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Abstract

This study aims to understand the complexity and control balancing in the
upright position of a three-link underactuated robot system. The Robogymnast
Is one of the important types of three-link systems mimicking human
acrobatics; it composes three joints and three links (arm, torso, and leg,
respectively) powered by two geared DC motors.

A mathematical model for the robot derived using Euler-Lagrange equations.
Since the system is a nonlinear multi-link mechanism requiring a complex
mathematical model considering information accuracy. It presents more
challenges modeling the Robogymnast and dealing with control motion
problems. The Euler-Lagrange formula and Artificial Neural Network (ANN)
model are used to model the nonlinear Robogymnast system. The comparison
results show that the dynamic model obtained by the ANN is significantly
better than the model derived from the Euler-Lagrange formula because the
ANN model accepted the initial deviation of absolute angle for each link up
to 3 degrees. In contrast, the dynamic model derived from the Euler-Lagrange

formula accepted 1 degree and becomes unstable at 3 degrees.

Firstly, a Discrete Linear Quadratic Regulator (DLQR) controller is used to
balance the gymnastic robot in the upright position. The construction of
DLQR depends on the selection of the weight matrices.

Secondly, to find optimum values of the weighting matrices; a swarm
optimization technique called Whale Optimization Algorithm (WOA) is
applied to adjust the weighting matrices. As well as, another optimization
technique is used to find the optimum values of weighing matrices, this

technique is called Aquila Optimization (AO). The evaluation of the best

v



technique has been implemented. The WOA-based DLQR controller achieves
the best result according to the transient response of the relative angles but
consumes higher voltage from the two motors compared to the AO-based
DLQR controller. The first, second, and third links reached a steady state after
1.825 seconds with a minimum deviation (-0.5° and -1.5° for the first and
second links, respectively, and no deviation for the third link). Moreover, the
control voltage of the first motor consumed 7.12V, and the second motor
consumed 2V to achieve the desired response, which is less than the limited
voltage (12V).

Thirdly, a Fuzzy Logic Controller (FLC) was designed to achieve online
tuning to stabilize and balance the system. The result of the FLC showed that
the system consumed more settling time than WOA-based DLQR to be stable
in an inverted position. Therefore, a hybrid controller combining FLC with
WOA-based DLQR was proposed to achieve online tuning with less settling
time for the relative angular position (1.5 seconds) and acceptable deviation
of the links from the upright balancing point (-1.15° and -3.4° for the first and
second links respectively, and no deviation for the third link). The first motor
consumed 6.7 volts of control effort, but the second motor consumed only -
1.5 volts; this was considered satisfactory voltage to bring the Robogymnast
to an inverted position and stabilize it in the upright balancing point within a
suitable duration.

Finally, the comparison among the previous methods demonstrated that the
hybrid system achieves online tuning with a satisfactory response to stabilize
the gymnastic robot vertically. The comparison with previous research
demonstrates that the FLC with the WOA-based DLQR method achieves the
best transient response regarding overshoot, settling time, and less control

effort than the other methods.
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Chapter One: Introduction

Chapter One:  Introduction

1.1 Background

The technological advances of the information technology age have fueled a
growing interest in humanoid robotics. Consequently, various humanoid
robots, such as ASIMO [1], Hubo [2], and Atlas [3], have been developed.
These robots showcase diverse capabilities, including walking on uneven
terrain, climbing ladders, synchronized dancing, assisting elders with
household tasks, participating in sports, manufacturing and assembly, search-
and-rescue missions, and tasks in hazardous environments, among other
applications.

A humanoid robotic system is a robot with a body form constructed to mimic
the human body. Humanoid robots simulate human movements and consist of
rigid links coupled to each other; a joint is the connection point between two
links. Robots possess one degree of freedom when equipped with a single
joint. A robot is considered to have 'n' degrees of freedom if it incorporates 'n’
joints. Therefore, the complexity of a robot is directly tied to the number of
degrees of freedom it possesses. Using actuators simulates human muscles
and cartilage to achieve full-body motions like running, jumping, crawling,
etc. Since these robots are anticipated to work alongside humans and perform
challenging tasks, it is crucial that the control algorithms and planning are
efficient, robust, and capable of real-time execution [2].

This thesis develops a three-degree-of-freedom under-actuated gymnastic

robot based on a triple inverted pendulum (three links and three joints).
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1.2 Problem Statement

Technological developments have spurred an increased interest in humanoid
robotics in recent years. A Robogymnast, a specific humanoid robot, is
designed to mimic and execute gymnastic maneuvers. Previous literature
presented simulations of robot gymnastics in swing and balance motions [4],
[5], [6], [7]. However, it did not emphasize the balancing stage and the
proportionality of results for practical application. The balancing results
exhibited a high overshoot, requiring more settling time to reach the vertical
position, impacting the stability of the gymnastics robot, especially when
exposed to external disturbances, which may cause it to swing again and
return to the downward position.

The main objective is to construct a control system capable of keeping the
pendulum standing with time response specifications more suitable for
practical application and to create a control system capable of handling the
complex, dynamic movements involved in gymnastics. Robogymnast
applications are in various fields, such as: validating different control
algorithms and developing entertainment and sports training. They offer a
valuable tool for studying biomechanics and control systems, performing
tasks that could be dangerous or impossible for humans. Tasks requiring real-
time reaction necessitate control software that operates in real-time with a
short settling time to accomplish these actions reliably. Thus, practical
operation is the most essential specification when developing humanoid robot
control software.

A Robogymnast is a multi-link underactuated system that is a benchmark
system that illustrates various control techniques and is commonly used in

laboratories to perform and verify emerging technologies in control
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engineering. Studying these systems can help researchers explore solutions

for addressing motion problems suffered by disabled and injured individuals

experiencing limb issues.

1.3 Aims and Objectives of the Thesis

The research aims to model, simulate, and develop several methods of

controlling the balancing of a triple-link gymnastic robot.

The above aims will be achieved by performing the research goals as follows:

1.

Evaluate the mathematical models used to describe the gymnastic
robot.

Design and simulate controllers to balance the Robogymnast vertically.
Design an adaptable controller to maintain the Robogymnast balanced
upright.

Applying swarm-based (WOA and AO) optimization approaches,
determine the controllers' optimum parameters.

Evaluate and validate the suggested controllers using a different
swarm-based optimization method.

Develop hybrid swarm-based optimization controllers to design an

intelligent, robust controller.

1.4 Research Methodology

The following approach was used to achieve the goals mentioned above:

Review and understand the most relevant research in the control field
for complex multi-link mechanisms, considering various control
methods to identify and address weaknesses or improve the results

obtained using the most suitable approach to solve the problem.
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e The Euler-Lagrange method and Artificial Neural Network Modeling
are used for derived the dynamic equations and obtain the mathematical
model of the Robogymnast.

e The issue focuses on balancing the Robogymnast in an inverted
position. The Whale Optimization Algorithm and Aquila Optimization
are used to develop the DLQR controller by selecting its optimal
parameters.

e The optimal DLQR parameters are obtained and applied to the
Acrtificial Neural Network Modelling of the Robogymnast, and the
result is compared with the Euler-Lagrange model results.

o Apply the fuzzy logic controller to the optimal model achieved online
tuning.

e A combined FLC controller with optimal DLQR parameters to the
optimal model to obtain a response close to the demand in a real

application.

1.5 Thesis Organization

The remaining chapters of the thesis are structured as follows:

Chapter 2 reviews the problems related to complex multi-link mechanisms
and their applications, such as balancing control, which are discussed with
different control systems.

Chapter 3 covered the Robogymnast system description and derivation of the
mathematical model equation of the mathematical model utilizing the Euler-
Lagrange technique and presented the Artificial Neural Network Model.
Chapter 4 tests the system’s performance with several control strategies

intended to stabilize the system. The controller types employed include
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DLQR, WOA-based DLQR, AO-based DLQR, FLC, and hybrid FLC
controllers with WOA-based DLQR controllers.

Furthermore, a comparison between the suggested control systems was
provided, as well as a comparison with previous research.

In Chapter 5, the thesis results are summarized, the study's contributions are

explained, and recommendations for further research are made.
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Chapter Two: Backgrounds and Literature Review

2.1 Introduction

This chapter provides an overview of the relevant literature related to the
Inverted Pendulum system and its association with under-actuated control
systems. The reviewed literature encompasses a variety of control systems
and incorporates diverse control techniques, with a focus on single, double,
and triple inverted pendulum systems. These systems have found numerous
applications aimed at addressing human challenges. Researchers have
explored and implemented various control techniques specifically to address

the upright balancing issues of inverted pendulum systems.

2.2 Balancing Control Problem

All The control problem of balancing an inverted pendulum represents a
classic problem in the discipline of control. The main objective is to construct
a control system capable of keeping the pendulum standing. To address this
problem, different control strategies have been utilized by the researchers, as
follows:

(A. Z. Alassar, 2010) [8] the focus was on modeling and controlling a robot
arm with five degrees of freedom. The study compared the outcomes of Fuzzy
Logic Controllers (FLC) and Fuzzy Supervisor Controllers (FSC) with
Proportional Integral Derivative (PID) responses. The FSC adjusts PID gains
since PID does not perform effectively in nonlinear systems. FLC outperforms
classical PID controllers regarding time response, and FSC outperforms

classical approaches like Ziegler-Nichols when adjusting PID parameters.
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(S. Sehgal and S. Tiwari, 2012) [9] utilized the Lagrange equation to elucidate
the Triple Inverted Pendulum (TIP) model of the automobile. Subsequently,
the triple inverted pendulum is linearized to provide a Linear Quadratic
Regulator (LQR) controller, which maintains the pendulum in its unstable
equilibrium position on a cart with just one control input. Simulation results

demonstrate successful stabilization by the LQR controller.

(V. R. Molazadeh, A. Banazadeh, and I. Shafieenejad, 2014) [10] applied
intelligent tools for the TIP to tune LQR parameters such as Genetic
Algorithm (GA), Genetic Algorithm with Practical Swarm Optimization (GA-
PS0O), and FLC. According to simulation findings, FLC performs much better

in terms of overshoot, settling time, and parameter change response.

