

A Thesis Submitted to the Council of the College of the

Engineering/University of Kerbala in Partial Fulfilment of the

Requirements for the Degree of Master of Science in Electrical

Engineering

Written By:

Fatima Muneer Abdulrasul

Supervised By:

Assist. Prof. Dr Ahmed Abdulhadi Ahmed

Assist. Prof. Dr Haider Galil Kamil

Republic of Iraq

Ministry of Higher Education and Scientific Research

University of Kerbala

College of Engineering

Electrical and Electronic Engineering Department

Neural Network Based MPC for Tracking

the Self Driving Car

Ramadan 1444 April 2023

مِ ِ الرَّحِي
سْمِ اللهِ الرَّحْمن ب ِ

لَّا مَا ِ ا ِ
سَان

ب سَ لِلْإ ِ
ْ ي
ن لَّ

رَىٰ) 39سَعَىٰ) وَا َ َ ي ُ هُ سَوْف َ َّ سَعْي ن
 (40(وَا َ

ىٰ
َ وفْ َ اءَ الْا َ رَ ج

ْ اهُ ال َ ر
ْ ج
ُ مَّ ي

ُ (41) ث

 صدق الله العلي العظيم

 سورة النجم

Acknowledgements

First and foremost, I would like to express my sincere

gratitude and thanks to Allah the almighty who blessed us with

gave us science and health and helped us to complete this project.

I would like to express my deep gratitude to my supervisor

Asst. Prof. Dr Ahmed Abdulhadi Ahmed for his advice,

guidance, encouragement, and supervision throughout this work.

I would like to thank Dr Haider Galil Kamil, for providing

valuable assistance in this thesis.

I would like to express my thanks and gratitude to the people

and friends for their help, moral support, and nice words during

this work.

 I would like to offer thanks and appreciation to my lovely

family for their help and encouragement, those who have given me

love, compassion, safety, and hope.

My God bestows health and happiness upon all of them.

Fatima

DEDICATION

To my father, who supported me

To my lovely mother, who planted love in my heart.

To My Dear Life Partner... My Beloved Husband

To My Beloved Daughter Dima

To My Sincere Brothers and Sisters

To All People Who Love Me Deeply

i

Abstract

The road traffic environment is highly variable and unpredictable.

Autonomous cars operating in such environments may face unexpected

critical scenarios, where the risk of an accident rapidly increases compared to

normal driving situations. These scenarios may arise due to unforeseen

behavior from other road users or obstacles appearing on the road. In such

crucial conditions, the primary objective of car motion control is to minimize

the danger of an impending accident.

The purpose of this study is to develop a system that can help prevent

accidents in unpredictable and variable road traffic environments by

addressing the problem of motion planning and control in critical situations

for autonomous cars. The system generates optimal paths and control inputs

for the car to follow while avoiding obstacles and following the center of the

track predictably. To achieve this objective, motion planning technique for

self-driving cars are presented.

The motion planning technology utilized in this study is based on the

A* and potential field algorithms, with an intelligent controller consisting of

prediction supported by neural network technology. The model predictive

controller predicts the car's future for a finite time horizon using a

mathematical model of the car. The controller utilizes a linearized and

discretized kinematic bicycle model as an internal car model. The A* strategy

path is used as it is a powerful tool for solving pathfinding problems due to its

optimality, efficiency, admissibility, flexibility, and potential function for

path planning in an environment with obstacles. The potential function is used

due to its simplicity, safety, and low computational cost. The control inputs

are the car's steering angle and acceleration.

ii

The model predictive controller solves the optimization problem as a

quadratic programming problem that minimizes a cost function while

satisfying a set of constraints. The neural network is used to adjust the rate of

change of the steering angle value, adjusting the rate of steering angle is an

important part of optimizing a self-driving car's performance and ensuring its

safety and reliability on the road. Without adjusting the rate of steering angle,

the car's ability to make precise turns and stop accurately may be

compromised, which can lead to a higher risk of accidents and lower fuel

efficiency. The cost function includes a set of objectives, including errors in

desired and current states, inputs, and the rate of change of inputs, to guide

the self-driving car away from high-cost regions. The decision-making

module determines the next course of action for the car. After the subsequent

maneuver is selected, a velocity profile and a lane center reference are

generated for the self-driving car to track.

The quadratic programming problem is solved using convex

optimization in the optimization tool of python, with a sample time of 0.1

seconds. The control parameters, including the cost function weights and the

length of the horizon, are adjusted to make the lane safe and comfortable. The

selected horizon length ranges from 8 m to 12 m, within which the control

unit ensures that the car follows the intended path while avoiding obstacles.

All the results were achieved within the constraints of the specified

car, with a maximum speed of 15 m/s, maximum reverse speed of 5 m/s,

maximum steering angle of 45°, maximum steering rate of 30°, maximum

deceleration of 6 m/s^2 and a maximum for acceleration 2.5 m/s^2.

iii

Table of Contents

Abstract ... I

List of Contents .. II

List of Symbols .. v

Abbreviations .. v

List of Tables ... v

List of Figures .. v

Chapter One: Introduction .. 1

1.1 Overview ... 1

1.2 Thesis Background .. 3

1.3 Problem Formulation... 5

1.4 Objectives .. 6

1.5 Thesis Organization... 6

Chapter Two: Literature Review .. 7

2.1 Introduction ... 7

2.2 Related Work... 7

Chapter Three: System Modelling .. 19

3.1 Introduction ... 19

3.2 Self-Driving Car Structure .. 19

3.2.1 Route Planning ... 20

3.2.2 Behavioral Decision Making .. 20

3.2.3 Motion Planning ... 21

3.2.4 Control System ... 22

iv

3.3 System Modelling ... 23

3.3.1 Path Planning .. 23

3.3.2 Controller Design ... 37

Chapter Four: The Proposed Work .. 55

4.1 Python Implementation ... 55

Chapter Five: Results and Discussion ... 63

5.1 Overview ... 63

5.2 Motion Planning Algorithm Results ... 63

5.2.1 Dijkstra Algorithm .. 63

5.2.2 A* Algorithm .. 65

5.2.3 D* Algorithm .. 70

5.2.4 Potential Field Algorithm ... 72

5.3 Using a Neural Network with Predictive Control ... 78

5.4 Obstacle Avoidance in a Constrained Environment Results 81

Chapter Six: Conclusions and Recommendations ... 114

6.1 Conclusions ... 114

6.2 Future Work .. 115

References .. 116

 124 .. الخلاصة

v

 List of Symbols

Symbol Definition

𝜁 Attractive potential coefficient

𝜂 Repulsive potential coefficient

Q State error weightage matrix

R1 Input weighted matrix

R2 Rate of input change weightage matrix

D Final state weighted matrix

Abbreviations

MPC Model Predictive Control

NN Neural Network

N-MPC Neural Network-based Model Predictive Control

NNPM Neural Network Plant Model

List of Tables

Table 3-1 Most Common Types of Heuristic Functions Used in Path Planning Algorithms. 29

