝐀𝐍𝐍𝐀𝐀𝐩𝐩𝐩𝐩𝐩𝐩𝐥𝐥𝐩𝐩 = 𝐓𝐓𝐏𝐏
𝐓𝐓𝐏𝐏+𝐅𝐅𝐏𝐏

 (2.18)

5. F1-score

 The F-score is represented as the arithmetic mean of recall and

precision. The F1 seeks to strike a balance between recall and

precision and is used to quantify a test's accuracy, which determines

how many instances it correctly classifies, and robustness by

preventing the model from ignoring a substantial number of cases. F1

Score ranges between 0 and 1, with the bigger value indicating

superior performance. The following equation (2.19) reflects the F-

score measure [70]; it is the F-score measure.

 𝐅𝐅𝟏𝟏 𝐩𝐩𝐀𝐀𝐥𝐥𝐀𝐀𝐍𝐍 = 𝟐𝟐×𝐏𝐏𝐀𝐀𝐍𝐍𝐀𝐀𝐩𝐩𝐩𝐩𝐩𝐩𝐥𝐥𝐩𝐩 ×𝐑𝐑𝐍𝐍𝐀𝐀𝐀𝐀𝐥𝐥𝐥𝐥
𝐏𝐏𝐀𝐀𝐍𝐍𝐀𝐀𝐩𝐩𝐩𝐩𝐩𝐩𝐥𝐥𝐩𝐩+𝐑𝐑𝐍𝐍𝐀𝐀𝐀𝐀𝐥𝐥𝐥𝐥

 (2.19)

2.7 Literature Review

Numerous researches and strenuous efforts have been made over

the past years to try to recover and understand the ancient texts of the

importance of these texts. Several types of research that preceded us will

be mentioned in this field:

• Y. Assael et al. (2019) introduce PYTHIA, an ancient text restoration

model. This model recovers missing characters from damaged text

inputs using deep neural networks. The system is precisely designed

Chapter Two Theoretical Background

29

to manage long-term contextual information and accommodate

missing or corrupted letter and word representations. A sophisticated

pipeline was created to turn PHI, the largest digitized collection of

ancient Greek inscriptions, into machine learning-friendly language

for its training. This converted text is PHI-ML. According to PHI-ML,

PYTHIA's predictions have a 30.1% character mistake rate, whereas

human epigraphists have 57.3%. PYTHIA's Top-20 hypotheses

included the ground-truth sequence 73.5% of the time. This finding

proves the influence of this assistive technology on digital epigraphy,

making it the standard for ancient text restoration. [72].

• H. Wang et al. (2019) uses a bidirectional LSTM + CRF model to

segment Archaic Chinese phrases. The suggested method uses a linear

statistical model in the bidirectional LSTM neural network to annotate

sentences. This model also used stochastic gradient descent (SGD) to

reduce overfitting and the viterbi algorithm to find the best sentence

order. This experiment analyzes historical writings like the History of

the Han Dynasty, the History of the later Han Dynasty, the Three

Kingdoms, and the Book of Jin to test the proposed method. In the

open test, precision, recall, and F1 are 0.77, 0.75, and 0.76. These

values are 0.90, 0.88, and 0.76 in the closed test [73].

• Q. Zhao (2021) used machine-learning techniques to detect Chinese

artifacts. The study classified important Chinese cities by temple,

contemporary city, harbor, battle, and South China. Decision tree

algorithms were utilized for recognition and gradient boosting for

perception. The study found that algorithms detected ancient Chinese

artifacts with 98% accuracy and prediction. The models help locate

archaeological sites [74].

Chapter Two Theoretical Background

30

• Lengauer et al. (2022) introduced a methodology that enables the

automated identification of the underlying generation rule associated

with a repetitive surface pattern. A workflow is proposed for the

reconstruction of missing or damaged parts of the surface painting,

based on the generation rule and preserved patterns from the same

pattern class. The authors assess the effectiveness of their

methodology by implementing it on a range of pottery artifacts

originating from ancient Peruvian and Greek civilizations. Their

findings demonstrate that their automated approach is capable of

successfully addressing diverse problematic scenarios [75].

• L. Wartschinski et al. (2022) presented an LSTM network to classify

vulnerable code token sequences. This network highlights source code

portions prone to vulnerabilities and provides confidence ratings for

its predictions. The efficiency of Vudenc was evaluated using 1,009

vulnerability-fixing changes from various GitHub repositories. SQL

injection, XSS, Command injection, XSRF, Remote code execution,

Path disclosure, and Open redirect were covered in these commits.

The commits were used for training. During the experiment, Vudenc

achieved a recall rate of 78%-87%, a precision rate of 82%-96%, and

an F1 score of 80%-90%. Vudenc's code, vulnerability datasets, and

word2vec model training Python corpus are all available for

replication. [76].

• Yuan et al. (2022) added the Houma Alliance Book's ancient

handwritten characters database. They also presented a multi-modal

fusion method for recognizing archaic handwritten letters. The

database contains 297 classes and 3,547 samples of Houma Alliance

old handwritten characters from the core book collection and human

imitative writing. In addition, the decision-level classifier fusion

Chapter Two Theoretical Background

31

technique combines three popular deep neural network designs to

recognize ancient handwritten characters. Their new database has

been tested. The research community bases the new database on initial

experimental results. These data demonstrate the efficacy and

productivity of their methods [77].

• L. Jian et al. (2022) present the notion of a hybrid network model

within the domain of deep learning. The authors proceed to develop a

hybrid network model specifically designed for assessing the

readability of English text. This model combines a convolutional

neural network, a bidirectional long short-term memory network, and

an attention mechanism network. By employing machine learning

techniques to automate feature extraction, the authors successfully

enhance the efficiency and performance of text readability

measurement, eliminating the need for manual extraction methods

[78].

• Williams et al. (2023) addressed the difficulty of mastering ground-

truth cuneiform tablet transcribing subtasks. Their findings show that

a RetinaNet object detector can obtain 0.78 localization mAP and a

ResNet classifier can reach 0.89 top-5 sign classification accuracy.

The end-to-end pipeline has 0.80 top-5 classification accuracy. In the

classification module, DeepScribe clusters cuneiform signs by

morphology. The researchers compare the artificial grouping method

to printed sign listings and assess its potential benefits. Individual

training of these components is sufficient to construct a system that

can analyze Achaemenid-era cuneiform tablet pictures and offer

researchers transliteration suggestions. The researchers evaluate the

model's ability to identify and categorize signs, which can inform the

creation of a linguistically competent transliteration system. They also

Chapter Two Theoretical Background

32

examine if the approach can be applied to other cuneiform writing

periods [79].

• Papavassileiou et al. (2023) Present a generative neural language

model for Mycenaean Greek, the earliest known form of Greek and

related with the Linear B script. They propose using a Bidirectional

Recurrent Neural Network (BRNN) to assess Mycenaean documents'

statistical trends and comparing it to the n-gram approach. The

approach supports defective Mycenaean texts, particularly partially

incomplete words on clay tablets with variable degrees of degradation.

Their strategy is experimentally verified using ground-truth data.

They next apply their strategy to real-world instances and compare the

outcomes to expert judgments. They also suggest a way to update their

dataset, which improves their results [80].

• Locaputo et al. (2023) explain their study on developing a deep

learning model to restore ancient Latin inscriptions. The first step was

to find a database with many old Greek-Latin inscriptions from

reputable corpora. Their technique comprises creating a data pre-

processing pipeline for denoising, normalisation, and annotation

schema unification. They found four promising deep-learning

methods to fill Latin text gaps using various methods. The concept is

based on the cutting-edge model for restoring ancient Greek

inscriptions. The next idea uses pre-trained language models. The

third concept uses recent computer vision and diffusion model

advances. Finally, an additional proposal addresses the first and third

techniques' drawbacks, particularly the need for epigraphists' gap

dimensions conjectures [81].

• Wenjun et al. (2023) two-branch character restoration networks were

introduced. The Example Attention Generative Adversarial Network

Chapter Two Theoretical Background

33

(EA-GAN) model uses reference examples and a generative

adversarial network framework. Reference the features of the sample

character to accurately restore a damaged character, even if the

damage is substantial. To extract the damaged and example characters'

unique properties, the EA-GAN model uses two branches. The

impaired character is then restored using contextual information and

the reference character's distinctive features at various magnification

settings during up-sampling. To solve mismatch between example and

damaged character features and a limited convolution receptive field,

an Example Attention block is used to facilitate restoration. The

research uses qualitative and quantitative analysis on two datasets:

MSACCSD, which the researchers created, and real scene photos.

EA-GAN uses the Example Attention block's additional example to

achieve accurate text structure, unlike other inpainting networks. The

peak PSNR increased 9.82% and the structural similarity (SSIM)

increased 1.82%. The Visual Geometry Group (VGG) network and

AlexNet calculated a 35.04% and 16.36% drop in learnt perceptual

image patch similarity (LPIPS). Their method outperformed

inpainting methods. The digital conservation of ancient Chinese

literary works is made easier by its ability to restore in the presence of

untrained people [82]. Table (2.1) summarizes this research

Chapter Two Theoretical Background

34

Table (2.1) Studies summarization

Authors Year Methodology Dataset Performance

Y. Assael et al

[72]
2019 PYTHIA

Greek

inscriptions

73.5%

error rate

H. Wang et al

[73]
2019 LSTM+CRF

Ancient

Chinese

sentence

76%

F-score

Q. Zhao [74] 2021

Decision tree

algorithm for

recognition and

gradient boosting for

perception aspects

Ancient

artifacts found

throughout

China

98%

accuracy

Lengauer et al

[75]
2022

Content-based pattern

recognition

Pottery from

the Josefina

Ramos de Cox

museum

5% and 15%

construction

error

L. Wartschinski

et al. [76]
2022 LSTM

Datasets for

the

vulnerabilities,

and the

Python corpus

80%-90%

F1-score

Yuan et al. [77] 2022 DCF-LAR
Houma

Alliance Book

84.82%

accuracy

L. Jian et al. [78] 2022 CNN proposed model

English

handwriting

texts

89.1%

accuracy

Williams et al.