(H. G. Kamil, E. E. Eldukhri, and M. S. Packianather, 2014) [11] used a
Discrete-time Linear Quadratic Regulator (DLQR) to balance the
Robogymnast. The simulation results indicated successful stabilization and

balancing of the robot gymnast.

(H. A. Ismail, M. S. Packianather, R. I. Grosvenor et al., 2015) [12] used
Invasive Weed Optimization (IWO) to find the optimal Q matrix for the LQR
controller. The optimized parameters yielded a substantially shorter settling
period compared to control action without optimization, although there was a
risk of control voltage reaching a saturation limit that could damage the

system.

(D. C. Dracopoulos and B. D. Nichols, 2017) [13] utilized a method to address
the Acrobot's swinging and balancing issues, yielding favorable outcomes,
7
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especially in the swing-up task. However, the balance controller could not

stabilize the acrobot after the swing-up controller was applied.

(N. F. Jamin and N. A. Ghani, 2017) [14] discussed using FLC-PSO to model
a wheelchair with two wheels. The model was tested using an FLC controller,
and the results suggest that the system can be stable in an upright posture with
satisfactory simulation results. The outcome demonstrates that the system
performs better when used with PSO to obtain the system's ideal values for

settling time, rising time, peak overshoot, and peak undershoot.

(H. A. Ismail, M. S. Packianather, and R. I. Grosvenor, 2017) [15] discussed
the efficacy of the multi-objective Invasive Weed Optimization (IWO) in
producing an LQR controller that considers both the cost function and settling
time. They optimized the cost function and settling time values of the Weight
Criteria Method (WCM) using IWO in the initial optimization technique. The
second optimization approach involved a hybrid IWO, which incorporates
fuzzy logic to determine a membership value as the fitness criterion. Then,
trained controllers were subjected to limited disturbances. Despite being
subjected to external disturbances; all controllers could balance the

Robogymnast upright.

(T. Yaren and S. Kizir, 2018) [16] applied LQR and Linear-quadratic-
Gaussian (LQG) to the TIP. Simulation results indicate successful noise

reduction, making LQG control significantly superior to the LQR technique.

(R. Banerjee, N. Dey, U. Mondal et al., 2018) [17] the PID and LQR
controllers were used to describe and control a Double Inverted Pendulum
8



Chapter Two: Backgrounds and Literature Review

(DIP) on the cart dynamic system. Comparing the effectiveness of these two
control systems is the objective of the study. The outcomes confirm the LQR
control approach’s relative superiority over the traditional PID control strategy

for the DIP on the cart system.

(X. Xia, J. Xia, M. Gang et al, 2020) [18] suggested a new algorithm using
Logistic chaotic variables to simplify selecting quantization and proportion
factors in fuzzy controllers. Integrating chaotic variables in the search process
helps find suboptimal solutions faster, improving control of a double-inverted

pendulum model, as shown in simulation results.

(A. F. Ghalib and A. A. Oglah ,2020) [19] focused on applying a fuzzy-PID
(FPID) controller to control an IP to maintain the pendulum arm's upright
position by regulating the cart's location. Several evolutionary optimization
techniques are used to optimize the controller's parameters, such as the GA,
Social Spider Optimization, and ant colony optimization. Results show that

FPID with Social Spider Optimization performs better than conventional PID.

(M. A. Ebrahim, M. E. Mousa, E. M. Said et al, 2020) [20] applied a new Grey
Wolf optimizer (GWO) and PSO for the IP system. The Reduced Linear
Quadratic Regulator and Variable Structure Adaptive Fuzzy controller
parameters are adjusted using the suggested GWO/PSO approach to stabilize
the cart posture and the pendulum angle. Compared to conventional LQR, the
Reduced Linear Quadratic Regulator performs well for both the cart position
and the pendulum angle with fewer parameters needed to achieve the required

response.
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(M. K. Habib and S. A. Ayankoso, 2020) [21] presented the LQR controller
and pole placement design for a DIP model's stabilization. The Q and R
matrices of the LQR controller were tuned using GA and PSO algorithms, GA
and PSO algorithms were used to tune the Q and R matrices of the LQR
controller. When comparing the transient performance of the manually and
GA-tuned LQR and pole-placement controllers, the PSO-tuned LQR

controller performed the best.

(H. G. Kamil, O. T. Makki, and H. M. Umran ,2020) [22] focused on using
the PSO technique to identify the ideal LQR control parameters. These
parameters were used to calculate the state feedback gains, and the IP was

balanced in the upright equilibrium position using the best gain.

(N.-K. Nguyen, V.-N. Pham, T.-C. Ho et al. 2022) [23] addressed the control
of an IP to maintain the rods vertically while regulating the cart to follow a
desired trajectory within an acceptable tolerance. The suggested control
approach combines PSO with two traditional PID controllers. Results from
experiments on a working prototype of the inverted pendulum system and
simulations on a Simulink model indicate the performance and viability of the

control technique.

(N.-K. Nguyen et al, 2022) [24] introduced a novel control approach

for balancing of an IP. The suggested approach combines a modified genetic

algorithm (mGA) with a PD-like fuzzy logic architecture to maximize the

fuzzy logic controller's scaling factors. To improve the IP's balancing control

system, the mGA is used to optimize six important scaling factors that

correspond to two fuzzy logic controllers. The findings from numerical
10
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simulations and actual tests done on a genuine IP system illustrate the
prospective application and efficacy of the suggested control approach

compared to PID and current fuzzy logic alternatives.

(A. Mourad, Y. Zennir, and C. Tolba, 2022) [25] presented a comparison of
integral sliding mode control adjusted utilizing the WOA, radial basis function
neural network, and FLC for the control of the angle position and velocity of
the inverted pendulum system. WOA was used to adjust all the parameters
and effects of those controllers. According to comparison data, integral sliding
mode control based-WOA performs better than other approaches regarding

settling time and overshooting.

(M. Mohamed, F. Anayi, M. Packianather, et al. 2022) [26] designed and
simulated PID and LQR controllers for the Robogymnast. Contrasting the
PID controller's performance with that of the well-established LQR controller,
indicating the PID controller's superior appropriateness for the particular

robot under investigation in contrast to a controller intended for broad usage.

(B. A. Samad, F. Anayi, Y. Melikhov et al, 2023) [27] simulated an LQR/FLC
for the Robogymnast, comparing the performance of a Fuzzy Linear
Quadratic Regulator (FLQR) controller with a conventional LQR controller,
demonstrating the FLQR's more outstanding suitability for the specific robotic

system examined.

(B. A. Samad, M. Mohamed, and G. S. Member, 2023) [28] aimed to improve

the performance of an FLQR by stabilizing the triple-link "Robogymnast"

robotic system through the use of Teaching-Learning-Based Optimization
11
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(TLBO) and PSO techniques. The study's findings suggest that, when used in
conjunction with the Robogymnast robotic system, the FLQR controller and
TLBO algorithm perform better than other controllers and combinations of

algorithms.

(O. Saleem and J. Igbal, 2023) [29] introduced a fuzzy-immune adaptive
system that modifies the Degree-of-Stability (DoS) of a LQR process to
improve a self-balancing mechatronic system's ability to attenuate
disturbances. The closed-loop system's eigenvalues are dynamically relocated
in the left half of the complex plane by the system using pre-configured
control input-based rules, which modify the LQR gains. This makes it possible
to manipulate reaction times and control efforts flexibly as error conditions
vary. Hardware-in-the-loop studies on the Quasar rotary inverted pendulum
system are used to verify the effectiveness of the system, and the results
demonstrate a notable increase in the system's disturbance attenuation

capabilities when compared to the DoS-LQR.

(T.ABUT 2023) [30] used optimum LQR control techniques combined with
classical methods to model and ideally regulate a DIP system on a Cart
(DIPSC). Using the GA, PSO, and GWO algorithms, the Q and R values of
the LQR control approach were determined. Mean-Square-Error (MSE)
performance criteria and settling time were used to examine and display the
graphical results of the evaluation of the DIPSC system using both traditional
LQR and optimum LQR approaches. The purpose of the controls was to lead
the cart to the predetermined balance position and keep the DIP's arms

vertically balanced while it moved. In terms of settling time and MSE error

12
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criterion, the GWO-based LQR control technique fared better than the other

approaches.

(S. Erjon, B. Xhevahir, L. Rame et al, 2023) [31] introduced a method to
develop a real-time control system for a double-inverted pendulum by
combining Proportional-Integral-Derivative (PID) and LQR controllers. Real-
time simulation results demonstrated the successful swinging up and
stabilization of the double inverted pendulum by both the PID and LQR

controllers.

(N. A. Sayer, G. Kamil, and A. A. Al-Moadhen, 2023) [32] addressed the
control of a gymnastic robot's balance using DLQR and LQG control
techniques. The controllers displayed the ideal values for vertical robot
stabilization in a suitable duration of time. DLQR outperformed the LQG
controller, as the latter consumed excessive energy to maintain satisfactory

performance, leading to saturation of the first motor.
Table 2.1 illustrate various control strategies utilized to stabilize and regulate

IP, allowing the pendulum to remain in its upright position, reducing of

oscillations, and enhancing of system responsiveness.