Table 3-2 Mathematical equations for activation function .. 49

List of Figures

Fig. 1.1 levels of autonomous vehicles .. 3

Fig. 3.1 An illustration of the decision-making process hierarchy[11] 20

Fig. 3.2 Dijkstra example [38] ... 26

Fig. 3.3 Flowchart illustrates the Dijkstra algorithm, which is used in path planning 27

Fig. 3.4 A* example .. 28

Fig. 3.5 Path planning flowchart using the A* algorithm .. 30

Fig. 3.6 State lattice planner when the agent's visibility is 1 unit .. 33

vi

Fig. 3.7 State lattice planner when the agent's visibility is 7 unit .. 34

Fig. 3.8 State lattice planner when the agent's visibility is 15 unit .. 34

Fig. 3.9 MPC strategy[49] ... 39

Fig. 3.10 Basic structure of MPC [51] .. 41

Fig. 3.11 The structure of the neural network plant model [59] .. 48

Fig. 3.12 Convex optimization (one point on the convex hull, is closest to the minimum) 54

Fig. 4.1 Diagram of N-MPC .. 60

Fig. 4.2 Neural network flowchart .. 61

Fig. 4.3 System implementation flowchart... 62

Fig. 5.1 Dijkstra algorithm path planning from (20,25) to (20,0) .. 64

Fig. 5.2 Dijkstra algorithm path planning from (45,45) to (0,0) .. 64

Fig. 5.3 Dijkstra algorithm path planning from (5,185) to (140,0) .. 65

Fig. 5.4 A* algorithm path planning from (-30,-40) to (20,20), ... 67

Fig. 5.5 A* algorithm path planning from (40,0) to (-20,20), ... 67

Fig. 5.6 A* algorithm path planning from (20,-20) to (-20,20), .. 68

Fig. 5.7 A* algorithm path planning from (20,25) to (20,0) ... 68

Fig. 5.8 A* algorithm path planning from (45,45) to (0,0) ... 69

Fig. 5.9 A* algorithm path planning from (5,185) to (140,0) ... 69

Fig. 5.10 D* algorithm path planning from (20,25) to (20,0) ... 70

Fig. 5.11 D* algorithm path planning from (45,45) to (0,0) ... 70

Fig. 5.12 D* algorithm path planning from (5,185) to (140,0) ... 71

Fig. 5.13 The problem of local minima potential filed .. 73

Fig. 5.14 System response where 𝜻 =1, 𝜼 =1.. 74

Fig. 5.15 System response where 𝜻 =1, 𝜼 =100... 75

Fig. 5.16 System response where ζ =100, η =1 ... 76

Fig. 5.17 System response where 𝜻 =100, 𝜼 =100 .. 77

Fig. 5.18 System steering angle response with and without use neural network 78

Fig. 5.19 System acceleration response with and without use neural network....................... 79

Fig. 5.20 System velocity response with and without use neural network 79

Fig. 5.21 A* path planning from starting point (-20,20) to the target point (-20, -40) 82

Fig. 5.22 Avoid path obstacle by using the potential field in local planne 82

Fig. 5.23 Result static obstacle simulation path following from (-20,20) to (-20, -40) 83

Fig. 5.24 Result dynamic obstacle simulation path following from (-20,20) to (-20, -40) 84

Fig. 5.25 Input cost weights low, path from (-30,40) to (20,20) .. 86

vii

Fig. 5.26 Input cost weights low, path from (-20,20) to (40,0) .. 87

Fig. 5.27 Input cost weights high, path from (-30,40) to (20,20) .. 88

Fig. 5.28 Input cost weights high, path from (-20,20) to (40,0) .. 89

Fig. 5.29 State error cost weights low, path from (-30,40) to (20,20) 91

Fig. 5.30 State error cost weights low, path from (20,20) to (40,0) .. 92

Fig. 5.31 State error cost weights high, path from (-30,-40) to (20,20) 93

Fig. 5.32 State error cost weights high, path from (-20,20) to (40,0) 94

Fig. 5.33 Rate input cost weights low, path from (-30,-40) to (20,20) 96

Fig. 5.34 Rate input cost weights low, path from (-20,20) to (40,0) ... 97

Fig. 5.35 Rate input cost weights high, path from (-30,-40) to (20,20) 98

Fig. 5.36 Rate input cost weights high, path from (-20,20) to (40,0) .. 99

Fig. 5.37 Terminal cost weights low, path from (-20,20) to (40,0) ... 101

Fig. 5.38 Terminal cost weights low, path from (-30,-40) to (20,20) 102

Fig. 5.39 Terminal cost weights high, path from (-20,20) to (40,0) .. 103

Fig. 5.40 Terminal cost weights high, path from (-30,-40) to (20,20) 104

Fig. 5.41 Low Horizon length effect, path from (-35,0) to (20, -20) 106

Fig. 5.42 Low horizon length effect, path from (20, -20) to (-20,20) 107

Fig. 5.43 High horizon length effect, path from (-35,0) to (20,-20) .. 108

Fig. 5.44 High horizon length effect, path from (20, -20) to (-20,20) 109

Fig. 5.45 Suitable horizon length effect, path from (-35,0) to (20, -20) 110

Fig. 5.46 Suitable horizon length effect, path from (20, -20) to (-20,20) 111

1

Chapter One: Introduction

1.1 Overview

When a person takes on the role of the driver in the morning, they are

typically confident in their ability to safely reach their destination. However,

this is becoming increasingly inaccurate. There are many reasons for a car

accident: Driver negligence, bad weather, poor road conditions, and third-

party carelessness which can cause accidents that lead to deaths or serious

injuries.

In reference to [1], the statistical data reveals the following:

– Around 1.36 million people die every year in road accidents; An average

of 3,700 people is killed every day. In other words, one person is killed

every 25 seconds.

