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Abstract 

This study aims to understand the complexity and control balancing in the 

upright position of a three-link underactuated robot system. The Robogymnast 

is one of the important types of three-link systems mimicking human 

acrobatics; it composes three joints and three links (arm, torso, and leg, 

respectively) powered by two geared DC motors.  

A mathematical model for the robot derived using Euler-Lagrange equations. 

Since the system is a nonlinear multi-link mechanism requiring a complex 

mathematical model considering information accuracy. It presents more 

challenges modeling the Robogymnast and dealing with control motion 

problems. The Euler-Lagrange formula and Artificial Neural Network (ANN) 

model are used to model the nonlinear Robogymnast system. The comparison 

results show that the dynamic model obtained by the ANN is significantly 

better than the model derived from the Euler-Lagrange formula because the 

ANN model accepted the initial deviation of absolute angle for each link up 

to 3 degrees. In contrast, the dynamic model derived from the Euler-Lagrange 

formula accepted 1 degree and becomes unstable at 3 degrees. 

 

Firstly, a Discrete Linear Quadratic Regulator (DLQR) controller is used to 

balance the gymnastic robot in the upright position. The construction of 

DLQR depends on the selection of the weight matrices.  

Secondly, to find optimum values of the weighting matrices; a swarm 

optimization technique called Whale Optimization Algorithm (WOA) is 

applied to adjust the weighting matrices. As well as, another optimization 

technique is used to find the optimum values of weighing matrices, this 

technique is called Aquila Optimization (AO). The evaluation of the best 
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technique has been implemented. The WOA-based DLQR controller achieves 

the best result according to the transient response of the relative angles but 

consumes higher voltage from the two motors compared to the AO-based 

DLQR controller. The first, second, and third links reached a steady state after 

1.825 seconds with a minimum deviation (-0.5° and -1.5° for the first and 

second links, respectively, and no deviation for the third link). Moreover, the 

control voltage of the first motor consumed 7.12V, and the second motor 

consumed 2V to achieve the desired response, which is less than the limited 

voltage (12V).  

Thirdly, a Fuzzy Logic Controller (FLC) was designed to achieve online 

tuning to stabilize and balance the system. The result of the FLC showed that 

the system consumed more settling time than WOA-based DLQR to be stable 

in an inverted position. Therefore, a hybrid controller combining FLC with 

WOA-based DLQR was proposed to achieve online tuning with less settling 

time for the relative angular position (1.5 seconds) and acceptable deviation 

of the links from the upright balancing point (-1.15° and -3.4° for the first and 

second links respectively, and no deviation for the third link). The first motor 

consumed 6.7 volts of control effort, but the second motor consumed only -

1.5 volts; this was considered satisfactory voltage to bring the Robogymnast 

to an inverted position and stabilize it in the upright balancing point within a 

suitable duration. 

Finally, the comparison among the previous methods demonstrated that the 

hybrid system achieves online tuning with a satisfactory response to stabilize 

the gymnastic robot vertically. The comparison with previous research 

demonstrates that the FLC with the WOA-based DLQR method achieves the 

best transient response regarding overshoot, settling time, and less control 

effort than the other methods. 
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 Introduction 

 Background 

The technological advances of the information technology age have fueled a 

growing interest in humanoid robotics. Consequently, various humanoid 

robots, such as ASIMO [1], Hubo [2], and Atlas [3], have been developed. 

These robots showcase diverse capabilities, including walking on uneven 

terrain, climbing ladders, synchronized dancing, assisting elders with 

household tasks, participating in sports, manufacturing and assembly, search-

and-rescue missions, and tasks in hazardous environments, among other 

applications. 

A humanoid robotic system is a robot with a body form constructed to mimic 

the human body. Humanoid robots simulate human movements and consist of 

rigid links coupled to each other; a joint is the connection point between two 

links. Robots possess one degree of freedom when equipped with a single 

joint. A robot is considered to have 'n' degrees of freedom if it incorporates 'n' 

joints. Therefore, the complexity of a robot is directly tied to the number of 

degrees of freedom it possesses. Using actuators simulates human muscles 

and cartilage to achieve full-body motions like running, jumping, crawling, 

etc. Since these robots are anticipated to work alongside humans and perform 

challenging tasks, it is crucial that the control algorithms and planning are 

efficient, robust, and capable of real-time execution [2]. 

This thesis develops a three-degree-of-freedom under-actuated gymnastic 

robot based on a triple inverted pendulum (three links and three joints).  
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  Problem Statement 

Technological developments have spurred an increased interest in humanoid 

robotics in recent years. A Robogymnast, a specific humanoid robot, is 

designed to mimic and execute gymnastic maneuvers. Previous literature 

presented simulations of robot gymnastics in swing and balance motions [4], 

[5], [6], [7]. However, it did not emphasize the balancing stage and the 

proportionality of results for practical application. The balancing results 

exhibited a high overshoot, requiring more settling time to reach the vertical 

position, impacting the stability of the gymnastics robot, especially when 

exposed to external disturbances, which may cause it to swing again and 

return to the downward position. 

The main objective is to construct a control system capable of keeping the 

pendulum standing with time response specifications more suitable for 

practical application and to create a control system capable of handling the 

complex, dynamic movements involved in gymnastics. Robogymnast 

applications are in various fields, such as: validating different control 

algorithms and developing entertainment and sports training. They offer a 

valuable tool for studying biomechanics and control systems, performing 

tasks that could be dangerous or impossible for humans. Tasks requiring real-

time reaction necessitate control software that operates in real-time with a 

short settling time to accomplish these actions reliably. Thus, practical 

operation is the most essential specification when developing humanoid robot 

control software. 

A Robogymnast is a multi-link underactuated system that is a benchmark 

system that illustrates various control techniques and is commonly used in 

laboratories to perform and verify emerging technologies in control 
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engineering. Studying these systems can help researchers explore solutions 

for addressing motion problems suffered by disabled and injured individuals 

experiencing limb issues.  

 Aims and Objectives of the Thesis 

The research aims to model, simulate, and develop several methods of 

controlling the balancing of a triple-link gymnastic robot. 

The above aims will be achieved by performing the research goals as follows: 

1. Evaluate the mathematical models used to describe the gymnastic 

robot.  

2. Design and simulate controllers to balance the Robogymnast vertically.  

3. Design an adaptable controller to maintain the Robogymnast balanced 

upright. 

4. Applying swarm-based (WOA and AO) optimization approaches, 

determine the controllers' optimum parameters.  

5. Evaluate and validate the suggested controllers using a different 

swarm-based optimization method. 

6. Develop hybrid swarm-based optimization controllers to design an 

intelligent, robust controller. 

 Research Methodology 

The following approach was used to achieve the goals mentioned above: 

• Review and understand the most relevant research in the control field 

for complex multi-link mechanisms, considering various control 

methods to identify and address weaknesses or improve the results 

obtained using the most suitable approach to solve the problem. 
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• The Euler-Lagrange method and Artificial Neural Network Modeling 

are used for derived the dynamic equations and obtain the mathematical 

model of the Robogymnast. 

• The issue focuses on balancing the Robogymnast in an inverted 

position. The Whale Optimization Algorithm and Aquila Optimization 

are used to develop the DLQR controller by selecting its optimal 

parameters. 

• The optimal DLQR parameters are obtained and applied to the 

Artificial Neural Network Modelling of the Robogymnast, and the 

result is compared with the Euler-Lagrange model results. 

• Apply the fuzzy logic controller to the optimal model achieved online 

tuning. 

• A combined FLC controller with optimal DLQR parameters to the 

optimal model to obtain a response close to the demand in a real 

application. 

 Thesis Organization 

The remaining chapters of the thesis are structured as follows: 

Chapter 2 reviews the problems related to complex multi-link mechanisms 

and their applications, such as balancing control, which are discussed with 

different control systems. 

Chapter 3 covered the Robogymnast system description and derivation of the 

mathematical model equation of the mathematical model utilizing the Euler-

Lagrange technique and presented the Artificial Neural Network Model. 

Chapter 4 tests the system’s performance with several control strategies 

intended to stabilize the system. The controller types employed include 
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DLQR, WOA-based DLQR, AO-based DLQR, FLC, and hybrid FLC 

controllers with WOA-based DLQR controllers.  

Furthermore, a comparison between the suggested control systems was 

provided, as well as a comparison with previous research. 

In Chapter 5, the thesis results are summarized, the study's contributions are 

explained, and recommendations for further research are made. 
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 Backgrounds and Literature Review 

 Introduction 

This chapter provides an overview of the relevant literature related to the 

Inverted Pendulum system and its association with under-actuated control 

systems. The reviewed literature encompasses a variety of control systems 

and incorporates diverse control techniques, with a focus on single, double, 

and triple inverted pendulum systems. These systems have found numerous 

applications aimed at addressing human challenges. Researchers have 

explored and implemented various control techniques specifically to address 

the upright balancing issues of inverted pendulum systems. 

  Balancing Control Problem  

All The control problem of balancing an inverted pendulum represents a 

classic problem in the discipline of control. The main objective is to construct 

a control system capable of keeping the pendulum standing. To address this 

problem, different control strategies have been utilized by the researchers, as 

follows:  

(A. Z. Alassar, 2010) [8] the focus was on modeling and controlling a robot 

arm with five degrees of freedom. The study compared the outcomes of Fuzzy 

Logic Controllers (FLC) and Fuzzy Supervisor Controllers (FSC) with 

Proportional Integral Derivative (PID) responses. The FSC adjusts PID gains 

since PID does not perform effectively in nonlinear systems. FLC outperforms 

classical PID controllers regarding time response, and FSC outperforms 

classical approaches like Ziegler-Nichols when adjusting PID parameters.  
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(S. Sehgal and S. Tiwari, 2012) [9] utilized the Lagrange equation to elucidate 

the Triple Inverted Pendulum (TIP) model of the automobile. Subsequently, 

the triple inverted pendulum is linearized to provide a Linear Quadratic 

Regulator (LQR) controller, which maintains the pendulum in its unstable 

equilibrium position on a cart with just one control input. Simulation results 

demonstrate successful stabilization by the LQR controller.  

 

(V. R. Molazadeh, A. Banazadeh, and I. Shafieenejad, 2014) [10] applied 

intelligent tools for the TIP to tune LQR parameters such as Genetic 

Algorithm (GA), Genetic Algorithm with Practical Swarm Optimization (GA-

PSO), and FLC. According to simulation findings, FLC performs much better 

in terms of overshoot, settling time, and parameter change response.  

 

(H. G. Kamil, E. E. Eldukhri, and M. S. Packianather, 2014) [11]  used a 

Discrete-time Linear Quadratic Regulator (DLQR) to balance the 

Robogymnast. The simulation results indicated successful stabilization and 

balancing of the robot gymnast. 

 

(H. A. Ismail, M. S. Packianather, R. I. Grosvenor et al., 2015) [12] used 

Invasive Weed Optimization (IWO) to find the optimal Q matrix for the LQR 

controller. The optimized parameters yielded a substantially shorter settling 

period compared to control action without optimization, although there was a 

risk of control voltage reaching a saturation limit that could damage the 

system.  

 

(D. C. Dracopoulos and B. D. Nichols, 2017) [13] utilized a method to address 

the Acrobot's swinging and balancing issues, yielding favorable outcomes, 
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especially in the swing-up task. However, the balance controller could not 

stabilize the acrobot after the swing-up controller was applied. 

 

(N. F. Jamin and N. A. Ghani, 2017) [14] discussed using FLC-PSO to model 

a wheelchair with two wheels. The model was tested using an FLC controller, 

and the results suggest that the system can be stable in an upright posture with 

satisfactory simulation results. The outcome demonstrates that the system 

performs better when used with PSO to obtain the system's ideal values for 

settling time, rising time, peak overshoot, and peak undershoot. 

 

(H. A. Ismail, M. S. Packianather, and R. I. Grosvenor, 2017) [15] discussed 

the efficacy of the multi-objective Invasive Weed Optimization (IWO) in 

producing an LQR controller that considers both the cost function and settling 

time. They optimized the cost function and settling time values of the Weight 

Criteria Method (WCM) using IWO in the initial optimization technique. The 

second optimization approach involved a hybrid IWO, which incorporates 

fuzzy logic to determine a membership value as the fitness criterion. Then, 

trained controllers were subjected to limited disturbances. Despite being 

subjected to external disturbances; all controllers could balance the 

Robogymnast upright. 