Table 2-1 General overview based on Type of System and Controller

Ref System Type Type of Controller Result

_ Steady state error of motor five
Fuzzy Logic and o
[8] Robot Arm _ was minimized from 0.03 to
Fuzzy Supervisor _
0.001, overshoot size reduced

13
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with Proportional

Integral Derivative

from 0.08 to 0.001and the rising
time for the FSC was 50% less
than PID controller

for the Linear

Quadratic Regulator

Triple
Linear Quadratic Settling time for 01, 02, 63 is
[9] Inverted
Regulator around 3 seconds
Pendulum
Applied intelligent
tools to tune Linear
Quadratic Regulator
_ parameters such as
Triple _ _ _ _
Genetic Algorithm, Settling Time 4% and Over
[10] Inverted ) )
Genetic Algorithm Shoot 0°
Pendulum ) )
with Practical
Swarm
Optimization, and
Fuzzy Logic
_ _ The first and second links
Discrete-time
Robogymn ) _ reached the steady state after 6
[11] Linear Quadratic _ _ _
ast seconds whilst the third link
Regulator _ )
doing that in 9 seconds
Invasive Weed o
o _ Settling time 5.4 sec and
Optimization to find
Robogymn _ ~overshoot 30°, 68° and 10° for
[12] the optimal Q matrix _ o
ast first, second and third link,

respectively

14
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Settling time 1 sec and no

and ant colony

optimization to

[13]  Acrobot Genetic Algorithm
overshoot
Practical Swarm Settling time 2.778 sec for first
[14] wheelchair  Optimization and link and 2.647 sec for second
Fuzzy Logic link
Invasive Weed
Optimization with Settling time 6.37 sec and
(5] Robogymn  Fuzzy Logic to find  overshoot 30°, 70° and 10° for
15
ast the optimal Q matrix first, second and third,
for the Linear respectively
Quadratic Regulator
Triple Linear Quadratic
[16] Inverted = Gaussian and Linear Settling time 2.5 sec
Pendulum = Quadratic Regulator
Proportional Integral o
Double o Settling time 4 sec, overshoot
Derivative and o
[17]  Inverted _ _ 60° for first link and 20° for
Linear Quadratic _
Pendulum second link
Regulator
Double Logistic Chaotic o
_ Settling time 4 sec, overshoot
[18] Inverted Algorithm and 0.12°
Pendulum Fuzzy Logic '
Used Genetic
Algorithm, Social o
Inverted _ o Settling time 2.3803 sec and
[19] Spider Optimization,
Pendulum Overshoot 400920%
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optimize the Fuzzy
Logic with
Proportional Integral

Derivative

Linear Quadratic
Regulator and Fuzzy

parameters are

Proportional Integral

20] Inverted adjusted using the Settling time 4.36 sec and
20
Pendulum Grey Wolf Overshoot 0.0942°
Optimizer and
Practical Swarm
Optimization
Genetic Algorithm
Boubl and Practical Swarm  Settling time 0.7512sec and
ouble
Optimization tuned  1.0245sec, overshoot 0.3094°
[21]  Inverted _ _ _
Linear Quadratic  and 0.0969° for first and second
Pendulum _ )
Regulator and pole-  link respectively
placement
Practical Swarm
Inverted Optimization tuned Settling time 2sec and
[22] : :
Pendulum Linear Quadratic overshoot 0.05°
Regulator
Practical Swarm o
Inverted o Settling time 2sec and
[23] Optimization tuned
Pendulum overshoot 0.2°
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Derivative
parameters
Modified genetic
algorithm with a o
Inverted _ Settling time 2sec and
[24] Proportional
Pendulum o ) overshoot 4°
Derivative -like
Fuzzy Logic
Integral sliding
mode control
adjusted utilizing the o
Inverted o Settling time 2sec and
[25] Whale Optimization
Pendulum ) _ overshoot 0°
Algorithm, radial
basis function neural
network
_ Settling time 15.519sec,
Proportional Integral
o 4.914sec and 3.331sec,
Robogymn Derivative and
[26] _ _ overshoot 8.02°, 1.32° and
ast Linear Quadratic _ _
0.41° for first, second and third,
Regulator _
respectively
Settling time 11.1823sec,
Linear Quadratic 4.1694sec and 2.4428sec,
Robogymn
[27] t Regulator and Fuzzy = overshoot 2.88°, 1.44° and 0.4°
as
Logic for first, second and third,
respectively
Robogymn  Teaching-Learning- Settling time 5.577sec,
[28] .
ast Based Optimization 2.1668sec and 1.9675sec,
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and Practical Swarm
Optimization tuned
Linear Quadratic

Regulator with

overshoot 5.67°, 1.32° and 0.4°
for first, second and third,

respectively

Gaussian

Fuzzy Logic
parameters
Quasar
29] Rotary Linear Quadratic
29 -
Inverted Regulator
Pendulum
Genetic Algorithm,
Practical Swarm
Optimization, and
Double o o
Gray Wolf Settling time 1.5sec for first link
[30] Inverted L :
Optimization tuned and 1.2sec for second link
Pendulum _ _
Linear Quadratic
Regulator
parameters
Proportional Integral
Double o ) o
Derivative with Settling time 2sec and no
[31] Inverted _ _
Linear Quadratic overshoot
Pendulum
Regulator
Discrete Linear overshoot (-4°, 9°, 1.1°), and
Robogymn Quadratic Regulator = settling time (3.208s, 3.233s,
[32] : . : :
ast and Linear Quadratic = 4.16s) for the three links (first,

second, third)
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Table. 2.1 overviews relevant publications on single, double, and triple IP
systems and their applications, focusing on different control strategies. The
research closely related to robot gymnastics includes references [11], [12],
[15] and [32].

2.3 Discrete Linear Quadratic Regulator

A discrete linear quadratic regulator is a vital control unit that controls the
system's response and energy consumption to achieve the reaction with the
lowest control voltage and obtain a stable system. It uses a state space
approach, and since it is not a dynamic system, the system's order is the same
as that of a closed-loop feedback system. DLQR is used to option feedback
gain state [33].

The principle of a linear quadratic regulator is to minimize a cost function as

follows:
] = f(xTQx + uTRu) dt (2.1)
0

Q and R are the weighted diagonal matrix that must be positive definite.

x = (A — BK)x (2.2)

Where A and B State Space matrix derived in section 3.3 and equal to the
ENN weights Wcx and Who respectively that defined in section 3.4 when
using the ENN model.

The feedback control law is as follows:
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u(t) = —Kx(t) (2.3)

K is the gain vector and is given by:

K = R™1BTP (2.4)

Using the Algebraic Riccati Equation below, the value of P can be obtained:

ATP +PA—PBR1P+(Q =0 (2.5)

2.4 Whale Optimization Algorithm (WOA)

In 2016, Seyed Ali Mirjalili proposed the WOA meta-heuristic schema [34].
This algorithm simulates hunting humpback whales using the bubble net
strategy. It specifies using a basic mathematical model. The suggested method
may be executed in three primary phases: encircling prey, exploitation phase
(attacking prey), and exploration phase (searching prey). During the search
and encircling phase, the humpback whales select the agent with the most
incredible score of a random agent (to avoid the local minimum) as a target
point, updating their position with the surroundings of this point [25]. The
humpbacks travel in a circular or spiral pattern toward the target position after

selecting the best agent (as shown in section 2.4.1).
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2.4.1 Pseudo-code of the WOA algorithm

1. Input
e objective function (fitness function), search space boundary,
population size N, number of iterations Tma, number of Variable
No. Variable.
2. Initialization
e Initialize random whale’s population X; (i = 1, 2, ..., n) with search
space boundary.
e Calculate the fitness of each search agent
e X*=the best search agent.
3. while (While T < Tmax)

for i=1: N
for j=1: No. Variable
Update a, A, C, |, and p
if1 (p<0.5)
if2 (|A|<1)
Update the position of the current search agent by the Eq. (2.6)
else if2 (JA[>1)

Select a random search agent (X ang)
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Update the position of the current search agent by the Eq. (2.12)
end if2
else ify (p >0.5)
Update the position of the current search by the Eq. (2.10)
end if;
end for
Check X* within the boundary and amend it
Calculate the fitness of each search agent
Update X* if there is a better solution
t=t+1
end while
4. print X*

Step 1: Initialization

Initially, WOA variables include the number of search agents (No-whales set
to 50 agents). Then, DLQR controller parameters such as Q and R are set with
random values selected by the predefined search space to start the

optimization process, as shown in Table 2.2.

Table 2-2: Parameters of Optimization

Variable Description Value
Number of Variables Number of parameters that should be 8
adjusted by optimization.
Number of agents Number of agent population of solutions 50
Initial Standard Deviation Value Initial input states [3°3°37]
Search Range The search range is founded depending . Q= 1- 10000
on the designer’s experience. R=0.1-5
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Table. 2.1 defines the WOA algorithm's important parameters specified by the

designer's experience.

Step 2: fitness function calculation

The WOA algorithm obtains the Q and R that achieve the best performance
to balance the system upright. The calculated gain by using DLQR for each
search agent and choosing the one with a minimum deviation of the first link
from the upright balancing point with minimum overshoot and settling time

as a leader agent for the next step (update the position).

Step 3: update the position

a) Encircling

The humpback whales first begin the encircling process after discovering their
prey, but the ideal location inside a specific search space is unknown; thus,
this algorithm selects the current prey position as the best prey position
(optimal solution), after which the other agents will update their positions
following the best solution. Equation (2.6) and (2.7) provide the mathematical

equation of the encircling process [34].

D = |CXpese (£) — X ()] (2.6)

X(t+1) =Xppss () —A.D (2.7)

A and C are coefficient vectors.
t: denote the current iteration.

X: location vector.
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Xpest + 1S the location vector of the best currently-found solution that should

be adjusted in each loop if there is a better solution.

A=2a.r—a (2.8)

C =2r (2.9)

a: decrease linearly during the period of iterations from 2 to 0.

r: a random vector in [0,1].

b) Attacking prey

This step explains the bubble-net method. Humpback whales attack and
surround their prey simultaneously with a narrowing circle and a spiral
movement shape toward the prey (target solution). This algorithm suggests a
50% chance of picking between the two types of movement to mimic this type

of behavior. Equation (2.10) provides the bubble-net technique.

Xpest (£) — A.D if p<05

2.10
D ePtcos(211) + Xp o () if p=0.5 (210)

X(t+1):{

[: a random number between [-1 1].

P: a random number with a range [0 1].

b: a constant used to describe the logarithmic spiral form.

Were D = |Xpos: (t) — X(t)| that described the distance between the current

agent and target.

¢) Exploration (searching for prey)
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This step discusses the exploration capability of the WOA algorithm. For
describing the exploration, the search agent moves far away from the goal
(Reference whale) if the value of A is more significant than 1 or less than -1.
In contrast to exploitation, each agent's location is updated concerning an
agent that is selected randomly (when |A |>1); this is explained in the equation.
(2.11) and (2.12).