– An additional 20-50 million people are injured but do not die, frequently

leading to long-term impairment.

– Car crashes are the primary source of death among youngsters between the

ages of 5-29. Young people aged 15-44 make up more than half of all

deaths.

– Road accidents may cost countries between 2-8% of their gross domestic

product.

– In direct medical expenditures, traffic accidents cost the United States

more than $380 million.

Chapter one introduction

2

In the United States, car accidents are the greatest cause of death for children

aged 1-3 years. One of the most heart-breaking realities regarding car

accidents is that the majority of them are avoidable. According to a 2016

"National Highway Automobile Safety Administration (NHTSA)" research,

human error accounts for 94% to 96% of all traffic accidents.

These human errors include [2]:

– High speed

– Aggressive/Reckless driving

– Distracted driving

– Drunk driver

– Sleepy driving

Moreover, in the era of huge technological progress in which we live,

technologies like cars are becoming more and more affordable to the point

that almost every family owns at least one car. Thus, the number of accidents

increased exponentially. As a result, there is a hole in the market for self-

driving car. In simple language, self-driving or autonomous cars can be called

mobile robot. This car can sense the environment, understand the surrounding

scene, and make decisions without human interaction from the road to the

destination. Self-driving cars have gone from "likely possible" to "definitely

possible" to "inevitable". The Society of Automotive Engineers (SAE) has

created a "Levels of Driving Automation standard that defines the six levels

of driving automation, from Level 0 (no automation) to Level 5 (fully

autonomous)" [3], as shown in Fig. 1.1.

Chapter one introduction

3

Fig. 1.1 levels of autonomous cars

1.2 Thesis Background

The topic of navigation is one of the most critical in robotics research.

Mobility is required for all autonomous mobile robots in order to execute,

locate, plan movement, and direct. In this context, navigation is defined as the

act of planning a moving robot's path from its current location to the desired

Level 2

Partial Autonomy

The car can perform

functions like

steering and

acceleration. The

driver still monitors

all tasks and can take

control at any time.

Level 1

Driver Assistance

The driver performs

the driving task with

some driving assist

features.

Level 0

No Automation

manual control. The

driver performs all

driving tasks.

Level 3

Conditional Autonomy

The car performs the

majority of the driving

activities, but the

driver must be ready to

take control of the car

at any time with

notifications.

Level 4

 High Autonomy

Under specific

situations, the car

performs all driving

functions. Although

driver intervention is

not required, the

driver's attention is

still essential.

Level 5

Full Autonomy

Under all conditions,

the car performs all

driving functions. It

is not necessary for

the driver to

intervene or pay

attention.

Chapter one introduction

4

target location, following the intended path and avoiding any obstacles

encountered along the way[4].

To ensure the safety and practicality of navigation, a number of

parameters must be met by the needed routes. In addition, pathways may be

described in terms of requirements; for example, in highly dynamic situations,

rapid or smooth paths are often preferable over long and curvy paths[5].

 The navigation challenge requires interaction with changes in the

environment model in addition to route planning. The robots must travel fast

to the goal while avoiding static or dynamic impediments detected by their

sensors, which requires excellent trajectory planning and obstacle avoidance.

Despite extensive research on these areas, there is still no conclusive answer

to the difficulty of navigation in busy, dynamic surroundings [6].

 Many navigation technologies from mobile robots have been adapted to

suit the problems of road networks and driving restrictions. These planning

approaches are classified into four classes based on their applicability in

autonomous driving: graph searching, sampling, interpolation, and numerical

optimization [7].

 Intelligent control is becoming increasingly crucial in our society as

route planning improves and information technology advances. Compact

devices have tiny sizes, minimal power consumption, and strong

functionalities, among other characteristics, this field is poised to have a

diverse array of applications, including automobile electronics, aircraft, and

smart homes. If any of these technologies are merged, it will lead to more

intelligent applications.

The self-driving car was selected as the research platform, and the

predictive control model was used as the central control unit. The intelligent

car can move independently with intelligent control while following the path.

Chapter one introduction

5

Intellectual activities such as executing motion planning algorithm, steering

drive direction and brake commands can be incorporated in the intelligent car

application. The applications of the self-driving car technology are used in:

1. Autonomous Robotic Systems.

2. Auto-Pilot in the Airplane.

3. Probe used in space exploration.

4. Transfer robot

5. Agricultural robot

1.3 Problem Formulation

After mentioning the proportion of human-caused accidents, it can be

concluded that most car accidents can be avoided by keeping the humans

away from the driving process.

The overall objective of this thesis is to create an autonomous car system

capable of comfortably and safely navigating with minimal jerks by finding a

solution to the problem of path planning in environments containing road

obstacles and to design an intelligent controller for an autonomous car capable

of tracking certain paths. After determining what is required for the

performance of an autonomous car, it is possible to formulate the problem

addressed in this thesis:

• The car needs longitudinal control to maintain acceleration and speed.

• The car needs lateral control to steer the car along the desired path.

• The car must maintain safety distances, speed limits and acceleration limits.

• Supporting the controller with intelligent techniques such as neural

networks.

Chapter one introduction

6

1.4 Objectives

The aims of this thesis are:

• Develop a path planning by using global and local planners to achieve

computational efficiency in dealing with changing traffic environments in

different road scenarios.

• Design an intelligent controller that manipulates motion planning.

• Integrate the controller with a path planning algorithm to minimize the

tracking error as a result of continuous updating of the path with the

control.

1.5 Thesis Organization

 This thesis consists of five chapters, which are briefly introduced as

follows:

1. The first chapter explained the background of self-driving cars and their

applications.

2. The second chapter discusses previous studies and researches that have

been conducted related to the self-driving car.

3. The third chapter presents the general structure of the self-driving car

model, path planning algorithms (Dijkstra, A*, D*, state lattice, potential

function) and the control design.

4. The fourth chapter presents the proposed work.

5. The fifth chapter explains the simulation results and their discussion.

6. The sixth chapter shows the conclusions of the current study and the

suggested recommendations for future studies.

7

Chapter Two: Literature Review

2.1 Introduction

An autonomous car transfers a manual driving car to autonomous

driving using different sensors and actuators that decide on driving based on

other criteria. In order to understand the evolution of research on self-driving

in recent years, it is important to conduct a literature review to understand the

different application areas from which self-driving has developed as well as

to identify research gaps. Therefore, in the following sections, a review of the

literature is presented.