[79]
2023 ResNet

5,000

annotated

tablet images

89%

accuracy

Chapter Two Theoretical Background

35

Papavassileiou et

al. [80]
2023 BRNN

Mycenaean

Greek

76.68%

accuracy

Locaputo et al.

[81]
2023 LSTM

Epigraphik -

Datenbank

Clauss/Slaby

(EDCS)

-

Wenjun et al.

[82]
2023 EA-GAN

Self-built

dataset

MSACCSD

9.82%

PSNR

CHAPTER THREE

PROPOSED

METHODOLOGY

Chapter Three Proposed Methodology

36

3.1 Review

The proposed system practical stages have been discussed in this

chapter. The dataset has been preprocessed by UTF-8 encoding, removing

new lines, numbers, and special characters. After that, the text has been

tokenized, and the generation of missing character were done randomly

from each token then each token was labeled to complete the data set.

Some of the tokens are rarely repeated for that augmentation is

necessary. Text encoding is essential to facilitate computations. Then

reshaping stage involves restructuring the data into the appropriate shape

that the neural network expects. The dataset has been normalized.

Different models have been trained and tested the dataset to predict the

results such as LSTM, RNN, and GAN.

3.2 The proposed system

The suggested proposed system is used for solving the ancient text

restoration. This proposed system is shown in Figure (3.1).

Chapter Three Proposed Methodology

37

Figure (3.1) The proposed system for ancient text restoration

Chapter Three Proposed Methodology

38

3.2.1 Dataset Cleaning

The process of dataset cleaning, also known as data preparation, is

a crucial step in which errors, inconsistencies, and missing values within

a dataset are identified and corrected. This procedure is necessary to

assure the accuracy, dependability, and appropriateness of the dataset for

analysis or machine learning purposes. The process encompasses various

tasks, including managing missing data, addressing outliers, validating

data format and values, eliminating duplicates, standardizing and

normalizing data, encoding categorical variables, undertaking feature

engineering, and conducting assessments of data quality. The iterative and

collaborative nature of this process is crucial in order to guarantee the high

quality of the dataset and the reliability and significance of the subsequent

data analysis or machine learning models.

3.2.1.1 UTF-8 Encoding

The Unicode Transformation Format 8-bit (UTF-8) encoding

standard is employed for the purpose of representing text in various

writing systems that are prevalent worldwide. The utilized encoding

scheme exhibits variable length, whereby a character is represented by a

sequence of one to four bytes. It is worth mentioning that frequently

encountered characters, such as ASCII, are typically encoded utilizing a

solitary byte. UTF-8 has emerged as the main character encoding for the

World Wide Web and has solidified its position as the dominating

standard for text encoding in the realm of computer science.

Chapter Three Proposed Methodology

39

3.2.1.2 Remove new lines, numbers, and special characters

In this stage empty lines in the dataset are removed as a process to

rearrange it, to decrease the processing time of the dataset. In order to

exclude numerical values and special characters from a given text, an

effective approach is to utilize a method referred to as "regular expression

substitution." Regular expressions, sometimes known as regex, are formal

mathematical representations that define a set of strings. In the given

context, it is feasible to formulate a regular expression pattern that

represents all characters that are not alphabetic or white spaces, including

uppercase and lowercase letters from A to Z, as well as spaces and tabs.

Consequently, every occurrence of this specific pattern is replaced with a

null string, thereby effectively removing all numeric values and special

characters from the provided text. The technology adopted in this process

selectively preserves only the alphabetic characters and spaces in the

resulting text. This approach is commonly utilized for the purposes of text

modification and analysis.

3.2.2 Tokenization

Tokenization is a fundamental text preparation technique utilized

in the domain of NLP. Its purpose is to divide a given text into smaller

components known as tokens. These tokens have the ability to include

words, phrases, or symbols, with each one representing significant aspects

of text and playing a fundamental role in many NLP tasks such as text

analysis, sentiment analysis, machine translation, and text production.

During the initial phase, is often provided, which consists of one or more

text documents in diverse forms. Tokenization is a process that takes place

at various discrete levels, with the most prevalent being the phrase or word

Chapter Three Proposed Methodology

40

level. At the lexical level, the text is methodically segmented into discrete

units known as words, wherein each word is considered as an independent

token. Word-level tokenization is of significant importance in NLP

applications such as part-of-speech tagging, named entity recognition, and

machine translation. This process serves as a fundamental step in

facilitating the execution of these tasks. Algorithm (3.1) the steps of the

tokenization process.

Chapter Three Proposed Methodology

41

Algorithm (3.1) Tokenization process

Algorithm: tokenization process
Input: text (read dataset)
Output: tokens (a list of word tokens)

Begin

- Initialize an empty list to store tokens
tokens = []

- Initialize an empty string to store the current token
current_token = ""

- Iterate through each character in the text
for character in text:
 - Check if the character is a letter or digit
 if character.isalnum():
 - If the character is a letter or digit, add it to the current token
 current_token = character
 else:
 - If the character is not a letter or digit
 if current_token:
 - If the current token is not empty, add it to the list of tokens
 tokens.append(current_token)
 - Reset the current token to an empty string
 current_token = ""
 - Check if the character is not a space
 if character != " ":
 - If the character is not a space, add it as a separate token
 tokens.append(character)

- Check if there's any remaining token in current_token
if current_token:
 - If there's a remaining token, add it to the list of tokens
 tokens.append(current_token)

End

Chapter Three Proposed Methodology

42

3.2.3 Missing Random Character Generation

The labeling process has been done by taking each token and

choosing a random location within the length of that token. This location

will be replaced with a missing character and the character with this

location will be the target class for this token.

3.2.4 Tokens Augmentation

The tokens in whole the dataset will be computed in order to know

each token how many times repeated in the dataset the token with less

twenty times repetitions will be duplicated many times until the repetition

number is equal to thirty because most of the words repeated from twenty

to forty times for ensure balancing dataset.

3.2.5 Text encoding

The notion of text encoding within the realm of deep learning refers

to the process of converting unstructured textual data into a numerical

format that is appropriate for use as input in neural networks and other

machine learning models. The utilization of encoding is crucial due to the

necessity of deep learning models to process numerical input. Text

encoding strategies frequently utilized in the field of NLP involve several

techniques, including the utilization of word embeddings. These

embeddings enable the representation of words as vectors in high-

dimensional spaces, allowing for the capture of semantic relationships.

Furthermore, one-hot encoding is a widely employed method utilized for

the purpose of representing words as binary vectors. These encodings

enhance the potential of deep learning models to acquire and extract

Chapter Three Proposed Methodology

43

patterns, relationships, and semantic meaning from textual data, enabling

them to analyze and understand human language.

3.2.6 Reshape

 In a deep neural network, the reshape stage is a transformation step

where the shape of the data is changed without altering its content. It's

commonly used to prepare the data for subsequent layers in the network.

This operation is particularly useful when transitioning between different

layer types or when the input shape of one layer doesn't match the output

shape of the previous layer.

 For instance, if you have a convolutional layer that outputs a 3D

tensor (e.g., width × height × channels), but the next layer, say a fully

connected layer, requires a 1D tensor as input, you would use a reshape

operation to flatten the 3D tensor into a 1D tensor.

3.2.7 Normalization

Normalization is a crucial data preprocessing technique utilized in

the field of deep learning and machine learning. The objective of this

process is to adjust and normalize the input features, so guaranteeing that

they are confined within a consistent range. The range is sometimes

delineated as including values within the interval of 0 to 1, or

alternatively, as having a mean of 0 and a standard deviation of 1. The

process of normalization is of utmost importance in the training of models,

since it ensures that each input variable makes an equitable contribution.

Its purpose is to mitigate the dominance of larger-scale features in the

learning process and enhance the speed of convergence during training.

The utilization of regularization techniques is of utmost importance in the

Chapter Three Proposed Methodology

44

domain of deep neural networks, as it plays a vital role in improving the

robustness of the training process and enhancing the model's ability to

effectively generalize to new data examples. Two commonly employed

normalization techniques are the Z-score scaling equation (2.1).

Various strategies are utilized to modify the data in order to ensure

that it conforms to predetermined ranges, while also preserving its relative

relationships.

3.2.8 Long Short-Term Memory (LSTM)

Using a LSTM neural network to predict missing characters in text

involves several key steps. It begins by preparing a dataset that includes

text sequences with intentionally omitted characters and their

corresponding complete versions. These characters are then encoded into

numerical representations, often using one-hot encoding. Input-output

pairs are created, with the input being the sequence with the missing

character and the output being the same sequence with the missing

character filled in.

The model architecture consists of an encoder and a decoder.

During training, the model is trained using a loss function, such as cross-

entropy, which measures the dissimilarity between the predicted character

probabilities and the actual characters in the output sequence.

Backpropagation through time (BPTT) and optimization techniques like

the Adam optimizer are used to update the model's weights.

For inference, the text sequence is input into a text sequence with a

missing character to the trained model. The encoder processes the input,

and the decoder generates a probability distribution over characters for the

Chapter Three Proposed Methodology

45

missing position. You sample from this distribution to predict the missing

character probabilistically and use it to fill in the gap.

Hyperparameter tuning involves experimenting with different

settings to optimize the model's performance. Once the model performs

well on test data, it can be deployed for real-world applications where

predicting missing characters in text is required. This approach leverages

the sequence-to-sequence capabilities of LSTM networks for tasks like

text correction and language modeling. Algorithm (3.2) shows the LSTM

steps.