D =|CXrgna — X | (2.11)

X(t+1) =Xygng—A.D (2.12)

Xyana; 1S @ random position vector (a random whale selected from the present

population).

Fig. 2.1 demonstrates the flow chart of WOA steps.
2.5 Aquila Optimization (AO) Algorithm

Abualigah, L. et al. proposed the AO algorithm in 2021 as a typical SI method
that mimics the hunting behavior of the Aquila [35]. Aquila Optimizer (AO)
focuses on three significant steps, another population-based algorithm:

initialization, exploration, and exploitation, as shown in section 2.5.1 [36].
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Set the values of the search agent range of Q and
R, No-Whales=50.

v

Randomly choose 50 values (number of search agent whales (n)) from the Q and R search

space to get the initial population.

v

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each whale’s value of
Q and R by simulating the dynamic behavior of Robogymnast during balancing upright position

equation (2.2).

v

Obtain the fittest position (with a minimum deviation of the links from the upright balancing point

with minimum overshoot and settling time) as a leader to update the position for the next step.

=3

A

While T < Tmax

The whales first begin the encircling prey (leader position that has the fittest value) by using
equations (2.6) and (2.7).

v

The humpback whales attack and surround their prey simultaneously with a narrowing circle and a
spiral movement shape toward the prey (target solution). The exploitation phase is achieved by using
equation (2.10).

v

Whales update the position of a search agent in the exploration phase according to a
randomly chosen search agent instead of the best search agent found (equations (2.11) and (2.12)),

In contrast to the exploitation phase.

v

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each
whale’s value of Q and R by simulating the dynamic behavior of Robogymnast during balancing

upright position (equation 2.2).

v

As a leader, obtain the fittest position (that has a minimum deviation of the first link from the

upright balancing point with minimum overshoot and settling time).

Tuning of the values Q and R matrix by Whale Optimization

Fig. 2.1. Flow chart of the whale optimization.
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2.5.1 Pseudo-code of the AO algorithm

1. Input

e objective function (fitness function), search space boundary,
population size N, number of iterations Tmax, Number of Variable
No. Variable.

2. Initialization
e Initialize random Aquila’s population X; (i =1, 2, ..., n) with
search space boundary.
e Calculate the fitness of each search agent
o Xpes=the best search agent.
3. while (While T < Tmax)

for i=1: N
for j=1: No. Variable
Update parameters X, Levy(D), G;, G2, X, and Y.
Step 1: Xi: Expanded Exploration
Update the position of the current search agent by the Eq. (2.16)
Kpest(t)=X1 (t+1)
Step 2: X,: Narrowed Exploration
Update the position of the current search agent by the Eq. (2.18)
Xpest(t)=X2 (t+1)
Step 3: X3: Expanded Exploitation
Update the position of the current search agent by the Eq. (2.25)
Xpest(t)=X3 (t+1)
Step 4: X4: Narrowed Exploitation
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Update the position of the current search agent by the Eq. (2.26)
Kpest(t)=X4 (t+1)
End for
End for

Check Xbest within the boundary, amend it, and calculate the fitness
of each search agent

Update Xpes If there is a better solution
t=t+1
end while

4. print Xpest

Step 1: Initialization

The population of possible solutions (Xj) is generated randomly between the
upper UB; and lower LB; boundary as shown in equations (2.13) and (2.14)

[35] and initialed another parameter of AO as shown in Table 2.2.

r X1,1 Xy X1, Dim-1 X1, Dim ]
X211 o Xpf X2, Dim
xi’j
X = . (2.13)
XN-1,1 " XN-1,j XN-1, Dim
[ Xn1 " XN, XN, Dim-l XN, Dim
X;; =rand (UB; — LB;) + LB;,i = 1,2,....N, j = 1,2,..Dim (2.14)
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Where m is the number of agents of the population, Dim is the number of
variables that should be adjusted by optimization (Q and R matrix), and rand

is the random number between 0 and 1.

Step 2: Exploration
In this step, the optimization generates random agents for exploring different
search space regions. Equation (2.15) described expanded exploration where

the Aquila identifies the area of the prey and chooses the optimal hunting area:
t
X (64 1) = X (0 (1= 2) + (X (6) = Xoeq (6) » 1and) (2.15)

X, (t) = %zfiv:l X;(t),Vj = 1,2, ..., Dim (2.16)

Where Xyt is the best solution of the adjusted variable until t™ iteration, (1-
t/T) controls the search during the exploration phase, T is the total number of

generations, and Xy is the average of the search agent.

In the second strategy of exploration (narrowed exploration), the Aquila flies
in a spiral above the prey before attacking through a quick glide. The narrowed

exploration is described as follows:
Xo(t+ 1) = Xy (t) Levy(D) + Xz(t) + (y — x) * rand (2.17)

At the i"iteration, Xg(t) is a random solution selected from the interval [1 N]J,
the dimension of space is D, and Levy (D) is the distribution function for levy
flights and calculated as follows:
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uo
Levy (D) =s — (2.18)

|v|f
Where u and v are random numbers between 0 and 1, s is a constant value set

to 0.01, B is a constant set to 1.5, and o is determined by applying equation

(2.18):
['(1 + B)sin (%)
r(2F) p2 (5

o= (2.19)

The spiral shape in the search is shown in equation (2.16) using the variables

y and X:
y =1 cos (0) (2.20)
x =1 sin (0) (2.21)
r=r+U+D; (2.22)
3w
0, =— (2.24)

The value of U is a small number fixed to 0.00565, and the value of r; ranges
from 1 to 20 for a predetermined number of search cycles. D; consists of

integers from 1 to the search space's length (Dim), and ® 1s a small number
set to 0.005.
Step 3: Exploitation
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In this step, AO exploits the target's selected region to get close and attack the

prey, as described in the following equation.

X3(t + 1) = (Xpest (1) — Xy (£)) @ — rand + ((UB — LB) rand
+ LB)& (2.25)

Where o and 6 are small values between 0 and 1.
When the Aquila approached the prey, it attacked it over the land following
its stochastic movements. Equation (2.25) provides a mathematical

representation of this behavior.

X4yt +1) = Q F Xpes (t) — (G1 X(¢) rand ) — G Levy(D)
+ rand G, (2.26)

Equation (2.26) is used to calculate a quality function called QF that is utilized

to balance the search strategies.

__ ,2rand-1

Qf - t (l—T)Z (227)

Equation (2.27) is utilized to generate Gi, which represents various AO

motions used for tracking the prey through the elope.
G, =2rand —1 (2.28)

G, represents a parameter that decreases from 2 to 0, and the following

equation is used to update it:

G, =2 (1 - 5) (2.29)
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Fig. 2.2 demonstrates the flow chart of the Aquila optimization algorithm.

2.6 Fuzzy Logic Control (FLC)

In 1965, Lofti Zadeh suggested fuzzy logic, essentially based on the concept
of the fuzzy set. Fuzzy logic builds a controller based on expressions instead
of equations [37]. It mimics human expertise by defining a fuzzy set as a class
of objects with a membership grade continuum that may be described by a
membership function that assigns an actual number between [0,1] to each
point, where 1 denotes a greater degree of membership, and 0 is a lower
degree, making it a desirable method of control for issues that are challenging

to measure mathematically [38], [39].

To build a fuzzy controller, first specify input variables; after understanding
the system, we found that the output consists of three angles, three angular
velocities, and two inputs, represented by the voltages of the two motors.
When designing the DLQR controller, we observed that the responses to the
three output angles change between -3 and 3 and that the angular velocities of
these angles change between -10 and 10. whereas the input voltages change
from -10 to 10. Therefore, the range of inputs and outputs in the design of the
fuzzy system was chosen based on these results. Then, define the membership
functions' number and shape for inputs and output. The two inputs, as well as
the output, may have the following linguistic variables: Positive-Big (PB),
Positive-Medium (PM), Positive-Small (PS), Zero (Z), Negative-Big (NB),
Negative-Medium (NM), and Negative- Small (NS). There are several
different kinds of membership functions, including Gaussian, Triangle,
Gaussian two, and Trapezoidal membership functions [40]; all of these types

have been applied to the system, but the triangle membership function was
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Set the values of the search agent range of Q and
R, No-Agent=50.

v

Randomly choose 50 values (number of search agent whales (n)) from the Q and R search

space of get the initial population.

v

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each whale’s value of
Q and R by simulating the dynamic behavior of Robogymnast during balancing upright position

equation (2.2).

v

Obtain the fittest position (with a minimum deviation of the links from the upright balancing point

with minimum overshoot and settling time) as a leader to update the position for the next step.

]

A

While T < Tmax

Update Xn (1), X, Y, G1, G, Levy(D), etc

yes

yes & No

No

yes

No

Expanded Exploration
Update the position of
the current search agent
by the Eq. (2.16)

Narrowed Exploration
Update the position of
the current search agent
by the Eq. (2.18)

Expanded Exploitation
Update the position of
the current search agent
by the Eq. (2.25)

Narrowed Exploitation
Update the position of
the current search agent
by the Eq. (2.26)

o e

ru‘
v

Evaluate the fitness (compute the feedback gain using the DLQR controller) of each

whale’s value of Q and R by simulating the dynamic behavior of Robogymnast during balancing

upright position (equation 2.2).

v

As a leader, obtain the fittest position (that has a minimum deviation of the first link from the

upright balancing point with minimum overshoot and settling time).

[
Tuning of the values Q and R matrix by Aquila optimization

Fig. 2.2 Flow chart of Aquila optimization algorithm
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selected above the other forms of membership functions because it produces

smooth inputs and outputs with less control effort required at each stage (as

shown in Fig. 2.3). So, the fuzzy controllers were created using 49 rules (as

shown in Table 2.3). Seven membership functions with a base of 49 rules were

used to develop the appropriate system tuning of the FLC to stabilize the

model.
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Fig. 2.3 Membership function with two inputs and one output.

