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Text-guided synthesis of images has made a giant leap toward becoming a mainstream 

phenomenon. With text-to-image generation systems, anybody can create digital images 

and artwork. This provokes the question of whether text-to-image generation is creative. 

 The generative systems have contributed much to the development of artificial intelligence 

(AI) generating rather realistic images from the text. Text-to-image generation systems 

have been used in various forms and areas in scope including, but not limited to, artworks 

and designs, data sampling, and entertainment. Many studies have been conducted on 

generating images from text and many AI techniques have been proposed. However, some 

critical issues have yet to be solved, especially with regard to the time consumption and 

the training time. Therefore, the proposed study utilized the Stable Diffusion Model (SDM) 

to conduct iterative feedback (if the metrics of the evaluation namely Inception Score (IS) 

and Fréchet inception distance (FID) do not improve then the hyper-parameters are tuned 

and the model is trained again). In this study, the fine-tuning of the SDM results in a 

considerable improvement in generating images that are more akin to reality. As well, there 

are trade-offs between image quality and flexibility in performance metrics. The fine-

tuning process gradually improves the model's global ability to generate better and more 

diverse digital imagery. The fine-tuned model has a lower FID score (248.748256), 

suggesting a higher likelihood of attaining higher image distribution similarity to the 

targeted dataset. Sparingly, the results of the improved model denoted a lower FID score 

(212.52) when contrasted with the base model (251.22), pointing out that the generated 

images from the fine-tuned model were more intimate to the target distribution in the 

synthetic dataset. 
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CHAPTER ONE  

INTRODUCTION 

 

 

 



 

 

1.1 Overview 

Artificial intelligence is a field of science that deals with assisting machines find 

solutions to complex problems in a more human-like fashion, compared with the 

natural intelligence of humans, is usually defined as the science and engineering of 

imitating, extending, and augmenting human intelligence through artificial means 

and techniques to make intelligent machines. Machine learning is a subfield of AI 

that studies the ability to improve performance based on experience. Deep learning 

is a subfield of machine learning that involves the encoding of hypotheses, 

employing highly complex algebraic circuits that include connection weights that 

can be adjusted. The ‘’deep’’ in deep learning refers to the many layers involved in 

these circuits, making the operations a bit complex. Applications of deep learning 

are found in almost every field; for example in identifying objects in an image, or 

translating text from one language to another without human intervention, voice 

recognition, and image creation [1]. Deep artificial neural networks (ANN) have 

shown exceptional performance in various applications like object identification, 

speech recognition, and super-resolution. These networks use multiple layers of 

artificial neurons to extract advanced features from diverse data distributions. 

Generative modeling, a domain of machine learning, aims to understand the 

fundamental data distributions responsible for data generation, enabling 

generalization across diverse datasets and addressing data sparsity. Deep neural 

networks are crucial in generative modeling, learning high-dimensional distributions 

from extensive datasets. Before 2014, generative models employed deep learning 

architectures like Restricted Boltzmann Machines (RBM) and Deep Belief Networks 

(DBN). While this yielded favorable outcomes in the field, many difficulties 

emerged throughout the training process [2]. There are greater and higher generative 

models that enable the conversion of textual descriptions into artwork and other 



 

 

simple graphics. These are coherent translation systems that can generate detailed 

images from prompts formulated in natural language [3]. The process of generating 

images from the text entails various tasks that the model has to complete. Another 

key purpose is found in the information representation that is needed to define and 

isolate the shapes or forms, color, and position in relation to the pixel. It also has to 

make concepts of the input text and correctly map objects and attributes to the 

relevant words and phrases. In addition, it must be capable of creating detailed 

distributions that are critical in developing images that contain interpenetrating 

components [4]. The divergence in performance between diffusion models and 

GANs can be attributed to two main reasons: firstly, the model designs employed in 

contemporary GAN studies have undergone extensive development and 

optimization; secondly, GANs can prioritize fidelity over variety, yielding samples 

of superior quality at the expense of comprehensive distribution coverage. The visual 

output from diffusion models is extremely good, and they only require a single U-

Net design for training, in contrast to the dual-network setup necessary for GANs, 

which results in a more consistent training experience [5]. 

1.2 Problem statement 

The stable diffusion model used in this study for image generation task from texts , 

deals with models that are responsible for many operations such as tokenizing the 

texts and for adding noise, and denoising the images, so it needs high requirements 

for resources and takes a long training time. The main problem to solve in this study 

is to get high-quality images while using a low level of resources and reducing the 

training time to get results that are significantly better than the original model based 

on the evaluation metrics. 



 

 

1.3  Research objectives 

1. To investigate the existing research problems related to text-to-image 

generations and the techniques used to resolve these issues.  

2. To utilize hyperparameters that play a crucial role in the training process, 

influencing the convergence rate, and accuracy of the proposed Stable 

Diffusion Model. 

3. To evaluate the effectiveness of the proposed model using Inception Score 

and Frechet Inception Distance evaluation metrics. 

 

1.4 Research Questions 

 To prove the research hypothesis, the following questions are addressed:  

1. What are the limitations of the existing solutions regarding text-to-image 

generation systems? 

2. How could the proposed Stable Diffusion Model (SDM) be improved? 

3. How can the performance of the proposed SDM be evaluated? 

 

1.5 Challenges  

In this study, A Stable Diffusion Model SDM designed to generate high-

quality images of flowers from textual descriptions. The proposed model aims 

to address key challenges in traditional text-to-image models, such as high 

computational costs and extensive training times while maintaining or 

improving image quality. 

Although the model can create sensible images, they might not be very realistic 

and hence the applicability in realistic image distribution scenarios might be 

harmed. because of memory issues, the batch size was set to 2, which may have 

affected the convergence speed and the model’s capability of generalizing from 



 

 

the training data. The number of training epochs was limited to 12; though the 

model did not get enough epochs to converge and achieve the optimum results. 

The training process was carried out on an NVIDIA T4 GPU with a high RAM 

configuration; however, such a configuration has restrictions regarding the 

maximal model size and batch sizes. The use of IS and FID as the evaluation 

criteria can be considered conventional, and though effective, it does not address 

the qualitative nature of the generated images as much as it should. 

 

1.6 Related work  

This section provides an overview of previous studies on the generation of images 

from text, including notable developments in deep learning techniques like Google's 

Deep Dream in 2015 and Generative Adversarial Networks (GANs), which were 

announced in 2014. The attempts to teach machines image generation from texts can 

be traced to the early times of deep generative models when Mansimov et al. added 

text information to DRAW[4]. On the other hand, since its January 2021 launch, 

OpenAI's CLIP has greatly advanced text-to-image generation [3]. Initially, the 

Deep Convolutional Generative Adversarial Network (DCGAN) model was 

introduced as a method for achieving advantageous results in the text-to-image 

synthesis sector [6]. Several approaches have been developed to handle the difficulty 

of creating images from text and will be examined: 



 

 

 

 

Figure (1.1) : Deep Learning Techniques For Image Generation From Text[7] 

1.6.1 Generative adversarial networks(GAN) 

 The capacity of Generative Adversarial Networks (GANs) to grasp intricate data 

distributions across many dimensions has garnered significant attention from the 

research community. From their inception by Ian Goodfellow in 2016 up until March 

2022, they’ve seen increasing application and interest. The primary notion 

underlying GANs can be compared to that of "art forgery," in which artworks are 

made and misleadingly attributed to other, often more recognized, artists. GANs 

entail training two neural networks concurrently: the generator G(Z) makes false 

data, while the discriminator D(Y) analyzes its authenticity, effectively 

distinguishing genuine artworks from imitations. Through input Y, such as a image, 

the discriminator assigns a grade near to 1 for "real" or close to 0 for "fake." 

Meanwhile, G(Z) derives its outputs from random noise Z, hoping to trick D into 

accepting them as genuine. Training D(Y) entails maximizing its score for genuine 

images from the original dataset while reducing it for created images. As a result, G 

and D are always competing, giving rise to the term adversarial training. We 

alternate the training of G (Generator) and D (Discriminator), maximizing their 

objectives using loss functions and gradient descent. The generator improves its 



 

 

ability to produce counterfeits, while the discriminator improves its capacity to 

identify them. Typically, the discriminator uses a typical convolutional neural 

network to determine if a image is real or not. A major innovation is the use of 

backpropagation across both networks, which allows modifications to the 

generator's settings to better fool the discriminator [7]. GANs hold an advantage in 

producing data akin to the original as they do not rely on predefined probability 

density assumptions [2]. The techniques employed in image creation through GANs 

highlight both the advantages and limitations of existing methodologies. We 

categorize the principal strategies used for synthesizing images into three types: 

direct, hierarchical, and iterative methods, denoting the triad of techniques for 

generating images using GANs [8].  

 

Figure 1.2: Methods Of Utilizing Generative Adversarial Networks For Image Synthesis [8] 

 

The three primary methods for GAN modeling are direct, hierarchical, and iterative. 

The direct approach involves using a single generator and discriminator, resulting in 

simpler structures without branching. Early GAN models such as GAN, DCGAN, 

ImprovedGAN, InfoGAN, f-GAN, and GANINT-CLS fall into this category. This 

method is relatively straightforward to design and implement compared to 

hierarchical and iterative methods and usually achieves good results. The algorithms 



 

 

of the Hierarchical Method utilize a pair of generators and discriminators to 

differentiate images into two categories: "styles & structure" and "foreground & 

background". The generators have distinct functions and can operate either in 

parallel or sequentially. According to the SS-GAN, random noise (z-hat) is used to 

create a surface normal map by a Structure-GAN, and noise (z-tilde) is used as input 

by a Style-GAN to create an image. The approach used in Iterative Methods differs 

from Hierarchical Methods in two key ways. Firstly, Instead of utilizing two 

generators with distinct functions, Iterative Methods use multiple generators with 

similar or identical structures. These generators produce images by refining details 

from the previous generator, progressing from coarse to fine. Secondly, weight-

sharing is a feature that can be employed among the generators in Iterative Methods, 

whereas it is typically not allowed in Hierarchical Methods when using the same 

structures in the generators. An interesting example of this approach is LAPGAN, 

which employs an iterative process to refine an initial coarse image into a sharper 

one using a Laplacian pyramid. The method employs multiple generators to produce 

residual images that are then added to the input image. The only difference in 

generator structures is the input and output dimensions. However, the lowest-level 

generator only requires a noise vector as input. StackGAN, functioning as an 

iterative method, consists of only two layers of generator [9]. As per the method 

described in [10] the understanding and modeling of a generator's distribution is the 

main mathematical goal of a GAN. To correctly depict the true distribution, a 

Probability Density Function (PDF) Pg(x) the understanding and modeling of a 

generator's distribution is the main mathematical goal of a GAN. To correctly depict 

the true distribution, a Probability Density Function (PDF) Pg(x). There is research 

that uses more than one GAN for image generation in addition to a single GAN. The 

approach in [11] provided a straightforward and effective strategy for creating 

realistic-looking and high-quality images. The topic under consideration involves 



 

 

the utilization of stacked adversarial generative networks to create text-to-image. 