Chapter Three Proposed Methodology

46

Algorithm (3.2) The steps of LSTM

Algorithm: LSTM model
Input: coded text data
Output: trained weight

Begin

- Initialize the previous hidden state and cell state

h_prev =0
c_prev =0

- Define the parameters of the LSTM cell, including the input
weights, recurrent weights and biases

W_ii, W_hi, b_ii, b_hi =0
W_if, W_hf, b_if, b_hf =0
W_ig, W_hg, b_ig, b_hg =0
W_io, W_ho, b_io, b_ho =0

-Input gate

function sigmoid(x) :
 return 1 / (1 + exp(-x))

i_t = sigmoid(W_ii * x_t + W_hi * h_prev + b_ii + b_hi)

-Forget gate

f_t = sigmoid(W_if * x_t + W_hf * h_prev + b_if + b_hf)

-Input modulation gate

g_t = tanh(W_ig * x_t + W_hg * h_prev + b_ig + b_hg)

-Cell state update

c_t = f_t * c_prev + i_t * g_t

-Output gate

o_t = sigmoid(W_io * x_t + W_ho * h_prev + b_io + b_ho)

-Hidden state update

h_t = o_t * tanh(c_t)

End

Chapter Three Proposed Methodology

47

3.2.9 Recurrent Neural Network (RNN)

Using a RNN to predict a missing character in text is a sequence-

to-sequence prediction task. The basic idea is to train an RNN on a dataset

of text sequences with missing characters and their corresponding correct

sequences and then use the trained model to predict missing characters in

new sequences. Here's a simplified outline of how you can approach this

task:

 Model Architecture:

• Design an RNN-based architecture for sequence-to-sequence

prediction. You can use a simple RNN, a more advanced LSTM, or

a Gated Recurrent Unit (GRU) depending on your requirements.

• The model should have an encoder-decoder structure. The encoder

processes the input sequence with the missing character, and the

decoder generates the missing character.

• Use BPTT or any suitable optimization algorithm (e.g., Adam) to

update the model's weights.

Chapter Three Proposed Methodology

48

Algorithm (3.3) The steps of RNN

3.2.10 Generative Adversarial Network (GAN)

Using a GAN for predicting a missing character in text is an

unconventional approach. GANs are typically used for generating data,

such as images, rather than predicting missing elements within existing

data. However, it's possible to adapt GANs for such a task, although it

Algorithm: Recurrent Neural Network (RNN)
Input: sequence of input vectors
Output: sequence of hidden states

Begin

- Initial hidden state

h_prev = 0

- Define RNN parameters Weights and bias

W_xh, W_hh, b_h = 0

- Iterate through the input sequence

for t in range(sequence_length):
- Input vector at time t

 x_t = input_sequence[t]

- Hidden state update
 h_t = tanh(W_xh * x_t + W_hh * h_prev + b_h)

- Store the hidden state for later use or output

 output_sequence[t] = h_t

- Update the previous hidden state for the next iteration

 h_prev = h_t

- The final output_sequence contains the hidden states for each time step

End

Chapter Three Proposed Methodology

49

may not be the most efficient or straightforward approach. Here's a

simplified outline of how to utilizing GAN for this purpose:

1- Data Preparation:

Prepare a dataset of text sequences with missing characters and

their corresponding complete versions.

2- GAN Architecture:

Design a GAN with generator and discriminator. The generator

takes text sequences with missing characters as input and tries to generate

missing characters, while the discriminator aims to distinguish between

real and generated missing characters.

3- Hyperparameter Tuning:

Experiment with various hyperparameters, such as the architecture

of the GAN, learning rates, and training epochs, to optimize the model's

performance.

Hyperparameter tuning in the context of GANs involves identifying

the optimal combination of hyperparameter values that maximize the

performance of the GAN model. GANs are a class of deep learning

models including a generator and a discriminator, trained in an adversarial

manner. Hyperparameters refer to the predetermined configuration

settings of a model that are not learned during the training process but

need to be established prior to training commencement. Optimizing these

hyperparameters is essential for attaining peak performance and

producing synthetic data of superior quality.

The following are often adjusted hyperparameters in GANs:

1. Learning rate: The learning rate governs the magnitude of the

increments made throughout the optimization procedure. This

hyperparameter is crucial and has a substantial effect on the training

Chapter Three Proposed Methodology

50

of both generator and discriminator. The initial values of the learning

rate are Adam (0.0002, 0.9) represents the Adam optimizer with a

learning rate of 0.0002 and a first-moment exponential decay rate

(beta1) of 0.9.

2. The number of layers and neurons in generator and discriminator

architecture is crucial. The intricacy of the model can impact its

capacity to produce authentic samples. The generator has five layers

while the discriminator has four layers.

3. Activation functions, such as ReLU, Leaky ReLU, and tanh, have a

significant impact on the learning process and the quality of generated

samples in both generator and discriminator. In the generator the alpha

parameter value = 0.2 and in discriminator =0.3.

4. Batch size: The quantity of samples utilized in each iteration of

training can impact the stability of the training process. Reducing the

number of batches used in the learning process can result in increased

noise, whilst using bigger batch sizes may necessitate more memory.

The training batch size is equal to 64.

5. Training duration: The duration of training is determined by the

number of training epochs and the stopping criteria, which are

important hyperparameters. Insufficient training epochs can cause

underfitting, whereas excessive training epochs can result in

overfitting. 100 epochs have been used for training.

6. Input noise: The generator's diversity of generated samples is heavily

influenced by the input noise vector. Modulating the magnitude and

dispersion of the input noise can significantly influence the caliber and

diversity of the generated outputs. The input vector for the generator

(12) while the discriminator (12,512).

Chapter Three Proposed Methodology

51

7. Weight initialization: The technique employed to set the initial values

of the weights in the neural network might impact the rate at which

the model reaches convergence. Typical approaches involve random

initialization and Xavier/Glorot initialization. Random initial weight

has been used.

8. Selection of optimizer: The selection of an optimizer, such as Adam

or SGD, can have an impact on speed and stability of the training

process. Various optimizers possess distinct hyperparameters that

may require adjustment. Such as Adam values.

Chapter Three Proposed Methodology

52

Algorithm (3.4) The steps of GAN

Algorithm: Generative Adversarial Network (GAN)
Input: coded text data
Output: trained weight

Begin
- Generator Network

function build_generator :()
- Define generator architecture (e.g., a neural network with
transposed convolutions)

 generator =
 return generator

- Discriminator Network
function build_discriminator :()

- Define discriminator architecture (e.g., a neural network with
convolutions)

 discriminator = 0
 return discriminator

- Compile the Discriminator
discriminator = build_discriminator ()
discriminator.compile(loss='binary_crossentropy',
optimizer='adam', metrics=['accuracy'])

- Freeze the Discriminator during GAN training
discriminator.trainable = False

- Combined GAN Model (Generator + Discriminator)
function build_gan(generator, discriminator) :

- Input for the generator
 gan_input = 0
 generated_data = generator(gan_input)
 gan_output = discriminator(generated_data)
 gan = Model(gan_input, gan_output)
 gan.compile(loss='binary_crossentropy', optimizer='adam')

 return gan

Chapter Three Proposed Methodology

53

- Training Loop
function train_gan(generator, discriminator, gan, real_data,
epochs, batch_size) :
 for epoch in range(epochs) :

- Generate fake data using the generator
 generated_data =
generator.predict(random_noise(batch_size))

- Label real and fake data
 real_labels = 1(batch_size, 1)
 fake_labels = 0(batch_size, 1)

-Train the discriminator on real data
 d_loss_real = discriminator.train_on_batch(real_data,
real_labels)

-Train the discriminator on fake data
 d_loss_fake = discriminator.train_on_batch(generated_data,
fake_labels)

 -Calculate total discriminator loss
 d_loss = 0.5 * add(d_loss_real, d_loss_fake)

 -Generate new random noise
 noise = random_noise(batch_size)

-Train the generator to fool the discriminator
 g_loss = gan.train_on_batch(noise, ones((batch_size, 1)))

 - Print progress
 print("Epoch {epoch+1}, D Loss: {d_loss[0]}, G Loss:
{g_loss}")

End

CHAPTER FOUR

RESULTS AND

DISCUSSION

Chapter four Results And Discussion

54

4.1 Review

The results of the proposed system have been presented in this

chapter. The Codex Sinaiticus dataset has been preprocessed and provided

for the proposed system to train and test the model.

4.2 Hardware requirement

Python programming language was used to implement the system

while the environment was Windows 11, 8 GB RAM, Corei5 10th 2.50

GHz generation processor, and Nvidia G-force GTX 1650 Ti.

4.3 Dataset

Two datasets have been used for training and testing the suggested

models. These datasets are:

4.3.1 Codex Sinaiticus

The Codex Sinaiticus, a manuscript dating back to the mid-fourth

century, is a significant artifact as it houses the first known complete copy

of the New Testament of the Christian Bible. The handwritten material is

written in the Greek language. The New Testament is written in the native

vernacular language of the time, known as koine, whereas the Old

Testament is presented in the translation referred to as the Septuagint,

which was embraced by early Greek-speaking Christians. The Codex

contains extensive annotations made by a number of early correctors,

which significantly affect the text of both Septuagint and New Testament.

Chapter four Results And Discussion

55

The Codex Sinaiticus holds great importance in the realm of

reconstructing the original text of the Christian Bible, as well as in the

fields of Bible history and Western book-making [83].

4.3.2 Argonautica, 3

This dataset focuses on the semantics of about twenty-five Latin

and Ancient Greek words (nouns, verbs, and adjectives) that belong to the

semantic field SEA. Four writings make up the corpus:

1. De bello Gallico (Caesar) and Aeneid 1-6 (Vergil) in Latin;

2. Histories 1-2 (Herodotus) in Greek and Argonautica (Apollonius
Rhodius) in Greek. After manually annotating the texts using the
annotation program INCEPTION, the data was extracted [84].

4.4 Case study

The dataset trained and tested on the proposed model is as follows:

4.4.1 Dataset preprocessing

The dataset was preprocessed using the following steps:

4.4.1.1 UTF-8 Encoding

UTF-8 encoding is a variable-width character encoding capable of

encoding all valid character code points in Unicode using one to four one-

byte (8-bit) code units representing text in various writing systems that are

prevalent worldwide.