 

(T. Yaren and S. Kizir, 2018) [16] applied LQR and Linear-quadratic-

Gaussian (LQG) to the TIP. Simulation results indicate successful noise 

reduction, making LQG control significantly superior to the LQR technique.  

 

(R. Banerjee, N. Dey, U. Mondal et al., 2018) [17] the PID and LQR 

controllers were used to describe and control a Double Inverted Pendulum 
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(DIP) on the cart dynamic system. Comparing the effectiveness of these two 

control systems is the objective of the study. The outcomes confirm the LQR 

control approach's relative superiority over the traditional PID control strategy 

for the DIP on the cart system. 

 

(X. Xia, J. Xia, M. Gang et al, 2020) [18] suggested a new algorithm using 

Logistic chaotic variables to simplify selecting quantization and proportion 

factors in fuzzy controllers. Integrating chaotic variables in the search process 

helps find suboptimal solutions faster, improving control of a double-inverted 

pendulum model, as shown in simulation results. 

 

(A. F. Ghalib and A. A. Oglah ,2020) [19] focused on applying a fuzzy-PID 

(FPID) controller to control an IP to maintain the pendulum arm's upright 

position by regulating the cart's location. Several evolutionary optimization 

techniques are used to optimize the controller's parameters, such as the GA, 

Social Spider Optimization, and ant colony optimization. Results show that 

FPID with Social Spider Optimization performs better than conventional PID. 

 

(M. A. Ebrahim, M. E. Mousa, E. M. Said et al, 2020) [20] applied a new Grey 

Wolf optimizer (GWO) and PSO for the IP system. The Reduced Linear 

Quadratic Regulator and Variable Structure Adaptive Fuzzy controller 

parameters are adjusted using the suggested GWO/PSO approach to stabilize 

the cart posture and the pendulum angle.  Compared to conventional LQR, the 

Reduced Linear Quadratic Regulator performs well for both the cart position 

and the pendulum angle with fewer parameters needed to achieve the required 

response. 
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(M. K. Habib and S. A. Ayankoso, 2020) [21] presented the LQR controller 

and pole placement design for a DIP model's stabilization. The Q and R 

matrices of the LQR controller were tuned using GA and PSO algorithms, GA 

and PSO algorithms were used to tune the Q and R matrices of the LQR 

controller. When comparing the transient performance of the manually and 

GA-tuned LQR and pole-placement controllers, the PSO-tuned LQR 

controller performed the best. 

 

(H. G. Kamil, O. T. Makki, and H. M. Umran ,2020) [22] focused on using 

the PSO technique to identify the ideal LQR control parameters. These 

parameters were used to calculate the state feedback gains, and the IP was 

balanced in the upright equilibrium position using the best gain.  

 

(N.-K. Nguyen, V.-N. Pham, T.-C. Ho et al. 2022) [23] addressed the control 

of an IP to maintain the rods vertically while regulating the cart to follow a 

desired trajectory within an acceptable tolerance. The suggested control 

approach combines PSO with two traditional PID controllers. Results from 

experiments on a working prototype of the inverted pendulum system and 

simulations on a Simulink model indicate the performance and viability of the 

control technique. 

 

(N.-K. Nguyen et al, 2022) [24] introduced a novel control approach 

for balancing of an IP. The suggested approach combines a modified genetic 

algorithm (mGA) with a PD-like fuzzy logic architecture to maximize the 

fuzzy logic controller's scaling factors. To improve the IP's balancing control 

system, the mGA is used to optimize six important scaling factors that 

correspond to two fuzzy logic controllers. The findings from numerical 
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simulations and actual tests done on a genuine IP system illustrate the 

prospective application and efficacy of the suggested control approach 

compared to PID and current fuzzy logic alternatives. 

 

(A. Mourad, Y. Zennir, and C. Tolba, 2022) [25] presented a comparison of 

integral sliding mode control adjusted utilizing the WOA, radial basis function 

neural network, and FLC for the control of the angle position and velocity of 

the inverted pendulum system. WOA was used to adjust all the parameters 

and effects of those controllers. According to comparison data, integral sliding 

mode control based-WOA performs better than other approaches regarding 

settling time and overshooting. 

  

(M. Mohamed, F. Anayi, M. Packianather, et al. 2022) [26] designed and 

simulated PID and LQR  controllers for the Robogymnast. Contrasting the 

PID controller's performance with that of the well-established LQR controller, 

indicating the PID controller's superior appropriateness for the particular 

robot under investigation in contrast to a controller intended for broad usage. 

 

(B. A. Samad, F. Anayi, Y. Melikhov et al, 2023) [27] simulated an LQR/FLC 

for the Robogymnast, comparing the performance of a Fuzzy Linear 

Quadratic Regulator (FLQR) controller with a conventional LQR controller, 

demonstrating the FLQR's more outstanding suitability for the specific robotic 

system examined. 

 

(B. A. Samad, M. Mohamed, and G. S. Member, 2023) [28] aimed to improve 

the performance of an FLQR by stabilizing the triple-link "Robogymnast" 

robotic system through the use of Teaching-Learning-Based Optimization 
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(TLBO) and PSO techniques. The study's findings suggest that, when used in 

conjunction with the Robogymnast robotic system, the FLQR controller and 

TLBO algorithm perform better than other controllers and combinations of 

algorithms. 

 

(O. Saleem and J. Iqbal, 2023) [29] introduced a fuzzy-immune adaptive 

system that modifies the Degree-of-Stability (DoS) of a LQR process to 

improve a self-balancing mechatronic system's ability to attenuate 

disturbances. The closed-loop system's eigenvalues are dynamically relocated 

in the left half of the complex plane by the system using pre-configured 

control input-based rules, which modify the LQR gains. This makes it possible 

to manipulate reaction times and control efforts flexibly as error conditions 

vary. Hardware-in-the-loop studies on the Quasar rotary inverted pendulum 

system are used to verify the effectiveness of the system, and the results 

demonstrate a notable increase in the system's disturbance attenuation 

capabilities when compared to the DoS-LQR. 

 

(T.ABUT 2023) [30] used optimum LQR control techniques combined with 

classical methods to model and ideally regulate a DIP system on a Cart 

(DIPSC). Using the GA, PSO, and GWO algorithms, the Q and R values of 

the LQR control approach were determined. Mean-Square-Error (MSE) 

performance criteria and settling time were used to examine and display the 

graphical results of the evaluation of the DIPSC system using both traditional 

LQR and optimum LQR approaches. The purpose of the controls was to lead 

the cart to the predetermined balance position and keep the DIP's arms 

vertically balanced while it moved. In terms of settling time and MSE error 
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criterion, the GWO-based LQR control technique fared better than the other 

approaches. 

 

(S. Erjon, B. Xhevahir, L. Rame et al, 2023) [31] introduced a method to 

develop a real-time control system for a double-inverted pendulum by 

combining Proportional-Integral-Derivative (PID) and LQR controllers. Real-

time simulation results demonstrated the successful swinging up and 

stabilization of the double inverted pendulum by both the PID and LQR 

controllers. 

 

(N. A. Sayer, G. Kamil, and A. A. Al-Moadhen, 2023) [32] addressed the 

control of a gymnastic robot's balance using DLQR and LQG control 

techniques. The controllers displayed the ideal values for vertical robot 

stabilization in a suitable duration of time. DLQR outperformed the LQG 

controller, as the latter consumed excessive energy to maintain satisfactory 

performance, leading to saturation of the first motor. 

 

Table 2.1 illustrate various control strategies utilized to stabilize and regulate 

IP, allowing the pendulum to remain in its upright position, reducing of 

oscillations, and enhancing of system responsiveness.  

 

Table 2-1 General overview based on Type of System and Controller 

Ref System Type Type of Controller Result  

[8] Robot Arm 
Fuzzy Logic and 

Fuzzy Supervisor 

Steady state error of motor five 

was minimized from 0.03 to 

0.001, overshoot size reduced 
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with Proportional 

Integral Derivative 

from 0.08 to 0.001and the rising 

time for the FSC was 50% less 

than PID controller 

[9] 

Triple 

Inverted 

Pendulum 

Linear Quadratic 

Regulator 

Settling time for θ1, θ2, θ3 is 

around 3 seconds 

[10] 

Triple 

Inverted 

Pendulum 

Applied intelligent 

tools to tune Linear 

Quadratic Regulator 

parameters such as 

Genetic Algorithm, 

Genetic Algorithm 

with Practical 

Swarm 

Optimization, and 

Fuzzy Logic 

Settling Time 4% and Over 

Shoot 0° 

[11] 
Robogymn

ast 

Discrete-time 

Linear Quadratic 

Regulator 

The first and second links 

reached the steady state after 6 

seconds whilst the third link 

doing that in 9 seconds 

[12] 
Robogymn

ast 

Invasive Weed 

Optimization to find 

the optimal Q matrix 

for the Linear 

Quadratic Regulator 

Settling time 5.4 sec and 

overshoot 30°, 68° and 10° for 

first, second and third link, 

respectively  
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[13] Acrobot Genetic Algorithm 
Settling time 1 sec and no 

overshoot 

[14] wheelchair 

Practical Swarm 

Optimization and 

Fuzzy Logic  

Settling time 2.778 sec for first 

link and 2.647 sec for second 

link 

[15] 
Robogymn

ast 

Invasive Weed 

Optimization with 

Fuzzy Logic to find 

the optimal Q matrix 

for the Linear 

Quadratic Regulator  

Settling time 6.37 sec and 

overshoot 30°, 70° and 10° for 

first, second and third, 

respectively 

[16] 

Triple 

Inverted 

Pendulum  

Linear Quadratic 

Gaussian and Linear 

Quadratic Regulator 

Settling time 2.5 sec 

[17] 

Double 

Inverted 

Pendulum  

Proportional Integral 

Derivative and 

Linear Quadratic 

Regulator 

Settling time 4 sec, overshoot 

60° for first link and 20° for 

second link 

[18] 

Double 

Inverted 

Pendulum 

Logistic Chaotic 

Algorithm and 

Fuzzy Logic 

Settling time 4 sec, overshoot 

0.12° 

[19] 
Inverted 

Pendulum 

 Used Genetic 

Algorithm, Social 

Spider Optimization, 

and ant colony 

optimization to 

Settling time 2.3803 sec and 

Overshoot 400920% 
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optimize the Fuzzy 

Logic with 

Proportional Integral 

Derivative 

[20] 
Inverted 

Pendulum 

Linear Quadratic 

Regulator and Fuzzy 

parameters are 

adjusted using the 

Grey Wolf 

Optimizer and 

Practical Swarm 

Optimization 

Settling time 4.36 sec and 

Overshoot 0.0942° 

[21] 

Double 

Inverted 

Pendulum 

Genetic Algorithm 

and Practical Swarm 

Optimization tuned 

Linear Quadratic 

Regulator and pole-

placement 

Settling time 0.7512sec and 

1.0245sec, overshoot 0.3094° 

and 0.0969° for first and second 

link respectively  

[22] 
Inverted 

Pendulum 

Practical Swarm 

Optimization tuned 

Linear Quadratic 

Regulator 

Settling time 2sec and 

overshoot 0.05° 

[23] 
Inverted 

Pendulum 

Practical Swarm 

Optimization tuned 

Proportional Integral 

Settling time 2sec and 

overshoot 0.2° 
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Derivative 

parameters  

[24] 
Inverted 

Pendulum 

Modified genetic 

algorithm with a 

Proportional 

Derivative -like 

Fuzzy Logic 

Settling time 2sec and 

overshoot 4° 

[25] 
Inverted 

Pendulum 

Integral sliding 

mode control 

adjusted utilizing the 

Whale Optimization 

Algorithm, radial 

basis function neural 

network 

Settling time 2sec and 

overshoot 0° 

[26] 
Robogymn

ast 

Proportional Integral 

Derivative and 

Linear Quadratic 

Regulator 

Settling time 15.519sec, 

4.914sec and 3.331sec, 

overshoot 8.02°, 1.32° and 

0.41° for first, second and third, 

respectively 

[27] 
Robogymn

ast 

Linear Quadratic 

Regulator and Fuzzy 

Logic 

Settling time 11.1823sec, 

4.1694sec and 2.4428sec, 

overshoot 2.88°, 1.44° and 0.4° 

for first, second and third, 

respectively 

[28] 
Robogymn

ast 

Teaching-Learning-

Based Optimization 

Settling time 5.577sec, 

2.1668sec and 1.9675sec, 
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and Practical Swarm 

Optimization tuned 

Linear Quadratic 

Regulator with 

Fuzzy Logic 

parameters 

overshoot 5.67°, 1.32° and 0.4° 

for first, second and third, 

respectively 

[29] 

Quasar 

Rotary 

Inverted 

Pendulum 

Linear Quadratic 

Regulator 
- 

[30] 

Double 

Inverted 

Pendulum 

Genetic Algorithm, 

Practical Swarm 

Optimization, and 

Gray Wolf 

Optimization tuned 

Linear Quadratic 

Regulator 

parameters  

Settling time 1.5sec for first link 

and 1.2sec for second link 

[31] 

Double 

Inverted 

Pendulum 

Proportional Integral 

Derivative with 

Linear Quadratic 

Regulator 

Settling time 2sec and no 

overshoot 

[32] 
Robogymn

ast 

Discrete Linear 

Quadratic Regulator 

and Linear Quadratic 

Gaussian 

overshoot (-4°, 9°, 1.1°), and 

settling time (3.208s, 3.233s, 

4.16s) for the three links (first, 

second, third) 
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Table. 2.1 overviews relevant publications on single, double, and triple IP 

systems and their applications, focusing on different control strategies. The 

research closely related to robot gymnastics includes references [11], [12], 

[15] and [32]. 