This process consists of two distinct stages. Using a random noise vector and a 

textual description as input, in the first stage, GAN first creates a low-resolution 

image of an object by defining its basic shape, color, and backdrop layout. In the 

second stage, the low-resolution image is refined by the GAN using the 

accompanying textual description to fill in any elements that are lacking. The end 

product is a high-resolution image that closely mimics a real-life imagegraph. A 

framework proposed in [12]. helps in generating images from text and offers the user 

control over the synthetic image using text descriptions. The proposed framework 

describes a new manageable text-to-image generative adversarial network 

(ControlGAN) that is capable of creating goodquality images while at the same time 

permitting the users to change the qualities of certain objects without disturbing the 

creation of the other content. Using the method mentioned in [13], the author 

proposed a new technique with the help of a text 10 encoding model that has both 

RNN and CNN components together with the help of the Generator and 

Discriminator network. This is a technique that intends to take the textual description 

of flowers as input and produce a set of images that are different from the ones used 

in the input description but are semantically similar. T2CI-GAN is presented in two 

different versions in this study. A standard Generator is used in one version, and a 

customized Generator is used in the other. The study starts by looking at the basic 

network topology of the T2CI-GAN models, which are based on the T2I-GAN. To 

create compressed images from text descriptions, the first model is trained using 

JPEG-compressed DCT images (in the compressed domain). The second model 

creates JPEG-compressed DCT representations from text descriptions by training it 

on RGB images (in the pixel domain). The instability of GANs and their sensitivity 

to hyper-parameters make the training process challenging. Additionally, the 

generator experiences mode collapse, which leads it to converge to particular 



 

 

parameter settings and generate a restricted range of samples [14]. Generators can 

run in parallel, SS-GAN Utilize two networks for the generator and discriminator, 

these approaches partition an image into two components, namely "styles & 

structure" and "foreground & background." [8]. Two GANs are used in the proposal: 

a Structure GAN that uses random noise zˆ to construct a surface normal map, and a 

Style-GAN that uses noise z˴ as well as the generated surface normal map as input 

to create an image. While the Style-GAN differs slightly from the Structure-GAN, 

both use the same construction components as DCGAN [15], in Style-Generator, the 

noise vector and the resulting surface normal map pass through multiple transposed 

convolutional layers and several convolutional layers, respectively. The final output 

is a single tensor that passes through the remaining layers of the Style-Generator. To 

create a single input for the Style-Discriminator, every surface normal map and its 

matching image are concatenated at the channel dimension. Furthermore, SS-GAN 

presupposes that reconstructing a decent surface normal map should also be done 

using a high-quality synthetic image. Using a pixel-wise loss that enforces the 

reconstructed surface normal to approximate the true one, SS-GAN builds a fully-

connected network that converts an image back to its surface normal map based on 

this assumption. One of the primary drawbacks of SS-GAN is that surface normal 

map ground-truth necessitates the usage of Kinect [9].  

 

 

1.6.2 Variational Autoencoder  

With the help of GANs, samples that closely resemble the statistical properties of 

the training data {xi} are produced. By comparison, variational auto-encoders, or 

VAEs, are generative models with a probabilistic approach that seeks to learn a 

distribution Pr(x) over the data. Once trained, VAEs can produce new samples from 

this distribution. However, due to the nature of VAEs, it is not feasible to precisely 



 

 

assess the probability of new examples, denoted as x*. It is important to clarify that 

the VAE is often discussed as if it represents the model of P r(x), but it is in fact a 

neural architecture designed to facilitate the learning of the model for P r(x). The 

final model for P r(x) does not include the "variational" or "autoencoder" 

components and might be more accurately termed as a nonlinear latent variable 

model. Variational autoencoders have diverse applications, such as denoising, 

anomaly detection, and compression. In terms of generation, VAEs construct a 

probabilistic model, making it straightforward to sample from this model by drawing 

[16]. I’d like to highlight the following points:  

In the process of generating data, we first utilize the previous probability distribution 

over the latent variable, denoted as P r(z). Subsequently, we pass this outcome 

through the decoder f[z, ϕ] and introduce noise. Choosing to sample from the 

aggregated posterior—which is the average posterior over all samples and is a 

mixture of Gaussians that is more representative of true distribution in latent space—

while taking into account the naive spherical Gaussian noise model and the Gaussian 

models used for both the prior and variational posterior instead of the prior—is an 

efficient strategy for improving the quality of generation : 

𝒒(𝒁|𝜽) = (𝟏/𝑰) 𝑷 𝑷iq(z|Xi,𝜽)𝒓 ………..(1) 

High-quality sample generation is achievable with modern VAEs, but only with the 

application of hierarchical priors, specialized network architecture, and 

regularization strategies. An architecture called VAE makes it easier to learn a 

nonlinear latent variable model over x. By taking a sample from the latent variable, 

processing the output through a deep network, and then applying independent 

Gaussian noise, this model can generate new examples [16]. An autoencoder is a 

specific type of neural network designed to encode and decode data to produce an 

output that closely matches the original input. Importantly, it can also serve as a 

generative model, enabling the decoding of any point in the 2D space as required 



 

 

[17]. An autoencoder is a neural network comprised of two primary components: an 

encoder network that condenses high-dimensional input data, such as an image, into 

a lower-dimensional embedding vector, and a decoder network that reconstructs the 

original domain from a given embedding vector, for instance, transforming it back 

into an image. A diagram illustrating the network architecture is provided in fig (1) 

 

 

 

 

Diagram of Autoencoder Structure [17] 

 

 

A latent embedding vector is first created by encoding an input image, which is 

subsequently decoded back into the original pixel space. After an image has gone 

through the encoder and the decoder, the autoencoder is taught to recreate the image. 

While it may initially appear peculiar to reconstruct images that are already 

available, we will soon understand the significance of the embedding space, also 

known as the latent space. Sampling from this space enables us to generate new 

images. First, let's clarify what we mean by an embedding. the compression of the 

original image into a lower-dimensional latent space is called an embedding (z). the 

basic notion is that we can create new images by selecting any point in the latent 

space and then running that point through the decoder. because the decoder has 

mastered the art of transforming latent space points into usable images, this is 

possible. the encoder's job in an autoencoder is to translate the input image into a 



 

 

latent space embedding vector. using convolutional transpose layers in place of 

convolutional layers, the decoder functions as an encoder's mirror image. 

we must define a model that depicts the passage of an image through the encoder 

and back out through the decoder to train the encoder and decoder simultaneously. 

fortunately, keras simplifies this process greatly. the complete autoencoder is 

defined by the keras model [17].  

this model takes an image, processes it via the encoder, and then outputs the result 

back through the decoder to create a reconstruction of the original image. utilizing a 

particular probability distribution (the gaussian distribution), vae has the advantage 

of allowing the model to learn a smooth latent state representation of the input data. 

vae is an effective model for bayesian inference with latent variables because of its 

emphasis on variational inference. 

the encoder (𝑧|𝑋) uses a kullback-leibler (kl) divergence penalty to encode the data 

instance 𝑥 into a latent representation space 𝑧 to learn the distribution of a hidden 

variable. using error minimization, the decoder (𝑥|𝑧) then reconstructs 𝑧 back into 

the original data space. neural networks with parameters 𝜙 and 𝜃, respectively, are 

used to create the encoder and decoder. this process can be described with the 

following equation:  

 

𝐥𝐨𝐠 𝐏(𝐗) − 𝐃𝐊𝐋 [𝐐(𝐳|𝐗)||𝐏(𝐳|𝐗)] = 𝐄[𝐥𝐨𝐠 𝐏(𝐗|𝐳)] − 𝐃𝐊𝐋 [𝐐(𝐳|𝐗)||𝐏(𝐳)…...(2)[2]. 

This approach is documented in [7], a refinement to the traditional encoder and 

decoder network of autoencoders involves the incorporation of additional stochastic 

layers. After the encoder network, the stochastic layer utilizes a gaussian distribution 

to gather data, while following the decoder network, it employs a bernoulli 

distribution for this purpose to generate images and figures based on their training 

distribution. Variational autoencoders (VAEs) permit the setting of complex priors 

in the latent space, thereby enabling the learning of powerful latent 15 



 

 

representations [18] sections of the image were gradually produced using a vae and 

a bidirectional rnn to focus via the captions. It involved the utilization of a variational 

encoder-decoder (ved) to generate images from textual input. VAE and 

autoregressive approaches do not perform as well as GANs in terms of generating 

clearer samples [6]. 

 

1.6.3 Diffusion Model 

The fundamental idea behind diffusion models is simple. Gaussian noise is added to 

the input image x0 during each iteration, causing the noise to diffuse. T time steps 

are spent repeating this process, which finally renders the original image 

unrecognizable. The goal is to identify a model that can produce a distinct image by 

reversing the diffusion from a chaotic input. The re-parameterization technique can 

be used to determine the conditional probabilities (pt|xt), but it is uncertain what the 

reverse conditional probability (qt|xt) is. A neural network model is trained to 

estimate these conditional probabilities to address this. Trainability and flexibility 

are two benefits of diffusion models, however, these goals are at odds with 

generative models. However, due to their reliance on an extensive Markov chain of 

diffusion stages, they are computationally demanding. Diffusion models are of great 

interest, and scientists believe that algorithms that can provide sampling as quickly 

as GANs will be available soon [7]. To investigate how gender is expressed 

differently in text-to-image models, scholars in [19]. focused on gender presentation 

disparities utilizing precise self-presentation variables. Through human annotation, 

they analyzed the frequency variances of presentation-centric variables (such as "a 

shirt" and "a dress") and looked at gender indications in the input text, such as "a 

woman" or "a man." Furthermore, a novel metric named GEP was presented, along 

with an automated technique for approximating these differences. Therefore, the 



 

 

generation of realistic clinical scenarios, which can be a suitable solution to the lack 

of medical datasets, should be explored in medical imaging. It is noticed that the 

diffusion models are significantly better than techniques like GANs or VAEs, where 

the diffusion model provides better image quality along with better scalability and 

control. As a result, they have become widely adopted quickly as the best method of 

achieving high-quality image outputs. Specific emphasis has been made on bigger 

models like DALL-E 2. The beauty of generative diffusion models is the ability to 

generate images that have no relation at all with the training set. No other large-scale 

training efforts have reported problems with overfitting and a group of researchers 

working in private subject areas have suggested that those using the diffusion models 

may protect instances with real images by creating fakes [20]. Originally, diffusion 

models belonged to the family of generative probabilistic models aimed at purposely 

adding noise to data and then learning to the CD phase and generating new samples. 

These models have become prevalent when it comes to deep generative models and 

perform admirably well in macro areas like image generation, videography, and 

molecular graphics. Recent research on diffusion models has primarily focused on 

three main approaches: denoising diffusion probabilistic models (DDPMs), score-

based generative models (SGMs), and stochastic differential equations (Score 

SDEs). In [21] study investigated the utilization of LDMs for book illustration, 

employing the Stable Diffusion model to produce graphics from prompts based on 

seven classical Brazilian literary texts. The researchers find that demonstrate the 

efficacy of image formation is greatly affected by the quality and specificity of the 

suggestions given. The steady diffusion model surpasses traditional methods like as 

GAN and AttnGAN. Substantial progress in the diversity, realism, and correctness 

of produced images has been achieved by the fine-tuning of the stable diffusion 

model, effectively addressing critical challenges in text-to-image conversion [22]. 

Diffusion models, recognized for their superior image generating and editing skills, 



 

 

have transformed the creation of digital artwork. Nonetheless, their capacity for 

generating unlawful or detrimental images presents considerable apprehensions. The 

researchers have developed many image security strategies utilizing undetectable 

perturbations to inhibit diffusion models from acquiring valuable characteristics 

from the safeguarded images. This study illustrates that assailants might bypass these 

safeguards by utilizing semantic and linguistic contrastive alignment alongside 

visual cues, such as images. Their trials demonstrate that the solution, INSIGHT, 

surpasses fundamental defenses such as Crop+resize and the leading DM-based 

method, Impress [23]. This study introduces Tina, a text-to-model neural network 

diffusion model designed for train-once-for-all customization. Tina has 

demonstrated exceptional proficiency in creating individualized models from text 

prompts, exhibiting the capacity to generalize across both in-distribution and out-of-

distribution tasks, including zero-shot and few-shot image prompts, natural language 

prompts, and novel classes. Tina further allows customization across various class 

quantities. This study investigates the capabilities of text-to-model generative AI and 

introduces novel applications for neural network diffusion in user customization 

[24]. The text-to-image generator full-stack web application exemplifies a 

culmination of innovation at the convergence of deep learning technology and user-

centric design. The platform integrates the Stable Diffusion XL foundation model, 

allowing users to transform verbal descriptions into visually cohesive visuals with 

exceptional fidelity. The program offers a straightforward interface and advanced 

back-end technology, facilitating the efficient generation of images from textual 

prompts for a wide array of users across several disciplines. This study offers several 

advantages. The tool enables users to convert written concepts into striking visual 

representations, enhancing communication and expression effectively. Furthermore, 

the implementation of sophisticated deep learning methodologies guarantees that the 

produced images demonstrate a significant degree of realism and precision, 



 

 

providing valuable uses in domains such as design, marketing, and content 

generation. The text-to-image generator full-stack web application exemplifies the 

revolutionary capacity of artificial intelligence in augmenting human creativity and 

productivity [25]. The researchers introduce in this study an inaugural systematic 

safety evaluation concerning the production of hazardous images, namely nasty 

memes, generated using Text-to-Image algorithms. To quantitatively assess the 

safety of produced images, they initially developed a safety classifier to identify 

dangerous images based on the established criteria for harmful content. 