Table 2-3 Fuzzy Logic rules base

ele” NB NM NS Z PS PM PB
NB NB NB NB NM NM NS V4
NM NB NB NB NM NS Z PS
NS NB NM NM NS Y4 PS PM
Z NM NM NS Z PS PM PB
PS NM NS 4 PS PM PM PB
PM NS Z PS PM PM PB PB
PB Y4 PS PM PM PB PB PB
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Chapter Two: Backgrounds and Literature Review

2.7Summary

A review of different designs of single and multi-link underactuated systems
has been presented. This chapter gave an overview of various controller
methods that have been used to satisfy different types of complex n-link robot
system locomotion focusing on the literature for balancing control. In
addition, the literature of using an optimization technique to achieve the
control performance has been presented. In the next chapter, the description
of the Robogymnast system is given and a mathematical model for the

Robogymnast will be derived.
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Chapter Three: The System Description and
Mathematical Model

3.1 Introduction

The Robogymnast system description and its mathematical model derivation
will be discussed in this chapter. According to the actuation level, the
mechanical system is divided into three essential categories. The first one is
called a completely actuated system when the system has the same number of
actuators as the DoFs, and each is controlled independently [41], [42], [43].
The second one is called an over-actuated system when it has more actuators
than the DoFs [44]. The third one is called an underactuated system when it
has fewer actuators than the DoFs [45]. The Robogymnast has three links and
three joints, so it has three degrees of freedom (three angles). The first joint is
passive, while the second and third are actuated. The underactuated
mechanical system provides several benefits, such as less weight, less

tendency to break down, and lower energy use [46], [47].

The rest of this chapter is organized as follows: A description of the system is
presented in Section 3.2. Section 3.3 demonstrate the system's state space
model derivation from the Euler-Lagrange equation. Section 3.4 determines
the EIman neural network modeling. Finally, section 3.5 provides a summary
of the chapter.

3.2 System Description

The Robogymnast system, illustrated in Fig. 3.1. It is designed to mimic

human acrobatics and modeled as a three-link under-actuated pendulum. The
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physical specifications of Robogymnast are carefully tailored to closely
mimic the movements of a human gymnast gripping a freely rotating high bar
with a tight grip. Each link in the system corresponds to a specific human body
part or group of body parts. The first link represents the arms, excluding the
elbows and wrists, while the second represents the head and torso. The third
link represents the legs. A potentiometer is mounted on each joint's steel shaft
to measure the links' relative angles. The second section of joints 2 and 3
consists of the output shaft of the power unit, which is a DC motor with a
gearbox [4], [5].

3.3 Robogymnast Mathematical Model in the Upward Position
Derived by Euler-Lagrange

The Robogymnast is shown schematically in Fig. 3.2. It is considered a TIP
with an unstable balance state and derived using the Euler-Lagrange formula.
The Euler-Lagrange method is the most commonly used technique for
obtaining the dynamical equations of several dynamic systems. The essential
part of the Lagrange equation is achieving the total system's potential,

dissipation energy, and kinetic energy.

The Euler-Lagrange equations [48] and [49] are used to derive the

mathematical model:

d /0K JK oD 0P ..
_ =T, i = intger number (3.1)

—(= +—+
dt\ag,) a6, " a6, 06
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Arms

! |
Tachometer —

Shoulders

S

Motor/gearbox

&
E Legs
&

/.://@///////////////////'/JL/-7E

Fig. 3.1 Hardware components of Robogymnast [5]

Fig. 3.2 Robogymnast schematic in the upright posture [5]
38



Chapter Three: The System Description and Mathematical Model

K is the kinetic energy, P is the potential energy, and D is the dissipation
energy. It stands for the angle of the respective link, calculated concerning the

vertical line, and T; denotes the torque related to it.

2

( . )
-1
I,60% + m; T z lisin (8y) + a;sin (6;) +
1 3 k=i-3
K= Ez < ERNCY)
i=1 i-1
T Z [, cos (6y) + a;cos (6;)
L k=i-3 J
3 i-1
P = Z m;g | ajcos (6;) + z licos (6y) (3.3)
i=1 K=i-3
=
D= Ez (ci(6; — 6;-1)%) (3.4)
i=1

l; is the i link's length, m; is the i link's mass, I; is the moment of inertia
around its center of gravity, a; is the i link's center of gravity, c; is the it
joint's viscous friction coefficient, and the acceleration brought on by gravity
is known as g.

The torques given to the second and third actuated joints have an impact on
the first joint, which is underactuated. The following equation represents the

torques of the two DC motors at the second and third joints:
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Tm1 == G1u1 - Ipl(éz - 91) - Cpl(gz - 91) (35)
Tmz == G2U2 - Ipz(é3 - 92) - sz(ég - 92) (36)
were

Tl = _Tml, TZ = Tml - Tmz, T3 = Tmz

The input voltage to the DC motors is represented by ul and u2 (jul] and |u2|

< 10V). G; is the iy, motor's static gain, I, is the iy, motor's moment of inertia
reflected at the gearbox's output shaft, and C,_ is the i motor's viscous friction

coefficient reflected at the gearbox's output shaft.
The total potential energy of the system is described as follows:

P = g[mya,+m,l; + myli]cos (6,) + g[m,a, + msl,]cos (6,)

+msgascos (63) (3.7)

In addition, the total dissipation energy of the system is described as follows:

1 . 1 . 1 . . .
D = E[Cl + C2]912 + E[CZ + C3]622 + EC38§ - 629192 - C36203 (3.8)

The total kinetic energy of the system is as follows:
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K

1. . : : 1 :
E [11612 +12922 + 13932] + E [mla% + mzl% + m3l%]912C052 (61)

1 .
+5 [a3 + 212]62sin? (6,)

1 .
+§ [m,a3 + m3l5]62cos? (6,)
+[m,l a, + m3lll2]9192cos (61)cos (6,) (3.9)

+—[a3 + 13]62sin? (6,)

N =

+[l1a + 111,16, 6,sin (6;)sin (6,)
1 . 1 ..
+§m3a§t932cos2 (65) + Ea%@%sinz (65)

By resolving (3.1) for each system coordinate [0; 6, 03], the motion equations
of a system can be obtained as follows:

d<6K> 6K+6D+ aP 0 (3.10)
dt\ag,) 96, a6, 96, " '
d(OK) 6K+6D+6P 0 (3.11)
dt\sg,) 96, a4, 046, ° '

d(@K) oK oD 0P

—|— ] +—+-—=T 3.12
dt\og,) 96; ad, 065 ° (3-12)

Equations (3.7), (3.8), and (3.9) can be substituted for Equations (3.10),
(3.11), and (3.12) to produce three differential equations that describe the
system dynamics. The differential equations are nonlinear and can be

linearized about the upward position (6;= 0) to simplify the control system
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analysis and design. Hence, the motion equations of the system are expressed
as follows:

.o

[I, + m;a? +m, 1% + m3i? + Ip;16; + [m,lia, + mslyl, — Ip,10,
+[m3l133]93 + [C1 + CZ + Cp1]91 + [_Cz - Cp1]92 (313)
+[—gm,a; — gm,l; — gm3l;]16; + Gyu; =0

.o

[m,lia, + mglyl; — I131]é1 + [I; + mza% + mslg + Ip; + Ip;]0,
+[—Ip; + m3la3]0; + [-C, — Cp,]6,

' _ (3.14)
+[C; + Cs + Cp; + Cp,10, + [-C5 — Cp, 105
+[—gm,a, — gm3l,]0; — Gyuy + Gyu, =0

(15 + m3aj + Ip2]6s + [msloas — Ip,]6; + [msla;]6, (3.15)

+[-Cp, — C3]0, + [Cs + Cp,03 + [-mza3g]0; — Gou, = 0

The linearized continuous time model is represented as follows:

_ éi1 _ 91 B 0, _Tu 0
M92+N92+P92+GL1=F]
6,1 Lol 19 © Lo
Were
]1 + Ipl lle - IPl l1M3
M= UMy +1,, Jo+1, +1,, LMs—1I,
l1M3 l2M3 - Ipz ]3 - Ipz
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C1+C2+Cp1 _CZ_Cp1 0
N: _CZ_Cp1 C2+C3+Cp1+cp2 _C3_Cp2
0 _C3 - sz C3 - sz
P—-[ 0 -Myg O
0 O _M3g

G, 0

G~ == —1'1 fz]

0 _Gz

Were

Ml == m131 + m2l1 + m3l1

MZ == mzaz + m3l2

M; = a3z m;

J1 =1L + myaf + (m, + my)l2

J, =1+ m2a§ + m3l%

J3 =13+ m3a§

The linearized continuous model can then be rewritten using the relative angle

gi. Potentiometers are used to measure these angles. The relationship between

the relative angle g; and the angle 0; is described below:
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1 0 O
W=[—1 1 0],9=[ ]andq—[qzl
0 -1 1

d1 0,
q = lqz] = lgz - 91] = W9
q3 93 - 92

Each 0 in (3.16) is changed to W™1q in the following step. Hence, we may

Then

rewrite this equation as follows:

g1 d1

MW= |d, | + Nw1|q, |+ Pw1 qz +G[ ]_ (3.17)
qds3 q3

And then:

q1 q1 d1 U
Go| = —WMINW ™ |g,| - WM™LPW™1 [qz | - WM~1G™ [uz] (3.18)
qds qds3 ds

The state space representation that is derived based on the relative angle is

defined as follows using (3.18):

X = Ax + Bu = 03 I ]X-l—[ O3

—-wM-lpw-1 —wWM-INW? —WM~™ 1G] ] (3.19)
y=Cx=[ly Ou]x

Were
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I
oo or
cor o

o r OO

0
0
0
1

Here, the output vector is y = q.

y O4xp =

o O O O

g 0
0 ,03x2 = |0
0
0

0
0
0

The numerical model of the Robogymnast is calculated by substituting the

values of the parameters described in Tables 3.1 and 3.2 into (3.19).