 

 Discrete Linear Quadratic Regulator  

A discrete linear quadratic regulator is a vital control unit that controls the 

system's response and energy consumption to achieve the reaction with the 

lowest control voltage and obtain a stable system. It uses a state space 

approach, and since it is not a dynamic system, the system's order is the same 

as that of a closed-loop feedback system. DLQR is used to option feedback 

gain state  [33]. 

The principle of a linear quadratic regulator is to minimize a cost function as 

follows: 

                                            𝐽 = ∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)

∞

0

𝑑𝑡                                      (2.1) 

Q and R are the weighted diagonal matrix that must be positive definite. 

                                        �̇� = (𝐴 − 𝐵𝐾)𝑥                                                            (2.2) 

Where A and B State Space matrix derived in section 3.3 and equal to the 

ENN weights Wcx and Who respectively that defined in section 3.4 when 

using the ENN model.  

 

The feedback control law is as follows: 
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                                         𝑢(𝑡) = −𝐾𝑥(𝑡)                                                             (2.3) 

 

K is the gain vector and is given by: 

 

                                          𝐾 = 𝑅−1𝐵𝑇𝑃                                                               (2.4) 

 

Using the Algebraic Riccati Equation below, the value of P can be obtained: 

 

                                       𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝑃 + 𝑄 = 0                               (2.5)   

 

 Whale Optimization Algorithm (WOA)   

In 2016, Seyed Ali Mirjalili proposed the WOA meta-heuristic schema [34]. 

This algorithm simulates hunting humpback whales using the bubble net 

strategy. It specifies using a basic mathematical model. The suggested method 

may be executed in three primary phases:  encircling prey, exploitation phase 

(attacking prey), and exploration phase (searching prey). During the search 

and encircling phase, the humpback whales select the agent with the most 

incredible score of a random agent (to avoid the local minimum) as a target 

point, updating their position with the surroundings of this point [25]. The 

humpbacks travel in a circular or spiral pattern toward the target position after 

selecting the best agent (as shown in section 2.4.1). 
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2.4.1 Pseudo-code of the WOA algorithm 

 

 

1. Input 

• objective function (fitness function), search space boundary, 

population size N, number of iterations Tmax, number of Variable 

No. Variable. 

2. Initialization  

• Initialize random whale’s population Xi (i = 1, 2, ..., n) with search 

space boundary. 

• Calculate the fitness of each search agent  

• X*=the best search agent.  

3. while ( 𝑊ℎ𝑖𝑙𝑒  𝑇 < 𝑇𝑚𝑎𝑥) 

        for i=1: N 

    for j=1: No. Variable 

                      Update a, A, C, l, and p 

if1 (p<0.5)  

              if2 (|A| < 1) 

             Update the position of the current search agent by the Eq. (2.6) 

            else if2 (|A|>1) 

Select a random search agent (Xrand)  
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Step 1: Initialization  

 

Initially, WOA variables include the number of search agents (No-whales set 

to 50 agents). Then, DLQR controller parameters such as Q and R are set with 

random values selected by the predefined search space to start the 

optimization process, as shown in Table 2.2. 

 

Table 2-2: Parameters of Optimization 

Variable Description Value 

Number of Variables Number of parameters that should be 

adjusted by optimization. 
8 

Number of agents Number of agent population of solutions 50 

Initial Standard Deviation Value Initial input states [3◦3◦3◦] 

Search Range The search range is founded depending 

on the designer’s experience. 

Q= 1- 10000 

R = 0.1- 5 

 

Update the position of the current search agent by the Eq. (2.12)                         

end if2  

    else if1 (p >0.5)  

Update the position of the current search by the Eq. (2.10) 

    end if1  

end for 

Check X* within the boundary and amend it  

Calculate the fitness of each search agent  

Update X* if there is a better solution  

t=t+1 

end while  

4. print X*                            
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Table. 2.1 defines the WOA algorithm's important parameters specified by the 

designer's experience. 

 

Step 2: fitness function calculation  

The WOA algorithm obtains the Q and R that achieve the best performance 

to balance the system upright. The calculated gain by using DLQR for each 

search agent and choosing the one with a minimum deviation of the first link 

from the upright balancing point with minimum overshoot and settling time 

as a leader agent for the next step (update the position). 

 

Step 3: update the position  

a) Encircling 

 

The humpback whales first begin the encircling process after discovering their 

prey, but the ideal location inside a specific search space is unknown; thus, 

this algorithm selects the current prey position as the best prey position 

(optimal solution), after which the other agents will update their positions 

following the best solution. Equation (2.6) and (2.7) provide the mathematical 

equation of the encircling process [34]. 

 

          𝐷 = |𝐶𝑋𝑏𝑒𝑠𝑡 (𝑡) − 𝑋 (𝑡)|                                            (2.6) 

 

                                     𝑋(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡 (𝑡) − 𝐴 . 𝐷                                        (2.7) 

 

A and C are coefficient vectors. 

t: denote the current iteration. 

X: location vector. 
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 𝑋𝑏𝑒𝑠𝑡 ∶ is the location vector of the best currently-found solution that should 

be adjusted in each loop if there is a better solution. 

 

                                       𝐴 = 2𝑎 . 𝑟 − 𝑎                                                      (2.8) 

 

                          𝐶 = 2𝑟                                                                           (2.9) 

a: decrease linearly during the period of iterations from 2 to 0. 

r: a random vector in [0,1].  

 

b) Attacking prey  

 

This step explains the bubble-net method. Humpback whales attack and 

surround their prey simultaneously with a narrowing circle and a spiral 

movement shape toward the prey (target solution). This algorithm suggests a 

50% chance of picking between the two types of movement to mimic this type 

of behavior. Equation (2.10) provides the bubble-net technique. 

 

𝑋(𝑡 + 1) = {
𝑋𝑏𝑒𝑠𝑡  (𝑡) −  𝐴 . 𝐷                                    𝑖𝑓  𝑝 < 0.5 

  𝐷 𝑒𝑏𝑙 𝑐𝑜𝑠(2П𝑙)  + 𝑋𝑏𝑒𝑠𝑡 (𝑡)             𝑖𝑓 𝑝 ≥ 0.5
             (2.10) 

 

 

𝑙: a random number between [-1 1]. 

P: a random number with a range [0 1]. 

b: a constant used to describe the logarithmic spiral form.  

Were 𝐷 = |𝑋𝑏𝑒𝑠𝑡 (𝑡) − 𝑋(𝑡)|   that described the distance between the current 

agent and target. 

c) Exploration (searching for prey) 
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This step discusses the exploration capability of the WOA algorithm. For 

describing the exploration, the search agent moves far away from the goal 

(Reference whale) if the value of A is more significant than 1 or less than -1. 

In contrast to exploitation, each agent's location is updated concerning an 

agent that is selected randomly (when |A |>1); this is explained in the equation. 

(2.11) and (2.12). 

                            𝐷 = |𝐶𝑋𝑟𝑎𝑛𝑑 − 𝑋  |                                                               (2.11) 

 

                      𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 . 𝐷                                                  (2.12) 

 

 𝑋𝑟𝑎𝑛𝑑; is a random position vector (a random whale selected from the present 

population). 

 

Fig. 2.1 demonstrates the flow chart of WOA steps. 

 Aquila Optimization (AO)  Algorithm 

Abualigah, L. et al. proposed the AO algorithm in 2021 as a typical SI method 

that mimics the hunting behavior of the Aquila [35].  Aquila Optimizer (AO) 

focuses on three significant steps, another population-based algorithm: 

initialization, exploration, and exploitation, as shown in section 2.5.1 [36]. 
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Fig. 2.1.  Flow chart of the whale optimization. 

 

end 

o 

yes 
𝑊ℎ𝑖𝑙𝑒  𝑇 < 𝑇𝑚𝑎𝑥 

Set the values of the search agent range of Q and 

R, No-Whales=50. 

 

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each whale’s value of 

Q and R by simulating the dynamic behavior of Robogymnast during balancing upright position 

equation (2.2). 

Randomly choose 50 values (number of search agent whales (n)) from the Q and R search 

space to get the initial population.   

As a leader, obtain the fittest position (that has a minimum deviation of the first link from the 

upright balancing point with minimum overshoot and settling time). 

The whales first begin the encircling prey (leader position that has the fittest value) by using 

equations (2.6) and (2.7). 

The humpback whales attack and surround their prey simultaneously with a narrowing circle and a 

spiral movement shape toward the prey (target solution). The exploitation phase is achieved by using 

equation (2.10). 

Whales update the position of a search agent in the exploration phase according to a 

randomly chosen search agent instead of the best search agent found (equations (2.11) and (2.12)), 

In contrast to the exploitation phase. 

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each 

whale’s value of Q and R by simulating the dynamic behavior of Robogymnast during balancing 

upright position (equation 2.2). 

Obtain the fittest position (with a minimum deviation of the links from the upright balancing point 

with minimum overshoot and settling time) as a leader to update the position for the next step. 

Tuning of the values Q and R matrix by Whale Optimization 

Start  

 

No 
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2.5.1 Pseudo-code of the AO algorithm  

 

1. Input 

• objective function (fitness function), search space boundary, 

population size N, number of iterations Tmax, number of Variable 

No. Variable. 

2. Initialization  

• Initialize random Aquila’s population Xi (i = 1, 2, ..., n) with 

search space boundary. 

• Calculate the fitness of each search agent  

• Xbest=the best search agent.  

3. while (𝑊ℎ𝑖𝑙𝑒  𝑇 < 𝑇𝑚𝑎𝑥)  

for i=1: N 

for j=1: No. Variable 

                      Update parameters Xm, Levy(D), G1, G2, X, and Y. 

Step 1: X1: Expanded Exploration  

Update the position of the current search agent by the Eq. (2.16)  

    Xbest(t)=X1 (t+1)  

Step 2: X2: Narrowed Exploration 

Update the position of the current search agent by the Eq. (2.18)  

     Xbest(t)=X2 (t+1)  

Step 3: X3: Expanded Exploitation 

Update the position of the current search agent by the Eq. (2.25)  

     Xbest(t)=X3 (t+1)  

Step 4: X4: Narrowed Exploitation 
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Step 1: Initialization  

 

The population of possible solutions (Xij) is generated randomly between the 

upper UBj and lower LBj boundary as shown in equations (2.13) and (2.14) 

[35] and initialed another parameter of AO as shown in Table 2.2. 

 

𝑋 =

[
 
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑗 𝑥1, Dim-1 𝑥1, Dim 

𝑥2,1 ⋯ 𝑥2,𝑗 … 𝑥2, Dim 

… … 𝑥𝑖,𝑗 … …

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑁−1,1 ⋯ 𝑥𝑁−1,𝑗 … 𝑥𝑁−1, Dim 

𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 𝑥𝑁, Dim-1 𝑥𝑁, Dim ]
 
 
 
 
 

     (.132 )                                  

 

𝑋𝑖𝑗 = rand (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗 , 𝑖 = 1,2,… .𝑁, 𝑗 = 1,2,…Dim            (2.14)   

 

Update the position of the current search agent by the Eq. (2.26)  

     Xbest(t)=X4 (t+1)  

End for 

End for 

Check Xbest within the boundary, amend it, and calculate the fitness 

of each search agent  

Update Xbest if there is a better solution  

t=t+1 

end while  

4. print Xbest                            
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Where m is the number of agents of the population, Dim is the number of 

variables that should be adjusted by optimization (Q and R matrix), and rand 

is the random number between 0 and 1. 