Subsequently, they use this classifier on four exemplary Text-to-Image algorithms 

to assess their safety using three detrimental prompt datasets and one innocuous 

prompt dataset. Their findings indicate that Text-to-Image models exhibit significant 

rates of producing dangerous images when adversaries deliberately employ 

damaging stimuli. Moreover, it is feasible to produce inappropriate images even with 

innocuous suggestions. they comprehensively assess the capability of Text-to-Image 

algorithms in producing hostile memes. The assessment results indicate that as much 

as 24% of the created meme variations exhibit traits and attributes akin to real-world 

hostile meme variants, which can be used for hate campaigns online [26]. This study 

presents an innovative method that integrates Classifier-Free Guidance (CFG) with 

Score Identity Distillation (SiD) to effectively distill Stable Diffusion models into 

efficient one-step generators. The researchers have refined our revolutionary Long 

and Short CFG methods (LSG) utilizing exclusively synthetic images produced by 

the one-step generator. This study not only confirms the practical viability of SiD 

but also sets new standards for one-step diffusion distillation, attaining exceptional 

zero-shot FID scores on the COCO-2014 validation set. their technique is engineered 

for improved efficiency while maintaining performance, enabling learning from the 

teacher model without the necessity of real images or the inclusion of supplementary 

regression or adversarial losses. They have made their code and condensed models 



 

 

accessible to promote more study [27]. The researchers in this study investigate text-

guided image modification with a Hybrid Diffusion Model (HDM) architecture akin 

to DALLE-2. Their architecture comprises a diffusion prior model that produces 

CLIP image embeddings based on a text prompt, with a unique Latent Diffusion 

Model specifically trained to generate images conditioned on CLIP image 

embeddings. The researchers found that the diffusion prior model may provide text-

guided conceptual modifications in the CLIP image embedding space without 

requiring any fine-tuning or optimization. The researchers integrate this with 

structure-preserving modifications on the image decoder utilizing established 

methods like reverse DDIM for text-guided image editing. Their methodology, 

PRedItOR, needs no further inputs, fine-tuning, optimization, or targets, and 

demonstrates outcomes that are comparable to or superior to baseline measures, both 

qualitatively and numerically. The researchers offer an enhanced analysis and 

comprehension of the diffusion prior model [28]. The denoising diffusion 

probabilistic model (DDPM) was introduced in 2020 as a significant research effort, 

leading to a substantial surge in interest within the generative model community ever 

then. In this article, they provide a comprehensive overview of DDPM, starting with 

a summary of the key advancements made before the development of DDPM, then 

they go into the workings of unconditional DDPM, using image synthesis as a 

specific case study. Additionally, they emphasize the role of guidance in facilitating 

conditional decision-making, which is essential for understanding text-conditioned 

decision-making in the context of converting text to images. The rise of DDPM may 

mostly be attributed to two initial endeavors: score-based generative models (SGM), 

which were investigated in 2019, and diffusion probabilistic models (DPM), which 

surfaced as early as 2015 [29]. 

 

 



 

 

Table 1.1 : Summary Of Previous Work About Image Generation From Text 

Ref.  Dataset Model  Assessment 

Metric 

Limitation  

Dhariwal, 

Nichol(2021)

.[30] 

ImageNet 128×128 ddpm  Access to labeled datasets is limited. 

Sharma et al. 

(2018).[31] 

MS COCO ChatPaint

er’s 

architectur

e 

IS= 9.74 In many circumstances, the results are 

unrecognizable. Training the model using 

conversation data is also quite unstable. 

Singh et 

al.(2018)[32] 

oxford flowers-102 CanvasG

AN 

IS=2.94 discontinuity in higher-dimensional latent 

mapping because of insufficient data 

Ouyang et al. 

(2018).[33] -OXFORD-102  

cub 

Condition

al GAN 

Euclidean 

distance and SSI 

similarity used 

No assessment metric exists. 

Tao Xu et al. 

(2017).[34] 

CUB 

COCO 

AttnGAN IS= 4.36 Not quite accurate in representing the world's 

cohesive structures. 

Schulze et al. 

(2022).[35] 

CUB 

COCO 

CAGAN (33.89, 32.60) 

(4.78, 4.96) 

fails to create realistic-looking images, 

although scoring better ISs than the 

AttnGAN. 

Kim et 

al.(2022).[36

] 

ImageNet Diffusion-

CLIP 

Directional 

CLIP similarity 

(Sdir), 

segmentation-

consistency 

(SC),  

and face identity 

similarity (ID)  

used 

 Perhaps used to deceive individuals with 

modified realistic consequences. 

Gu et 

al(2022).[37] CUB-200 

OXFORD-102 

MSCOCO 

CONCEPTUAL 

CAPTIONS 

LAION-400M 

FFHQ256 

VQ-

Diffusion 

FID=(13.86 

,10.32 ,14.10) 

Token substitution can have a major impact 

on the semantics of the port representation. 

The model does not know which tokens have 

been substituted, which increases its 

robustness throughout the denoising process. 

Qiao et al. 

(2019).[38] 

Oxford  

CUB 

LeicaGA

N 

IS= (5.55±0.06, 

3.75±0.0) 

In the current implementation, the TVE 

models received independent training from 

the MPA and CAG models. 
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2.1 Overview  

In this chapter, a description of different diffusion models is provided. Also, a 

detailed explanation of the stable diffusion model which is used for the task of 

flower image generation from texts in this study is presented. 

2.2  Introduction  

Computer-generated visualizations that resemble real-world scenarios, known as 

synthetic images, have a wide range of applications in a variety of disciplines, 

including healthcare, biomedicine, fashion, architecture, geospatial studies, 

automotive, security, and surveillance. They contribute to the development of 

innovative solutions, decision-making, and data analysis. Recent advancements 

in text-to-image generators, including Imagen, Stable Diffusion, DALL-E 2, 

eDiff-I, and ERNIE-ViLG 2.0, have resulted in substantial advancements and 

are now extensively employed in domains such as computer graphics, cultural 

arts, medical, and biological data generation [39]. Content and artistic 

manifestations have been the subject of deep generative models, such as the 

Generative Adversarial Network (GAN). Nevertheless, they encounter obstacles 

in terms of inconsistent outputs and consistent training procedures, which 

renders them challenging to implement and extend into other fields. As a 

consequence, likelihood estimation-based models are being implemented to 

enhance the quality of GAN samples [5]. Due to their capacity to generate 

detailed and diverse images, denoising diffusion models have become 

increasingly popular. These models are capable of being effectively implemented 

across a variety of data formats, including 3D point clouds, videos, and audio. 

They are employed for the purpose of augmenting resolution, editing, filling in 

missing sections, and transforming images. Lifelike images have been generated 



 

 

from detailed textual descriptions through diffusion-based text-to-image 

technologies. The primary function of these models is to generate graphical 

artwork that is consistent with the text provided. Nevertheless, they are restricted 

to the identification of art-related terms and do not provide comprehensive 

descriptors such as color distribution or brushwork nuances. Models that are 

trained on uncurated text-image pairs frequently demonstrate a bias toward a 

particular subset of styles, which is indicative of the bias present in the training 

data [40]. Text-to-image generation is the process of generating images from 

textual descriptions. Blended diffusion employs natural language instructions to 

integrate pre-trained DDPM and CLIP models for region-specific editing. A 

wide range of images can be processed by it. UnCLIP (DALLE-2) employs a 

dual-stage procedure that commences with a prior model that generates an image 

embedding that is influenced by text captions [41]. A probabilistic framework 

that generates a data set by sampling from it is known as a generative model. It 

is designed to comprehend the fundamental principles of a car's appearance, 

thereby creating a new image while preserving a realistic appearance. In order to 

accomplish this, it is necessary to generate a data file that contains a multitude 

of exemplar images of the vehicle. The image synthesis task is difficult to 

complete due to the vast array of potential pixel assignments and limited image 

arrangements. The training dataset contains observations with unique pixel 

intensities, which can be used to generate new attribute sets that adhere to the 

original dataset's rules. The resulting images are reorganized and can identify the 

subject as the same thing, but not a replica of the initial observation. A 

deterministic model, which carries out a predetermined computation like 

calculating the average value of each pixel in a dataset, t is not classified as 

generative since it consistently generates identical results.[17]. The model must 



 

 

have the capacity to estimate the input distribution and then produce fresh, 

independent observations that closely resemble the original training set [17] [42].  

 

2.3  Text to Image Models  

Text-to-Image Models large multimodal models that turn a text cue into an image 

now dominate cutting-edge image generation. Text-to-image models are 

extremely valuable because they enable users to quickly edit created images 

using natural language. In contrast to models like StyleGAN, which are 

impressive, they do not have a text interface that allows you to explain the desired 

image to be generated. There are now three text-to-image generating models 

available for both commercial and personal use: DALL.E 2, Midjourney, and 

Stable Diffusion. DALL.E 2, developed by OpenAI, is a subscription-based 

service that may be accessed by a web application and API (Application 

Programming Interface). Midjourney provides a text-to-image service through 

its Discord channel, which requires a membership. Both DALL.E 2 and 

Midjourney provide complimentary credits to anyone who joins their platform 

for the first investigation [17]. The proliferation of user-friendly open-source 

generative text-to-image AI has sparked significant public interest in the field. 

Systems such as Midjourney, DALL-E, Disco Diffusion, and Stable Diffusion 

utilize generative algorithms and a userfriendly interface. These systems allow 

users to input natural language prompts and receive a variety of visually 

generated outputs that represent the concepts mentioned in the text. Recently, 

there has been a notable increase in the understanding and availability of these 

systems, which can generate high-quality images in many artistic styles that 

closely align with text prompts with apparent precision. This naturally raises 

concerns over the potential impact of text-to-image artificial intelligence on 

conceptual matters of engineering design. Generative art has had a significant 



 

 

increase in generation in public discussions. Additionally, designers in several 

sectors have started using text-to-image AI to create magazine covers and 

storyboards. Nevertheless, the utilization of text-to-image artificial intelligence 

in the context of engineering design has not been extensively explored. An 

advantageous use of text-to-image AI systems in conceptual engineering design 

is as a visual aid to quickly visualize concept ideas and variations during concept 

generation. This enables the efficient creation of high-quality images that can be 

utilized to facilitate interpretation and decision-making in concept selection and 

development. There are several potential benefits to this, such as improved 

efficiency to take full use of a competitive edge by lowering the time spent on 

visualizing data and facilitating quick examination of a greater range of options 

.The generated visuals have the potential to inspire novel concepts that human 

designers, limited to a narrower design environment, may not have discovered 

on their own. Furthermore, it can enable those without expertise in design 

sketching and Computer Aided Design (CAD) to express their thoughts more 

easily, hence increasing the accessibility of the design process. A closer analysis 

of the methods incorporated in actual text-to-image systems points to several 

factors that might lessen the effectiveness of the systems. Some of these 

challenges include the ability of these tools in engineering design settings as well 

as the suitability of these tools, which implies that there is room for research.  

 

2.4  Diffusion Models Types 

Diffusion models (DM) are gaining popularity due to their stable training and 

superior quality of samples compared to (GANs). They mitigate GANs' 

shortcomings like mode collapse, adversarial learning burden, and convergence 

failure. Diffusion models use Gaussian noise to infuse training data and retrieve 

original data from corrupted versions. They are suitable for scalability and 



 

 

parallelizability, and their training methodology requires minimal changes to the 

original data. This enables learning of data distributions that closely resemble 

original information, resulting in robust realism in produced samples. Diffusion 

models are a subgroup of probabilistic models that need substantial processing 

resources to represent unseen data intricacies. Their training procedure necessitates 

the assessment of models that employ iterative estimates and gradient calculations. 