2.2 Related Work

Several researchers presented a variety of studies to construct a self-

driving automobile system that incorporates a perception system and a

decision-making system. The perception system is separated into multiple

subsystems that are in charge of self-driving car localisation, mapping of

stationary objects, detection and tracking of moving obstacles, road mapping,

and traffic sign detection and identification. On the other hand the decision-

making system is separated into many subsystems that are in charge of path

planning, behaviour selection, action planning, and control. Some research

from different decision-making systems has been reviewed as follows:

P Falcone et al. (2008) [8] suggested a control strategy that combines

MPC with steering control devices as well as two model predictive

controllers. The first was used in the all-wheel drive model, which changed

the steering angle and brake torque to follow the intended trajectory. A

modified bike model with fewer inputs was used to create the second MPC

Chapter two literature review

8

controller. The findings reveal that the first microcontroller performs well in

both low and high-speed monitoring of the reference route, however

calculation is time consuming. The second controller, on the other hand,

performed poorly at high speeds due to the simplicity of the automobile model

but suitable for real-time execution.

V T Minh (2016) [9] presented an approach for controlling and planning

the path of autonomous robots using Nonlinear Model Predictive Control

(NMPC) and Feasible Path Planning (FPP) techniques. The approach

considers the dynamics and constraints of the robot, as well as environmental

obstacles, in order to plan feasible paths and generate control signals that

enable the robot to follow these paths while avoiding collisions. The NMPC

algorithm optimizes the robot's control inputs over a finite time horizon, while

the FPP algorithm plans the robot's path based on the current environment and

the robot's constraints. The proposed approach has been validated through

simulations and experiments on a mobile robot platform, demonstrating its

effectiveness in controlling and navigating the robot in dynamic

environments.

A Koga et al. (2016) [10] implemented the lateral and longitudinal

control subsystems using the MPC technique, which predicts autonomous

vehicle motion using the standard bike model. The proposed autonomous

driving system was tested on a small-scale experimental track at a speed of

20[km/h] with seven different parameter settings. The results showed that the

system was capable of following a reference path with small deviations and

smooth operation. While the overall driving performance of the model

predictive controller was inferior to that of human drivers, the system was able

to produce a range of different driving characteristics by putting different

Chapter two literature review

9

weights on tracking precision and steering smoothness. The performance of

the controller could potentially be improved by setting more accurate values

for the physical parameters of the vehicle using system identification

techniques.

B Paden et al. (2016) [11] provided a survey of driverless vehicle

decision-making problems with a focus on motion planning and feedback

control. The breakdown of decision-making into individual problems has

allowed for the use of well-developed solution techniques from a variety of

research areas. However, tailoring and integrating these methods so that their

interactions are semantically valid remains a challenge. Additionally, the

computational burden of the entire system is an issue that needs to be resolved.

Nonetheless, these issues do not limit the potential of driverless vehicles as a

means of personal mobility.

C Götte et al. (2016) [12] proposed a model predictive control (MPC)

approach for guiding a vehicle laterally. The aim of this approach is to

generate real-time steering commands for a vehicle that are safe, smooth, and

comfortable for passengers. The authors first present the mathematical model

of the vehicle and describe how it can be used to generate reference

trajectories for the vehicle to follow. Next, the authors introduce the MPC

approach, which involves solving an optimization problem at each time step

to generate the optimal steering command. Finally, the authors evaluate the

performance of their approach through simulations and experiments on a test

track. In the first scenario, the system successfully avoids a collision with two

static obstacles by performing a double lane change maneuver. The planned

trajectory is adjusted as soon as the first obstacle appears within the prediction

horizon, and the system waits until the last-point-to-steer is detected before

Chapter two literature review

10

following the reference trajectory. The resulting maneuver reaches the limits

of driving physics, but remains stable and collision-free. In the second

scenario, the system is tested with a dynamic obstacle, and it is able to adjust

the planned trajectory at an early stage to avoid a collision. The moving

obstacle is taken into account, and the resulting maneuver is stable and

collision-free.

M Bojarski et al. (2016) [13] discussed a deep neural network

approach to autonomous driving, specifically for lane and road following. The

authors demonstrate that their convolutional neural network (CNN) can learn

to perform this task without the need for manual decomposition into sub-tasks

such as road or lane marking detection, semantic abstraction, path planning,

and control. They evaluate the network's performance through simulation tests

and on-road tests, and visualize the internal state of the CNN to show how it

learns to detect useful road features on its own. The authors conclude that their

approach is promising, but more work is needed to improve the network's

robustness.

Y Nishio et al. (2017) [4] proposed a method for obstacle avoidance

that combines the fuzzy potential method and model predictive control. While

the fuzzy potential method can handle the shape and attitude of the robot and

achieve obstacle avoidance through translational and rotational motion, it

cannot explicitly include the dynamics of the robot and the motion of

obstacles. On the other hand, model predictive control considers the dynamics

of the robot and predicts its motion while handling the constraint explicitly

through an index function. By considering the mobility range of obstacles as

constraints, it guarantees obstacle avoidance. The proposed method was

Chapter two literature review

11

verified through numerical simulations and was found to be effective even in

complex situations where conventional methods fail.

J Rios-Torres et al. (2017) [14] stated that reservations were one of

the ways used to address the various initiatives in the literature to coordinate

"Connected and Automated Vehicles" (CAVs) to enhance traffic flow and

safety in certain transportation sectors. The biggest difficulty with this

technique is the high level of communication required and the possibility of

barriers. They reported that the most prevalent issue was minimising travel

time. Alternative formulations, on the other hand, include reducing compound

interference at the intersection region. Also, they investigated multi-objective

optimisation factors such as acceleration, speed tracking error, and collision

risk. Furthermore, they used traffic flow modelling to create control inputs

that guarantee traffic flow at the intersection remains stable.

G Bresson et al. (2017) [15] suggested a field survey of simultaneous

localisation and mapping. They began by discussing the limits of traditional

autonomous driving systems before moving on to the requirements required

for this sort of application. Then, they examined how the highlighted

difficulties are being addressed. It focused on techniques to creating and

reusing long-range maps under various settings (weather, season, etc.) and

finished by providing an overview of the numerous, large-scale experiments

done to date as well as outlining remaining obstacles and future perspectives.