Chapter four Results And Discussion

56

4.4.1.2 Removing numbers and special characters

Removing all numeric values and special characters from the

provided text.

4.4.1.3 Remove newline symbol

The new line symbol refers to the end of the line and down to the

new line in the text removing this symbol will make the text dataset in one

paragraph. Figure (4.1) shows the dataset after removing ‘\n’ symbol.

Figure (4.1) Removing '\n' from the dataset

αβιμελεχ ουκ εγνω τιϲ εποιηϲεν το πραγμα τουτο ουδε ϲυ μοι απηγγει
λαϲ ουδε εγω ηκουϲα αλλ η ϲη μερον και ελαβε αβρααμ προβατα και
μοϲχουϲ και εδωκεν τω αβιμε λεχ και διεθεντο αμφοτεροι διαθη κην και
εϲτηϲε αβρααμ επτα αμνα δαϲ των προβατων μο τω φρεατι του ορ κου και
επεκαλε ϲατο εκει το ονο μα του κυ θϲ αιω νιοϲ παρωκηϲε δε αβρααμ
εν τη γη των φυλιϲτιειμ ημεραϲ πολλαϲ και εγενετο μετα τα ρηματα
ταυτα επειραϲενεπειραζεν ο θϲ τον αβρααμ και ει πεν προϲ αυτον αβρααμ
αβρααμ ο δε ειπεν ϊδου εγω και ειπεν λαβε το υιον ϲου τον αγα πητον
ον ηγαπη ϲαϲτον ϊϲαακ και πορευθητι ειϲ τη γην την ϋψηλην και
ανενεγκε αυ τον εκει ειϲ ολοκαρ πωϲιν εφ εν τω ορεων ων αν ϲοι εγω
δε και το παι δαριον διελευϲο μεθα εωϲ ωδε και προϲκυνηϲαντεϲ
αναϲτρεψωμεν προϲ υμαϲ ελαβεν δε αβρααμ τα ξυλα τηϲ ολοκαρπωϲε ωϲ
και επεθηκεν ϊϲαακ τω υιω αυ του ελαβεν δε με τα χειρα και το πυρ
και την μαχαιραν και επορευθηϲαν οι δυο αμα ειπεν δε ϊϲαακ προϲ αβρααμ
τον πατε ρα αυτου ειπαϲ πατερ ο δε ειπεν τι εϲτιν τε'

Chapter four Results And Discussion

57

4.4.1.4 Tokenization

The dataset is then tokenized according to the space character.

Figure (2.4) shows the tokenization process.

Figure (4.2) A sample tokenization process

4.4.1.5 Compute language characters

This process is necessary to know the set of target classes for the

prediction process.

Figure (4.3) The character of language indicates 41 characters

4.4.1.6 Generate missing character

In this process a character from each token in the dataset has been

removed and replaced with ‘$’ character and the removed character

'αβιμελεχ', 'ουκ', 'εγνω', 'τιϲ', 'εποιηϲεν', 'το', 'πραγμα',
'τουτο', 'ουδε', 'ϲυ', 'μοι', 'απηγγει', 'λαϲ', 'ουδε', 'εγω',
'ηκουϲα', 'αλλ', 'η', 'ϲη', 'μερον', 'και', 'ελαβε', 'αβρααμ',
'προβατα', 'και', 'μοϲχουϲ', 'και', 'εδωκεν', 'τω', 'αβιμε', 'λεχ',
'και', 'διεθεντο', 'αμφοτεροι', 'διαθη', 'κην', 'και', 'εϲτηϲε',
'αβρααμ', 'επτα', 'αμνα', 'δαϲ', 'των', 'προβατων', 'μο', 'τω',
'φρεατι', 'του', 'ορ', 'κου', 'και', 'επεκαλε', 'ϲατο', 'εκει',
'το', 'ονο', 'μα', 'του', 'κυ', 'θϲ', 'αιω', 'νιοϲ', 'παρωκηϲε',
'δε', 'αβρααμ', 'εν', 'τη', 'γη', 'των', 'φυλιϲτιειμ', 'ημεραϲ',
'πολλαϲ', 'και', 'εγενετο', 'μετα', 'τα', 'ρηματα', 'ταυτα',
'επειραϲενεπειραζεν', 'ο', 'θϲ', 'τον', 'αβρααμ', 'και', 'ει',
'πεν', 'προϲ', 'αυτον', 'αβρααμ', 'αβρααμ', 'ο', 'δε', 'ειπεν',
'ϊδου', 'εγω', 'και', 'ειπεν', 'λαβε', 'το', 'υιον'

41

' ,' 'α' ,'β ' ,'γ' ,'δ' ,'ε' ,'ζ' ,'η' ,'θ' ,'ι ' ,'κ' ,'λ ' ,'μ' ,'ν' ,'ξ ' ,'ο' ,'π ' ,'ρ' ,'τ','υ ' ,'φ' ,'χ' ,'ψ ' ,'ω' ,'ϊ ,'
'ϋ ' ,'ϙ' ,'ϛ' ,'ϡ' ,'ϲ' ,'ἁ' ,'ἡ ' ,'ὁ' ,'ὅ' ,'ὴ' ,'ί' ,'ᾶ' ,'ῆ' ,'ῖ' ,'ῦ ' ,'ῶ '

Chapter four Results And Discussion

58

represent the target class for the prediction process. Figure (4.4) generates

missing values and their classes.

Figure (4.4) Sample of missing values and their classes

4.4.1.7 Compute target class characters

In this process, the target class characters are computed to know the

class target number. Figure (4.5) shows the target class list. The list

consists of 26 characters.

Figure (4.5) Target class character list appointed to 26 classes

x_data: ['$βιμελεχ', 'ου$', 'ε$νω', 'τ$ϲ', 'εποι$ϲεν', 'πρα$μα',
'το$το', 'ου$ε', 'μο$', '$πηγγει', 'λ$ϲ', 'ουδ$', 'ε$ω',
'ηκουϲ$', '$λλ', 'μ$ρον', 'κ$ι', 'ελ$βε', 'α$ρααμ', 'προ$ατα',
'κα$', '$οϲχουϲ', '$αι', 'ε$ωκεν', '$βιμε', 'λ$χ', '$ιεθεντο',
'$μφοτεροι', 'δι$θη', 'κ$ν', 'εϲτ$ϲε', 'αβραα$', 'επτ$', 'α$να',
'δ$ϲ', 'τω$', 'προβ$των', 'φρε$τι', 'τ$υ', '$ου', 'επεκ$λε',
'ϲ$το', 'εκε$', 'ο$ο', 'το$', '$ιω', 'ν$οϲ', 'π$ρωκηϲε',
'αβ$ααμ', '$ων', 'φυλιϲτι$ιμ', 'ημερ$ϲ', 'πολλ$ϲ', 'ε$ενετο',
'μετ$', 'ρ$ματα', 'τα$τα', 'τ$ν', 'π$ν', 'πρ$ϲ', '$υτον',
'ε$πεν', 'ϊ$ου', '$γω', 'ειπε$', 'λ$βε', 'υ$ον', 'ϲ$υ', '$ον',
'α$α', 'π$τον', 'ηγ$πη', 'ϲ$ϲτον', 'ϊϲαα$', 'πορ$υθητι', '$ιϲ',
'$ην', 'τη$', 'ϋψη$ην', '$νενεγκε', 'ε$ει', 'ε$ϲ', 'ολοκ$ρ',
'πωϲ$ν', 'ορ$ων', 'ϲο$', 'εγ$', 'π$ι', 'δ$ριον', '$ιελευϲο',
'μεθ$', '$ωϲ', 'ω$ε', '$ροϲ', 'υμ$ϲ', 'ελ$βεν', 'ξυλ$', '$ηϲ',
'ολοκ$ρπωϲε', 'επεθ$κεν']

y_data: ['α', 'κ', 'γ', 'ι', 'η', 'γ', 'υ', 'δ', 'ι', 'α', 'α',
'ε', 'γ', 'α', 'α', 'ε', 'α', 'α', 'β', 'β', 'ι', 'μ', 'κ', 'δ',
'α', 'ε', 'δ', 'α', 'α', 'η', 'η', 'μ', 'α', 'μ', 'α', 'ν', 'α',
'α', 'ο', 'κ', 'α', 'α', 'ι', 'ν', 'υ', 'α', 'ι', 'α', 'ρ', 'τ',
'ε', 'α', 'α', 'γ', 'α', 'η', 'υ', 'ο', 'ε', 'ο', 'α', 'ι', 'δ',
'ε', 'ν', 'α', 'ι', 'ο', 'τ', 'γ', 'η', 'α', 'α', 'κ', 'ε', 'ε',
'γ', 'ν', 'λ', 'α', 'κ', 'ι', 'α', 'ι', 'ε', 'ι', 'ω', 'α', 'α',
'δ', 'α', 'ε', 'δ', 'π', 'α', 'α', 'α', 'τ', 'α', 'η']

26
['α', 'β', 'γ', 'δ', 'ε', 'ζ', 'η', 'θ', 'ι', 'κ', 'λ', 'μ', 'ν',
'ξ', 'ο', 'π', 'ρ', 'τ', 'υ', 'φ', 'χ', 'ψ', 'ω', 'ϊ', 'ϋ', 'ϲ']

Chapter four Results And Discussion

59

4.4.1.8 Augmentation process

To train the model on fair data need to ensure data balancing there

for every token repeated for less than 30 will be copied with his class

number to 30. After this process, the dataset increased from 29365 to

47582 instances.

4.4.1.8 Text encoding

Convert dataset to numerical format.

4.4.1.9 Reshape

Reshaping each element to maximum length.

4.4.1.10 Normalization

Normalization process used to move the encoded character to 0-1

scope in order to move them to prediction models.