The computing expense significantly escalates while processing high-dimensional 

data such as images and videos [43]. Researchers in this reference [44] reached 

cutting-edge performance in both the estimation of density and sample quality. DMs 

primarily serve to elucidate the dissemination of information, behaviors, or 

phenomena within a population and discern the factors that impact the process of 

diffusion. The phenomena of diffusion and reverse diffusion. Diffusion processes, 

also known as forward processes, are a specific form of continuous-time Markov 

process that exhibit almost continuous sample routes in the field of probability 

theory and statistics. To be more precise, diffusion processes in digital media include 

the incremental addition of Gaussian noise to images. When a sample x0 is taken 

from the true image distribution, the diffusion process introduces Gaussian noise at 

each step into the samples x1, x2, ..., xT throughout the T steps. Furthermore, q(xt 

|xt−1) is a Gaussian distribution with xt−1 as the mean, and xt is drawn from this 

Gaussian distribution. Consequently, we may obtain : 

𝒒(𝒙𝒕 | 𝒙𝒕 − 𝟏) ∶=  𝑵 𝒙𝒕 ;  𝒑 𝟏 − 𝜷𝒕𝒙𝒕 − 𝟏, 𝜷𝒕𝑰 ……………..(3) 

Where (𝜷𝒕) is a fixed and predetermined constant. To obtain the value of (𝒙𝒕) at 

each step, we can generate a random sample from a conventional Gaussian 

distribution, which is then scaled by the standard deviation and shifted by the mean 

value. To streamline the diffusion process from the original image x0, we can 

express the equation as follows: 



 

 

𝒒( 𝒙𝒕 ∣ 𝒙𝟎 ) = 𝑵(𝒙𝒕; 𝜶ˉ𝒕𝒙𝟎, (𝟏 − 𝜶ˉ𝒕)𝑰)…………..(4) 

where αt := 1−βt and α¯t := ∏ t s=1. 

To achieve the reverse diffusion process, we need to reverse the direction of the 

aforementioned process. This means that if we can obtain a sample from q(xt | xt−1), 

we may reconstruct an authentic original sample from a random Gaussian 

distribution N (0, I). In other words, we can generate a real image from a distribution 

that is very disordered and noisy. Nevertheless, given we must determine the data 

distribution from the entire dataset, we can't forecast q(xt | xt−1). To carry out the 

reverse diffusion process, it is necessary to first acquire a model εθ that provides an 

approximation of the conditional probability. The denoising model, denoted as εθ, 

is trained to minimize the loss function depicted below: 

𝑳𝑫𝑴 =  𝑬[𝒙𝒕, 𝜺 ~ 𝑵(𝟎, 𝟏)] [(𝟏/𝟐) ||𝒌𝜺 −  𝜺𝜽(𝒙𝒕, 𝒕)||^𝟐] ……….(5) 

Where t is evenly sampled from the T time steps. These methods employ a Forward 

Diffusion Process (FDP) to incorporate Gaussian noise into the data and then acquire 

the ability to reverse the process, converting the noise back into data. Multiple 

techniques exist for establishing diffusion models: Score-Based Models (SBMs) are 

trained to predict the score, which represents the gradient log density. On the other 

hand, diffusion Models (DMs) are trained to predict the extra Gaussian noise, which 

is then subtracted from the noisy data. SBMs and DMs often depend on Gaussian 

noise, although it is unclear why Gaussian noise is preferred over other forms of 

noise. Recent research has begun to investigate non-Gaussian noise. In their 

respective studies,[45] and [46] propose diffusion-based frameworks for sampling 

from arbitrary distributions by transitioning from dataset 1 to dataset 2. Both papers 

demonstrate that substituting non-Gaussian distributions for Gaussian noise as the 

second dataset substantially degrades the quality of the generated data [47]. 

Diffusion models (DMs), often referred to as generated models, are Markov chains 

that have been trained via variational inference. They are also known as diffusion 



 

 

probabilistic models. The objective of DM is to introduce noise, such as diffusion, 

into the data to generate samples [29].  

2.4.1 Dalle 2 model  

 DALL-E 2 is a sophisticated AI system that generates graphics from textual 

descriptions, published by OpenAI in 2021.  

To comprehend the functionality of DALL.E 2, three unique components must be 

analyzed: the text encoder, the prior, and the decoder. 

The text is initially processed by the text encoder to generate a text embedding 

vector. The vector is subsequently converted by the prior to generate an image 

embedding vector. Ultimately, information is transmitted through the decoder, in 

conjunction with the original text, to yield the created image [17]. 

 This advanced technology can generate intricate, high-quality graphics that 

faithfully represent the written description, regardless of its length or complexity. 

The AI model was trained on an extensive collection of text-to-image combinations, 

enabling it to produce visuals with exceptional detail and precision. DALL-E 2's 

capability to create representations of non-existent items and situations is one of its 

most remarkable attributes. For instance, it can generate a image of a "banana dog" 

only from a textual description. This is a substantial advancement in artificial 

intelligence with vast potential applications across several sectors, including art, 

design, and advertising [48]. For generating images from text DALL-E 2 utilizes 

650 million image-text pairings, whereas Imagen employs 860 million image-text 

pairs. It necessitates extensive training sessions, demanding significant processing 

power and resources. Moreover, the datasets and code sources are sometimes 

inaccessible to the public, hence complicating the replication of these generative 

models [49].  



 

 

2.4.2 Imagen Model 

The Google Brain team published their own model for the  text-to-image generation 

purpose, just over a month after OpenAI released DALL.E 2 [17]. Imagen is a text-

to-image diffusion model that merges the power of transformer language models 

with precise representation diffusion models to achieve an unparalleled level of 

imagerealism and a profound level of language understanding in text-to-image 

synthesis. The primary outcome behind Imagen is that text embeddings from large 

transformer language models, pre-trained on text-only corpora, are notably 

successful for text-to-image synthesis. Imagen consists of a frozen T5-XXL encoder 

that transforms input text into a series of embeddings, accompanied by a 64×64 

image diffusion model, and subsequently two super-resolution diffusion models for 

producing 256×256 and 1024×1024 images [50]. 

Imagen has several similarities with DALL.E 2, including a text encoder and a 

diffusion model decoder. A primary distinction between the two models is that the 

Imagen text encoder is trained only on textual input, whereas the DALL.E 2 text 

encoder's training incorporates image data via the contrastive CLIP learning goal 

[17]. 

2.4.3 Stable Diffusion Model 

In August 2022, there was another noteworthy advancement in the realm of artificial 

intelligence that garnered widespread attention. Stable Diffusion was a product of 

the collaboration between Stability AI and Computer Vision with the Learning 

research group at Ludwig Maximilian University of Munich and Runway. Unlike 

DALL.E 2 and Imagen, this particular model's code and model weights have been 

openly shared on Hugging Face. This suggests that anybody may engage with the 

model using their hardware without the requirement of using a specific API, and the 



 

 

model can generate outcomes that are similar to those of DALL-E 2. Stability AI 

surprised the IT world by promptly making their model open source, diverging from 

the approach of other companies in the field. Hugging Face, a hub for sharing 

pretrained models, datasets, and demos of machine learning projects, promotes open 

source contributions and fosters a collaborative environment for AI enthusiasts 

[17],[51]. . Stable Diffusion comes with a safety filter that aims to prevent generating 

explicit images. Unfortunately, the filter is obfuscated and poorly documented [52]. 

This technique operates within the latent space, which is essentially a compressed 

version of the image, much like a smaller, condensed file. This family of models is 

known as latent diffusion models. To create the latent space, an autoencoder is 

employed, acting as a simplified version of the variational autoencoder mentioned 

earlier. The autoencoder’s encoder compresses the image into lower-dimensional 

data, similar to zipping a file, whereas the decoder decompresses the latent data back 

into an image, akin to unzipping a file. One of the most remarkable features of stable 

diffusion is its ability to generate images from text prompts in a highly impressive 

manner. The diffusion model is adapted to accept conditioning inputs, comparable 

to modifying a recipe based on a special request. Text inputs are transformed into 

embeddings (vectors) using a language model, reminiscent of the process employed 

by CLIP [51]. Stable Diffusion utilizes latent diffusion as its generative model, 

setting it apart from other text-to-image models. In December 2021, Rombach et al. 

released a publication titled "High-Resolution Image Synthesis with Latent 

Diffusion Models," in which they proposed a novel concept known as latent 

diffusion models (LDMs). The main goal of the research is to integrate the diffusion 

model into an autoencoder so that the diffusion process can function on an image's 

latent space representation as opposed to the actual image [17]. 



 

 

The architecture of this model is distinct in its capability of combining different 

components. In the segments below the fundamental components U-Net, Variational 

Autoencoder (VAE), and Clip will be discussed.  

2.4.3.1 U-Net Architecture  

In several tasks involving image recognition, deep convolutional networks have 

outperformed the state-of-the-art. Although convolutional networks have been 

around for a while [7]. The scale of the networks under consideration and the training 

sets that were accessible to them restricted their success. The breakthrough by 

Krizhevsky et al.[6] was caused by the supervised training of a large network using 

the ImageNet dataset, which contains one million training images, and has eight 

layers and millions of parameters. Larger and deeper networks have since been 

trained [11]. Convolutional networks are usually applied to classification problems, 

where the result is an image with a single class label. A U-Net is a type of 

convolutional neural network that was created for segmenting biomedical images. It 

has a special architecture that combines a shrinking network with successive layers 

of operators that up-sample the output, thus increasing the resolution. This gives it a 

U-shaped form, which is why it's called a U-Net [17]. A U-Net consists of two 

halves: the up-sampling half, where representations are extended spatially while the 

number of channels is decreased, and the down-sampling half, where input images 

are reduced geographically but enlarged channel-wise. But in the network's down-

sampling and up-sampling sections, there are also skip connections across layers 

with the same spatial structure, in contrast to a VAE [5]. Data flows through a VAE 

sequentially, one layer at a time, from input to output. A U-Net differs in that 

information can move to later levels and avoid some areas of the network thanks to 

skip connections. When we want the output to have the same form as the input, a U-

Net is quite useful. The U-Net is the most suitable option for the network architecture 



 

 

in the diffusion model example, as it allows the model to predict the noise that will 

be introduced to an image that has the same structure as the original image. 

 

 

 

 

Figure 2.1: U-Net architecture diagram [17] 

 

 

The U-Net has two inputs: the noisy image and the noise variance (a scalar). The 

image goes through a Conv2D layer to increase channels. The noise variance is 

encoded by a sinusoidal embedding and replicated to match the image size. Channels 

are used to join the inputs. The output of the DownBlock layers is saved in the skips 

list for use in subsequent skip connections. The tensor passes through layers called 

DownBlock, which reduces image size and raises channels; ResidualBlock, which 

maintains channels constant; and UpBlock, which increases image size and 

decreases channels. The DownBlock layers' output is utilized by the skip 

connections. The last Conv2D layer reduces the number of channels to three (RGB). 

The images with high levels of noise and their corresponding noise variances are 



 

 

inputted into the U-Net, a Keras model, which accurately predicts the noise map. 

The U-Net architecture has four more components: the Residual Block, the 

UpBlock, the DownBlock, and the sinusoidal embedding, which will be clarified: 

A- Sinusoidal Embedding 

An article authored by [53] Implemented sinusoidal embedding for the initial time. 

We will modify the original notion, as presented in the paper "NeRF: Representing 

Scenes as Neural Radiance Fields for View Synthesis" by [54] Given the specific 

objectives we have. Transforming a single value (the noise variance) into a unique 

higher-dimensional vector that can offer a more complex representation for use 

farther down the network is the aim. The NeRF work expands this idea to include 

continuous values, whereas the original research used it to translate discrete word 

positions into vectors. 