C Bila et al. (2017) [16] Provides an overview of research on support

and services offered by information and communication technology for the

safety of future linked cars. Vehicle detection, route detection, , pedestrian

detection, collision avoidance, and drowsiness detection are the primary

Chapter two literature review

12

classifications and a brief summary of the areas of concentration for research

and development in this approach. These applications assist drivers and

reduce the chance of an accident.

C Liu et al. (2017) [17] suggested a unified method to route planning

based on a predictive control model (MPC), with the aim of automatically

determining manoeuvre placement while ensuring safety. To achieve this,

neighbouring cars were represented as polygons and an MPC constraint was

created to enforce collision avoidance between the ego vehicle and

surrounding vehicles. A lane-related potential field was also integrated into

the MPC's objective function to ensure safe and smooth manoeuvres. The

MPC path planner was evaluated through simulations in three scenarios:

normal highway driving, ramp merging, and intersection crossing. In the

normal highway driving scenario, the path planner successfully planned a path

for the ego vehicle to maintain a safe distance from surrounding vehicles and

make a lane change when feasible. The simulation displayed the trajectory of

the ego vehicle and surrounding vehicles, with the speed of each vehicle

shown in subplots. In the ramp merging scenario, the path planner generated

a safe longitudinal path for the ego vehicle to merge into the merging lane

between two surrounding vehicles. The ego vehicle first accelerated to catch

up with the gap and then decelerated to keep a comfortable distance from the

car in front before successfully merging into the lane. In the intersection

crossing scenario, the path planner planned a path for the ego vehicle to

approach a stop sign, stop there, and remain in the "stop" state until it became

safe to cross the intersection.

Chapter two literature review

13

R Guidolini et al. (2017) [18] suggested a "Neural Model Predictive

Control (N-MPC)" technique to overcome delays in the "Intelligent and

Autonomous Robotic Automobile (IARA)". Due to the intricacy of the

dynamics of IARA's reaction to stimuli, they attempted to create a neural

network in N-MPC utilising this neural model. The experimental findings

revealed that "N-MPC outperformed PID control" by eliminating the

influence of IARA guidance station delays, allowing IARA autonomous

running at speeds up to 37 km/h with a 48% improvement in maximum

constant speed.

D Cairano et al. (2018) [19] provided a high-level description of a real-

time optimisation issue for automotive and aerospace applications, with a

focus on the MPC controller. The cost function and system limitations were

used to define the optimum control issue. Also covered were numerical

algorithms and their implementations on an embedded computer platform.

G Williams et al. (2018) [20] provided an information-theoretical

approach to optimize random control issues that utilised to develop broad

sampling-based optimisation strategies. This novel mathematical technique

was utilised to create a sampling-based model-based predictive control

algorithm. They assessed the performance of the Information Theoretical

Model Predictive Control Scheme (IT-MPC) to a typical predictive control

version of the entropy technique on a demanding autonomous driving job over

an earthy test track.

C M Martinez et al. (2018) [21] suggested an important contribution

by adding aspects impacting driving style and classification methodologies

for intelligent automobile control applications, as well as implementation

Chapter two literature review

14

restrictions. The intricacy of driving style is examined while assessing current

interpretations of safety and fuel economy through the use of various

algorithms. The continual advancement of Advanced Driver Assistance

Systems and vehicle autonomous driving capabilities necessitates a more in-

depth examination of driving style and the incorporation of drivers in the

systems. This has prompted the development of data-driven algorithms

capable of processing larger amounts of data, as well as the deployment of

machine learning algorithms capable of adapting to individual drivers.

M V Smolyakov et al. (2018) [22] described the use of a car simulator

to generate data for training neural networks to predict the steering angle of a

car. The authors developed two different neural network architectures, one

with convolutional layers and one with additional regularization and batch

normalization layers. They trained these networks using data generated from

the car simulator, which included images from the left, center, and right

cameras and the corresponding steering angle. The results showed that the

second architecture with regularization and batch normalization layers

performed better and had fewer parameters. The authors suggest that this

architecture may be suitable for testing on embedded systems. They also

suggest adding recurrent layers to the network in future work to better predict

the steering angle based on the data sequence. The authors conclude that using

a simulator to generate data is efficient and avoids the need for expensive or

resource-intensive data collection from the real world.

J Wang et al. (2019) [23] explored networking and communication

technologies for autonomous driving to improve the perception and planning

ability of autonomous vehicles. The study covered intra-vehicle and inter-

vehicle networks, discussing various technologies suitable for autonomous

Chapter two literature review

15

vehicles, including data bus wired interconnection, Ethernet, power-line

communication, and wireless interconnection. The inter-vehicle network was

further discussed, with a focus on low power technologies, 802.11 family

technologies, base station driven technologies, and other auxiliary

technologies. New trends in communication technologies, such as 5G,

computing technologies, SWIPT, VLC, and deep learning, were also

introduced. Verification methods, challenges, and open issues were

summarized, highlighting the need for joint efforts between academia and

industry to advance networking and communications for autonomous driving.

Y Wang et al. (2019) [24] discussed the use of deep learning models

in (Intelligent Transportation Systems and their applicability in different tasks

such as computer vision, time series prediction, classification, and

optimization. It was explained that deep learning models could be applied if

the problem could be formulated as a classification, regression, or Markov

Decision Process problem, and sufficient training data and Graphics

Processing Unit resources were available. The advantages of deep learning

models, such as achieving state-of-the-art performance in various

classification and prediction tasks, were also highlighted. However, the

limitations of deep learning models were acknowledged, including their

reliance on specific amounts of data and computing resources, the difficulty

in parameter tuning, and the lack of interpretability in their black-box

representations.

J Gwak et al. (2019) [25] development of commercial autonomous

driving research was reviewed. Several companies have developed self-

driving technologies and vehicles using their own systems and algorithms.

The technologies used by these companies were compared based on the

Chapter two literature review

16

sensors used in self-driving vehicles. Tesla developed its self-driving

technology called "Autopilot," which uses 8 cameras, 12 ultrasonic sensors,

and a radar sensor. Google's self-driving technology, Waymo, uses a vision

system, lidar system, radar system, and supplemental sensors. Uber also

developed self-driving technology using lidar, cameras, radar, GPS, a self-

driving computer, telematics, ultrasonic sensors, and a vehicle interface

module. General Motors (GM) developed self-driving technology for its Volt

EV vehicles using multiple cameras, lidar sensors, a radar sensor, and 4G LTE

Connected.