 

Step 2: Exploration 

In this step, the optimization generates random agents for exploring different 

search space regions. Equation (2.15) described expanded exploration where 

the Aquila identifies the area of the prey and chooses the optimal hunting area: 

 

𝑋1(𝑡 + 1) = 𝑋best (𝑡) (1 −
𝑡

𝑇
) + (𝑋𝑀(𝑡) − 𝑋best (𝑡) ∗  rand )                (2.15)  

 

𝑋𝑀(𝑡) =
1

𝑁
∑  𝑁
𝑖=1 𝑋𝑖(𝑡), ∀𝑗 = 1,2,… , Dim                                   (2.16) 

 

Where Xbest is the best solution of the adjusted variable until tth iteration, (1-

t/T) controls the search during the exploration phase, T is the total number of 

generations, and XM is the average of the search agent. 

 

In the second strategy of exploration (narrowed exploration), the Aquila flies 

in a spiral above the prey before attacking through a quick glide. The narrowed 

exploration is described as follows: 

 

𝑋2(𝑡 + 1) = 𝑋best (𝑡) Levy(𝐷) + 𝑋𝑅(𝑡) + (𝑦 − 𝑥) ∗  rand                    (2.17)  

 

At the ith iteration, XR(t) is a random solution selected from the interval [1 N], 

the dimension of space is D, and Levy (D) is the distribution function for levy 

flights and calculated as follows:  
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                                                    Levy (𝐷) = 𝑠 
𝑢 𝜎

|𝑣|
1
𝛽

                            (2.18)
 

Where u and 𝑣 are random numbers between 0 and 1, s is a constant value set 

to 0.01, β is a constant set to 1.5, and σ is determined by applying equation 

(2.18): 

                               𝜎 = (
Γ(1 + 𝛽)sin (

𝜋𝛽
2 )

Γ (
1 + 𝛽
2 )  𝛽 2 (

𝛽 − 1
2 )

)                     (2.19) 

 

The spiral shape in the search is shown in equation (2.16) using the variables 

y and x: 

                                 𝑦 = 𝑟 cos (𝜃)                                   (2.20)   

  

                                 𝑥 = 𝑟 sin (𝜃)                                   (2.21)    

 

                                     𝑟 = 𝑟1 + 𝑈 + 𝐷1                                (2.22)   

  

                                     𝜃 = −𝜔 𝐷1 + 𝜃1                                (2.23)   

  

                                     𝜃1 =
3 𝜋

2
                                              (2.24)    

 

The value of U is a small number fixed to 0.00565, and the value of r1 ranges 

from 1 to 20 for a predetermined number of search cycles. D1 consists of 

integers from 1 to the search space's length (Dim), and ω is a small number 

set to 0.005. 

Step 3: Exploitation 
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In this step, AO exploits the target's selected region to get close and attack the 

prey, as described in the following equation. 

 

𝑋3(𝑡 + 1) = (𝑋best (𝑡) − 𝑋𝑀(𝑡)) 𝛼 −  rand + ((𝑈𝐵 − 𝐿𝐵) rand 

+ 𝐿𝐵)𝛿                                                                                                   (2.25) 

 

Where α and δ are small values between 0 and 1. 

When the Aquila approached the prey, it attacked it over the land following 

its stochastic movements. Equation (2.25) provides a mathematical 

representation of this behavior. 

 

𝑋4(𝑡 + 1) = 𝑄 𝐹 𝑋best (𝑡) − (𝐺1 𝑋(𝑡) rand ) − 𝐺2 Levy(𝐷)

+ rand 𝐺1                                                                                     (2.26) 

 

Equation (2.26) is used to calculate a quality function called QF that is utilized 

to balance the search strategies. 

                                   𝑄𝑓 = 𝑡
2 𝑟𝑎𝑛𝑑−1

(1−𝑇)2
                                          (2.27) 

 

Equation (2.27) is utilized to generate G1, which represents various AO 

motions used for tracking the prey through the elope. 

 

                                     𝐺1 = 2 rand − 1                                      (2.28) 

 

G2 represents a parameter that decreases from 2 to 0, and the following 

equation is used to update it: 

𝐺2 = 2 (1 −
𝑡

𝑇
)                                     (2.29)    
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Fig. 2.2 demonstrates the flow chart of the Aquila optimization algorithm. 

 Fuzzy Logic Control (FLC)   

In 1965, Lofti Zadeh suggested fuzzy logic, essentially based on the concept 

of the fuzzy set. Fuzzy logic builds a controller based on expressions instead 

of equations [37]. It mimics human expertise by defining a fuzzy set as a class 

of objects with a membership grade continuum that may be described by a 

membership function that assigns an actual number between [0,1] to each 

point, where 1 denotes a greater degree of membership, and 0 is a lower 

degree, making it a desirable method of control for issues that are challenging 

to measure mathematically [38], [39].  

To build a fuzzy controller, first specify input variables; after understanding 

the system, we found that the output consists of three angles, three angular 

velocities, and two inputs, represented by the voltages of the two motors. 

When designing the DLQR controller, we observed that the responses to the 

three output angles change between -3 and 3 and that the angular velocities of 

these angles change between -10 and 10. whereas the input voltages change 

from -10 to 10. Therefore, the range of inputs and outputs in the design of the 

fuzzy system was chosen based on these results. Then, define the membership 

functions' number and shape for inputs and output. The two inputs, as well as 

the output, may have the following linguistic variables: Positive-Big (PB), 

Positive-Medium (PM), Positive-Small (PS), Zero (Z), Negative-Big (NB), 

Negative-Medium (NM), and Negative- Small (NS). There are several 

different kinds of membership functions, including Gaussian, Triangle, 

Gaussian two, and Trapezoidal membership functions [40]; all of these types 

have been applied to the system, but the triangle membership function was 
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Fig. 2.2  Flow chart of Aquila optimization algorithm  

yes 
𝐼𝑓 𝑡 ≤ (

2

3
) ∗ 𝑇 

No 

No yes No 

end 

o 

yes 
𝑊ℎ𝑖𝑙𝑒  𝑇 < 𝑇𝑚𝑎𝑥 

Set the values of the search agent range of Q and 

R, No-Agent=50. 

 

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each whale’s value of 

Q and R by simulating the dynamic behavior of Robogymnast during balancing upright position 

equation (2.2). 

Randomly choose 50 values (number of search agent whales (n)) from the Q and R search 

space of get the initial population.   

As a leader, obtain the fittest position (that has a minimum deviation of the first link from the 

upright balancing point with minimum overshoot and settling time). 

Update Xm (t), x, y, G1, G2, Levy(D), etc  

Expanded Exploration 

Update the position of 

the current search agent 

by the Eq. (2.16) 

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each 

whale’s value of Q and R by simulating the dynamic behavior of Robogymnast during balancing 

upright position (equation 2.2). 

Obtain the fittest position (with a minimum deviation of the links from the upright balancing point 

with minimum overshoot and settling time) as a leader to update the position for the next step. 

Tuning of the values Q and R matrix by Aquila optimization 

Start  

𝐼𝑓 rand1 ≤ 0.5 

Narrowed Exploration 

Update the position of 

the current search agent 

by the Eq. (2.18) 

Narrowed Exploitation 

Update the position of 

the current search agent 

by the Eq. (2.26) 

Expanded Exploitation 

Update the position of 

the current search agent 

by the Eq. (2.25) 

𝐼𝑓 rand2 ≤ 0.5 

yes 

No 
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selected above the other forms of membership functions because it produces 

smooth inputs and outputs with less control effort required at each stage (as 

shown in Fig. 2.3). So, the fuzzy controllers were created using 49 rules (as 

shown in Table 2.3). Seven membership functions with a base of 49 rules were 

used to develop the appropriate system tuning of the FLC to stabilize the 

model. 

Fig. 2.3 Membership function with two inputs and one output. 

 

 Table 2-3 Fuzzy Logic rules base 

 

 

 

 

 

 

 

 

𝐞|𝐞  ̂ NB NM NS Z PS PM PB 

NB NB NB NB NM NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NM NM NS Z PS PM 

Z NM NM NS Z PS PM PB 

PS NM NS Z PS PM PM PB 

PM NS Z PS PM PM PB PB 

PB Z PS PM PM PB PB PB 
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 Summary  

A review of different designs of single and multi-link underactuated systems 

has been presented. This chapter gave an overview of various controller 

methods that have been used to satisfy different types of complex n-link robot 

system locomotion focusing on the literature for balancing control. In 

addition, the literature of using an optimization technique to achieve the 

control performance has been presented. In the next chapter, the description 

of the Robogymnast system is given and a mathematical model for the 

Robogymnast will be derived. 
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 The System Description and 

Mathematical Model 

 Introduction 

The Robogymnast system description and its mathematical model derivation 

will be discussed in this chapter. According to the actuation level, the 

mechanical system is divided into three essential categories. The first one is 

called a completely actuated system when the system has the same number of 

actuators as the DoFs, and each is controlled independently [41], [42], [43]. 

The second one is called an over-actuated system when it has more actuators 

than the DoFs [44]. The third one is called an underactuated system when it 

has fewer actuators than the DoFs [45]. The Robogymnast has three links and 

three joints, so it has three degrees of freedom (three angles). The first joint is 

passive, while the second and third are actuated. The underactuated 

mechanical system provides several benefits, such as less weight, less 

tendency to break down, and lower energy use [46], [47].  

 

The rest of this chapter is organized as follows: A description of the system is 

presented in Section 3.2. Section 3.3 demonstrate the system's state space 

model derivation from the Euler-Lagrange equation. Section 3.4 determines 

the Elman neural network modeling. Finally, section 3.5 provides a summary 

of the chapter. 

 System Description 

The Robogymnast system, illustrated in Fig. 3.1. It is designed to mimic 

human acrobatics and modeled as a three-link under-actuated pendulum. The 
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physical specifications of Robogymnast are carefully tailored to closely 

mimic the movements of a human gymnast gripping a freely rotating high bar 

with a tight grip. Each link in the system corresponds to a specific human body 

part or group of body parts. The first link represents the arms, excluding the 

elbows and wrists, while the second represents the head and torso. The third 

link represents the legs. A potentiometer is mounted on each joint's steel shaft 

to measure the links' relative angles. The second section of joints 2 and 3 

consists of the output shaft of the power unit, which is a DC motor with a 

gearbox [4], [5]. 

 

 Robogymnast Mathematical Model in the Upward Position 

Derived by Euler-Lagrange  

The Robogymnast is shown schematically in Fig. 3.2. It is considered a TIP 

with an unstable balance state and derived using the Euler-Lagrange formula. 

The Euler-Lagrange method is the most commonly used technique for 

obtaining the dynamical equations of several dynamic systems. The essential 

part of the Lagrange equation is achieving the total system's potential, 

dissipation energy, and kinetic energy. 

 

The Euler-Lagrange equations [48] and [49] are used to derive the 

mathematical model: 

 

d

dt
(
∂K

∂�̇�i
) −

∂K

∂𝜃i
+
∂D

∂�̇�i
+
∂P

∂𝜃i
= Ti         i = 𝑖𝑛𝑡𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟                       (3.1) 
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Fig. 3.1  Hardware components of Robogymnast  

Fig. 3.2  Robogymnast schematic in the upright posture 

[5] 

[5] 

a 
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K is the kinetic energy, P is the potential energy, and D is the dissipation 

energy. It stands for the angle of the respective link, calculated concerning the 

vertical line, and Ti denotes the torque related to it. 