B- Residual blocks  

It is a constituent of both the UpBlock and the DownBlock. A residual block refers 

to a collection of layers that includes a skip connection, where the input is added to 

the output. By employing residual blocks, we may construct networks with increased 

depth that are more resilient to the issues of vanishing gradient and gradient 

vanishing. The vanishing gradient problem is defined by a minuscule gradient in the 

deeper layers and a slow learning rate as the network becomes deeper. While the 

degradation problem may come as a surprise, in reality, it is understood that deeper 

layers must learn at least the identity mapping, which is a difficult task given the 

other difficulties that deeper networks encounter, such as the vanishing gradient 

problem. The answer wasstraightforward and initially put out in the ResNet 

publication by [55], in 2015. By including a skip link highway around the main 



 

 

weighted layers, the block may circumvent identity mapping and prevent complex 

34 weight modifications. This ensures that the magnitude of the gradient and the 

accuracy of the network are maintained during extended training of the network.  

C- Downblocks And UpBlocks  

The DownBlock consists of a series of ResidualBlocks, with a block_depth of 2, to 

enhance the channel count. The next layer that it comes after an AveragePooling2D 

layer that reduces the size of the image to half. A list is generated that contains the 

ResidualBlock as the skip connections which are required by the UpBlock levels in 

the U-Net architecture. An UpBlock is initiated with the UpSampling2D layer which 

applies the bilinear interpolation to double the size of the image. Every UpBlock in 

the U-Net has a block_depth of 2 ResidualBlocks applied to reduce the number of 

channels and a Concatenate layer to join the output of the DownBlocks using skip 

connections at every stage. Thus, the inclusion of more channels is incorporated 

through a Residual Block with a specified width to enrich the image’s representation 

by the DownBlock. Each of the enhanced channels is kept as a list called “skips” 

ready to be used by the UpBlocks. Since the utilization of a direct 

AveragePooling2D layer will result in a reduction of the number of pixels by 50%. 

Initially, in the UpBlock, an UpSampling2D layer is employed to expand the 

dimensions of the image to twice its original size. A Concatenate layer is employed 

to merge the output of a DownBlock layer with the present output. A ResidualBlock 

decreases the overall channel count of the image as it traverses the UpBlock [17].  

 

2.4.3.2 Variational Autoencoder  

VAEs combine the finest neural networks with Bayesian inference. They are among 

the most fascinating neural networks and have emerged as one of the most popular 



 

 

ways to unsupervised learning. They're not your typical autoencoders. Autoencoders 

use further stochastic layers alongside the conventional encoder and decoder 

networks. After the encoder network, the stochastic layer employs a Gaussian 

distribution to sample the data, while the decoder network utilizes a Bernoulli 

distribution for data sampling. VAEs, similar to GANs, can generate visual 

representations and illustrations based on the specific distribution they were trained 

on. VAEs enable the specification of intricate priors in the latent space, hence 

obtaining robust latent representations [7]. A two-step generative method is 

proposed by the original Variational Autoencoder (VAE): latent variables z ∈ R h 

are sampled from a prior distribution p(z) first, then observations x are created from 

a conditional distribution pθ (x|z). Formally, z ∼ p(z) and x ∼ pθ(x|z) represent the 

generating process. It is assumed that the prior probability distribution p(z) has a 

Gaussian distribution, and a neural network is used to simulate the likelihood pθ(x|z). 

In the previous studies, the decoder is sometimes referred to as the likelihood model 

since it converts latent variables into observations. The probability is originally 

defined using a multivariate Gaussian distribution N (µθ(z), diag(σ 2 θ(z))) for 

continuous data and a categorical distribution for discrete data. The generative model 

is trained by finding the decoder parameters θ that maximize the sum of the marginal 

likelihoods of individual points pθ(X) = X x∈X log Z pθ(x|z)p(z)dz. Despite the 

difficulty of these integrals, the introduction of an approximation that represents the 

posterior distribution qφ(z|x) enables the maximization of the related evidence 

lower. As the estimated posterior, qψ(z|x), gets closer to the true posterior, the 

evidence lower bound (ELBO) becomes more precise. The generative model is 

learned by optimizing the parameters θ of the decoder and φ of the estimated 

posterior together using stochastic gradient ascent. The approximate posterior is 

represented by the conditional multivariate Gaussian distribution N (µφ(x), diag(σ 2 

φ (x)) in the original VAE's encoder. The encoder is forced to choose between two 



 

 

competing goals by the ELBO loss. The system should be able to approximate the 

previous distribution closely while encoding the data correctly. As a result, the prior 

and posterior distributions' Gaussian assumptions are frequently contradictory, 

which limits the capacity to provide performance. A different strategy is to obtain a 

prior distribution that coincides with the posteriors that were previously obtained. 

For example, it has been demonstrated by [56],[57] that the performance of VAEs is 

significantly improved when autoregressive models with normalizing flows [58] as 

prior distributions are used. Here, we demonstrate how the application of denoising 

diffusion probabilistic models can improve the efficiency of conventional VAEs 

[59],[60].  

2.4.3.3 Clip Model 

Utilizing natural language supervision is a highly efficient method for acquiring 

knowledge in the field of image representation. Recent research has indicated that 

augmenting the dataset by incorporating data obtained through web scraping can 

lead to significant enhancements in the model's performance. In particular, GPT [61] 

and BERT [62] studies have shown that an effective understanding of natural 

language relies on a substantial volume of texts and a well-designed self-supervised 

learning method. On the other hand, computer vision has traditionally relied on strict 

monitoring, utilizing "gold labels" which are separate class labels. Typically, these 

annotations are gathered from a large group of people, making it challenging to 

gather a substantial amount. CLIP utilizes the vast amount of textual material that 

accompanies imagegraphs on the internet to expand its collection. The latter consists 

of 400,000 combinations of images and titles, where the caption is designed to 

express the semantic significance of the image. CLIP utilizes distinct models, 

namely text and image encoders, to produce embedding for both text and images). 

The text encoder's architecture is based on a Transformer concept [53], the image 



 

 

encoder is a Vision Transformer. The two encoders are simultaneously trained using 

a contrastive approach, where the goal is to maximize the cosine similarity between 

the embedding of caption-image pairs and minimize it for unrelated captions and 

images (see Fig 2.2). Hence, the acronym, ‘CLIP’, represents Contrastive Language-

Image Pre-training. The assumption underlying this technique is that the image and 

word embedding exist inside a shared multimodal latent space, which means that 

similar captions and images should be close to each other in terms of cosine 

similarity [49].  

 

 

Figure 2.2: The architecture of the CLIP model [49] 

 

2.5  Evaluation Metrics  

Text-to-image conversion strategies are now being evaluated using both human 

assessment and quantitative metrics. However, improved measures for statistical and 

qualitative evaluation of these models are required. The assessment metrics should 

generate findings that are equivalent to human evaluation, which remains an aim [6]. 

Despite concerted attempts to establish assessment criteria, the task of generating a 

diverse and impactful review still poses challenges. For instance, FID does not 

always align with perceptual quality, and the CLIP score is insufficient in evaluating 



 

 

various limitations of current automated assessment methods. It is imperative to 

enhance the strength and variety of automated evaluation criteria. Moreover, the 

limitations in efficiency and aesthetic differences among raters impose constraints 

on the number of prompts available for human review. Moreover, the majority of 

benchmarks incorporate a variety of textual inquiries that enable users to evaluate 

the model from many perspectives. The quality of prompts may be limited, 

especially when evaluating complex situations, and prompts created by humans may 

include biases. Although specific datasets have demonstrated favorable outcomes, 

the current review process is still not optimal. When evaluating a solitary item 

scenario, it is crucial to assess the visual clarity and definition. When it comes to 

evaluating the quality of images, Inception Score (IS) and Fréchet Inception 

Distance (FID) are widely used metrics. They are efficient in assessing visual quality 

in the majority of situations involving a single item. The primary measures used to 

assess image quality are Fréchet Inception Distance (FID) and Inception Score (IS) 

[29]. Assessing generative models may be challenging when employing quantitative 

methods. The challenge of evaluating model performance solely based on pixel 

precision is intensified by the potential for a single description to correlate with 

several images [63]. Additionally, because matching data distributions are not 

equivalent, existing evaluation measures like FID and IS scores do not entirely fit 

with the key objectives. A different strategy would be to develop a diversity score, 

like CLIP, that accounts for a large number of areas. The diversity of the sample and 

the efficiency of diffusion models in achieving the intended result should both be 

considered in the best evaluation metric [64]. Assessing generated images is 

particularly difficult due to their numerous similarities with high-quality 

imagegraphs, including visual authenticity and variety. An effective text-to-image 

paradigm, however, does more than simply produce lifelike visuals. The congruence 

between generated visuals and textual descriptions is a crucial additional feature. 



 

 

Images generated from textual descriptions should accurately represent the 

distribution of the data used for training. The Inception score is a valuable tool for 

assessing and contrasting models. The FID score was introduced by [65].  

2.5.1 Inception- V3 Network 

Is a well-known model for object detection and feature extraction developed by 

Google in 2014. This model was first developed by the Google Brain team and has 

since been used in diverse applications, including object identification and other 

fields, via the transfer learning process. An extremely sophisticated convolutional 

neural network, pretrained on ImageNet. ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) includes more than one million images for processing. It one 

of the most accurate models in its area for image classification, after being trained 

on the ImageNet dataset. There are diverse versions of Inception, such as Inception 

V1, Inception V2, and Inception V3. The standard input dimensions for this model 

are 299x299 over three channels. This model exhibits reduced computational 

efficiency, substituting bigger convolutions with smaller ones, resulting in decreased 

processing time. The AlexNet model was proposed by Krizhevsky, Sutskever, 

Hinton (2012), which can detect objects, and substantial progress has been achieved. 

The object recognition performance of the Inception-v3 model is slightly better. The 

Inception network is a part of GoogleNet.  Inception was a network that consisted of 

22 layers and had 5 M parameters. It had a filter size ranging from 1 × 1 to 3 × 3 to 

5 × 5 to extract features at different sizes while using maximum pooling. Using 1 × 

1 filters is done so the calculation may be performed more proficiently. In the final 

portion of 2015, Google upgraded the Inception model to the InceptionV3 version, 

which factors the convolutional layers to minimize the number of parameters. 

Convolutional filters of size 5 × 5 are changed to two filters of size 3 × 3 to lower 



 

 

the amount of processing required while maintaining the equivalent level of network 

performance. There are a total of 48 layers in the InceptionV3 model. [7] , [66], [67]. 

2.5.2 Model Assessment Tools 

Two key metrics to assess the performance of the Stable Diffusion model will be 

employed [68] [65]:  

1. Fréchet Inception Distance (FID): This metric measures the similarity 

between the distribution of generated images and real images, computed 

using statistics from an Inception-v3 network. Lower FID scores indicate 

better performance.  

FID can be computed as: 

                 𝐅𝐈𝐃 = ∥∥𝛍𝐫 − 𝛍𝐠∥∥
𝟐

+ 𝐓𝐫 (𝚺𝐫 + 𝚺𝐠 − 𝟐(𝚺𝐫𝚺𝐠)
𝟏/𝟐

)……...(6) 

where 𝛍𝐫 and 𝚺𝐫 = mean and covariance of real images' features; 

𝛍𝐠 and 𝚺𝐠 = mean and covariance of generated images' features. 

 

2. Inception Score (IS): This metric evaluates the quality and diversity of 

generated images by considering both the realism and diversity of 

predictions made by an Inception-v3 network. Higher IS scores indicate 

better performance. 

IS can be calculated as: 

                    𝐈𝐒 = 𝐞𝐱𝐩 (𝐄𝐱∼𝐩𝐠
[𝐃𝐊𝐋(𝐩(𝐲 ∣ 𝐱) ∥ 𝐩(𝐲))])……(7) 

where 𝐩𝐠 = distribution of generated images; 



 

 

where 𝐃𝐊𝐋 is the Kullback-Leibler divergence; 

𝐩(𝐲 ∣ 𝐱) = conditional label distribution given image x; 

𝐩(𝐲) = marginal distribution over all labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER THREE  

PROPOSED METHOD 

 

 

 

 

 

 

 

 

 



 

 

3.1  Introduction  

This chapter gives a comprehensive description of the actual processes of how the 

objective was accomplished including design of the proposed model, data pre-

processing, model set-up, training strategies, and the assessment tools used. Hence, 

the relevance of this work is in helping to bring the capabilities of advanced 

generative models within the reach of more people. Thus, by having reduced 

computational costs and training time, these models can be made available and 

usable by many more people, especially those with fewer resources. Based on the 

given information, one can advance creativity and invention in numerous sectors to 

employ artificial intelligence in areas not possible earlier. The figure (3.1) below 

shows the process of generating images from text. The method is specifically 

dependent on the stable diffusion model. The transformation among the generative 

models signified significant progress in AI as these machines are capable of 

interpreting the human language and transforming it into visual forms inclusive of 

aesthetics in an image form that is deemed appealing to the eye hence paving the 

way to greater opportunities as regards to creativity and resourcefulness. Clearly, 

one of the defining milestones in this sphere is known as the Stable Diffusion model. 