4.4.2 Prediction models

The dataset has been trained and tested three prediction models

LSTM, RNN, and GAN, and results are listed as follows:

4.4.2.1 LSTM model

Five layers of LSTM has been used for training and testing the

dataset. Figure (4.6) explains the summary of LSTM model layers.

Chapter four Results And Discussion

60

Figure (4.6) Summary of LSTM model layers

 Figure (4.7) shows the training process of LSTM model.

Figure (4.7) Training process for LSTM model

Chapter four Results And Discussion

61

Figure (4.8) shows training and validation accuracy while Figure

(4.9) explains training and validation loss.

Figure (4.8) LSTM training and validation accuracy

Figure (4.9) Training and validation loss

Chapter four Results And Discussion

62

Table (4.1) lists the precision, recall, f1 score, and support

measures.

Table (4.1) The precision, recall, f1 score, and support measures for the LSTM
model

 classes precision recall f1-score support

 2 0.90 0.88 0.89 284
 3 1.00 0.25 0.40 8
 4 0.86 0.94 0.90 34
 5 0.82 0.82 0.82 38
 6 0.84 0.75 0.79 151
 8 0.81 0.82 0.82 79
 9 1.00 0.33 0.50 15
 10 0.83 0.87 0.85 148
 11 0.98 0.99 0.99 188
 12 0.75 0.94 0.83 32
 13 0.90 0.87 0.88 53
 14 0.85 0.92 0.88 143
 16 0.82 0.87 0.84 251
 17 0.77 0.65 0.70 93
 18 0.73 0.92 0.81 26
 19 0.84 0.95 0.89 296
 20 0.98 0.81 0.89 200
 21 1.00 1.00 1.00 4
 22 0.46 0.86 0.60 7
 23 0.00 0.00 0.00 6
 24 0.84 0.94 0.89 83
 25 0.93 0.50 0.65 28
 26 1.00 0.40 0.57 5
 30 0.86 0.87 0.86 208

 accuracy 0.86 2380
 macro avg 0.82 0.76 0.76 2380
weighted avg 0.86 0.86 0.86 2380

Figure (4.10) shows the confusion matrix of the LSTM model.

Chapter four Results And Discussion

63

Figure (4.10) LSTM model confusion matrix

4.4.2.2 RNN model

Another model was also trained and tested using the previous

dataset. Figure (4.11) shows the summary of RNN layers.

Figure (4.11) The summary of RNN layers

Chapter four Results And Discussion

64

Figure (4.12) shows the training process of the RNN model.

Figure (4.12) The training process of the RNN model

Figure (4.13) shows training and validation accuracy for the RNN

model while Figure (4.14) explains training and validation loss.

Chapter four Results And Discussion

65

Figure (4.13) The training and validation accuracy for the RNN model

Figure (4.14) The training and validation loss for RNN model

Chapter four Results And Discussion

66

Table (4.2) lists precision, recall, F1-score, and support measures

for the RNN model.

Table (4.2) The precision, recall, F1-score, and support measure for the RNN
model

 classes precision recall f1-score support

 2 0.88 0.94 0.91 284
 3 1.00 1.00 1.00 8
 4 0.86 0.94 0.90 34
 5 0.75 0.95 0.84 38
 6 0.98 0.75 0.85 151
 8 0.88 0.95 0.91 79
 9 1.00 0.47 0.64 15
 10 0.89 0.95 0.92 148
 11 0.99 0.99 0.99 188
 12 1.00 1.00 1.00 32
 13 0.85 0.94 0.89 53
 14 0.96 0.91 0.94 143
 16 0.94 0.94 0.94 251
 17 0.97 0.83 0.90 93
 18 0.88 0.88 0.88 26
 19 0.92 0.96 0.94 296
 20 0.99 0.92 0.95 200
 21 1.00 1.00 1.00 4
 22 0.88 1.00 0.93 7
 23 1.00 0.67 0.80 6
 24 0.89 0.96 0.92 83
 25 0.77 0.82 0.79 28
 26 1.00 1.00 1.00 5
 30 0.93 0.95 0.94 208

 accuracy 0.92 2380
 macro avg 0.93 0.90 0.91 2380
weighted avg 0.93 0.92 0.92 2380

Figure (4.15) shows the confusion matrix for the RNN model.

Chapter four Results And Discussion

67

Figure (4.15) The confusion matrix for the RNN model

4.4.2.3 GAN model

The GAN model was also trained and tested using the previous

dataset. Figure (4.16) shows the summary of GAN layers.

Figure (4.16) The summary of GAN layers

Chapter four Results And Discussion

68

Figure (4.17) shows training process of the GAN model.

Figure (4.17) The training process of the GAN model

Figure (4.18) shows training and validation accuracy of the GAN

model and Figure (4.19) shows training and validation loss.

Chapter four Results And Discussion

69

Figure (4.18) The training and validation accuracy of the GAN model

Figure (4.19) The training and validation loss of GAN model

Chapter four Results And Discussion

70

Table (4.3) lists the precision, recall, F1-score, and support

measures for the GAN model.

Table (4.3) The precision, recall, F1-score, and support measure for GAN model

 precision
 classes precision recall f1-score support

 2 0.96 0.94 0.95 284
 3 1.00 1.00 1.00 8
 4 0.97 0.82 0.89 34
 5 1.00 1.00 1.00 38
 6 0.95 0.92 0.94 151
 8 0.97 0.97 0.97 79
 9 1.00 0.60 0.75 15
 10 0.98 1.00 0.99 148
 11 0.94 1.00 0.97 188
 12 1.00 0.84 0.92 32
 13 1.00 1.00 1.00 53
 14 0.93 0.97 0.95 143
 16 0.93 0.94 0.94 251
 17 0.97 0.98 0.97 93
 18 1.00 0.96 0.98 26
 19 0.95 0.99 0.97 296
 20 0.99 0.98 0.99 200
 21 1.00 1.00 1.00 4
 22 0.88 1.00 0.93 7
 23 1.00 1.00 1.00 6
 24 0.99 0.96 0.98 83
 25 1.00 0.93 0.96 28
...
 accuracy 0.96 2380
 macro avg 0.98 0.95 0.96 2380
weighted avg 0.96 0.96 0.96 2380

Figure (4.20) shows the confusion matrix for GAN model.

Chapter four Results And Discussion

71

Figure (4.20) The confusion matrix for the GAN model

From Chapter One some related works that used accuracy as a

performance measure were used to make a comparison with the obtained

result from the proposed model.

 Table (4.4) Studies comparison

Authors Year Dataset Methodology Performance

Q. Zhao [74] 2021
ancient artifacts found

throughout China

Decision tree algorithm

for recognition and

Gradient boosting for

perception aspects

98%

accuracy

Yuan et al.

[77]
2022 Houma Alliance Book DCF-LAR

84.82%

accuracy

L. Jian et al.

[78]
2022

English handwriting

texts
CNN proposed model

89.1%

accuracy

Williams et al.

[79]
2023

5,000 annotated tablet

images
ResNet

89%

accuracy

Chapter four Results And Discussion

72

Papavassileiou

et al. [80]
2023 Mycenaean Greek BRNN

76.68%

accuracy

Proposed

Model
2023

Codex Sinaiticus

dataset

LSTM
86%

accuracy

RNN
92%

accuracy

GAN
98.3%

accuracy

Proposed
Model 2023 Argonautica

GAN
98.7%

accuracy

LSTM
94%

accuracy

RNN
88%

accuracy

4.5 Discussion

Some points need to be discussed after obtaining results above:

1. The rare of ancient language datasets belong to the lake of

documentation and recording in ancient ages.

2. The augmentation has the greatest duty for enforcement of low

frequency words in the dataset to enhance the sampling process.

3. The proposed model has been modified to be encoder and decoder

model. The benefit of GAN makes it better than LSTM, and RNN

models in text prediction.

4. By comparing obtained results with results in related work, encoder

models have more prediction abilities than other models. This

ability came from that encoder have a high ability in feature

extraction.

CHAPTER FIVE

CONCLUSION

AND FUTURE

WORKS

Chapter Five Conclusion And Future Works

73

5.1 Review

This chapter discusses conclusion and future work where the

conclusion discussed the most important key point in the used model such

as challenges, preprocessing, training models and augmentation process

and its impact on sampling and dataset balancing. While the future work

listed some ideas to apply in future.

5.2 Conclusions

 The steps of the proposed system have some points that should be

concluded and discussed as follows:

1. Restoring missing parts of ancient text represents a challenging

problem because of the unavailability of the dataset. Ancient

manuscripts may have been written in scripts and languages that are

no longer widely used, making decipherment and translation

difficult. Some scripts may not have a clear relationship with

modern languages, complicating matters.

2. The preprocessing text and encoding process is a very important

stage in transforming text to form where models can do

mathematics operations on them. Augmentation is also another

important step to make all words take a fair chance in the training

process.

3. According to results in the previous chapter, the GAN model has

obtained a result better than both RNN and LSTM models. The

reason for these results is that the GAN has been tuned to work as

auto encoder model. The auto encoder models have a high

performance in feature extraction and selection.

Chapter Five Conclusion And Future Works

74

4. The models that trained and tested the dataset show that the size of

dataset and dataset balancing is very important for sampling

process in both training and testing samples. Also, augmentation

processes are important for datasets in machine learning because

they allow for the artificial growth of dataset size, which improves

model generalization by exposing it to a variety of cases. It avoids

overfitting, increases robustness to changes, balances class

distributions, and guarantees that models are trained on actual

circumstances. It provides a resource-efficient method of dataset

enrichment, hence encouraging cost-effective model training.

Finally, augmentation improves performance, especially when

working with restricted or imbalanced datasets.

5.3 Suggestions for future works

Some of future works are planned to be next researches:

1. Multimodal approaches : Use photos, maps, and other non-textual

material for better understand the context. This may assist in

interpreting unclear text .