A Reda et al. (2020) [26] explored MPC and adaptive MPC controller

implementations to operate an autonomous vehicle steering system. The

implementations were carried out for systems with both constant and variable

dynamics. The results demonstrated that the MPC controller gives adequate

control for a constant dynamics system, but it cannot manage changing

operating circumstances, while adaptive MPC provides adequate control for

changing dynamics systems.

K Muhammad et al. (2020) [27] identified the primary advantages of

safe learning techniques and assessed existing approaches for safe

autonomous driving that encompass significant accomplishments and limits.

Furthermore, they identified the primary embodiments of the self-sustaining

driving pipeline, which are measurement, analysis, implementation (also

known as control processes), and evaluation of the performance of deep

learning methods for various safety-related tasks such as road, vehicle, track,

drowsiness, pedestrian, traffic light detection and collision avoidance.

Chapter two literature review

17

Y Xu et al. (2021) [28] proposed a path-tracking strategy that

incorporates predictive model control (MPC) and "preview follower theory

(PFT)", as well as a reference generation unit and an MPC controller. The

reference generating unit can use PFT to determine the lateral reference

acceleration at the sample point and create the reference diffraction rate at

each prediction point. PFT improves the accuracy of the diffraction rate

computation as the sample range rises. The MPC controller can achieve

optimal reference route tracking with physical constraints. To create an online

predictive model from nonlinear to continuous linear vehicle dynamics, the

MPC issue was written as a "linear time-varying (LTV)".

S Kolachalama et al. (2022) [29] introduced a novel driving mode

called "Intelligent Vehicle Driving Mode (IVDM)", which improves the

vehicle's engine performance in real-time without increasing flight time under

normal driving situations. When running, IVDM engages adaptive cruise

control (ACC); hence, longitudinal acceleration (LOT) was automatically

calculated by the ACC, and the parameters of lateral acceleration [LAT] and

yaw rate [YAR] were estimated using particular mathematical models that

assumed idealised steering behaviour (ISB). They created an Autonomous

External Input Regression Network (NARX) for deep learning models.

J L Vazquez et al. (2022) [30] suggested resolving the movement

prediction issue as a policy learning problem in a novel approach. The policy

is taught by model-based simulated learning, which, in conjunction with the

Interactive Multi-Agent Prediction Policy (IMAP), enables us to comprehend

a highly interactive prediction model/policy. Based on the optimal response

frequencies, the two interactive motion planners offered based on this model.

One is inspired by the leader-follower structure, while the other is derived

Chapter two literature review

18

from the Nash equilibrium. In genuine driving scenarios, simulation results

are visible. The prediction architecture and interactive deep motion planning

can handle difficult lane changes as well as hostile activities such as halting

another vehicle. Each of their offered approaches are capable of planning the

challenge of interacting motions and accurately predicting the effect of a

certain action on other factors.

These works of literature review are the most related papers in the field

of decision systems involving path planning and control in the self-driving

car, controlled with different control techniques, including predictive,

adaptive, neural network, deep learning, and hybrid control systems. The

literature has proven the effectiveness of the proposed motion planning and

control systems used in the self-driving car system.

19

Chapter Three: System Modelling

3.1 Introduction

 The autonomous car uses the perception module to see its environment

and the planning module to make decisions and create paths. The controller is

responsible for controlling car moving by generating steering wheel angle

(lateral control) and acceleration (longitudinal control).

In this chapter, the general structure of the self-driving car model is

presented in Section 3.2. Section 3.3, presented a theoretical model in detail.

The model mainly consists of two parts, the first part is about path planning

algorithms and the second part is the car control and it has four sections, the

first section is the use of the predictive model, the second section is the use of

the neural network, the third section is the mathematical model, and the fourth

section about convex optimization.

3.2 Self-Driving Car Structure

One common approach to create a self-driving car system is to organise

sensor perception and decision-making in a hierarchical structure as shown in

Fig. 3.1. The decision-making unit of a self-driving automobile is represented

by four components: route planning, behavioural layer, motion planning, and

control system [11].

Chapter three system modelling

20

Fig. 3.1 An illustration of the decision-making process hierarchy[11]

3.2.1 Route Planning

A car's decision-making system must determine a path via the road

network from its current location to the intended destination at the highest

level. By expressing the road network as a directed graph with edge weights

proportional to the cost of traversing a segment of the road, such a path may

be defined as the problem of finding the path with the lowest cost on the road

network graph [11].

3.2.2 Behavioral Decision Making

 Following the discovery of the route plan, the autonomous car must be

able to traverse the allocated path and communicate with other traffic

participants while following to driving rules and road laws. Given a series of

Chapter three system modelling

21

road segments that define a given lane, the behavioural layer is responsible

for choosing the appropriate driving behaviour (follow the lane, change lane,

turn right, etc.) at any moment based on assessed behaviour of other traffic

participants, road conditions, and infrastructure signals. One of the most

recent developments in this field is an artificial intelligence approach to

modelling this step in decision-making [11].

3.2.3 Motion Planning

 The requested behavior must be translated into a path that the low-level

feedback controller may trace when the behavioral class determines which

command behavior to conduct in the present environment. The resultant

trajectory should be dynamically possible for the car, passenger-friendly, and

avoid accidents with impediments identified by on-board sensors. The motion

planning system is in charge of locating such a path [11].

A great deal of navigation technology has been taken from mobile

robots and modified to meet the challenges of road networks and driving rules.

According to their application in automated driving, these planning

techniques are categorized into four groups: graph search, sampling,

interpolation, and numerical optimization. The motion planning layer is

responsible for the dynamic computation of a safe, convenient, and viable path

from the current car configuration to the target configuration provided by the

behavioral layer of the decision-making hierarchy.

The motion diagram output is often forwarded to the local feedback

control layer. The feedback controllers create an input signal to operate the

car in accordance with the action plan. The purpose of motion planning for

autonomous driving is to identify a suitable set of control inputs that will move

a car from its beginning condition to its target state while remaining within

Chapter three system modelling

22

environmental and physical restrictions. Due to the high speed of autonomous

driving compared to mobile robots, safety and driving comfort should be

prioritized. To improve computing efficiency in dealing with changing traffic

conditions in different road scenarios, the traffic planning issue for

autonomous driving is frequently simplified to a global reference road

planning level and a local traffic planning level [31].