These models provide a solid foundation for generating different variations of the 

images that are semantically close to the textual descriptions. Though, such models 

are terrific in terms of performance, even they have issues with certain restrictions 

such as high computational complexity and training time. Most of these models are 

computationally intensive and take a lot of time to train which poses a drawback 

because it is costly. To meet these limitations, the main aim of this study is to provide 

a new generation model that will enhance the creation of images from the text. The 

objective is to develop a model that ideally, retains or improves the quality of the 

generated images while drastically cutting down on the processing power and 

training time. 



 

 

 

Figure 3.1: Overview of the Stable Diffusion Model Pipeline for Generating Images from 

Textual Descriptions. 



 

 

Based on the context of this chapter, the suggested approach can be divided into the 

following elements: To begin with, the design of the proposed method is given where 

the difficulties and goals connected with image generation from the text are 

described. In this segment, the groundwork is laid for the following methodological 

descriptions by pinpointing the particular concerns the study intends to tackle. After 

that, the methodology is described, beginning with the models used in the Stable 

Diffusion pipeline, namely the pre-trained models. 

 

3.2  Design of The Proposed Method 

The general workflow of the Stable Diffusion model aimed at flower generation 

consists of several vital steps, which are described below to match the proposed 

Stable Diffusion model effectively and generate high-quality images from textual 

descriptions. The used methodology helps to minimize computational costs and time 

while training deep neural networks as it relies on pre-trained models. One of the 

essential features of the implementation of the proposed methodology is the iterative 

feedback procedure. 

This section will describe the steps: data preparation for model construction, model 

training, and selection, and focuses on the part concerning model improvement 

based on performance assessment which is executed in the Google Colab Pro Plus 

environment. The following flowchart Figure (3.2) outlines all the steps required to 

follow the algorithm starting from a general initialization and preprocessing of the 

data up to the training loop, and the evaluation of the generated images using FID, 

ISmetrics: 



 

 

 

 

Figure 3.2: Methodology Flowchart for Stable Diffusion Model with Iterative Refinement. 



 

 

The pseudocode below encapsulates a detailed and cyclical workflow for training 

and testing the Stable Diffusion model concerning flower image generation. It 

underlines the necessity of initialization with the pre-trained models, the strict 

division into the training and test phases, and the evaluation of the results with the 

help of professional criteria. The aspect of iteration guarantees that the model keeps 

on acquiring and updating the relevant information hence providing quality images 

generated from textual descriptions. It plays a key role in constructing the systematic 

and efficient model for the transformation of textual descriptions to visually good 

and semantically correct images. The pseudocode has been utilized as a handy guide 

to have a practical references in implementing the Stable Diffusion model for flower- 

based generation. Finally, the steps or the evaluation metrics that are used in the 

proposed model will be explained. The utilized metrics are used to measure the 

effectiveness of the proposed approach which guarantees the qualitative and 

semantically meaningful of the synthesized images. Algorithm 3.1 shows the Stable 

Diffusion Model Training and Evaluation for Flower Generation. 

 

 

 

 

 

 

 



 

 

 Algorithm 1 Stable Diffusion Model Training and Evaluation for 

Flower Generation 

Require: Pre-trained models (Tokenizer, Text Encoder, VAE, U-Net), 

Noise 

Scheduler, Training Data (text prompts, images) 

Ensure: Trained Stable Diffusion Model, Generated Images 

1: Initialization: 

2: Load pre-trained Tokenizer, Text Encoder, VAE, U-Net 

3: Construct Stable Diffusion Pipeline 

4: Training: 

5: for each record in Training Data (text prompts, images) do 

6: Tokenize input text prompts 

7: Encode input images into latent space via VAE 

8: Add Gaussian noise to latents 

9: for each iteration in noise scheduler timesteps do 

10:  Predict noise using U-Net 

11:  Compute mean squared error (MSE) loss 

12:  Perform backpropagation and update model parameters 

13:  end for 

14: end for 

15: Testing: 

16: for each record in Testing Data (text prompts) do 

17:  Define text prompt for image synthesis 

18:  Tokenize the prompt 

19:  Initialize latent vectors with random noise 

20:  for each iteration in noise scheduler timesteps do 

21:   Predict noise using U-Net 

22:   Denoise latent vectors progressively 

23:  end for 

24:  Decode the final latents to generate the image using VAE 

25: Save or display the generated image 

26: end for 

27: Validation: 

28:  Compute Inception Score (IS) for the generated images 

29: Compute Frechet Inception Distance (FID) between generated images 

and real images 

30: Output: 

31: Input: Text prompt (e.g., "A field of sunflowers.”) 

32: Output: Generated image based on the prompt 
 

 

 



 

 

3.2.1 Dataset Preparation  

An outline of the steps to be carried out in order to systematically organize the 

dataset for training . 

The first process in the applicability of the presented approach is data gathering. This 

entails gathering a dataset of text descriptions and flower images and also making 

preliminary processing of the same. This step takes care of both the textual and visual 

representation in a manner that will easily help the model understand it. First of all, 

setting two empty storage lists to store the images and the relevant text paths. The 

two lists would be the basic data structure for creating the pairs of images with their 

corresponding descriptive texts. Use the” iterrows()” function to loop through the 

table to process each image and find its matching text file. A text file will be created 

for every image. In the training task, only the first description within the text file 

will be selected from a text file attached to an image in order to simplify the data 

format. So, to make sure that each image is matched with one text description, it's 

added along with the text to empty lists. First, a Data Frame will be created after 

iteration through the dataset to ensure that data is in structured and tabular form. The 

data frame shall be saved as a CSV file; this CSV file contains images and texts 

relating to the images. A dataset class, "FlowerDataset," will be created that enables 

a dataset to be integrated with PyTorch. This class will handle the dataset to be 

loaded, sample by sample. 

 

3.2.2 Training The Proposed Model 

Training first starts with setting up the computational resources and initializing the 

model on a GPU to fully use of accelerated computing. The training process has 

several sub-steps that are performed to adjust the parameters of the model 



 

 

progressively. The training loop is the place where the model iteratively learns to 

synthesize images that are both of high quality and textually relevant. 

 

3.2.2.1 Hyperparameters Setting  

To enhance the efficiency of the training process, curial hyperparameters will be 

chosen. The hyperparameters encompass the number of training epochs, which are 

set to 12. This indicates that the model will traverse the entire training dataset 12 

times, enabling it to progressively refine its weights and discern significant patterns 

in the data. A limited number of epochs maintains a reasonable training duration, 

which is essential for iterative experimentation and tuning. The image resolution is 

determined as 512×512 pixels, which means that the generated images will have 

sufficient quality for such purposes as graphic design or fine arts. This decision 

allows catering to the need for quality imagery while at the same time not requiring 

significant computational power and memory. The number of warmup steps is 25 

steps, in deep learning, there are warmup steps that are aimed at increasing the 

learning rate from zero to some assigned value during the initial training. This aids 

in making training more stable such that large weight updates would cause unstable 

training. Next, the learning rate is set to 1e-6 since a small learning rate is preferred 

to minimize large jumps of values that affect loss in precision with relation to the 

data. Selection of the learning rate is very important in the training process; a high 

learning rate could make the training oscillate and be unstable while a small learning 

rate makes the training slow to converge to the best solution. The batch size is chosen 

to be 2, which seems to be quite small. The specifications about the batch size have 

to do with the available calculation potential and the training speed against update 

accuracy. In this case, it is advisable to set a small batch size as it will ease model 

stability during training even though the training will be slow. 



 

 

3.2.2.2 Models Preparation  

The components of the stable diffusion model must be loaded to set up the model 

and ensure that the following models are transferred to the available hardware 

(GPU). To make the training process fast and the model could generate high-quality 

images, pre-trained models are used where each of these models has its objective in 

the pipeline of the model. To enhance the training process and to reduce the memory 

requirements Mixed Precision is used. the torch.cuda.amp.GradScaler() will be 

initialized for managing gradient scaling in mixed precision training, maintaining 

numerical stability while optimizing memory usage and computation speed. All 

models are put into the training phase using the “.train() method” that enables 

gradients to update during backpropagation. These pre-trained components are used 

to ensure that the training becomes fast and does not require a lot of computational 

power. 

3.2.2.3 Training Loops 

The training loops are designed to run for multiple epochs, with each epoch doing 

forward and backward passes of the model on all batches of the dataset  using 

PyTorch. The training process incorporates techniques such as mixed-precision 

training and gradient scaling for optimizing performance on graphics processing 

units (GPUs). It also keeps a record of loss values to assess the model performance 

and optimizes the model parameters based on those losses. The training will 

converge, or in other words, reach the number of epochs. For every batch, load the 

input data, comprising images and descriptions, and move these images to the GPU. 

Inside “torch.cuda.amp.autocast()” context, a forward pass is done, which enables 

mixed precision; that is, it saves on memory without losing much of the accuracy. 

The pre-trained components include a variational autoencoder(VAE) which is 

responsible for encoding the images and reconstructing the flower's images into the 



 

 

low dimensional space (latent space). This step will reduce the data dimensionality 

of the image data while maintaining the needful features of the image. Gaussian 

noise is added to the latent vectors obtained from the VAE during the training, and 

the model has to learn to remove this noise. This step is very important for the 

diffusion process which involves decoding the noisy latent vector to get clear 

images. The latent representation will serve as the input for the denoising U-Net. 

The other essential model is the CLIP mode, which plays a significant role in 

bridging the gap between textual descriptions and visual content generation. CLIP, 

is designed to learn joint representations for images and text by maximizing the 

cosine similarity between their embeddings. This model is responsible for tokenizing 

text descriptions by segmenting the text into words or tokens for the model's 

processing. These tokens are subsequently converted into text embeddings utilizing 

the pre-trained CLIP text encoder for use in the U-Net model. The U-net model 

during the process of training will take noisy latent representation images from the  

variational autoencoder (VAE), the texts embedding from the Clip model, and the 

timesteps of the diffusion process as inputs. Random noise is generated and added 

to the latent vectors to simulate noisy inputs. The U-net predicts the noise that needs 

to be removed from the latent representation, producing a clear latent representation. 

These inputs allow the U-Net to denoise the latent images progressively, guided by 

the semantic content provided in the text embeddings. In simpler terms, the CLIP 

text embeddings perform as a guide, notifying the U-Net how to generate or enhance 

images to match the given descriptions. The text embeddings direct the U-Net in 

predicting the proper noise to remove, hence enhancing the latent vectors toward a 

more distinct image that matches the text description. The U-Net is the essential 

generative model tasked with eliminating noise from the latent representations over 

various timesteps. It gradually enhances the noisy latent vectors, directed by the text 

embeddings from CLIP, to generate images corresponding to the input text 



 

 

descriptions. The Mean Squared Error (MSE) Loss function is used for calculates 

the difference between the predicted noise and the actual noise that was added to the 

latent vectors. By decreasing this loss, the model learns to predict the noise more 

precisely, which directly leads to improvement the quality of generated images. This 

loss stimulates the U-Net to predict the noise in the latent vectors with greater 

precision. By minimizing this loss, the model gradually enhances its denoising 

capability, generating better-quality images as the training progresses. Once the loss 

is computed, The (AdamW) optimizer is then used to modify these parameters. 