2. Modern language transfer learning: Explore transfer learning,

where models are pre-trained on a big modern language dataset and

fine-tuned on smaller ancient language datasets. This could assist in

leveraging language syntactic and semantic commonalities .

3. Quantifying uncertainty: Develop methods to estimate and

communicate forecast uncertainty. Ancient texts sometimes have gaps

or uncertainties, therefore methods that quantify prediction confidence

are useful .

REFERENCES

75

REFERENCES

[1] V. Romero, A. H. Toselli, L. Rodríguez, and E. Vidal, “Computer assisted

transcription for ancient text images,” Springer-Verlag Berlin Heidelb., vol.

4633 LNCS, pp. 1182–1193, 2007, doi: 10.1007/978-3-540-74260-9_105.

[2] S. R. Narang, M. K. Jindal, and M. Kumar, “Ancient text recognition: a

review,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5517–5558, 2020, doi:

10.1007/s10462-020-09827-4.

[3] E. E. Meyer, “South African Old Testament criticism: Squeezed between

an ancient text and contemporary contexts,” HTS Teol. Stud. / Theol. Stud.,

vol. 71, no. 3, pp. 1–7, 2015, doi: 10.4102/hts.v71i3.2876.

[4] A. D. Mills, “The Ancient Unconscious: Psychoanalysis and the Ancient

Text by Vered Lev Kenaan,” BMCR, vol. 77, no. 4, pp. 753–765, 2020, doi:

10.1353/aim.2020.0043.

[5] M. V Mäntylä, D. Graziotin, and M. Kuutila, “The Evolution of Sentiment

Analysis,” Comput. Rev., vol. 27, no. February, pp. 16–32, 2018, [Online].

Available: https://doi.org/10.1016/j.cosrev.2017.10.002.

[6] X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, and X. J. Huang, “Pre-

trained models for natural language processing: A survey,” arXiv, vol. 63,

no. 10, pp. 1872–1897, 2021, doi: 10.1007/s11431-020-1647-3.

[7] S. Ruder, M. Peters, S. Swayamdipta, and T. Wolf, “Transfer learning in

natural language processing tutorial,” Assoc. Comput. Linguist., no. 2010,

pp. 15–18, 2019.

[8] J. W. Bartstra, W. P. T. M. Mali, W. Spiering, and P. A. De Jong,

“Abdominal aortic calcification: From ancient friend to modern foe,” Eur.

J. Prev. Cardiol., vol. 28, no. 12, pp. 1386–1391, 2021, doi:

10.1177/2047487320919895.

[9] C. Park, C. Lee, Y. Yang, and H. Lim, “Ancient Korean Neural Machine

Translation,” IEEE Access, vol. 8, pp. 116617–116625, 2020, doi:

10.1109/ACCESS.2020.3004879.

[10] L. T. England, B. Council, and D. Version, “Language Trends 2020,”

Queen’s Univ. Belfast, no. 2020, 2020.

76

[11] G. Carpenè, D. Negrini, B. M. Henry, M. Montagnana, and G. Lippi,

“Homocysteine in coronavirus disease (COVID-19): a systematic literature

review,” Diagnosis, vol. 9, no. 3, pp. 306–310, 2022, doi: 10.1515/dx-2022-

0042.

[12] M. Llamas, M. L. Garo, and L. Giovanella, “Low free-T3 serum levels and

prognosis of COVID-19: Systematic review and meta-analysis,” Clin.

Chem. Lab. Med., vol. 59, no. 12, pp. 1906–1913, 2021, doi: 10.1515/cclm-

2021-0805.

[13] A. Savelyev and M. Robbeets, “Bayesian phylolinguistics infers the internal

structure and the time-depth of the Turkic language family,” J. Lang. Evol.,

vol. 5, no. 1, pp. 39–53, 2020, doi: 10.1093/jole/lzz010.

[14] S. Nelson, I. Zhushchikhovskaya, T. Li, M. Hudson, and M. Robbeets,

“Tracing population movements in ancient East Asia through the linguistics

and archaeology of textile production,” Evol. Hum. Sci., vol. 2, 2020, doi:

10.1017/ehs.2020.4.

[15] S. Bird, “Decolonising Speech and Language Technology,” COLING 2020

- 28th Int. Conf. Comput. Linguist. Proc. Conf., pp. 3504–3519, 2020, doi:

10.18653/v1/2020.coling-main.313.

[16] F. Inchingolo et al., “Oral cancer: A historical review,” Int. J. Environ. Res.

Public Health, vol. 17, no. 9, 2020, doi: 10.3390/ijerph17093168.

[17] T. Sommerschield et al., “Machine Learning for Ancient Languages: A

Survey,” Comput. Linguist., no. March, pp. 1–45, 2023, doi:

10.1162/coli_a_00481.

[18] Y. Assael et al., “Restoring and attributing ancient texts using deep neural

networks,” Nature, vol. 603, no. 7900, pp. 280–283, 2022, doi:

10.1038/s41586-022-04448-z.

[19] C. Levis et al., “Help restore Brazil’s governance of globally important

ecosystem services,” Nat. Ecol. Evol., vol. 4, no. 2, pp. 172–173, 2020, doi:

10.1038/s41559-019-1093-x.

[20] A. Tabassum and R. R. Patil, “A Survey on Text Pre-Processing & Feature

Extraction Techniques in Natural Language Processing,” Int. Res. J. Eng.

Technol., no. June, pp. 4864–4867, 2020, [Online]. Available:

www.irjet.net.

77

[21] A. P. Widyassari et al., “Review of automatic text summarization

techniques & methods,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no.

4, pp. 1029–1046, 2022, doi: 10.1016/j.jksuci.2020.05.006.

[22] D. Suleiman and A. Awajan, “Deep Learning Based Abstractive Text

Summarization: Approaches, Datasets, Evaluation Measures, and

Challenges,” Math. Probl. Eng., vol. 2020, 2020, doi:

10.1155/2020/9365340.

[23] R. Muzzammel, “Machine Learning Based Fault Diagnosis in HVDC

Transmission Lines,” Commun. Comput. Inf. Sci., vol. 932, pp. 496–510,

2019, doi: 10.1007/978-981-13-6052-7_43.

[24] D. A. Bhanage, A. V. Pawar, and K. Kotecha, “IT Infrastructure Anomaly

Detection and Failure Handling: A Systematic Literature Review Focusing

on Datasets, Log Preprocessing, Machine Deep Learning Approaches and

Automated Tool,” IEEE Access, vol. 9, pp. 156392–156421, 2021, doi:

10.1109/ACCESS.2021.3128283.

[25] A. R. Murthy and K. M. Anil Kumar, “A Review of Different Approaches

for Detecting Emotion from Text,” IOP Conf. Ser. Mater. Sci. Eng., vol.

1110, no. 1, p. 012009, 2021, doi: 10.1088/1757-899x/1110/1/012009.

[26] N. Alswaidan and M. E. B. Menai, “A survey of state-of-the-art approaches

for emotion recognition in text,” Knowl. Inf. Syst., vol. 62, no. 8, pp. 2937–

2987, 2020, doi: 10.1007/s10115-020-01449-0.

[27] A. I. Kadhim, “Survey on supervised machine learning techniques for

automatic text classification,” Artif. Intell. Rev., vol. 52, no. 1, pp. 273–292,

2019, doi: 10.1007/s10462-018-09677-1.

[28] S. Baek, W. Jung, and S. H. Han, “A critical review of text-based research

in construction: Data source, analysis method, and implications,” Autom.

Constr., vol. 132, no. February, p. 103915, 2021, doi:

10.1016/j.autcon.2021.103915.

[29] A. B. Bulsari and S. Palosaari, “Application of neural networks for system

identification of an adsorption column,” Neural Computing & Applications,

vol. 1, no. 2. pp. 160–165, 1993, doi:10.1007/BF01414435.

[30] B. Wicht, “Deep Learning Feature Extraction for Image Processing,”

University of Fribourg, 2017.

78

[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[32] M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep Learning Techniques

for Medical Image Segmentation: Achievements and Challenges,” J. Digit.

Imaging, vol. 32, no. 4, pp. 582–596, 2019, DOI: 10.1007/s10278-019-

00227-x

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–

90, 2017, DOI: 10.1145/3065386.

[34] K. R. Hassan and I. H. Ali, “Age and Gender Classification using Multiple

Convolutional Neural Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928,

no. 3, 2020, doi: 10.1088/1757- 899X/928/3/032039.

[35] K. R. Raheem and I. H. Ali, “Classifying Facial Expression using

Convolution Neural Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no.

3, 2020, doi: 10.1088/1757- 899X/928/3/032036.

[36] N. D. Al-Shakarchy and I. H. Ali, “Open and closed eyes classification in

different lighting conditions using new convolution neural networks

architecture,” J. Theor. Appl. Inf.

Technol., vol. 97, no. 7, pp. 1970–1979, 2019.

[37] N. D. Al-Shakarchy and I. H. Ali, “Abnormal head movement classification

using deep neural network DNN,” AIP Conf. Proc., vol. 2144, no. August,

2019, doi: 10.1063/1.5123123.

[38] S. Sharma, S. Sharma, and A. Anidhya, “Understanding Activation Functions

in Neural Networks,” Int. J. Eng. Appl. Sci. Technol., vol. 4, no. 12, pp. 310–

316, 2020.

[39] J. Feng and S. Lu, “Performance Analysis of Various Activation Functions

in Artificial Neural Networks,” J. Phys. Conf. Ser., vol. 1237, no. 2, 2019,

doi: 10.1088/1742-6596/1237/2/022030.

[40] R. H. R. Hahnioser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H.

S. Seung, “Digital selection and analogue amplification coexist in a cortex-

inspired silicon circuit,” Nature, vol. 405, no. 6789, pp. 947–951, 2000, doi:

10.1038/35016072.

[41] A. F. M. Agarap, “Deep Learning using Rectified Linear Units (ReLU),”

arXiv, no. 1, pp. 2–8, 2018.