3.2.4 Control System

In control system, the determination of the appropriate actuator inputs

to execute the planned motion and correct tracking issues during the execution

of the motion plan is accomplished by a feedback controller. Intelligent

control is utilized in this task, whereby a control objective is synthesized and

reasonable methods to achieve it are identified through a general information

process that operates independently or in a human-machine mode. The

motivation and knowledge used in this process include information about the

environment and its internal state. Currently, the aggregation of a control

objective is achieved through human-machine interaction in car control [32].

Intelligent control systems simulate biological intelligence to solve

problems, and they seek to replace humans in performing tasks or borrow

ideas from natural systems to solve control problems. For example, neural

networks can be used for control. Intelligence and control are closely related,

and the phrase "intelligent control systems" emphasizes the control

component of an intelligent system [33].

To achieve their objectives, intelligent control systems must identify

and employ targets, and control must direct the system towards those

objectives. Any intelligent system is a control system because control is a key

component of every intelligent system. However, intelligence is essential to

Chapter three system modelling

23

ensure that systems work as expected under changing situations, and a high

degree of independence is required in the control system [34]

3.3 System Modelling

3.3.1 Path Planning

Path planning is an essential aspect of car detection. It is defined as

establishing a geometrical path from the car's present position to a destination

point while avoiding obstacles. It must be permissible to cross the car and

ideal in at least one variable to be considered an acceptable path. For certain

goal distance conditions, the shortest, smoothest, or fastest path that the car

may follow can be the base path. In other words, the optimum path is

determined using these factors. Path planning is commonly done by

discretizing the space and using the centre of each unit as a moving point.

Each movement location either has a barrier to avoid or is devoid of

impediments that may be accessed. Various discretization processes produce

various motion paths [35]. Creating an environmental map is required for path

planning. The construction of an exact positional description of diverse items

in the area in which the robot is positioned, such as road signs, obstacles, and

so on, is known as environmental map construction: in other words, the

creation of a model structure or map. The goal of creating an environmental

map is to allow the robot to plan the most efficient path from the beginning

point to the destination point in the model of the specific environment with

obstacles. Path planning methods may be classified into two strategies based

on the known level of environmental knowledge: path planning based on

global map data and path planning based on local map data [36].

Chapter three system modelling

24

3.3.1.1 Global path planning

To compute an initial path, a global path planner requires the beginning

and ending points of a constructed map, which is also known as a static map.

The search is performed on the constructed global map model using a global

map description of the area where the robot is placed. The best algorithm will

find the best path. As a result, global route planning consists of two parts:

“creating an environmental model and the path planning strategy.” Heuristic

A* searching algorithm is commonly used for global path planning [37].

A. Graph search based planner

 Graph search based planning is a method that involves using graph

exploration techniques to find solutions to problems represented as graphs.

The first step in this approach is to create a graph representation of the

problem, which can be done in various ways depending on the specifics of the

problem. Once the graph is created, search-based planning algorithms are

used to traverse the graph and find a solution to the problem. In the context of

autonomous driving, the state space represents the environment in which the

car operates, and the goal is to navigate from one point to another. The state

space can be represented as a grid or lattice, where each cell represents a

possible location of the car. Graph search algorithms can be used to search

through this state space and find a path that leads from the starting point to the

destination. One advantage of graph search-based planning is that it can

handle complex environments with obstacles and other obstacles that must be

avoided. By representing the environment as a graph, the planner can easily

check for obstacles and avoid them by finding an alternative path. However,

the solutions found by graph search algorithms may not always be optimal,

and it can be challenging to scale the approach to larger state spaces. Overall,

Chapter three system modelling

25

graph search-based planning is a powerful technique for finding solutions to

path planning problems, and it has many potential applications in autonomous

driving and other fields. These algorithms have been applied to develop

automated tools [8].

1- Dijkstra algorithm

 Dijkstra developed this systematic search technique in 1959 to discover

the shortest path between two places on a map based on navigation costs.

Priority queueing saves money on non-negative contract costs. Dijkstra's

algorithm visits all nodes in the graph from the starting point and completes

the solution if available. Without prior knowledge of the chart, it will not

calculate the distance between each node and the destination under optimal

conditions. It is used equation (3.1).

𝒇(𝒏) = 𝒈(𝒏) (3.1)

Where g(n) is the real cost of travelling from node n to the beginning node.

 Dijkstra's algorithm performs a blind search that takes time and wastes

resources in processing. All nodes in the weighting scheme presented in this

method are searched in ascending order based on their distance from the

origin. The priority queue, which runs in a monotonic way, determines the

nearest node from the starting point. events in discrete event simulation are

prioritised by the times at which they occur and extracted monotonically. Prior

knowledge of the target node is not required in Dijkstra, which makes it a

naive algorithm. It can be implemented in a multi-node environment without

a priori at the nearest node. It chooses the least expensive at every step and

sometimes doesn't need to search all the edges. Due to its more generic, it is

open to others, not just non-periodic charts. It usually searches a large area on

a map and thus can be applied to geographical maps such as Google Maps.

Chapter three system modelling

26

The edges of the positive weight are kept in a priority queue and are referenced

according to the distance between the positions in this algorithm.

In Fig.3.2, an example of Dijkstra's algorithm is shown, whereby the

shortest path from node v1 to all other nodes in the graph is generated by

checking the distance from node v1 to its neighbouring nodes, which are v2

and v3. From the list of distances, it can be immediately determined that node

v3 has a distance of 4. Then the search is completed for all existing nodes to

find the lowest cost for the path v1-v3-v4-v5-v6. Fig. 3.3 shows the flowchart

of Dijkstra algorithm in path planning.

Fig. 3.2 Dijkstra example [38]

The Dijkstra technique is a well-known algorithm for determining the

optimal path from the shortest route to find problems. However, with this

method, the time required to find the optimal way is significantly longer when

the search space is ample, so the Dijkstra method is unsuitable for real-time

problems [39], [40].