 

𝐾 =
1

2
∑  

3

𝑖=1

{
 
 
 

 
 
 
𝐼𝑖�̇�𝑖

2 +𝑚𝑖 [
𝑑

𝑑𝑡
( ∑  

𝑖−1

𝑘=𝑖−3

𝑙𝑘sin (𝜃𝑘) + 𝑎𝑖sin (𝜃𝑖))]

2

+

[
𝑑

𝑑𝑡
( ∑  

𝑖−1

𝑘=𝑖−3

𝑙𝑘cos (𝜃𝑘) + 𝑎𝑖cos (𝜃𝑖))]

2

}
 
 
 

 
 
 

     (3.2)  

 

P =∑  

3

i=1

mig(aicos (𝜃i) + ∑  

i−1

k=i−3

𝑙kcos (𝜃k))                                          (3.3)   

 

𝐷 =
1

2
∑  

3

𝑖=1

(𝑐𝑖(𝜃𝑖 − 𝜃𝑖−1)
2)                                                                        (3.4) 

 

𝑙i is the ith link's length, mi is the ith link's mass, Ii is the moment of inertia 

around its center of gravity, ai is the ith link's center of gravity, 𝑐𝑖 is the ith 

joint's viscous friction coefficient, and the acceleration brought on by gravity 

is known as g. 

The torques given to the second and third actuated joints have an impact on 

the first joint, which is underactuated. The following equation represents the 

torques of the two DC motors at the second and third joints: 
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Tm1
= G1u1 − Ip1(�̈�2 − �̈�1) − Cp1(�̇�2 − �̇�1)                                                (3.5) 

 

Tm2
= G2u2 − Ip2(�̈�3 − �̈�2) − Cp2(�̇�3 − �̇�2)                                                (3.6) 

 

were  

𝑇1 = −𝑇𝑚1, 𝑇2 = 𝑇𝑚1 − 𝑇𝑚2, 𝑇3 = Tm2 

 

The input voltage to the DC motors is represented by u1 and u2 (|u1| and |u2| 

≤ 10V). G𝑖 is the ith motor's static gain, Ip𝑖 is the ith motor's moment of inertia 

reflected at the gearbox's output shaft, and Cp𝑖 is the ith motor's viscous friction 

coefficient reflected at the gearbox's output shaft. 

 

The total potential energy of the system is described as follows: 

 

P = 𝑔[𝑚1𝑎1+𝑚2𝑙1 +𝑚3𝑙1]cos (𝜃1) + 𝑔[𝑚2𝑎2 +𝑚3𝑙2]cos (𝜃2)

+𝑚3𝑔𝑎3cos (𝜃3)
         (3.7) 

 

In addition, the total dissipation energy of the system is described as follows: 

 

𝐷 =
1

2
[𝐶1 + 𝐶2]�̇�1

2 +
1

2
[𝐶2 + 𝐶3]�̇�2

2 +
1

2
𝐶3�̇�3

2 − 𝐶2�̇�1�̇�2 − 𝐶3𝜃2̇𝜃3̇        (3.8) 

The total kinetic energy of the system is as follows: 

 



Chapter Three: The System Description and Mathematical Model 

 

41 

 

K =
1

2
[I1�̇�1

2 +I2�̇�2
2 + I3�̇�3

2] +
1

2
[m1a1

2 +m2𝑙1
2 +m3𝑙1

2]�̇�1
2cos2 (𝜃1)

+
1

2
[a1
2 + 2𝑙1

2]�̇�1
2sin2 (𝜃1)

+
1

2
[m2a2

2 +m3𝑙2
2]�̇�2

2cos2 (𝜃2)

+[m2𝑙1a2 +m3𝑙1𝑙2]𝜃1̇𝜃2̇cos (𝜃1)cos (𝜃2)

+
1

2
[a2
2 + 𝑙2

2]�̇�2
2sin2 (𝜃2)

+[l1a2 + 𝑙1𝑙2]𝜃1�̇�2
̇ sin (𝜃1)sin (𝜃2)

+
1

2
m3a3

2�̇�3
2cos2 (𝜃3) +

1

2
a3
2�̇�3

2sin2 (𝜃3)

        (3.9) 

 

By resolving (3.1) for each system coordinate [θ1 θ2 θ3], the motion equations 

of a system can be obtained as follows: 

 

d

dt
(
∂K

∂�̇�1
) −

∂K

∂𝜃1
+
∂D

∂�̇�1
+
∂P

∂𝜃1
= T1                                                                (3.10) 

 

d

dt
(
∂K

∂�̇�2
) −

∂K

∂𝜃2
+
∂D

∂�̇�2
+
∂P

∂𝜃2
= T2                                                               (3.11) 

 

d

dt
(
∂K

∂�̇�3
) −

∂K

∂𝜃3
+
∂D

∂�̇�3
+
∂P

∂𝜃3
= T3                                                               (3.12) 

 

Equations (3.7), (3.8), and (3.9) can be substituted for Equations (3.10), 

(3.11), and (3.12) to produce three differential equations that describe the 

system dynamics. The differential equations are nonlinear and can be 

linearized about the upward position (θi= 0) to simplify the control system 
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analysis and design. Hence, the motion equations of the system are expressed 

as follows: 

 

[I1 +m1a1
2 +m2𝑙1

2 +m3𝑙1
2 + Ip1]�̈�1 + [m2𝑙1a2 +m3𝑙1𝑙2 − Ip1]�̈�2

+[m3𝑙1a3]�̈�3 + [C1 + C2 + Cp1]�̇�1 + [−C2 − Cp1]�̇�2
+[−gm1a1 − gm2𝑙1 − gm3𝑙1]𝜃1 + G1u1 = 0

       (3.13) 

 

[m2𝑙1a2 +m3𝑙1𝑙2 − Ip1]�̈�1 + [I2 +m2a2
2 +m3𝑙2

2 + Ip1 + Ip2]�̈�2
+[−Ip2 +m3𝑙2a3]�̇�3 + [−C2 − Cp1]�̇�1

+[C2 + C3 + Cp1 + Cp2]�̇�2 + [−C3 − Cp2]�̇�3
+[−gm2a2 − gm3𝑙2]𝜃2 − G1u1 + G2u2 = 0

          (3.14) 

[I3 +m3a3
2 + Ip2]�̈�3 + [m3l2a3 − Ip2]�̈�2 + [m3𝑙1a3]�̈�1

+[−Cp2 − C3]�̇�2 + [C3 + Cp2�̇�3 + [−m3a3g]𝜃3 − G2u2 = 0
                 (3.15) 

 

The linearized continuous time model is represented as follows: 

 

M̃ [

�̈�1
𝜃2̈
𝜃3̈

] + Ñ [

�̇�1
�̇�2
�̇�3

] + P̃ [

𝜃1
𝜃2
𝜃3

] + G̃ [
u1
u2
] = [

0
0
0
] 

 

Were  

 

M̃ = [

J1 + Ip1 𝑙1M2 − IP1 𝑙1M3

𝑙1M2 + Ip1  J2 + Ip1 + Ip2 𝑙2M3 − Ip2
𝑙1M3 𝑙2M3 − Ip2  J3 − Ip2

] 
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Ñ = [

C1 + C2 + Cp1 −C2 − Cp1 0

−C2 − Cp1 C2 + C3 + Cp1 + Cp2 −C3 − Cp2
0 −C3 − Cp2 C3 − Cp2

]
 

 

P̃ − [

−M1𝑔 0 0
0 −M2𝑔 0
0 0 −M3g

] 

 

�̃� = [

𝐺1 0
−r1 f2
0 −G2

] 

Were 

M1 = m1a1 +m2𝑙1 +m3𝑙1 

 

M2 = m2a2 +m3𝑙2 

 

M3 = a3 m3 

 

𝐽1 = 𝐼1 +𝑚1𝑎1
2 + (𝑚2 +𝑚3)𝑙1

2 

 

J2 = I2 +m2a2
2 +m3𝑙2

2 

 

J3 = I3 +m3a3
2 

 

The linearized continuous model can then be rewritten using the relative angle 

qi. Potentiometers are used to measure these angles. The relationship between 

the relative angle qi and the angle θi is described below: 
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𝑊 = [
1 0 0
−1 1 0
0 −1 1

] , 𝜃 = [

𝜃1
𝜃2
𝜃3

]  and 𝑞 = [

𝑞1
𝑞2
𝑞3

] 

Then 

q = [

q1
q2
q3
] = [

𝜃1
𝜃2 − 𝜃1
𝜃3 − 𝜃2

] = w𝜃 

 

Each θ in (3.16) is changed to W−1q  in the following step. Hence, we may 

rewrite this equation as follows: 

 

𝑀𝑊−1 [
�̈�1
�̈�2
�̈�3

] + 𝑁𝑊−1 [

�̇�1
q̇2
�̇�3

] + 𝑃𝑊−1 [

q1
q2
q3
] + G [

u1
u2
] = [

0
0
0
]                       (3.17) 

 

And then: 

 

[
�̈�1
�̈�2
�̈�3

] = −𝑊𝑀−1𝑁𝑊−1 [

�̇�1
�̇�2
�̇�3

] −𝑊𝑀−1PW−1 [

q1
q2
q3
] −𝑊𝑀−1𝐺u1 [

u1
u2
]  (3.18) 

 

The state space representation that is derived based on the relative angle is 

defined as follows using (3.18): 

 

ẋ = Ax + Bu = [
03 I3

−WM−1PW−1 −WM−1NW−1] x + [
03×2

−WM−1G
] [
u1
u2
]

𝑦 = 𝐶𝑥 = [I4 04×2]𝑥
   (3.19) 

 

Were  
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I4 = [

1    0    0    0
0    1    0    0
0    0    1    0
0    0    0    1

] , 04×2 = [

0    0
0    0
0    0
0    0

] , 03×2 = [
0    0
0    0
0    0

] 

 

Here, the output vector is y = q. 

The numerical model of the Robogymnast is calculated by substituting the 

values of the parameters described in Tables 3.1 and 3.2 into (3.19). 

 

Table 3-1:Values of parameters for Robogymnast 

 

 

 

 

Table 3-2:Values of parameters for Motor 

 

 

 

 

 

Were 

A =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

36.42 0.35 −0.21 −0.2 88.38 9.17
−13.10 22.06 2.23 0.20 −168.29 7.70
−2.14 1.50 5.68 0.02 7.69 −201.45]

 
 
 
 
 

 

Link 1 Link 2 Link 3 Units  

𝑎1 = 0.0426 𝑎2= 0.138 𝑎3= 0.065 𝑚 

𝑙1 = 0.155 𝑙2= 0.180 𝑙3= 0.242 𝑚 

𝐶1 = 0.0172 𝐶2= 0.0272 𝐶1= 0.035 N 𝑚 s 

𝑚1= 2.625 𝑚2= 0.933 𝑚3 = 0.372 Kg 

𝐼1= 0.014 𝐼2 = 0.018 𝐼1= 0.002 Kg𝑚2 

Motor1 Motor2 Units  

𝐶𝑝1= 7.73 𝐶𝑝2 = 7.73  N𝑚s  

𝐼𝑝1 = 0.0358 𝐼𝑝2 = 0.0358 Kg𝑚2 

𝑘1 = 246:1 𝑘2 = 110.6:1 Unit less  

𝐺1= 1.333 𝐺1= 0.625 Nm/V 

[5] 

[5] 
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B =

[
 
 
 
 
 

0 0
0 0
0 0

−15.19 −0.74
28.92 −0.62
−1.32 16.21]

 
 
 
 
 

, 𝐶 = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 

 

The continuous time model's upright eigenvalues are depicted in (3.19). as 

follows: 

[−166.8506 −203.1990 −5.4598 5.3762 0.1662 0.0270] 

 

The system looks unstable based on the eigenvalues above because three 

positive characteristic roots exist. 

 

The system controllability matrix is: 

 

𝐶𝑂 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵 𝐴4𝐵 𝐴5𝐵] 

 

The 𝐶𝑂 matrix's rank, as determined by the MATLAB command rank(CO), 

is 6, meaning that all six states are achievable with the correct input provided 

to the system via u(t) [50]. Therefore, total control over the system is possible. 

 

The system's observability matrix is: 

 

𝑂𝐵 = [𝐶 𝐶𝐴 𝐶𝐴2 𝐶𝐴3 𝐶𝐴4 𝐶𝐴5]𝑇 

 

With the MATLAB command rank(𝑂𝐵), the 𝑂𝐵 matrix's rank is 6, meaning 

that each of the six states can be seen via linear combinations of the output 
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variables y(t) [6]. Thus, the entire system can be observed. Based on the 

preceding analysis, it can be inferred that the system's linearized model, as 

shown in equation (3.19), is both observable and controllable. Consequently, 

the system can be controlled by applying the controller. 