Were

Table 3-1:Values of parameters for Robogymnast [5]

Link 1 Link 2 Link 3 Units
a, =0.0426 a,=0.138 a;= 0.065 m
[, =0.155 [,=0.180 [,=0.242 m

Cc, =0.0172 C,=0.0272 C,=0.035 Nms
m,=2.625 m,=0.933 ms =0.372 Kg

1,=0.014 1, =0.018 1,=0.002 Kgm?

Table 3-2:Values of parameters for Motor [5]

45

Motorl Motor2 Units
Cp1=7.73 Cpp =773 Nms
I, =0.0358 I, =0.0358 Kgm?
k, = 246:1 k, =110.6:1 Unit less
G,=1.333 G,=0.625 Nm/V
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
36.42 035 —-0.21 -0.2 88.38 9.17
—13.10 22.06 2.23 0.20 -—168.29 7.70
L —2.14 1.50 5.68 0.02 7.69 —201.45
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0 0
8 8 1000 0 0
B=1_1519 —0.74'C=8 (1) (1) 8 8 8
2892 —0.62
[ 132  16.21.

The continuous time model's upright eigenvalues are depicted in (3.19). as
follows:

[-166.8506 —203.1990 —5.4598 5.3762 0.1662 0.0270]

The system looks unstable based on the eigenvalues above because three

positive characteristic roots exist.

The system controllability matrix is:

CO=[B AB A?B A3B A*B ASB]

The CO matrix's rank, as determined by the MATLAB command rank(CO),
IS 6, meaning that all six states are achievable with the correct input provided

to the system via u(t) [50]. Therefore, total control over the system is possible.

The system's observability matrix is:

OB=[C CA CA* cA® ca* cas)”
With the MATLAB command rank(OB), the OB matrix's rank is 6, meaning

that each of the six states can be seen via linear combinations of the output
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variables y(t) [6]. Thus, the entire system can be observed. Based on the
preceding analysis, it can be inferred that the system's linearized model, as

shown in equation (3.19), is both observable and controllable. Consequently,

the system can be controlled by applying the controller.

By discretized (3.19) using MATLAB® software with a sampling period of

25 milliseconds (obtained practically in [47]) to produce the discrete-time

model of the Robogymnast:

x(k +1) = Agx(k) + Byu(k)

y(k) = Cax(k)

were

1 1.0100
—0.0015
—0.0003

0.7761
—0.0771

.—0.0134

0.0024
1.0025
0.0002
0.2334
0.1298
0.0122

0.0002
0.0003
1.0006
0.0240
0.0143
0.0285

—0.0017

0.0033
—0.0000
—0.0895

0.1696

L—0.0003

—0.0001
—0.0000
0.0016
—0.0052
—0.0001

0.0800 -

~

Three unstable eigenvalues (outside the

model shown in (3.20) are listed below:

47

0.0250
0.0000
0.0000
1.0069
—0.0003
—0.0001

O O O K
oS O - O

unit circle) for the discrete-time

0.0101
0.0059
0.0002
0.5232
0.0158
0.0020

o R OO
o O O
o O OO

(3.20)

0.0012
0.0002
0.0049
0.0646
0.0021
0.0068-

o O O O
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[0.0156 0.0062 1.1439 0.8724 1.0042 1.0007]

3.4 Mathematical Model in the Upward Position Derived by
Elman Neural Network (ENN)

Robogymnast is regarded as a TIP in an unstable position for balancing model
functions. The Euler-Lagrange formula was used to derive mathematical
modeling. The Euler-Lagrange method is the most common technique for
obtaining dynamical equations of several rigid systems [47]. Mathematical
modeling presents an estimation of real-world systems. However, as the
system's complexity rises, a mathematical model loses accuracy because
modeling is a procedure of simplifying and deducting, and information about
a system is lost by simplification. The gymnastic robot is a nonlinear multi-
link under-actuated mechanism that demands a complicated mathematical
model with the accuracy of information taken into account. Neural networks
are commonly used in nonlinear system modeling applications. Ismail et al.
existing model was enhanced using an artificial neural network, as shown in
Fig.3.4.

The following equation can be used to represent the ElIman neural network
(ENN) model:

X(k) = AgX(k—1) + ByU(k — 1) (3.21)

Y(k) = C X (k) (3.22)
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Hidden Layer

Input Layer Output Layer

—

T

Context Layer

*0 00

Fig. 3.3 Elman Neural Network model of the Robogymnast

X represents the state, while Y represents the output, precisely the relative
angular positions (g1, g2, gs) of links 1, 2, and 3 from the balancing point.
Additionally, we have U, which represents the input for the model. U consists
of two components, namely the input voltages u; and u,. These voltages,
limited to a range of |ui, uz| < 10V, are the control effort input for the DC

motors at joints 2 and 3.
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Agq
0.99 —2.43e73 —2.34e * 249e7? 1.0le ? 1.20e73]
1.49¢73 0.99 —2.72¢e % 3.78¢75 588e3 2.15¢7*
_| 2.55e™* —2.22¢7* 1.00  530e™® 2.15e™* 4.95e¢73
0.77 0.23 2.39¢7? 0.99 052 6.37e72
—7.59¢72 0.13 14372 2.64e~3 1.55e7% 2.0le73
[—1.32e72 1.21e7?> 2.85e%2 3.97e * 2.05e 3 6.55e73.
—2.91e™3 —1.62e~*
-3 -5
—5.51e_5 —2.94@_3 10000 0
B :—6.268 2.71e c.=lo0 1.0 0 0 0
a —0.15 —-8.61e3|" ¢ 00100 0
0.283  —3.08¢7*
L —6.55¢* 0.13

The results obtained in research [5] were applied to the system practically;
when input and output data were available for several cases, the researcher [6]
was able to extract the state space of the system; this is the simple concept of

a Neural Network (for the different types of networks used).

Chapter four applies the controller to the stat space derived from the Euler-

Lagrange and EIman Neural network and compares the results.

3.5Summary

A description of the system is discussed in this chapter. The mathematical
model of the system’s derivation is illustrated in the upright position. This
chapter demonstrated the step-by-step derivation of the system’s state space
model from the Euler-Lagrange equations and the Elman neural network

modeling. The calculated state space is used in the simulation of the system
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to understand the behavior before being implemented in real; this is discussed
in Chapter Four, where different control methods will be applied to the

system.
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Chapter Four: Controller Design with Different Control Strategy

Chapter Four: Controller Design with Different Control
Strategy

4.1 Introduction

This chapter discussed the design of different controllers to control both the
states and control effort voltage, including three angles and two control input
voltages. Several proposed controllers, including DLQR, WOA-based DLQR,
AO-based DLQR, FLC, and FLC with self-tuning-gain via WOA, all intended

to achieve system stability.

4.2 Results of DLQR Applying a Mathematical Model Derived
from the Euler-Lagrange

The construction of DLQR parameters is based on weight matrices, and the
most challenging part of designing a DLQR controller is the adjustment of the
weight matrices parameters, which is often adjusted by repeating trial and
error method. The matrices Q and R are configured as diagonal matrices. Q

and R matrixes obtained by the trial-error method (see Appendix A) as below:

50 0 0 0 0 07
0 100 0 O O O
_10 0O 70 0 O O _[0.1 O
0= 0 0 0 60 O O'R_[O 2]
0 0 0 0 20 O
L0 0 0O 0 0 30
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The controller is applied when the initial deflection of angles equal to q;=1",
g2=-1°, and gs=1". These angles represent the estimated maximum deflection
that the Robogymnast can achieve before the system loses the ability to restore
it to a balanced upright configuration [5]. Fig. 4.1.(a) Demonstrates that the
settling time of three relative angles is 5 seconds. The deviation reaches 8.7
degrees, —3.8 degrees, and 1.2 for the first, second, and third link. Fig. 4.1.(b)
shows the control effort consumed by two motors, observed that the value of

two motors is satisfactory and under limited voltage.
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Fig. 4.1 Time response with initial g1=1", g,=-1", gs=1" of the Euler-
Lagrange formula. (a) Relative angle 1, 2, 3 (b) Control effort 1, 2.

The system becomes unstable when the initial is set to 3°, as shown in Fig

4.2,

Angle(degree)
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Fig. 4.2 Time response with initial q;=3", 9.=3", q3=3" 0 of the Euler-
Lagrange formula. (a) Relative angle 1, 2, 3 (b) Control effort 1, 2.
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4.3 Results of DLQR Applying a Mathematical Model Derived
from the EIman Neural Network (ENN)

The project's observable results are the state response and the control effort
(control input voltage). The adjusting process is employed when the initial
deflection of absolute angles equals q:=3°, 9,=3°, and g3=3°. These angles
represent the estimated maximum deflection that the Robogymnast can
achieve before the system loses the ability to restore it to a balanced upright
configuration [6]. As shown in Fig. 4.3(a), the first, second, and third links
consumed a setting time of 7 seconds to reach the steady state. The first link
has a deviation of 0.8 degrees and no deviation from the third link. However,
the second link has a deviation of -3.3 degrees. The first motor consumed 3V,
and the second motor consumed 0.3V to achieve the desired response, which

was less than the limited voltage (12V), as shown in Fig. 4.3 (b).
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Fig. 4.3 Time response with initial g:=3", 9,=3", 93=3" of the ENN model. (a)
Relative angle 1, 2, 3 (b) Control effort 1, 2.

The conclusion from Fig. 4.1, Fig. 4.2, and Fig. 4.3 is that the state space
specific by the ENN model is much better than the state space derived by the
Euler-Lagrange formula because the ENN model accepted initial deflection
of absolute angles reach 3 degrees where the state space that derived by Euler-
Lagrange formula accepted initial deflection one degree also ENN model is
considered closer to the actual practical application.

The Robogymnast system's dynamic model shows that the system is in sixth
order and contains two inputs. So, the size of the matrix Q is 6*6, and matrix
R is 2*2. The cost function clarifies that Q and R define the priority level
assigned to each state and input. That is, a big valued Q matrix (with an
accepted range specific to the designer's experience) and a small valued R
matrix indicates that the changes in the state matrix will be amplified
compared to the changes in the input matrix. This decision results in a
controller responding more sensitively to system states than to control input.