79

[42] S.-H. Han, K. W. Kim, S. Kim, and Y. C. Youn, “Artificial Neural Network:

Understanding the Basic Concepts without Mathematics,” Dement.

Neurocognitive Disord., vol. 17, no. 3, p. 83, 2018, doi:

10.12779/dnd.2018.17.3.83.

[43] P. Amezcua Aguilar, C. Flores Melero, and C. Marín Perabá, “Neurodiversity

as a teaching tool for educational inclusion.,” Rev. Int. apoyo a la inclusión,

Logop. Soc. y Multicult., vol. 6, no. 1, pp. 88–97, 2020, doi:

10.17561/riai.v6.n1.08.

[44] C. C. Aggarwal, “Neural Networks and Deep Learning”. Springer

International Publishing, 2018.

[45] S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy

Using Backpropagation Algorithm In Predicting Process (Forecasting),”

IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, p. 34, 2017, doi:

10.30645/ijistech.v1i1.4.

[46] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–

14, 2016, [Online]. Available: http://arxiv.org/abs/1609.04747.

[47] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”

3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15,

2015.

[48] C. Fougstedt, M. Mazur, L. Svensson, H. Eliasson, M. Karlsson, and P.

Larsson-Edefors, “Time-domain digital back propagation: Algorithm and

finite-precision implementation aspects,” Opt. InfoBase Conf. Pap., vol. Part

F40-O, 2017, doi: 10.1364/OFC.2017.W1G.4.

[49] D. Rengasamy, M. Jafari, B. Rothwell, X. Chen, and G. P. Figueredo, “Deep

learning with dynamically weighted loss function for sensor-based

prognostics and health management,” Sensors (Switzerland), vol. 20, no. 3,

2020, doi: 10.3390/s20030723.

[50] S. I. Granshaw, “Neural networks and neurodiversity,” Remote Sens.

Photogramm. Soc. John Wiley Sons Ltd, vol. 36, no. 175, pp. 192–196, 2021,

doi: 10.1111/phor.12376.

[51] [1] K. L. Du and M. N. S. Swamy, “Neural networks and statistical learning”,

second edition. 2019.

[52] S. Mangrulkar, “Artificial neural systems,” ISA Trans., vol. 29, no. 1, pp. 5–

7, 1990, doi: 10.1016/0019-0578(90)90024-F.

80

[53] P. Gang et al., “Dimensionality reduction in deep learning for chest X-ray

analysis of lung cancer,” Proc. - 2018 10th Int. Conf. Adv. Comput. Intell.

ICACI 2018, no. c, pp. 878–883, 2018, doi: 10.1109/ICACI.2018.8377579.

[54] C. Yu, R. Han, M. Song, C. Liu, and C. I. Chang, “A simplified 2D-3D CNN

architecture for hyperspectral image classification based on spatial-spectral

fusion,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 2485–

2501, 2020, doi: 10.1109/JSTARS.2020.2983224.

[55] S. Shahriar, “GAN computers generate arts? A survey on visual arts, music,

and literary text generation using generative adversarial network,” Displays,

vol. 73, 2022, doi: 10.1016/j.displa.2022.102237.

[56] B. Li, X. Qi, P. H. S. Torr, and T. Lukasiewicz, “Lightweight generative

adversarial networks for text-guided image manipulation,” Adv. Neural Inf.

Process. Syst., vol. 2020-December, no. d, pp. 1–12, 2020.

[57] M. Zhu, P. Pan, W. Chen, and Y. Yang, “Unpaired Image-to-Image

Translation using Cycle-Consistent Adversarial Networks Jun-Yan,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June,

pp. 5795–5803, 2019.

[58] G. H. de Rosa and J. P. Papa, “A survey on text generation using generative

adversarial networks,” Pattern Recognit., vol. 119, 2021, doi:

10.1016/j.patcog.2021.108098.

[59] R. C. Staudemeyer and E. R. Morris, “Understanding LSTM -- a tutorial

into Long Short-Term Memory Recurrent Neural Networks,” arxiv, pp. 1–

42, 2019, [Online]. Available: http://arxiv.org/abs/1909.09586.

[60] X. H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of Long Short-Term

Memory (LSTM) neural network for flood forecasting,” Water

(Switzerland), vol. 11, no. 7, 2019, doi: 10.3390/w11071387.

[61] F. E. Laghrissi, S. Douzi, K. Douzi, and B. Hssina, “Intrusion detection

systems using long short-term memory (LSTM),” J. Big Data, vol. 8, no. 1,

2021, doi: 10.1186/s40537-021-00448-4.

[62] T. Xayasouk, H. M. Lee, and G. Lee, “Air pollution prediction using long

short-term memory (LSTM) and deep autoencoder (DAE) models,”

Sustain., vol. 12, no. 6, 2020, doi: 10.3390/su12062570.

[63] P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment

Analysis Using Word2vec and Long Short-Term Memory (LSTM) for

81

Indonesian Hotel Reviews,” Procedia Comput. Sci., vol. 179, no. 2020, pp.

728–735, 2021, doi: 10.1016/j.procs.2021.01.061.

[64] K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M.

Brenza, “Forecasting of COVID-19 using deep layer Recurrent Neural

Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-

Term Memory (LSTM) cells,” Chaos, Solitons and Fractals, vol. 146, p.

110861, 2021, doi: 10.1016/j.chaos.2021.110861.

[65] Y. Wang et al., “PredRNN: A Recurrent Neural Network for Spatiotemporal

Predictive Learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no.

2, pp. 2208–2225, 2023, doi: 10.1109/TPAMI.2022.3165153.

[66] K. Shang et al., “Haze prediction model using deep recurrent neural

network,” Atmosphere (Basel)., vol. 12, no. 12, pp. 1–12, 2021, doi:

10.3390/atmos12121625.

[67] M. A. Khan, “HCRNNIDS : Hybrid Convolutional Recurrent Neural,”

Multidiscip. Digit. Publ. Inst., 2021.

[68] J. S. Raj and V. Ananthi J, “Recurrent Neural Networks and Nonlinear

Prediction in Support Vector Machines,” J. Soft Comput. Paradig., vol.

2019, no. 1, pp. 33–40, 2019, doi: 10.36548/jscp.2019.1.004.

[69] P.-N. Tan, M. Steinbach, V. Kumar, T. Pang-Ning, M. Steinbach, and V.

Kumar, “Introduction to data mining: Instructur’s,” Pearson Addison-

Wesley, p. 769, 2006.

[70] P.-N. TAN, M. STEINBACH, A. KARPATNE, and V. KUMAR,

“introduction to data mining second edition”, vol. 7, no. 1. 2015.

[71] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining (New

International Editon), no. September. 2014.

[72] Y. Assael, T. Sommerschield, and J. Prag, “Restoring ancient text using

deep learning: A case study on Greek epigraphy,” arXiv, vol. 1, 2019, doi:

10.18653/v1/d19-1668.

[73] H. Wang, H. Wei, J. Guo, and L. Cheng, “Ancient Chinese sentence

segmentation based on bidirectional LSTM+CRF model,” J. Adv. Comput.

Intell. Intell. Informatics, vol. 23, no. 4, pp. 719–725, 2019, doi:

10.20965/jaciii.2019.p0719.

82

[74] Q. Zhao, “Research Ancient Artifact Identification Methods under

Intelligent Perception and Recognition Technology,” Wirel. Commun. Mob.

Comput., vol. 2021, 2021, doi: 10.1155/2021/9971343.

[75] S. Lengauer et al., “Context-based Surface Pattern Completion of Ancient

Pottery,” EUROGRAPHICS Work. Graph. Cult. Herit., 2022, doi:

10.2312/gch.20221234.

[76] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske,

“VUDENC: Vulnerability Detection with Deep Learning on a Natural

Codebase for Python,” Inf. Softw. Technol., vol. 144, no. i, 2022, doi:

10.1016/j.infsof.2021.106809.

[77] X. Yuan, Z. Zhang, Y. Sun, Z. Xue, X. Shao, and X. Huang, “A new

database of Houma Alliance Book ancient handwritten characters and

classifier fusion approach,” arXiv, pp. 1–11, 2022.

[78] L. Jian, H. Xiang, and G. Le, “English Text Readability Measurement Based

on Convolutional Neural Network: A Hybrid Network Model,” Comput.

Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/6984586.

[79] E. C. Williams, G. Su, S. R. Schloen, M. C. Prosser, S. Paulus, and S.

Krishnan, “DeepScribe: Localization and Classification of Elamite

Cuneiform Signs Via Deep Learning,” arxiv, vol. 1, no. 1, pp. 1–31, 2023,

[Online]. Available: http://arxiv.org/abs/2306.01268

[80] K. Papavassileiou, D. I. Kosmopoulos, and G. Owens, “A generative model

for the Mycenaean Linear B script and its application in infilling text from

ancient tablets,” J. Comput. Cult. Herit., 2023, doi: 10.1145/3593431.

[81] A. Locaputo, B. Portelli, E. Colombi, and G. Serra, “Filling the Lacunae in

ancient Latin inscriptions,” CEUR Workshop Proc., vol. 3365, pp. 68–76,

2023.

[82] Z. Wenjun, S. Benpeng, F. Ruiqi, P. Xihua, and C. Shanxiong, “EA-GAN:

restoration of text in ancient Chinese books based on an example attention

generative adversarial network,” Herit. Sci., vol. 11, no. 1, pp. 1–13, 2023,

doi: 10.1186/s40494-023-00882-y.

83

[83] St Catherine’s Monaster at Sinai and National Library of Russia., “The

Codex Sinaiticus,” Codex sinaiticus - home, https://codexsinaiticus.org/en/

(accessed Jan. 18, 2024).

[84] R. Apollonius, “Argonautica, 3 / compiled by Pamela Packard,” Oxford

Text Archive, https://llds.ling-

phil.ox.ac.uk/llds/xmlui/handle/20.500.14106/0221, (accessed Jan. 18,

2024).