 

By discretized (3.19) using MATLAB® software with a sampling period of 

25 milliseconds (obtained practically in [47]) to produce the discrete-time 

model of the Robogymnast: 

 

𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘)                                                                       (3.20) 

𝑦(𝑘) = 𝐶𝑑𝑥(𝑘) 

 

were 

𝐴𝑑 =

[
 
 
 
 
 
1.0100 0.0024 0.0002 0.0250 0.0101 0.0012
−0.0015 1.0025 0.0003 0.0000 0.0059 0.0002
−0.0003 0.0002 1.0006 0.0000 0.0002 0.0049
0.7761 0.2334 0.0240 1.0069 0.5232 0.0646
−0.0771 0.1298 0.0143 −0.0003 0.0158 0.0021
−0.0134 0.0122 0.0285 −0.0001 0.0020 0.0068]

 
 
 
 
 

 

 

𝐵𝑑 =

[
 
 
 
 
 
−0.0017 −0.0001
0.0033 −0.0000
−0.0000 0.0016
−0.0895 −0.0052
0.1696 −0.0001
−0.0003 0.0800 ]

 
 
 
 
 

, 𝐶𝑑 = [

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

] 

 

Three unstable eigenvalues (outside the unit circle) for the discrete-time 

model shown in (3.20) are listed below: 
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[0.0156 0.0062 1.1439 0.8724 1.0042 1.0007] 
 

 Mathematical Model in the Upward Position Derived by 

Elman Neural Network (ENN)  

Robogymnast is regarded as a TIP in an unstable position for balancing model 

functions. The Euler-Lagrange formula was used to derive mathematical 

modeling. The Euler-Lagrange method is the most common technique for 

obtaining dynamical equations of several rigid systems [47]. Mathematical 

modeling presents an estimation of real-world systems. However, as the 

system's complexity rises, a mathematical model loses accuracy because 

modeling is a procedure of simplifying and deducting, and information about 

a system is lost by simplification. The gymnastic robot is a nonlinear multi-

link under-actuated mechanism that demands a complicated mathematical 

model with the accuracy of information taken into account. Neural networks 

are commonly used in nonlinear system modeling applications. Ismail et al. 

existing model was enhanced using an artificial neural network, as shown in 

Fig.3.4. 

 

The following equation can be used to represent the Elman neural network 

(ENN) model: 

𝑋(𝑘) = 𝐴𝑑𝑋(𝑘 − 1) + 𝐵𝑑𝑈(𝑘 − 1)                    (3.21)  

 

                                          𝑌(𝑘) = 𝐶𝑑𝑋(𝑘)                                                        (3.22) 
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Fig. 3.3  Elman Neural Network model of the Robogymnast 

 

X represents the state, while Y represents the output, precisely the relative 

angular positions (q1, q2, q3) of links 1, 2, and 3 from the balancing point. 

Additionally, we have U, which represents the input for the model. U consists 

of two components, namely the input voltages u1 and u2. These voltages, 

limited to a range of |u1, u2| ≤ 10V, are the control effort input for the DC 

motors at joints 2 and 3. 
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𝐴𝑑 

=

[
 
 
 
 
 

0.99 −2.43𝑒−3 −2.34𝑒−4 2.49𝑒−2 1.01𝑒−2 1.20𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.88𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 1.00 5.30𝑒−6 2.15𝑒−4 4.95𝑒−3

0.77 0.23 2.39𝑒−2 0.99 0.52 6.37𝑒−2

−7.59𝑒−2 0.13 1.43𝑒−2 2.64𝑒−3 1.55𝑒−2 2.01𝑒−3

−1.32𝑒−2 1.21𝑒−2 2.85𝑒−2 3.97𝑒−4 2.05𝑒−3 6.55𝑒−3]
 
 
 
 
 

 

 

𝐵𝑑 =

[
 
 
 
 
 
−2.91𝑒−3 −1.62𝑒−4

−5.51𝑒−3 −2.94𝑒−5

−6.26𝑒−5 2.71𝑒−3

−0.15 −8.61𝑒−3

0.283 −3.08𝑒−4

−6.55𝑒−4 0.13 ]
 
 
 
 
 

, 𝐶𝑑 = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 

 

The results obtained in research [5] were applied to the system practically; 

when input and output data were available for several cases, the researcher [6] 

was able to extract the state space of the system; this is the simple concept of 

a Neural Network (for the different types of networks used). 

 

Chapter four applies the controller to the stat space derived from the Euler-

Lagrange and Elman Neural network and compares the results. 

 

 Summary 

A description of the system is discussed in this chapter. The mathematical 

model of the system’s derivation is illustrated in the upright position. This 

chapter demonstrated the step-by-step derivation of the system’s state space 

model from the Euler-Lagrange equations and the Elman neural network 

modeling. The calculated state space is used in the simulation of the system 
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to understand the behavior before being implemented in real; this is discussed 

in Chapter Four, where different control methods will be applied to the 

system.
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 Controller Design with Different Control 

Strategy 

 Introduction 

This chapter discussed the design of different controllers to control both the 

states and control effort voltage, including three angles and two control input 

voltages. Several proposed controllers, including DLQR, WOA-based DLQR, 

AO-based DLQR, FLC, and FLC with self-tuning-gain via WOA, all intended 

to achieve system stability. 

 

 Results of DLQR Applying a Mathematical Model Derived 

from the Euler-Lagrange  

The construction of DLQR parameters is based on weight matrices, and the 

most challenging part of designing a DLQR controller is the adjustment of the 

weight matrices parameters, which is often adjusted by repeating trial and 

error method. The matrices Q and R are configured as diagonal matrices. Q 

and R matrixes obtained by the trial-error method (see Appendix A) as below: 

 

𝑄 =

[
 
 
 
 
 
 50 0 0 0 0 0
0  100 0 0 0 0
0 0 70 0 0 0
0 0 0 60 0 0
0 0 0 0 20 0
0 0 0 0 0 30]

 
 
 
 
 

,  𝑅 = [
0.1 0
0 2

] 
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The controller is applied when the initial deflection of angles equal to q1=1◦, 

q2=-1◦, and q3=1◦. These angles represent the estimated maximum deflection 

that the Robogymnast can achieve before the system loses the ability to restore 

it to a balanced upright configuration [5]. Fig. 4.1.(a) Demonstrates that the 

settling time of three relative angles is 5 seconds. The deviation reaches 8.7 

degrees, –3.8 degrees, and 1.2 for the first, second, and third link. Fig. 4.1.(b) 

shows the control effort consumed by two motors, observed that the value of 

two motors is satisfactory and under limited voltage. 

(a) 

 (b)  
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Fig. 4.1  Time response with initial q1=1◦, q2=-1◦, q3=1◦ of the Euler-

Lagrange formula.  (a) Relative angle 1, 2, 3 (b) Control effort 1, 2. 

 

 The system becomes unstable when the initial is set to 3◦, as shown in Fig 

4.2. 

(a) 

(b) 

 Fig. 4.2  Time response with initial q1=3◦, q2=3◦, q3=3◦ o of the Euler-

Lagrange formula.  (a) Relative angle 1, 2, 3 (b) Control effort 1, 2. 
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 Results of DLQR Applying a Mathematical Model Derived 

from the Elman Neural Network (ENN)  

The project's observable results are the state response and the control effort 

(control input voltage). The adjusting process is employed when the initial 

deflection of absolute angles equals q1=3°, q2=3°, and q3=3°. These angles 

represent the estimated maximum deflection that the Robogymnast can 

achieve before the system loses the ability to restore it to a balanced upright 

configuration [6]. As shown in Fig. 4.3(a), the first, second, and third links 

consumed a setting time of 7 seconds to reach the steady state. The first link 

has a deviation of 0.8 degrees and no deviation from the third link. However, 

the second link has a deviation of -3.3 degrees. The first motor consumed 3V, 

and the second motor consumed 0.3V to achieve the desired response, which 

was less than the limited voltage (12V), as shown in Fig. 4.3 (b). 
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 (b)  

Fig. 4.3  Time response with initial q1=3◦, q2=3◦, q3=3◦ of the ENN model. (a) 

Relative angle 1, 2, 3 (b) Control effort 1, 2. 

 

The conclusion from Fig. 4.1, Fig. 4.2, and Fig. 4.3 is that the state space 

specific by the ENN model is much better than the state space derived by the 

Euler-Lagrange formula because the ENN model accepted initial deflection 

of absolute angles reach 3 degrees where the state space that derived by Euler-

Lagrange formula accepted initial deflection one degree also ENN model is 

considered closer to the actual practical application. 

The Robogymnast system's dynamic model shows that the system is in sixth 

order and contains two inputs. So, the size of the matrix Q is 6*6, and matrix 

R is 2*2. The cost function clarifies that Q and R define the priority level 

assigned to each state and input. That is, a big valued Q matrix (with an 

accepted range specific to the designer's experience) and a small valued R 

matrix indicates that the changes in the state matrix will be amplified 

compared to the changes in the input matrix. This decision results in a 

controller responding more sensitively to system states than to control input. 

The rationale for this decision is that stability is the primary design criterion, 

C
o
n

tr
o
l 

ef
fo

rt
 (

v
o
lt

) 



Chapter Four: Controller Design with Different Control Strategy 

 

57 

 

so stability is determined by the system states. Since the input values are given 

a small weight, this could result in actuator saturation. Extensive controller 

adjusting is therefore required to increase the controller's stability range. 

Although the system is stabilized (using trial and error), several reasons exist 

to increase the controller's capabilities. The link's displacement may go over 

the limitations of stability range in actual application. The second reason is 

that noise has yet to be incorporated into the models during operation, and the 

system will become more unstable by adding noise. The tests were carried out 

by individually varying the Q matrix while keeping the other Q and R 

parameters constant at 1, which makes it possible to calculate the individual 

effects of every value in the Q matrix on the maximum angular displacement. 

Then, to modify control efforts, vary R and set Q at 1(see Appendix A). This 

process consumed Time, inaccurately, and effort [51]. 

Based on the previously mentioned reasons that have been proven through 

experience and to solve them to get a good response, Optimization will be 

used (this discussion is in the next section). The Optimization technique is 

responsible for finding a suitable value for Q and R (see Fig. 4.4). 

Fig. 4.4  Block diagram for optimization-based DLQR controller. 

Objective function  

optimization 

Feedback gain 
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 Results of Whale Optimization Algorithm  

The WOA algorithm is utilized to discover the best possible solution globally 

for the Linear Quadratic Regulator (LQR) controller. The objective is to 

minimize both the time it takes for the Robogymnast to transition from an 

unbalanced inverted state to a balanced upright state and the voltage required 

for this transition. The matrices Q and R are configured as diagonal matrices. 

Q and R matrixes obtained by the WOA algorithm and the adjusted value after 

optimization as below: 

 

Q=

[
 
 
 
 
 
 362.02735 0 0 0 0 0

0  1000 0 0 0 0
0 0 7605.4042 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 54.048495]

 
 
 
 
 

 

 

  𝑅 = [
0.1 0
0 3.9882462

] 

 

The optimization is employed when the initial deflection equals q1=3°, q2=3°, 

and q3=3°. As shown in Fig. 4.5 (a), the first, second, and third links reached 

steady after 1.825 seconds with minimum deviation. Moreover, as 

demonstrated, the control voltage of the first motor consumed 7.12V, and the 

second motor consumed 2V to achieve the desired response, and this is less 

than the limited voltage (12V), as shown in Fig. 4.5 (b). 
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(a) 

 

(b) 

Fig. 4.5.  Time response after WOA with initial q1=3◦, q2=3◦, q3=3◦. 

 (a) Relative angle 1, 2, 3 (b) Control effort 1, 2. 

 

The convergence curve in Fig. 4.6 is getting closer to 1.825 sec time to 

reach0.001degree steady-state error of all relative angles after 13 iterations, 

which indicates the speed WOA of reaching a steady state. 
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Fig. 4.6  Convergence curve of WOA 

 Results of Aquila Optimizer 

The AO algorithm is utilized to discover the best solution globally for the 

DLQR controller. Q and R matrixes obtained by the AO algorithm and the 

adjusted value after optimization as below: 

 

𝑄 =

[
 
 
 
 
 
 929.32223 0 0 0 0 0

0 397.93419 0 0 0 0
0 0 5715.4537 0 0 0
0 0 0 13.736104 0 0
0 0 0 0 35.812884 0
0 0 0 0 0 9.6405528]

 
 
 
 
 

 

 

𝑅 = [
0.76390393 0

0 3.3013285
] 

 

The first, second, and third links reached a steady state after 3 seconds, with 

the maximum deviation in the second link reaching -2.75 degrees, as shown 
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in Fig. 4.7 (a). Moreover, the first motor consumed 4V, and the second 

consumed -2V to achieve the desired response, as shown in Fig. 4.7 (b). 