The rationale for this decision is that stability is the primary design criterion,
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so stability is determined by the system states. Since the input values are given
a small weight, this could result in actuator saturation. Extensive controller
adjusting is therefore required to increase the controller's stability range.
Although the system is stabilized (using trial and error), several reasons exist
to increase the controller's capabilities. The link's displacement may go over
the limitations of stability range in actual application. The second reason is
that noise has yet to be incorporated into the models during operation, and the
system will become more unstable by adding noise. The tests were carried out
by individually varying the Q matrix while keeping the other Q and R
parameters constant at 1, which makes it possible to calculate the individual
effects of every value in the Q matrix on the maximum angular displacement.
Then, to modify control efforts, vary R and set Q at 1(see Appendix A). This
process consumed Time, inaccurately, and effort [51].

Based on the previously mentioned reasons that have been proven through
experience and to solve them to get a good response, Optimization will be
used (this discussion is in the next section). The Optimization technique is

responsible for finding a suitable value for Q and R (see Fig. 4.4).

Set point Control effort[ Gymnastic Robot | Output
;Q System

|  Objective function

optimization

a1lozja3l aalas | as |R1 |R2

Feedback gain

Fig. 4.4 Block diagram for optimization-based DLQR controller.
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4.4 Results of Whale Optimization Algorithm

The WOA algorithm is utilized to discover the best possible solution globally
for the Linear Quadratic Regulator (LQR) controller. The objective is to
minimize both the time it takes for the Robogymnast to transition from an
unbalanced inverted state to a balanced upright state and the voltage required
for this transition. The matrices Q and R are configured as diagonal matrices.
Q and R matrixes obtained by the WOA algorithm and the adjusted value after

optimization as below:

-362.02735 0 0 0 0 0
0 1000 0 0 0 0
0= 0 0 7605.4042 0 0 0
B 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 54.048495.
0.1 0
k= [ 0 3.9882462]

The optimization is employed when the initial deflection equals q:=3°, 9,=3°,
and g;=3°. As shown in Fig. 4.5 (a), the first, second, and third links reached
steady after 1.825 seconds with minimum deviation. Moreover, as
demonstrated, the control voltage of the first motor consumed 7.12V, and the
second motor consumed 2V to achieve the desired response, and this is less
than the limited voltage (12V), as shown in Fig. 4.5 (b).
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Fig. 4.5. Time response after WOA with initial q;=3", 9.=3", 93=3".
(a) Relative angle 1, 2, 3 (b) Control effort 1, 2.

The convergence curve in Fig. 4.6 is getting closer to 1.825 sec time to
reach0.001degree steady-state error of all relative angles after 13 iterations,

which indicates the speed WOA of reaching a steady state.
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WOA Convergence Curve
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Fig. 4.6 Convergence curve of WOA

4.5 Results of Aquila Optimizer

The AO algorithm is utilized to discover the best solution globally for the
DLQR controller. Q and R matrixes obtained by the AO algorithm and the

adjusted value after optimization as below:

1 929.32223 0 0 0 0 0
0 397.93419 0 0 0 0
_ 0 0 5715.4537 0 0 0
0= 0 0 0 13.736104 0 0
0 0 0 0 35.812884 0

0 0 0 0 0 9.6405528-

R = [0.76390393 0 ]
0 3.3013285

The first, second, and third links reached a steady state after 3 seconds, with

the maximum deviation in the second link reaching -2.75 degrees, as shown
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in Fig. 4.7 (a). Moreover, the first motor consumed 4V, and the second

consumed -2V to achieve the desired response, as shown in Fig. 4.7 (b).
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Fig. 4.7 Time response after Aquila Optimization with initial q;=3°, 9.=3’,
0s=3". (a) Relative angle 1, 2, 3 (b) Control effort 1, 2.

Figure 4.8 illustrates the fuzzy logic control simulation system; there are three

angles and two input voltages. So, there are three fuzzy logic controls for each
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input. Each fuzzy has two input errors in angle and a change of error angle.

The output gain of fuzzy optioned using trial and error.

Fig. 4.8 Simulation System of Fuzzy Logic

4.6 Results of Fuzzy Logic Control

Fig. 4.9 presents the results of the transient and steady-state responses of the
relative angular position; the first and third link's relative angular positions

deviation about -1.8° and -0.5°, respectively, while the second link's relative
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angle deviation reaches approximately -4°. As observed, the three links
required 6 seconds to reach the steady state. The control effort of the first
motor reached 8 volts, and the second motor control effort consumed -4 volts;
these voltages were within the limited voltages. As a result, the gymnastic
robot can stabilize in an inverted position with a satisfactory transient
response and voltage.
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Fig. 4.9 FLC time response with initial deflection ;=3", 9.=3", 93=3". (a)
Relative angle 1 (b) Relative angle 2 (c) Relative angle 3 (d) Control effort 1
(e) Control effort 2.

4.7 Hybrid System Fuzzy Logic and Whale Optimization

In this section, a hybrid controller combining two control systems is designed.
The objective of the hybrid control system is to enhance system performance
by combining the valuable specifications from the many control systems.
Naturally, different hybrid controller structures, including fuzzy hybrid with

other controllers, have been presented by researchers [52], [53], [54].

WOA-based DLQR and FLC controllers are used in this study to improve
outcomes. When designing the WOA-based DLQR, the results were good,
and the system could stabilize within a short time. Still, when implementing
the system practically, the optimization takes time that is not commensurate
with the practical application because it performs calculations in each case.
These calculations take time, and the controller becomes off-line tuning. FLC
was designed to achieve online tuning to stabilize and balance the system.
The result of the FLC was accepted, although the system consumed more
settling time to be stable in an inverted position. So, we used a hybrid
controller FLC with WOA-based DLQR to achieve online tuning with less

settling time.
Fig. 4.10 shows the simulation system of the hybrid controller that combines

the WOA-based DLQR parameter with the FLC system specification

discussed in the previous sections.
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Fig. 4.10. Simulation System of Hybrid Controller.
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4.7.1 Results of Hybrid Control
Fig. 4.11 presents the results of the transient and steady-state responses of the
relative angular position; the first and second relative angles consumed 2
seconds to reach the steady state. In contrast, the third relative angle consumed
one second, a suitable settling time to balance the RoboGymnast in an upright
position. The deviation of the first and second links reached -1.15° and -3.4°,
respectively, but there was no deviation in the third link from a vertical
position. The first motor consumed 6.7 volts of control effort, but the second
motor consumed only -1.5 volts; this was considered satisfactory voltage to

become the RoboGymnast in an inverted position.
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Fig. 4.11 Hybrid control time response with initial deflection g1=3-, q2=3°,
gs=3°. (a) Relative angle 1 (b) Relative angle 2 (c) Relative angle 3 (d)
Control effort 1 (e) Control effort 2.

68



Chapter Four: Controller Design with Different Control Strategy

4.8 Comparative results

4.8.1 Comparison Between Before and After Optimization

Techniques

Fig. 4.12 compares the DLQR, WOA-based DLQR, and AO-based DLQR
controllers. It is clear that the WOA-based DLQR controller gets the best
result according to the transient response of the relative angles, but it
consumes the higher voltage of two motors between the other type controllers.
However, the WOA-based DLQR controller is considered the best controller
because the system’s stability has higher priority than the consumed voltage

since the voltages are within limits.
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Fig. 4.12 Comparison time response between DLQR, WOA-based DLQR,
and AO-based DLQR. (a) Relative angle 1 (b) Relative angle 2 (c) Relative
angle 3 (d) Control effort 1 (e) Control effort 2.

4.8.1 Comparison Between WOA-based DLQR, FLC, and Hybrid
Controller

Fig. 4.13 compares the WOA-based DLQR, FLC, and FLC hybrid with
WOA-based DLQR controllers. The results clearly show that the WOA-based
DLQR controller gets the best result according to the transient response of the
relative angles. The FLC response was the worst because it had higher settling
time and control efforts. The hybrid controller consumed less voltage from
two motors than the other type of controller. The settling time of the relative
angles is equal in the WOA-based DLQR and hybrid controller, but the WOA-
based DLQR has less deviation. Although the WOA-based DLQR controller
Is considered the best controller, when implemented practically, the WOA -

based DLQR controller consumes time to perform the calculations required in
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each case (off-line tuning). So, the hybrid system achieves online tuning with

a satisfactory response to stabilize the gymnastic robot vertically.
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Fig. 4.13. Comparison time response between WOA-based DLQR, FLC and
Hybrid controllers. (a) Relative angle 1 (b) Relative angle 2 (c) Relative
angle 3 (d) Control effort 1 (e) Control effort 2.

4.9 Comparison with other work

In [5], to balance the Robogymnast, Kamil et al. developed a Discrete-time
Linear Quadratic Regulator (DLQR). They adjusted the Q and R matrix using
a trial-and-error method depending on the designer's experience. This method
consumed 3.5827 seconds to achieve an upright position, and the simulation
achieved a stable response. However, the robot consumed more settling time
and overshoot than achieved when using WOA-based DLQR optimization to
adjust the Q and R matrix. The first control effort rose to 10V (saturation
limit), and the second control effort was 5.2 V, but the control effort that the
author achieved (u1=8.5V, u2=1.2V) is less than this, as shown in Fig. 4.14

(b).
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Fig. 4.14. Time response after WOA-based DLQR controller with initial
0:=1.3", 0.=0.2°, q3=-6.5". (a) Relative angle 1, 2, 3 (b) Control effort 1, 2.

The result achieved by the author, which is explained in Fig. 4.14 (a), is better
than the simulation result achieved by another researcher in [5] (with initial
relative angles q;=1.3", 0.=0.2°, g3=-6.5"). The comparison is according to the
time response characteristics regarding the settling time, maximum deviation,

and other criteria, as shown in Table 4.1.
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Table 4-1:Compared performance analysis for angles response
DLQR+WOA with DLQR

Relative angles  Controllers Rise time (s) Overshoot (degree)  Settling time(s)
g1 DLORJ5] 0.0201 -3.5832 1.4831
DLOQR+WOA 1.8 0 1.2760
02 DLQR[5] 0.0106 7.8998 1.4771
DLQR+WOA 0.013 -0.8 0.9334
g3 DLOQRJ5] 1.7482 0.0991 3.5827
DLOQR+WOA 0.5 0 0.7583

The result achieved by the author, which is explained in Fig. 4.5 (a), is better
than the simulation result achieved by another researcher in [12] (with initial
relative angles q;:=3", 0.=3", q3=3") when compared according to transient

response characteristics in terms of settling time and other criteria as shown

in Table 4.2.