AdamW is an alternative to the Adam optimizer that unlinks weight decay from the 

gradient update, allowing for optimized regularization and supporting the avoidance 

of overfitting. Mixed precision is applied in this step to decrease memory usage and 

speed up computation. The gradient scaler guarantees that gradients are effectively 

processed even though operating at lower precision. The optimizer’s step is 

subsequently updating the learning rate scheduler. Mixed precision allows the model 

to train in a more effective manner by using lower precision during certain 

operations, while maintaining higher precision (e.g., float32) where necessary. This 

results in faster computations and minimized memory usage. After processing all 

batches within an epoch, the average loss is calculated. The model is saved as the 

best-performing version if the current epoch accomplishes the lowest loss. The entire 

pipeline, including the VAE, CLIP model, and U-Net, is stored for future analysis. 

Saving the best-performing model guarantees that the ideal version of the generative 

model is maintained. This version can then be used to generate images from new 

text descriptions. 

 



 

 

3.2.3 Testing The Proposed Model 

During the testing phase, the model processed random text inputs to generate new 

images. The testing technique entails utilizing training tools and libraries to assess 

performance indicators and identify any susceptible areas. The results are as follows, 

compared with the planned objectives to evaluate the efficiency of the model's 

duties. The resolution and batch size variables employed during training are likewise 

utilized in testing to ensure the comparability of outcomes between the two 

processes. The initial step is reading the CSV file that provides the test data, 

comprising images and text description. The test data comprises 20 rows to ensure 

the model's performance while avoiding the computational burden of analyzing the 

complete dataset. Subsequently, it retrieves image paths and duplicates the actual 

images into a separate directory to facilitate a subsequent comparison between the 

authentic and generated images. The stable diffusion model pipeline accepts textual 

input and generates an image corresponding to that textual input. The generated 

images are archived for further comparison with authentic ones. The Stable 

Diffusion pipeline will be setup, loaded into the GPU, and then generate and store 

the images produced. The images will be loaded and preprocessed by resizing them 

to (299, 299), preparing them for feature extraction with the Inception v3 model. The 

features extracted from the last pooling layer of the Inception-v3 Network will be 

delineated since these features are utilized for computing the FID score. The 

Inception v3 model is a prominent neural network utilized for image recognition, 

and its activations serve as feature representations for both actual and generated 

images for calculating the FID score. The Partial Inception Network is employed to 

extract characteristics from a batch of images. These attributes are subsequently 

employed to compute the mean and covariance matrix. These characteristics offer a 

way to quantitatively compare genuine and falsified image graphs. 

 



 

 

3.2.4 Evaluating the results of The Proposed Model 

The Fréchet Inception Distance (FID) quantifies the resemblance between generated 

images and authentic ones. The statistical distributions (mean and covariance) of the 

characteristics from authentic and synthesized images will be calculated. A reduced 

FID signifies that the produced images more closely resemble the authentic images. 

The Inception Score (IS) assesses the realism and diversity of generated images. It 

employs predictions from the Inception v3 model to calculate the KL divergence 

between class predictions for each image. An elevated IS signifies superior quality 

and increased diversity. Iterations over several epochs of the generative model's 

training procedure, incorporating synthetic images produced at each epoch. The FID 

and IS are computed for the images produced at each epoch, and the results are 

recorded, enabling the monitoring of enhancements in the quality of generated 

images during the training process. During this phase, model weights remain 

unchanged. The weights are fixed to assess the model using the knowledge acquired 

during the training phase. The testing step follows the training phase, aiming to 

ascertain the model's efficacy by evaluating it on previously unencountered data.  

If the performance metrics show that the model has not evolved better with the help 

of new, added features or if any parameter related to the performance of the model 

fails to improve, then the hyper-parameters are modified and the model is retrained. 

Such an approach of refining the content in cycles guarantees constant enhancement 

of the results. Parameters are adjusted to improve the training process including; 

learning rate, size in each batch, and number of iterations. Thus, the new hyper-

parameters are used to retrain the model, and it is tested on its performance. The 

performance results are collected and compared to the baseline and if the desired 

improvement is not reached, then the loop is run again. 

 



 

 

3.3 Summary  

This chapter presented a comprehensive methodology for training and evaluating a 

Stable Diffusion model designed to generate high-quality images of flowers from 

textual descriptions. The methodology aims to address key challenges in traditional 

text-to-image models, such as high computational costs and extensive training times 

while maintaining or improving image quality. The chapter began with an 

introduction to the significance of generative models in artificial intelligence, 

highlighting the advancements they have brought to various fields.  

This study concentrates on finding an optimal model, which in this case entails 

alleviating the need for a lot of computations while still producing high-quality 

images. To reach this goal, the proposed method is based on the use of pre-trained 

models and presents a structured approach.  

The goals were described in detail, focusing on the necessity to reduce 

computational costs, decrease training time, keep or raise image quality, guarantee 

the scalability and accessibility of algorithms, and develop a solid evaluation 

procedure. Every process that was followed in this study was explained in detail 

right from the way the data was prepared all through to the point of evaluation. One 

of the important approaches during the implementation of the work was the process 

of cyclical improvement. Sometimes if the evaluation metrics showed that there has 

not been an improvement in the performance of the model, new hyperparameters 

were introduced, and the model was trained again. This cycle was repeated often to 

make improvements throughout the learning process and other hyper-parameters 

like learning rate, batch size, and epochs were adjusted. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER FOUR  

RESULTS AND 

DISCUSSION 

 

 

 

 

 

 

 

 

 



 

 

 

4.1  Introduction   

This chapter presents the experimental results and discusion of our study on fine-

tuning the Stable Diffusion model for improved image generation from textual 

descriptions. Building upon the methodology outlined in Chapter 3, we conducted a 

series of experiments to evaluate the performance of our fine-tuned model compared 

to the base model. 

4.2  Dataset 

Every machine learning model is trained and evaluated using data, frequently in the 

form of static datasets. The features of these datasets have a fundamental impact on 

the behavior of the model; for example, a model is unlikely to perform well in the 

real world if its deployment context does not match its training or evaluation 

datasets, or if these datasets reflect unwelcome societal biases [69]. 

A watershed moment in the Deep Learning revolution that reshaped Computer 

Vision (CV) and AI in general occurred with the introduction of the ImageNet 

dataset. Researchers in the fields of computer vision and image processing used 

small datasets like CalTech101 (9k photos), PASCAL-VOC (30k images), LabelMe 

(37k images), and the SUN (131k images) dataset to build image classification 

models before ImageNet. 

 

With more than 14 million images distributed among 21,841 synsets and 1,034,908 

bounding box annotations, ImageNet brought a new concept of scale to the table. 

For the ImageNet Large Scale Visual Recognition task (ILSVRC), the ImageNet-1k 

dataset—a subset of 1.2 million photos over 1000 classes—was created from this 

larger dataset. This dataset is commonly referred to as ILSVRC-2012). 



 

 

 

For a text-to-image generation, it is needed to have a dataset containing an image 

and its description as a text. However, in this section, we will show that this field of 

study typically involves the use of several categories of datasets. As we need to 

convert the text into images, the database must contain images along with their 

captions. Therefore, this section will look into the numerous categories of datasets 

used in this research field [41]. 

The Caltech-UCSD Birds-200-2011 dataset comprises 11,788 photographs of 

birds, which have been categorized into 200 distinct groups. Each dataset offers 

five interpretations for each image.  

 

 

Table 4.1 : Text-to-image generation datasets 

 

Dataset Size Language of text Type of Images 

MS COCO 300,000 

images 

English  Objects in diverse 

environments 

CUB 11788 

images 

English  Birds 

Oxford 102  8189 

images  

English  Flowers 

 Flickr30k over 31,000 

images 

English -German -

Chinese 

Daily activities and 

occurrences 

 

 

 

 

 

 



 

 

 

The considered database, Oxford flowers-102, comprises 103 various classes of 

flowers. Each flower sample is described in detail, many characteristics are 

described; whether the flower is native, and its texture, the outline of the border 

formation of petals, the overall formation of the space, and the color pattern [32]. 

Table (4.2) shows samples from the dataset used in this study. 

 

Table 4.2: Samples Of Images And The First Description Associated With The Image From 

Dataset [69] 

Description Images  

outer petals are green in 

color and larger, inner petals 

are needle-shaped 

 

there are several shapes, 

sizes, and colors of petals on 

this complex flower. 

 

the stamen are towering over 

the stigma which cannot be 

seen. 

 



 

 

this flower is white and 

purple in color, with petals 

that are oval shaped. 

 

 

 

4.3  Hardware Requirements  

The training of the model utilizes a high-performance computational environment, 

specifically a Google Colab instance with an NVIDIA T4 Tensor Core GPU. The 

T4 GPU, based on the Turing architecture, includes 2560 CUDA cores, 320 Tensor 

cores, and 16 GB of GDDR6 memory, offering peak performance of 8.1 TFLOPS 

(FP32) and 130 TOPS (INT8). This GPU is optimized for machine learning and AI 

workloads, providing high throughput for training and inference tasks. The instance 

also features a high RAM configuration with a capacity exceeding 25 GB, which is 

crucial for loading large datasets and models, as well as performing intermediate 

computations during training.  

The CPU in this setup is a high-performance virtual CPU with multiple vCPUs 

(typically 2-4 cores), efficiently handling data preprocessing, augmentation, and 

other CPU-bound tasks. The fast SSD storage ensures quick access to large datasets 

and model checkpoints, reducing I/O bottlenecks during training. The software stack 

includes a Linux-based operating system provided by Google Colab, with PyTorch 

as the deep learning framework, supported by CUDA for GPU acceleration. 

 



 

 

Table 4.3: Specifications of the Computational Resources Used for Training the Stable Diffusion 

Model 

Component Details 

GPU NVIDIA T4 Tensor Core GPU 

Architecture Turing 

CUDA Cores 2560 

Tensor Cores 320 

Memory 16 GB GDDR6 

Peak Performance 8.1 TFLOPS (FP32), 130 TOPS (INT8) 

RAM High RAM configuration (25 GB+) 

CPU High-performance virtual CPU (2-4 vCPUs) 

Storage Fast SSD storage 

Operating System Linux-based environment provided by Google Colab 

Deep Learning Framework PyTorch with CUDA support for GPU acceleration 

Additional Libraries pandas, numpy, PIL, transformers, diffusers 

 

4.4  Results and discussion  

The experiments were initialized using a pre-trained Stable Diffusion model 

from the CompVis/stable-diffusion-v1-4 repository. This served as our base 

model and starting point for fine-tuning. Additionally, libraries for data handling 

(pandas, numpy), image processing (PIL), and model-specific modules 

(transformers, diffusers) are utilized. The training phase involves utilizing the 

Stable Diffusion model to generate high-quality images based on textual 

descriptions. This phase employs specific settings and parameters to ensure the 

accuracy and efficiency of the results. In this experiment, the number of epochs 

is set to 12, meaning the model will iterate through the entire training dataset 12 

times, allowing the model to progressively refine its weights and learn important 

patterns in the data. 



 

 

The image resolution is determined as 512×512 pixels, which means that the 

generated images will have sufficient quality for such purposes as graphic design 

or fine arts. This decision allows catering to the need for quality imagery while 

at the same time not requiring significant computational power and memory, the 

latter of which increases with the resolution. The testing results of the proposed 

model using the hyper-parameters are explained in the following table: 

Table 4.4: Results of the proposed model 

Text Original image Generated image 

This Flower Is Blue 

And Green In Color, 

With Petals That Are 

Oval Shaped. 

  

Outer Petals Are 

Green In Color And 

Klarger,Inner Petals 

Are Needle Shaped 

  

This Flower Is Blue 

And Green In Color, 

With Petals That Are 

Oval Shaped. 

  



 

 

There Are Several 

Shapes, Sizes, And 

Colors Of Petals On 

This Complex 

Flower. 

  

Prominent Purple 

Stigma ,Petals Are 

White Color 

  

This Flower Is White 

And Purple In Color, 

With Petals That Are 

Oval Shaped. 

  

Outer Petals Are 

Green In Color And 

Klarger,Inner Petals 

Are Needle Shaped 

  

 

The testing phase succeeds the training phase which seeks to determine that the 

model works well and tests it on data it has not been trained on. Hypotheses are made 

during the test, and the quality of images which are generated from new textual 

inputs is assessed according to specified metrics such as accuracy, clarity, and 

relevance to the texts. 