(a) 

 (b) 

Fig. 4.7  Time response after Aquila Optimization with initial q1=3◦, q2=3◦, 

q3=3◦. (a) Relative angle 1, 2, 3 (b) Control effort 1, 2. 
 

Figure 4.8 illustrates the fuzzy logic control simulation system; there are three 

angles and two input voltages. So, there are three fuzzy logic controls for each 
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input. Each fuzzy has two input errors in angle and a change of error angle. 

The output gain of fuzzy optioned using trial and error. 

Fig. 4.8  Simulation System of Fuzzy Logic 

 Results of Fuzzy Logic Control  

Fig. 4.9 presents the results of the transient and steady-state responses of the 

relative angular position; the first and third link's relative angular positions 

deviation about -1.8° and -0.5°, respectively, while the second link's relative 
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angle deviation reaches approximately -4°. As observed, the three links 

required 6 seconds to reach the steady state. The control effort of the first 

motor reached 8 volts, and the second motor control effort consumed -4 volts; 

these voltages were within the limited voltages. As a result, the gymnastic 

robot can stabilize in an inverted position with a satisfactory transient 

response and voltage. 
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(c) 

(d)  

(e) 
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Fig. 4.9  FLC time response with initial deflection q1=3◦, q2=3◦, q3=3◦. (a) 

Relative angle 1 (b) Relative angle 2 (c) Relative angle 3 (d) Control effort 1 

(e) Control effort 2. 

 Hybrid System Fuzzy Logic and Whale Optimization 

In this section, a hybrid controller combining two control systems is designed. 

The objective of the hybrid control system is to enhance system performance 

by combining the valuable specifications from the many control systems. 

Naturally, different hybrid controller structures, including fuzzy hybrid with 

other controllers, have been presented by researchers [52], [53], [54]. 

 

WOA-based DLQR and FLC controllers are used in this study to improve 

outcomes. When designing the WOA-based DLQR, the results were good, 

and the system could stabilize within a short time. Still, when implementing 

the system practically, the optimization takes time that is not commensurate 

with the practical application because it performs calculations in each case. 

These calculations take time, and the controller becomes off-line tuning. FLC 

was designed to achieve online tuning to stabilize and balance the system.  

The result of the FLC was accepted, although the system consumed more 

settling time to be stable in an inverted position. So, we used a hybrid 

controller FLC with WOA-based DLQR to achieve online tuning with less 

settling time. 

 

Fig. 4.10 shows the simulation system of the hybrid controller that combines 

the WOA-based DLQR parameter with the FLC system specification 

discussed in the previous sections. 
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Fig. 4.10. Simulation System of Hybrid Controller. 
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4.7.1 Results of Hybrid Control  

Fig. 4.11 presents the results of the transient and steady-state responses of the 

relative angular position; the first and second relative angles consumed 2 

seconds to reach the steady state. In contrast, the third relative angle consumed 

one second, a suitable settling time to balance the RoboGymnast in an upright 

position. The deviation of the first and second links reached -1.15° and -3.4°, 

respectively, but there was no deviation in the third link from a vertical 

position. The first motor consumed 6.7 volts of control effort, but the second 

motor consumed only -1.5 volts; this was considered satisfactory voltage to 

become the RoboGymnast in an inverted position.  
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(c)  

(d) 

(e) 

 Fig. 4.11 Hybrid control time response with initial deflection q1=3◦, q2=3◦, 

q3=3◦. (a) Relative angle 1 (b) Relative angle 2 (c) Relative angle 3 (d) 

Control effort 1 (e) Control effort 2. 
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 Comparative results 

4.8.1 Comparison Between Before and After Optimization 

Techniques 

 

Fig. 4.12 compares the DLQR, WOA-based DLQR, and AO-based DLQR 

controllers. It is clear that the WOA-based DLQR controller gets the best 

result according to the transient response of the relative angles, but it 

consumes the higher voltage of two motors between the other type controllers. 

However, the WOA-based DLQR controller is considered the best controller 

because the system’s stability has higher priority than the consumed voltage 

since the voltages are within limits.  
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(e) 

 

Fig. 4.12  Comparison time response between DLQR, WOA-based DLQR, 

and AO-based DLQR. (a) Relative angle 1 (b) Relative angle 2 (c) Relative 

angle 3 (d) Control effort 1 (e) Control effort 2. 

 

4.8.1 Comparison Between WOA-based DLQR, FLC, and Hybrid 

Controller 

Fig. 4.13 compares the WOA-based DLQR, FLC, and FLC hybrid with 

WOA-based DLQR controllers. The results clearly show that the WOA-based 

DLQR controller gets the best result according to the transient response of the 

relative angles. The FLC response was the worst because it had higher settling 

time and control efforts. The hybrid controller consumed less voltage from 

two motors than the other type of controller. The settling time of the relative 

angles is equal in the WOA-based DLQR and hybrid controller, but the WOA-

based DLQR has less deviation. Although the WOA-based DLQR controller 

is considered the best controller, when implemented practically, the WOA-

based DLQR controller consumes time to perform the calculations required in 
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each case (off-line tuning). So, the hybrid system achieves online tuning with 

a satisfactory response to stabilize the gymnastic robot vertically.  
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(e) 

Fig. 4.13.  Comparison time response between WOA-based DLQR, FLC and 

Hybrid controllers. (a) Relative angle 1 (b) Relative angle 2 (c) Relative 

angle 3 (d) Control effort 1 (e) Control effort 2. 

 

 Comparison with other work 

In [5], to balance the Robogymnast, Kamil et al. developed a Discrete-time 

Linear Quadratic Regulator (DLQR). They adjusted the Q and R matrix using 

a trial-and-error method depending on the designer's experience. This method 

consumed 3.5827 seconds to achieve an upright position, and the simulation 

achieved a stable response. However, the robot consumed more settling time 

and overshoot than achieved when using WOA-based DLQR optimization to 

adjust the Q and R matrix. The first control effort rose to 10V (saturation 

limit), and the second control effort was 5.2 V, but the control effort that the 

author achieved (u1=8.5V, u2=1.2V) is less than this, as shown in Fig. 4.14 

(b). 
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  (a)  

(b)  

Fig. 4.14. Time response after WOA-based DLQR controller with initial 

q1=1.3◦, q2=0.2◦, q3=-6.5◦. (a) Relative angle 1, 2, 3 (b) Control effort 1, 2. 

 

The result achieved by the author, which is explained in Fig. 4.14 (a), is better 

than the simulation result achieved by another researcher in [5] (with initial 

relative angles q1=1.3◦, q2=0.2◦, q3=-6.5◦). The comparison is according to the 

time response characteristics regarding the settling time, maximum deviation, 

and other criteria, as shown in Table 4.1. 
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Table 4-1:Compared performance analysis for angles response 

DLQR+WOA with DLQR 

Relative angles Controllers Rise time (s) Overshoot (degree) Settling time(s) 

q1 DLQR[5] 0.0201 -3.5832 1.4831 

DLQR+WOA 1.8 0 1.2760 

q2 DLQR[5] 0.0106 7.8998 1.4771 

DLQR+WOA 0.013 -0.8 0.9334 

q3 DLQR[5] 1.7482 0.0991 3.5827 

DLQR+WOA 0.5 0 0.7583 

 

The result achieved by the author, which is explained in Fig. 4.5 (a), is better 

than the simulation result achieved by another researcher in [12] (with initial 

relative angles q1=3◦, q2=3◦, q3=3◦) when compared according to transient 

response characteristics in terms of settling time and other criteria as shown 

in Table 4.2.  

Table 4-2 :  Compared performance analysis for relative angles 

response DLQR+WOA with DLQR+IWO 

Relative angles Controllers Rise time (s) Overshoot(degree) Settling time(s) 

q1 DLQR+IWO[12] 4 -29 5.4 

DLQR+WOA 0.0584 -0.6278 1.0949 

q2 DLQR+IWO[12] 4 67 5.4 

DLQR+WOA 0.0339 -1.5255 0.9530 

q3 DLQR+IWO[12] 2 10 3 

DLQR+WOA 0.4196 0.2883 0.7495 

 

In [12], Ismail et al. applied invasive weed optimization (IWO) to determine 

the best possible Q matrix. According to an investigation, the 12V control 

effort consumed from two motors and this voltage above the control signal's 

saturation limit (10V) and the control effort (u1=2V, u2=7.12V) that the 

author achieved is less than this, as shown in Fig. 4.5 (b). 
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In [15], a multi-objective fuzzy logic hybrid invasive weed optimization 

(FLIWOH) method is presented. Fuzzy logic and the IWO are combined in 

this method. IWO is used in search and seed generation processes, and fuzzy 

logic is utilized to specify the fitness seeds by checking the JT (cost and 

settling time) criteria. The author’s result in Fig. 4.11 is better than the result  

simulation in [15] (with initial relative angles q1=3◦, q2=3◦, q3=3◦) compared 

to transient response characteristics as shown in Table 4.3. It is noticeable that 

the three relative angles take 6.37 seconds to achieve a stable upright position. 

Motor1 (u1) and Motor2 (u2) have maximum voltages of 12 and 5.8159 volts, 

respectively. Motor 1 (u1) is above the control signal's saturation limit (10V), 

and the control effort (u1 = 6.7 V, u2 = -1.5V) that the author achieved is less 

than this, as shown in Fig. 4.11. 

Table 4-3:  Compared performance analysis for relative angles 

response FLC+WOA with FLIWOH. 

 

In [32], N. A. Sayer et al. utilized DLQR and LQG controllers to stabilize a 

nonlinear triple inverted pendulum, represented by a gymnastic robot in the 

vertical plane. The simulation results demonstrated that LQR outperformed 

LQG, achieving superior results in terms of overshoot (-4, 9, 1.1), rise time 

(0.05013s, 0.07519s, 0.02506s), and settling time (3.208s, 3.233s, 4.16s) for 

the three links (first, second, third). However, the results presented in Fig. 4.15 

surpassed those of the simulation in [32], as shown in Table 4.4. When a 

Relative angles Controllers Rise time (s) Overshoot (degree) Settling time(s) 

q1 FLIWOH [15] 3 -30 6.375 

FLC+WOA 0.0584 -1.2 1.8 

q2 FLIWOH [15] 3 67 6.375 

FLC+WOA 0.0339 -3.4 2 

q3 FLIWOH [15] 1.5 13 4 

FLC+WOA 0.4196 0 0.7495 
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WOA-based DLQR controller was employed, the three relative angles 

reached settling times of (1.2708s, 0.9362s, 0.7579s) and overshoots of 

(0.425, -1.902, 0), with rise times of (0.0771s, 0.4242s, 0.4234s) for the first, 

second, and third links, respectively. The system achieved quicker 

stabilization in the vertical position and reduced overshoot. Motor1 and 

Motor2 consumed 1.3 volts, significantly less than the consumption reported 

in [32] (Motor1 and Motor2 consumed 9 volts and 0.7 volts, respectively, in 

[32]). 