Table 4-2 : Compared performance analysis for relative angles
response DLQR+WOA with DLQR+IWO

Relative angles  Controllers  Rise time (s) Overshoot(degree) Settling time(s)
o DLQR+IWO[12] 4 -29 5.4
DLQR+WOA 0.0584 -0.6278 1.0949
op) DLQR+IWO[12] 4 67 5.4
DLOR+WOA 0.0339 -1.5255 0.9530
03 DLOR+IWOJ[12] 2 10 3
DLOR+WOA 0.4196 0.2883 0.7495

In [12], Ismail et al. applied invasive weed optimization (IWQ) to determine
the best possible Q matrix. According to an investigation, the 12V control
effort consumed from two motors and this voltage above the control signal's
saturation limit (10V) and the control effort (u1=2V, u2=7.12V) that the

author achieved is less than this, as shown in Fig. 4.5 (b).
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In [15], a multi-objective fuzzy logic hybrid invasive weed optimization
(FLIWOH) method is presented. Fuzzy logic and the IWO are combined in
this method. IWO is used in search and seed generation processes, and fuzzy
logic is utilized to specify the fitness seeds by checking the JT (cost and
settling time) criteria. The author’s result in Fig. 4.11 is better than the result
simulation in [15] (with initial relative angles 9;=3", q2=3", ¢3=3") compared
to transient response characteristics as shown in Table 4.3. It is noticeable that
the three relative angles take 6.37 seconds to achieve a stable upright position.
Motorl (ul) and Motor2 (u2) have maximum voltages of 12 and 5.8159 volts,
respectively. Motor 1 (ul) is above the control signal's saturation limit (10V),
and the control effort (ul = 6.7 V, u2 = -1.5V) that the author achieved is less
than this, as shown in Fig. 4.11.

Table 4-3.: Compared performance analysis for relative angles
response FLC+WOA with FLIWOH.

Relative angles  Controllers Rise time (s). Overshoot (degree) Settling time(s)
g1 FLIWOH [15] 3 -30 6.375
FLC+WOA 0.0584 -1.2 1.8
02 FLIWOH [15] 3 67 6.375
FLC+WOA 0.0339 -3.4 2
gs FLIWOH [15] 1.5 13 4
FLC+WOA 0.4196 0 0.7495

In [32], N. A. Sayer et al. utilized DLQR and LQG controllers to stabilize a
nonlinear triple inverted pendulum, represented by a gymnastic robot in the
vertical plane. The simulation results demonstrated that LQR outperformed
LQG, achieving superior results in terms of overshoot (-4, 9, 1.1), rise time
(0.05013s, 0.07519s, 0.02506s), and settling time (3.208s, 3.233s, 4.16s) for
the three links (first, second, third). However, the results presented in Fig. 4.15

surpassed those of the simulation in [32], as shown in Table 4.4. When a
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WOA-based DLQR controller was employed, the three relative angles
reached settling times of (1.2708s, 0.9362s, 0.7579s) and overshoots of
(0.425, -1.902, 0), with rise times of (0.0771s, 0.4242s, 0.4234s) for the first,
second, and third links, respectively. The system achieved quicker
stabilization in the vertical position and reduced overshoot. Motorl and
Motor2 consumed 1.3 volts, significantly less than the consumption reported

in [32] (Motorl and Motor2 consumed 9 volts and 0.7 volts, respectively, in

[32]).

—q1
~q2||
—~ W q3
[¢b]
[<b]
| -
=)
(<)
©
N
2
(@)]
c
<
4 6 8 10
Time (sec)
(a)
1.5 -
1 —-u2
=
g 0.5
ju
o 0
=
S -0.5 -
| -
1<
o -1
O
1.5 | | .
2 4 6 8 10
Time (sec)
(b)

Fig. 4.15. Time response after WOA-based DLQR controller with initial
01=1", 92=-0.9°, gs=1". (a) Relative angle 1, 2, 3 (b) Control effort 1, 2.
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Table 4-4:Compared performance analysis for angles response
DLQR+WOA with DLQR

Relative angles Controllers Rise time (s) Overshoot (degree) Settling time(s)
(of DLOR [32] 0.05013 -4 3.208
DLQR+WOA 0.0771 0.425 1.2708
02 DLQR [32] 0.07519 9 3.233
DLQR+WOA 0.4242 -1.902 0.9362
gs DLOR [32] 0.02506 1.1 4.16
DLQR+WOA 0.4234 0 0.7579

4.10 Summary

In this chapter, the balance problem of the gymnastics robot was addressed by
applying several types of controllers. The second section discusses the
application of DLQR to the Euler-Lagrange method and Artificial Neural
Network Modeling. The results of applying DLQR to ENN were better as they
provided stability with a starting angle of 3 degrees. The third section explores
the application of WOA-based DLQR, with an evaluation against another
optimization method, AO-based DLQR, showing that WOA-based DLQR
yielded the best results. In the fourth section, FLC was applied, demonstrating
the successful balancing of the gymnast robot in the vertical position. The fifth
section combines FLC with WOA-based DLQR, resulting in the best response
and lowest voltage consumption. Finally, in the sixth and seventh sections, a
comparison is made between the methods used and previous research,
revealing that WOA-based DLQR with FLC produced the best outcomes.
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Chapter Five: Conclusion, Contributions, and Future
Work

5.1 Conclusion

This study has aimed to develop three-degree-of-freedom control strategies
for a gymnastic robot to balance in an inverted position with different
Robogymnast situations. Robogymnast mimics human acrobatics with triple
links and triple joints. Mathematical modeling presents an estimation of real-
world systems. The Euler-Lagrange formula is used to derive the
mathematical dynamics of the system. The gymnastic robot is an under-
actuated, nonlinear multi-link mechanism requiring a complex mathematical
model considering information accuracy. So, the ENN model is used in
nonlinear system modeling.

DLQR controller is used to balance the gymnastic robot in an upright position.
DLQR is applied to the Euler-Lagrange model and the ENN model. The
comparison results show that the dynamic model obtained by the ANN is
significantly better than the model derived from the Euler-Lagrange formula
because the ANN model accepted the initial deviation of absolute angle for
each link up to 3 degrees. In contrast, the dynamic model derived from the
Euler-Lagrange formula accepted 1 degree and becomes unstable at 3
degrees.

The WOA is applied to the DLQR controller to adjust its parameters and self-
adjust the weight matrices. The simulation results after optimization
demonstrated that the first, second, and third links' overshoot angular
positions and settling time are less than that achieved before optimization. The

Robogymnast could be stabilized in the upright balancing point within a
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suitable time, and motors consumed less voltage. Also, the AO is utilized to
discover the best matrix for the DLQR controller and successfully achieve
stabilizing transient response characteristics and control effort. The
comparison between WOA-based DLQR and AO-based DLQR shows the
WOA-based DLQR controller gets the best result according to the transient
response characteristic with minimum deviation from the upright balancing
point and settling time. The first, second, and third links reached a steady state
after 1.825 seconds with a minimum deviation (-0.5° and -1.5° for the first
and second links, respectively, and no deviation for the third link). Moreover,
the control voltage of the first motor consumed 7.12V, and the second motor
consumed 2V to achieve the desired response, which is less than the limited
voltage (12V). However, because the optimization process involves
computations for each case, it takes longer to implement practically and
causes the controller to become offline.
After that, FLC was designed to achieve online tuning to stabilize and balance
the system. The result of the FLC showed that the system consumed more
settling time to be stable in an inverted position. So, a hybrid controller FLC
with WOA-based DLQR to achieve online tuning with less settling time for
the relative angular position (1.5 seconds) and acceptable undershoot of the
links from the upright balancing point (-1.15° and -3.4° for the first and second
links, respectively, and no undershoot of the third link). The first motor
consumed 6.7 volts of control effort, but the second motor consumed only -
1.5 volts; this was considered satisfactory voltage to become the
Robogymnast in an inverted position.
Finally, the comparison with previous research shows that the FLC with the
WOA-based DLQR method achieves less overshoot, settling time, and control
effort than the other methods.
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5.2 Contributions

Analyze and understand the system performance by applying a DLQR
controller with various Q and R matrix ranges.

Apply the DLQR controller using the mathematical formula derived
from Euler-Lagrange equations and the mathematical model calculated
from experimental results by applying a neural network. A comparison
between both methods has been introduced.

Achieve self-tuning for the Q and R matrix by applying the WOA and
AO evaluated.

Achieve online tuning gains by applying a Fuzzy Logic controller.
Design hybrid controllers (FLC and WOA\) for achieve the best result.

5.3 Future Work

The study effectively met its defined objectives, and the presented simulations

and results offer insights for additional research. This section outlines several

worthwhile suggestions for exploring ways to improve system performance

and introduce enhanced capabilities for advanced applications:

Employ various optimization methods to control the transition of the
robot's swing from a stable to an unstable position.

Integrate Swinging-Up and Balancing Control for a comprehensive
approach.

Employ this model as a framework for testing different control
algorithms and as a basis for creating diverse applications.

Explore the adaptation of the designed controller concerning changes

in the durations of external disturbances.
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Appendix A
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Fig. 5.2.1 Range of Q2. (a) Relative angle 1 (b) Control effort 1(c)
Control effort 2.
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A.4. Q4=1-100000, (Q1, Q2, Q3, Q5, Q6, R1, R2) =1.
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Fig. 5.5.1 Range of Q5. (a) Relative Angular Velocity 2 (b) Control
effort 1(c) Control effort 2.
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A.7. R1=1000, (Q1, Q2, Q3, Q4, Q5, Q6, R2) =1.
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Relative Angle 2
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