 المستخلص

خلالھا من والتي القدیمة، بالحضارات تربطنا لأنھا مھمة القدیمة النصوص تعد

القدیمة، سواء النصوص تكون ما غالبًا والعلمیة. والدینیة الثقافیة المعرفة نكتسب

متآكلة جزئیًا بسبب كانت مكتوبة على ورق البردي أو البرشمان أو غیرھا، ناقصة أو

مما والعلماء، للمؤرخین كبیرًا تحدیًا النصوص ھذه استعادة تمثل الزمن. مرور

 یتطلب جھداً وخبرة یدویة دقیقة.

استعادة النص القدیم ھو فرع متخصص من علم استعادة النصوص یركز على استعادة

 المحتوى النصي من الوثائق التاریخیة أو القدیمة والحفاظ علیھ.

التدخل الیدوي من قبل الخبراء، وھو ىكبیر عل التقلیدیة بشكل الاستعادةعتمد طرق ت

تقنیات تأظھرأمر یستغرق وقتاً طویلاً وغالبًا ما یكون صعبا. في السنوات الأخیرة،

) نتائج واعدة في تكملة عملیة الاستعادة AI) والذكاء الاصطناعي (MLالتعلم الآلي (

 . وتحسینھا

أظھرت تقنیات التعلم العمیق نجاحًا ملحوظًا في مجالات مختلفة، بما في ذلك معالجة

في ھذ الطبیعیة. اللغات الرسالة الصور ومعالجة لترمیم ه نماذج مختلفة اقتراح تم

 النصوص القدیمة باستخدام الشبكات العصبیة العمیقة.

ستخدام مجموعتي بیانات لتدریب واختبار النماذج، مجموعة البیانات الأولى ھي تم ا

"المخطوطة السینائیة" وھي مخطوطة یعود تاریخھا إلى القرن الرابع، وھي قطعة

أثریة مھمة لأنھا توفر أقدم نسخة كاملة موجودة من العھد الجدید في الكتاب المقدس

 مكتوبة باللغة الیونانیة. المسیحي. المادة المكتوبة بخط الید

الثانیة ھي " البیانات إلى قصیدة ملحمیة Argonautica 3مجموعة " والتي تشیر

كتبھا الشاعر الیوناني القدیم أبولونیوس الرودسي في القرن الثالث قبل المیلاد وھي

 مكتوبة باللغة الیونانیة أیضًا.

ث البیانات ترمیز طریق عن مسبقًا البیانات معالجة والأرقام تم الخطوط إزالة م

مفقود والرموز والأحرف الخاصة. بعد ذلك، تم تقطیع النص الناتج، وإنشاء حرف

 الفئات، وإجراء تضخیم البیانات لتعزیزھا، وثم جعلھا متساویة الطول. وتسمیة

تم استخدام ثلاثة نماذج للتنبؤ كنماذج مقترحة لاستعادة النصوص القدیمة المفقودة،

الذاكر (وھي المدى الطویلة (LSTMة المتكررة العصبیة والشبكات ،(RNN ،(

) التولیدیة الخصومة الدقة GANوالشبكات اختبار النتائج وكانت (86 ،%92 %

% وفقًا لمجموعة 98.7% و 88% و 94% وفقًا لمجموعة البیانات الأولى و 98.3و

 البیانات الثانیة على التوالي.

أفضل النتائج من حیث الدقة، وبالتالي أثبت GANوبمقارنة أداء كل نموذج، أعطى

المقترح مع النظام نتائج المفقود. كما تمت مقارنة النص فعالیتھ في مجال استعادة

تقنیات الاستعادة الأخرى، حیث أظھرت النتائج أن التقنیة المقترحة حققت نتائج دقة

 أعلى من غیرھا.

ختلفة مثل دمج التعلم العصبي العمیق بشكل عام، یساھم ھذا العمل في دمج العلوم الم

مع العلوم الإنسانیة الرقمیة، مما یوفر حلاً واعداً لترمیم القطع الأثریة النصیة القدیمة

 .والحفاظ علیھا

 بالعربي العنوان

استعادة النصوص القدیمة باستخدام الشبكات العصبیة العمیقة

 رسالة ماجستیر
جامعة كربلاء وھي جزء من / مقدمة الى مجلس كلیة علوم الحاسوب وتكنولوجیا المعلومات

 متطلبات نیل درجة الماجستیر في علوم الحاسوب

 كتبت بواسطة

 ابو العوب علي عباس علي

بإشــراف

 شكر أ.د بھیجة خضیر

 أ.د اسیا مھدي ناصر الزبیدي

 ۱٤٤٥ ھـ ۲۰۲٤ م

 جامعة كربلاء

 كلیة علوم الحاسوب وتكنولوجیا المعلومات

 قسم علوم الحاسوب

	1.1 Review
	1.2 Introduction
	1.3 Problem Statement
	1.4 Aim of the research
	1.5 Challenges and Limitations
	1. Deterioration and damage: ancient texts are often physically degraded due to the passage of time, exposure to environmental elements, and other natural or human-made factors. This deterioration can lead to missing or illegible portions, making the ...
	2. Fragmentation: Many ancient texts are fragmented, with pieces scattered across different locations or collections. Reassembling these fragments to reconstruct the original text can be a laborious and time-consuming task.
	3. Ancient scripts and languages: ancient texts may be written in scripts and languages that are no longer in common use, making decipherment and translation challenging. Some scripts may not have a clear relationship with modern languages, adding com...
	4. Limited availability of source materials: Access to ancient texts and artifacts may be restricted due to their fragility, location, or ownership, making it difficult for researchers to study and restore them.
	5. Data limitations: Incomplete or limited data on the original text and historical context can hinder the accuracy and completeness of the restoration process.
	1.6 Thesis Layout
	CHAPTER One
	CHAPTER Two
	2.1 Review
	2.2 Introduction
	2.3 Ancient languages
	2.3.1 Ancient languages background
	2.3.2 Importance of ancient language restoration

	2.4 Text processing
	2.5 Deep Learning
	2.5.1 Activation Function
	2.5.1.1 Rectified Linear Activation (ReLU)
	2.5.1.2 Sigmoid
	2.5.1.3 SoftMax

	2.5.2 Loss Function
	2.5.3 Optimization Algorithms
	2.5.3.1 Adam

	2.5.4 Back Propagation Technique in Neural Networks
	2.5.5 Dimensionality Reduction
	2.5.6 CNN with 2D Architecture
	2.5.6.1 Generative Adversarial Network (GAN)
	2.5.6.2 Long Short-Term Memory (LSTM)
	2.5.6.3 Recurrent Neural Networks (RNNs)

	2.6 Evaluation Measures
	2.7 Literature Review

	CHAPTER Three
	3.1 Review
	3.2 The proposed system
	3.2.1 Dataset Cleaning
	3.2.1.1 UTF-8 Encoding
	3.2.1.2 Remove new lines, numbers, and special characters
	3.2.2 Tokenization
	3.2.3 Missing Random Character Generation
	3.2.4 Tokens Augmentation
	3.2.5 Text encoding
	3.2.6 Reshape
	3.2.7 Normalization
	3.2.8 Long Short-Term Memory (LSTM)
	3.2.9 Recurrent Neural Network (RNN)
	3.2.10 Generative Adversarial Network (GAN)

	CHAPTER Four
	4.1 Review
	4.2 Hardware requirement
	4.3 Dataset
	4.3.1 Codex Sinaiticus
	4.3.2 Argonautica, 3

	4.4 Case study
	4.4.1 Dataset preprocessing
	4.4.1.1 UTF-8 Encoding
	4.4.1.2 Removing numbers and special characters
	4.4.1.3 Remove newline symbol
	4.4.1.4 Tokenization
	4.4.1.5 Compute language characters
	4.4.1.6 Generate missing character
	4.4.1.7 Compute target class characters
	4.4.1.8 Augmentation process
	4.4.1.8 Text encoding
	4.4.1.9 Reshape
	4.4.1.10 Normalization

	4.4.2 Prediction models
	4.4.2.1 LSTM model
	4.4.2.2 RNN model
	4.4.2.3 GAN model

	4.5 Discussion
	1. The rare of ancient language datasets belong to the lake of documentation and recording in ancient ages.
	2. The augmentation has the greatest duty for enforcement of low frequency words in the dataset to enhance the sampling process.
	3. The proposed model has been modified to be encoder and decoder model. The benefit of GAN makes it better than LSTM, and RNN models in text prediction.
	4. By comparing obtained results with results in related work, encoder models have more prediction abilities than other models. This ability came from that encoder have a high ability in feature extraction.

	CHAPTER Five
	1. Restoring missing parts of ancient text represents a challenging problem because of the unavailability of the dataset. Ancient manuscripts may have been written in scripts and languages that are no longer widely used, making decipherment and transl...
	2. The preprocessing text and encoding process is a very important stage in transforming text to form where models can do mathematics operations on them. Augmentation is also another important step to make all words take a fair chance in the training ...
	3. According to results in the previous chapter, the GAN model has obtained a result better than both RNN and LSTM models. The reason for these results is that the GAN has been tuned to work as auto encoder model. The auto encoder models have a high p...
	4. The models that trained and tested the dataset show that the size of dataset and dataset balancing is very important for sampling process in both training and testing samples. Also, augmentation processes are important for datasets in machine learn...
	1. Multimodal approaches: Use photos, maps, and other non-textual material for better understand the context. This may assist in interpreting unclear text.
	2. Modern language transfer learning: Explore transfer learning, where models are pre-trained on a big modern language dataset and fine-tuned on smaller ancient language datasets. This could assist in leveraging language syntactic and semantic commona...
	3. Quantifying uncertainty: Develop methods to estimate and communicate forecast uncertainty. Ancient texts sometimes have gaps or uncertainties, therefore methods that quantify prediction confidence are useful.