(a) 

(b) 

Fig. 4.15. Time response after WOA-based DLQR controller with initial 

q1=1◦, q2=-0.9◦, q3=1◦. (a) Relative angle 1, 2, 3 (b) Control effort 1, 2. 
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Table 4-4:Compared performance analysis for angles response 

DLQR+WOA with DLQR 

Relative angles Controllers Rise time (s) Overshoot (degree) Settling time(s) 

q1 DLQR [32] 0.05013 -4 3.208 

DLQR+WOA 0.0771 0.425 1.2708 

q2 DLQR [32] 0.07519 9 3.233 

DLQR+WOA 0.4242 -1.902 0.9362 

q3 DLQR [32] 0.02506 1.1 4.16 

DLQR+WOA 0.4234 0 0.7579 

 

 Summary  

In this chapter, the balance problem of the gymnastics robot was addressed by 

applying several types of controllers. The second section discusses the 

application of DLQR to the Euler-Lagrange method and Artificial Neural 

Network Modeling. The results of applying DLQR to ENN were better as they 

provided stability with a starting angle of 3 degrees. The third section explores 

the application of WOA-based DLQR, with an evaluation against another 

optimization method, AO-based DLQR, showing that WOA-based DLQR 

yielded the best results. In the fourth section, FLC was applied, demonstrating 

the successful balancing of the gymnast robot in the vertical position. The fifth 

section combines FLC with WOA-based DLQR, resulting in the best response 

and lowest voltage consumption. Finally, in the sixth and seventh sections, a 

comparison is made between the methods used and previous research, 

revealing that WOA-based DLQR with FLC produced the best outcomes. 
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 Conclusion, Contributions, and Future 

Work  

 Conclusion 

This study has aimed to develop three-degree-of-freedom control strategies 

for a gymnastic robot to balance in an inverted position with different 

Robogymnast situations. Robogymnast mimics human acrobatics with triple 

links and triple joints. Mathematical modeling presents an estimation of real-

world systems. The Euler-Lagrange formula is used to derive the 

mathematical dynamics of the system. The gymnastic robot is an under-

actuated, nonlinear multi-link mechanism requiring a complex mathematical 

model considering information accuracy. So, the ENN model is used in 

nonlinear system modeling. 

DLQR controller is used to balance the gymnastic robot in an upright position. 

DLQR is applied to the Euler-Lagrange model and the ENN model. The 

comparison results show that the dynamic model obtained by the ANN is 

significantly better than the model derived from the Euler-Lagrange formula 

because the ANN model accepted the initial deviation of absolute angle for 

each link up to 3 degrees. In contrast, the dynamic model derived from the 

Euler-Lagrange formula accepted 1 degree and becomes unstable at 3 

degrees. 

The WOA is applied to the DLQR controller to adjust its parameters and self-

adjust the weight matrices. The simulation results after optimization 

demonstrated that the first, second, and third links' overshoot angular 

positions and settling time are less than that achieved before optimization. The 

Robogymnast could be stabilized in the upright balancing point within a 
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suitable time, and motors consumed less voltage. Also, the AO is utilized to 

discover the best matrix for the DLQR controller and successfully achieve 

stabilizing transient response characteristics and control effort. The 

comparison between WOA-based DLQR and AO-based DLQR shows the 

WOA-based DLQR controller gets the best result according to the transient 

response characteristic with minimum deviation from the upright balancing 

point and settling time. The first, second, and third links reached a steady state 

after 1.825 seconds with a minimum deviation (-0.5° and -1.5° for the first 

and second links, respectively, and no deviation for the third link). Moreover, 

the control voltage of the first motor consumed 7.12V, and the second motor 

consumed 2V to achieve the desired response, which is less than the limited 

voltage (12V). However, because the optimization process involves 

computations for each case, it takes longer to implement practically and 

causes the controller to become offline. 

After that, FLC was designed to achieve online tuning to stabilize and balance 

the system. The result of the FLC showed that the system consumed more 

settling time to be stable in an inverted position. So, a hybrid controller FLC 

with WOA-based DLQR to achieve online tuning with less settling time for 

the relative angular position (1.5 seconds) and acceptable undershoot of the 

links from the upright balancing point (-1.15° and -3.4° for the first and second 

links, respectively, and no undershoot of the third link). The first motor 

consumed 6.7 volts of control effort, but the second motor consumed only -

1.5 volts; this was considered satisfactory voltage to become the 

Robogymnast in an inverted position. 

Finally, the comparison with previous research shows that the FLC with the 

WOA-based DLQR method achieves less overshoot, settling time, and control 

effort than the other methods. 
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 Contributions 

• Analyze and understand the system performance by applying a DLQR 

controller with various Q and R matrix ranges. 

• Apply the DLQR controller using the mathematical formula derived 

from Euler-Lagrange equations and the mathematical model calculated 

from experimental results by applying a neural network. A comparison 

between both methods has been introduced. 

• Achieve self-tuning for the Q and R matrix by applying the WOA and 

AO evaluated. 

• Achieve online tuning gains by applying a Fuzzy Logic controller. 

• Design hybrid controllers (FLC and WOA) for achieve the best result. 

 Future Work 

The study effectively met its defined objectives, and the presented simulations 

and results offer insights for additional research. This section outlines several 

worthwhile suggestions for exploring ways to improve system performance 

and introduce enhanced capabilities for advanced applications: 

• Employ various optimization methods to control the transition of the 

robot's swing from a stable to an unstable position. 

• Integrate Swinging-Up and Balancing Control for a comprehensive 

approach. 

• Employ this model as a framework for testing different control 

algorithms and as a basis for creating diverse applications. 

• Explore the adaptation of the designed controller concerning changes 

in the durations of external disturbances.  
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Appendices 

Appendix A  

A.1. Q1=1-10000, (Q2, Q3, Q4, Q5, Q6, R1, R2) =1.  

(a) 

(b) 

Fig. 5.1.1 Range of Q1. (a) Relative angle 1 (b) Control effort 1. 
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A.2. Q2=1-100000, (Q1, Q3, Q4, Q5, Q6, R1, R2) =1. 

(a)  

(b)  
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Fig. 5.2.1 Range of Q2. (a) Relative angle 1 (b) Control effort 1(c) 

Control effort 2. 

 

A.3.Q3=1-100000, (Q1, Q2, Q4, Q5, Q6, R1, R2) =1. 

(a) 

(b) 

Fig. 5.3.1 Range of Q3. (a) Relative angle 3 (b) Control effort 2. 
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A.4. Q4=1-100000, (Q1, Q2, Q3, Q5, Q6, R1, R2) =1.  

(a) 

(b) 

Fig. 5.4.1 Range of Q4. (a) Relative Angular Velocity 1(b) Control 

effort 1. 
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A.5. Q5=1-5000, (Q1, Q2, Q3, Q4, Q6, R1, R2) =1.  

(a) 

(b) 

(c) 
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Fig. 5.5.1 Range of Q5. (a) Relative Angular Velocity 2 (b) Control 

effort 1(c) Control effort 2. 

 

A.6. Q6=1-10000, (Q1, Q2, Q3, Q4, Q5, R1, R2) =1.  

(a) 

(b) 

Fig. 5.6.1 Range of Q6. (a) Relative Angular Velocity 3 (b) Control 

effort 2. 
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A.7. R1=1000, (Q1, Q2, Q3, Q4, Q5, Q6, R2) =1. 

(a)  

(b) 

(c) 

A
n

g
le

(d
eg

re
e)

 
C

o
n

tr
o
l 

ef
fo

rt
 (

v
o
lt

)
 

C
o
n

tr
o
l 

ef
fo

rt
 (

v
o
lt

)
 



Appendices 

98 

 

(d)  

Fig. 5.7.1 Range of R1. (a) Control effort 1 (b) Control effort 2 (c) 

Relative angle 1 (d) Relative angle 2. 

 

A.8. R2=10000, (Q1, Q2, Q3, Q4, Q5, Q6, R1) =1.  
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(b) 

(c)  

(d) 

Fig. 5.8.1 Range of R2. (a) Control effort 2 (b) Control effort 1 (c) Relative 

angle 2 (d) Relative angle 3.
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 الخلاصة 

 

 

 الخلاصة 

فهم   إلى  الدراسة  هذه  ثلاثي  تهدف  الروبوت  لنظام  المستقيم  الوضع  في  التحكم  وموازنة  التعقيد 

الوصلات. يعتبر لاعب الجمباز الآلي أحد الأنواع المهمة من الأنظمة ثلاثية الوصلات التي تحاكي  

الألعاب البهلوانية البشرية؛ وهو يتألف من ثلاثة مفاصل وثلاث وصلات )الذراع والجذع والساق،  

 مة بمحركين يعملان بالتيار المستمر. على التوالي( مدعو

تم اشتقاق نموذج رياضي للروبوت باستخدام معادلات لاغرانج. حيث أن النظام عبارة عن آلية غير  

خطية متعددة الارتباطات تتطلب نموذجًا رياضيًا معقدًا يأخذ في الاعتبار دقة المعلومات. إنه يقدم  

م في الحركة. يتم  المزيد من التحديات في نمذجة لاعبة الجمباز الروبوتية والتعامل مع مشاكل التحك

غير    Robogymnastاستخدام صيغة لاغرانج ونموذج الشبكة العصبية الاصطناعية لنمذجة نظام  

 الخطي. 

( لتحقيق التوازن بين  DLQRأولاً، يتم استخدام وحدة التحكم في المنظم التربيعي الخطي المنفصل ) 

 على اختيار مصفوفات الوزن.  DLQRالروبوت الجمباز في الوضع المستقيم. يعتمد بناء  

ثانياً، إيجاد القيم المثلى لمصفوفات الترجيح؛ يتم تطبيق تقنية تحسين السرب تسمى خوارزمية تحسين  

تقنية تحسين أخرى  WOAالحوت )  ( لضبط مصفوفات الترجيح. بالإضافة إلى ذلك، يتم استخدام 

.  Aquila Optimization (AO)للعثور على القيم المثلى لمصفوفات الوزن، وتسمى هذه التقنية  

التحكم   وحدة  تحقق  تقنية.  أفضل  تقييم  تنفيذ  إلى    DLQRتم  وفقًا    WOAالمستندة  نتيجة  أفضل 

التحكم   بوحدة  مقارنة  المحركين  من  أعلى  جهدًا  تستهلك  ولكنها  النسبية  للزوايا  العابرة  للاستجابة 

DLQR    إلى بAOالمستندة  الاستقرار  حالة  إلى  والثالثة  والثانية  الأولى  الوصلات  وصلت  عد  . 

° للوصلتين الأولى والثانية على التوالي، وعدم وجود  1.5-° و0.5-ثانية مع أدنى انحراف )  1.825

يستهلك   الأول  للمحرك  التحكم  جهد  فإن  ذلك  الثالثة(. علاوة على  للوصلة  فولت،    7.12انحراف 

يستهلك   الثاني  المحدود   2والمحرك  الجهد  أقل من  المطلوبة، وهي  الاستجابة  لتحقيق    12)  فولت 

 فولت(. 

( المضببة  المنطقية  التحكم  وحدة  تصميم  تم  لتحقيق  FLCثالثاً،  الإنترنت  عبر  الضبط  لتحقيق   )

نتيجة   أظهرت  النظام.  في  والتوازن  من    FLCالاستقرار  للتسوية  أطول  وقتاً  يستهلك  النظام  أن 

DLQR    المستند إلىWOA    ليكون مستقرًا في الوضع المقلوب. لذلك، تم اقتراح وحدة تحكم هجينة

لتحقيق الضبط عبر الإنترنت مع وقت استقرار أقل    WOAالمستندة إلى    DLQRو   FLCتجمع بين  
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  1.15-ثانية( وانحراف مقبول للوصلات من نقطة التوازن المستقيمة )   1.5للموضع الزاوي النسبي )

الثالثة(.    3.4-درجة و للوصلة  انحراف  التوالي، ولا يوجد  والثانية على  للوصلتين الأولى  درجة( 

قط؛ كان  فولت ف  1.5-فولت من جهد التحكم، لكن المحرك الثاني استهلك    6.7استهلك المحرك الأول  

التوازن   نقطة  في  وتثبيته  مقلوب  وضع  إلى  الآلي  الجمباز  لاعب  لجلب  مرضيًا  جهدًا  يعتبر  هذا 

 المستقيمة خلال مدة مناسبة. 

وأخيرا، أظهرت المقارنة بين الطرق السابقة أن النظام الهجين يحقق الضبط المباشر مع استجابة  

مع طريقة    FLCمرضية لتثبيت الروبوت الجمباز عموديا. توضح المقارنة مع الأبحاث السابقة أن  

DLQR    المستندة إلىWOA    تحقق أفضل استجابة عابرة فيما يتعلق بالتجاوز وتسوية الوقت وجهد

 تحكم أقل من الطرق الأخرى. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 جمهورية العراق 

 وزارة التعليم العالي و البحث العلمي  

 كربلاء   ةجامع

 كلية الهندسة  

   الكهربائية والإلكترونية دسة هنقسم ال

 

   التحسينتحكم ذكي للروبوت قليل النشاط بناءً على تقنيات 

 

في   الماجستير نيل درجة مقدمة الى مجلس كلية الهندسة / جامعة كربلاء وهي جزء من متطلبات   رسالة

   الكهربائيةعلوم الهندسة 
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