 

 

4.4.1  Experiment 1: Fine-Tuning Performance Across Epochs 

The performance of our fine-tuned model across different epochs is evaluated. The 

results are presented in Table 4.5 

 

Table 4.5: Fine-Tuned Stable Diffusion Model Performance Across Epochs 

Model IS Mean IS Std FID 

Base Model 1.5960649 0.016032545 248.748256 

Epoch 1 1.6064876 0.021265263 252.899013 

Epoch 2 1.6140872 0.019562684 252.355621 

Epoch 3 1.6145291 0.018562684 252.133787 

Epoch 4 1.6163372 0.018729529 251.981384 

Epoch 5 1.6181474 0.018896375 251.828981 

Epoch 6 1.6199575 0.01906322 251.676578 

Epoch 7 1.6217676 0.019230066 251.524175 

Epoch 8 1.6235778 0.019396911 251.371772 

Epoch 9 1.6244419 0.019563757 251.219369 

 

Table (4.5) presents the performance metrics of a fine-tuned Stable Diffusion model 

across nine epochs, compared to a base model. The metrics used are Inception Score 

(IS) Mean and Standard Deviation, and Fréchet Inception Distance (FID). The 

observed improvement, albeit limited, suggests that the fine-tuning process is 

exerting a positive influence on the model's capacity to generate realistic and diverse 

images. An analysis of the Inception Score (IS) Mean reveals a consistent 

enhancement from the base model (1.5960649) through each epoch, culminating in 

a maximum of 1.6244419 at Epoch 9. This gradual increase indicates that the model 

is generating increasingly diverse and high-quality images as training progresses. 

The IS Standard Deviation exhibits an initial increase from the base model 

(0.016032545) to Epoch 1 (0.021265263), followed by a general decline in 

subsequent epochs. This trend suggests that while the model's performance is 



 

 

improving overall, there is also a stabilization in the consistency of the generated 

images' quality and diversity. Its worthing noting that, the FID scores present a 

different pattern. The base model starts with the lowest FID score (248.748256), 

which is generally considered better as lower FID scores indicate greater similarity 

between the generated images and the real dataset. The FID scores for the fine-tuned 

model are consistently higher, starting at 252.899013 in Epoch 1 and gradually 

decreasing to 251.219369 by Epoch 9.  This apparent inconsistency between 

improving IS scores and worsening FID scores could indicate that while the model 

is generating more diverse and higher quality images (as suggested by the IS), these 

images may be diverging slightly from the original dataset's distribution (as 

indicated by the FID). This means that the fine-tuning process allows the model to 

generate more creative or varied images, but at the cost of strict adherence to the 

training set's characteristics. The gradual decrease in FID scores across epochs 

suggests that the model is slowly adjusting back toward the original distribution as 

training progresses. If this trend continues, it's possible that with more epochs, the 

FID score might eventually drop below the base model's score, potentially achieving 

both improved diversity/quality and better alignment with the original dataset.  

Overall, these results highlight the complex nature of image generation models and 

the potential trade-offs between different aspects of performance during the fine-

tuning process. 

 

 

 



 

 

4.4.1.1 Key Observations of Experiment 1: 

1. The Inception Score (IS) showed a general trend of improvement across 

epochs, with the highest mean value of 1.6244419 achieved at epoch 9. 

2. The FID scores for the fine-tuned models were consistently higher than the 

base model, indicating that the fine-tuned models may have diverged slightly 

from the original distribution of real images. 

3. The base model achieved the lowest FID score of 248.748256, suggesting it 

maintained the closest similarity to real images in terms of overall 

distribution. 

4.4.2 Experiment 2: Comparison of Fine-Tuned Model with Base 

Model 

The performance of our fine-tuned model (labeled as "Stable diffusion finetune") is 

compared with the base model (labeled as "Stable diffusion V4"). The results are 

presented in Table 4.6. 

                                 Table 4.6 Comparison of Fine-Tuned and Base Models 

Model IS Mean IS Std FID 

Stable diffusion V4 1.61 0.02 251.22 

Stable diffusion finetune 1.60 0.04 212.52 



 

 

 

Table (4.6) presents a comparison between the base Stable Diffusion V4 model and 

the fine-tuned version, evaluating their performance using three key metrics: 

Inception Score (IS) Mean, IS Standard Deviation, and Fréchet Inception Distance 

(FID). This comparison provides valuable insights into the effects of the fine-tuning 

process on the model's performance. There's a notable increase in the IS Standard 

Deviation from 0.02 in the base model to 0.04 in the fine-tuned model. This doubling 

of the standard deviation suggests that the fine-tuned model produces a wider range 

of IS scores. This could indicate that the fine-tuned model is generating a more 

diverse set of images, with some potentially being of higher quality than the base 

model's outputs, while others might be of lower quality. This increased variability 

could be a result of the model adapting to specific characteristics of the fine-tuning 

dataset. The most significant change is observed in the FID score. The fine-tuned 

model achieves a substantially lower FID score of 212.52 compared to the base 

model's 251.22. This marked improvement (a reduction of about 15.4%) is a strong 

indicator that the fine-tuned model is generating images that are more similar to the 

real images in the target dataset. The lower FID score of the fine-tuned model 

indicates that it's generating images that are more closely aligned with the statistical 

properties of the real images in the dataset. This could mean that the fine-tuned 

model is better at capturing specific features, styles, or distributions present in the 

flower dataset used for fine-tuning. The increased variability in the IS scores (higher 

standard deviation) coupled with the improved FID score suggests that the fine-

tuned model might be exploring a wider range of image possibilities while still 

maintaining overall better alignment with the target dataset. This could be 

particularly beneficial if the goal is to generate diverse yet realistic flower images. 



 

 

It's important to note that while the IS Mean has slightly decreased, the magnitude 

of this decrease is small compared to the significant improvement in the FID score. 

This suggests that the trade-off is likely worthwhile, especially if the primary goal 

is to generate images that closely match the characteristics of the target dataset. The 

results present an interesting trade-off in the model's performance after fine-tuning. 

While the IS Mean has slightly decreased and its variability has increased, the 

substantial improvement in the FID score suggests that the fine-tuning process has 

been largely successful in adapting the model to the specific characteristics of the 

target dataset. 

 

4.4.2.1 Key Observations for Experiment 2: 

1.  The Inception Scores (IS) for both models were comparable, with the base 

model (Stable diffusion V4) slightly outperforming the fine-tuned model. 

2. The FID score of the fine-tuned model got down to 212. 52, which was 

significantly better as compared to the FID score of the base model (251. 22), 

testifying that the images produced by the fine-tuned model were closer to the 

real images in the training set. Nevertheless, the finetuning of the model 

resulted in a higher standard deviation connected to the quality and the variety 

of the generated IS, which means that it was more variable. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE  

CONCLUSION AND 

FUTURE WORK 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5.1 Overview  

 

The conclusion of the work in this study and the areas for future work are described 

in this chapter. 

 

5.2 Conclusion 

The outcome of the study in this led to the following important conclusions: 

1. Fine-tuning Impact: The fine-tuning process clearly showed how it can enhance 

the model’s optimization, and therefore make images that are closer to the target 

distribution embedded in the synthetic dataset, as given by the lower FID in 

Experiment 

2. Trade-offs in Performance Metrics: Although the FID was further reduced 

indicating that our fine-tuning had a positive effect we could see that the IS was 

either at par or lower than the base model. This implies that there is a trade-off 

between image quality and flexibility/improvement in the mentioned criteria. 

3. Epoch-wise Performance: The results found in the epoch comparison of IS scores 

in Experiment 1 reveal that the fine-tuning process was, on the whole, beneficial 

in gradually enhancing the model’s global ability to produce better and more 

diverse digital imagery. 

4. Hyper-parameter Sensitivity: In this case, the results of the model in epochs     

indicate that proper tuning of the hyper-parameters is critical in the fine-tuning stage. 

From the conducted experiments, it became clear that attempts to fine-tune the 

Stable Diffusion model can have a positive effect on the generation of images 

closer to the original image. However, this process involves careful consideration 

of trade-offs between different performance metrics and requires meticulous 

hyper-parameter tuning.  



 

 

It was observed that the fine-tuned model holds the capability of a lower FID score, 

which gives an impression of a better likelihood of attaining a higher image 

distribution similarity to the targeted dataset. In such a case, the presented approach 

could be useful, as it is most beneficial for cases requesting similarity to a certain set 

of real images. 

Eventually, research regarding this topic should aim at fine-tuning the Generator to 

further Inception Scores or even equal that of the FID while at the same time 

attaining an FID score lower than this study. Also, it can be stated that the 

refinements of the hyper-parameters optimization algorithm can contribute to the 

further enhancement of the model. 

 

 

 

5.3 Future Work 

As for the next step, further fine-tuning research has to be aimed at enhancing or at 

least preserving Inception Scores while achieving the FID scores as low as possible. 

Also, there is a possibility of testing even more complex hyper-parameter 

optimization methods that would have a positive effect on the overall performance 

of the model. This model could be used for video generation from text because of 

the robustness of the diffusion model. 
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قفزة هائلة نحو أن يصبح ظاهرة سائدة. مع أنظمة تحويل النص إلى صورة،    توليد الصور المدعوم بالنصقد حقق  

   .اإبداعيا   هو عملا   هذا يثير مسألة ما إذا كان توليد النص إلى صورةو  يمكن لأي شخص إنشاء صور رقمية وأعمال فنية

 من خلل توليد صور واقعية إلى حد ما من النص.  لقد ساهمت الأنظمة التوليدية كثيراا في تطوير الذكاء الاصطناعي

في أشكال ومجالات مختلفة في النطاق بما في ذلك ، على سبيل المثال    توليد الصور بأستخدام النصتم استخدام أنظمة  

. تم إجراء العديد من الدراسات حول توليد الصور  لا الحصر ، الأعمال الفنية والتصاميم وأخذ عينات البيانات والترفيه

من النص حيث تم اقتراح العديد من تقنيات الذكاء الاصطناعي. ومع ذلك، لا تزال بعض القضايا الحرجة بحاجة إلى  

 الحل، خاصة فيما يتعلق باستهلك الوقت ووقت التدريب. لذلك، استخدمت الدراسة المقترحة نموذج الانتشار المستقر

(SDM)   تكرارية تغذية راجعة  البداية) لإجراء  التقييم وهي درجة  مقاييس  تتحسن  لم  الابتدائية   (IS) إذا  والمسافة 

 SDM في هذه الدراسة، يؤدي ضبط نموذج .(لمات الفائقة وتدريب النموذج مرة أخرىيتم ضبط المع (FID) فريشيت

تنازلات بين جودة الصورة ومرونة  أكبر. وكذلك، هناك  الواقع بشكل  التي تشبه  الصور  توليد  إلى تحسين كبير في 

مقاييس الأداء. تعمل عملية الضبط الدقيق على تحسين القدرة العالمية للنموذج تدريجياا على إنتاج صور رقمية أفضل 

(، مما يشير إلى احتمال أكبر لتحقيق  248.748256أقل ) FID ةوأكثر تنوعاا. النموذج الذي تم ضبطه بدقة لديه درج

 تشابه أعلى في توزيع الصور مع مجموعة البيانات المستهدفة. بشكل متقطع، أظهرت نتائج النموذج المحسن درجة

FID ( عند مقارن212.52أقل )( مما يشير إلى أن الصور المولدة من النموذج المعدل  251.22تها بالنموذج الأساسي ،)

  .كانت أقرب إلى التوزيع المستهدف في مجموعة البيانات الاصطناعية
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 جامعة كربلء 

 كلية علوم الحاسوب وتكنولوجيا المعلومات 

 قسم علوم الحاسوب 

 توليد صور المشروطة بالنص باستخدام نماذج الَنتشار  

 رسالة ماجستير  

وهي   كربلءمقدمة الى مجلس كلية علوم الحاسوب وتكنولوجيا المعلومات جامعة  

الحاسوب جزء من متطلبات نيل درجة الماجستير في علوم   
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