Chapter three system modelling

27

Fig. 3.3 Flowchart illustrates the Dijkstra algorithm, which is used in

path planning

Start

The open list is initialized with only current node

If the best
is the goal

Calculate and find the best node and moved

it from the open list to the closed list

 Define the current node and the goal node

Find the best path

All the subsequent bodes of a current

optimal node are put into the open list

If the open

list is empty

End

Yes

Yes

No No

Chapter three system modelling

28

2- A* Algorithm

In 1968, Hart proposed the A* heuristic technique. It is a common

graph path planning algorithm. A* works in the same way as Dijkstra's

algorithm, except that it directs its search to the most promising situations,

which can save a large amount of processing time. A* is mostly utilised to

provide a nearly perfect solution with the current dataset/nodes. This approach

is widely utilised in stationary environments and, in certain circumstances, in

dynamic environments. The core functionality of a particular application or

domain can be customised according to our needs. A*, like Dijkstra, follows

a road tree from its beginning point to its goal. A* must decide which of its

pathways to expand at each iteration of its main loop. It does so based on the

path's cost and an estimate of the cost of extending the path all the way to the

target. Specifically, A* uses the formula below to choose the path that

minimises node search space (3.2).

 𝐟(𝐧) = 𝐠(𝐧) + 𝐡(𝐧) (3. 2)

Where n is the next node on the path, g(n) represents the actual expense cost

from node n to the beginning node, and h(n) represents the cost of the best

path from n to the destination node. Fig. 3.4 shows an example of finding the

short path in the A* algorithm.

Fig. 3.4 A* example

Chapter three system modelling

29

In the game industry, the A* algorithm is commonly employed. The A*

method has since been utilised for robot path planning, intelligent urban

transportation, graph theory, and automated control as artificial intelligence

has advanced.

The A* algorithm is a heuristic that use heuristics to choose the best

path. The A* algorithm must locate nodes on the map and apply appropriate

heuristics for guidance as shown in Fig. 3.5. Table 3-1 contains common

heuristic functions such as Euclidean distance, Manhattan distance, and Octile

distance.

Table 3-1 Most Common Types of Heuristic Functions Used in Path

Planning Algorithms.

Function Equation

"Euclidean distance " √(𝑋1 − 𝑋2)
2 + (𝑌1 − 𝑌2)

2

"Manhattan distance " |𝑋1 − 𝑋2| + 𝑌1 − 𝑌2|

"Octile distance " Max(|𝑋1 − 𝑋2|, |𝑌1 − 𝑌2|)

The A* algorithm is computationally simple compared with other

algorithm ways of arranging calculations (ex; D*, state lattice). A* is suitable

for car applications with car kinematics and steering angle [39]–[41].

Chapter three system modelling

30

Fig. 3.5 Path planning flowchart using the A* algorithm

start

Initial start location ‘n’ and put it

on open list

Detect all the successor

location of ‘n’ which not

exist on closed list

Remove from the open list and put on

closed and save the index of the location

‘n’ which has the smallest f(n)

Calculate cost function

f(n)=g(n)+h(n)

Calculate cost function

f(n) for each location

Terminate the algorithm, and

use the pointers of indexes to

get the optimal path

If ‘n’ is the

target location

End

Yes

No

Chapter three system modelling

31

3- D* Algorithm

In (1994), Stentz Anthony proposed an informed incremental search

algorithm D*, that is developed based on the A-Star and Dijkstra algorithms.

It is designed to solve route planning problems in unknown environments by

managing the condition of the robot and computing the case sequence using

back indications to guide the robot to the target position or to update the cost

due to obstacle detection. The algorithm places the appropriate states in the

available list, and the states are processed until the cost on the path from the

current state to the target is less than the minimum, at which point the cost

changes are propagated to the next state and the robot continues to follow the

indicators in the next sequence target [9], [42], [43].

The D* algorithm has two main functions: process-state and modify-

cost. The process-state function is responsible for updating the state of the

robot based on changes in the environment. This function takes the current

state of the robot and the positions of any new obstacles that have been

detected, and updates the paths in the inflation graph accordingly. The

process-state function also places the updated states in the priority queue, so

they can be expanded in the next iteration. The modify-cost function is

responsible for updating the costs of the states in the inflation graph. This

function is called when changes in the environment are detected, and it

updates the costs of the states that are affected by the changes. The modify-

cost function also propagates the cost changes to the neighboring states, to

ensure that the paths in the inflation graph remain consistent.

Together, the process-state and modify-cost functions allow the D*

algorithm to efficiently adapt to dynamic changes in the environment and find

the shortest path to the goal. D* algorithm is typically used in robotics, where

Chapter three system modelling

32

the environment is constantly changing and the robot needs to adapt its path

to the new conditions. It is also used in games and simulations where the

environment is dynamic. However, it is important to note that D* has a higher

computational cost than A* and it may not be suitable for real-time systems

with limited computational resources [12].

4- State Lattices

Automated route planning frequently uses lattice-based graphs.

Aircraft, cars, boats, and all-terrain cars, for example, all use the country's

navigation networks. The state lattice method is an improved graph search

algorithm such as A*, work with a large complex environment, is a discrete

collection of all the system's reachable configurations. It is built by

discretizing space into a hyperdimensional grid and attempting to connect the

origin to every grid node through a feasible path, an edge. In general, the

lattice is assumed to contain all feasible paths up to a given resolution, which

means that if a car can travel from one node to another, the lattice contains a

sequence of paths to perform this manoeuvre. As a result, it is concluded that

this formulation is capable of resolving entire planning issues. Many reference

trajectories are produced in this manner, and then the best one is selected

based on the given cost function [45].

State lattices planner uses an A* lookup to get an agent from the start

state to the target state. This example where the start point at (0,0, east, centre)

and the goal point at (14,14, east, centre), aims to find a path between a car of

two states given heading, wheel angle, and the presence of random obstacles.

Initially, the agent has no knowledge of the state space except how it is

structured, so the agent makes an initial plan to go directly to the target, using

A*. This means that the agent sees a certain amount of the actual state space,

Chapter three system modelling

33

which initially, as far as the agent knows, is entirely free of any obstacles. As

the agent moves along its initial path, A* updates its knowledge of the state

space by "perceiving" the area around it. If the agent realises an obstacle is

blocking its path, it will remap with A*. The agent has only "seen" a certain

amount of the virtual state network at any point along the way, so it will plan

according to what it knows. Moreover, while on the move, each position in

grid mode is grouped by shape (X, Y, vertex, wheel angle). X and Y are two

integers that form a coordinate location. The head chooses one of four options:

north, south, east or west, and the wheel angle chooses one of three options:

centre, left, or right. The probability distribution shows the probability of an

obstacle in a given region of the network of states. Because of these additional

settings, the agent is a more realistic representation of a real robot. In Fig. 3.6,

the agent's visibility is 1 unit, and the probability of node blocking is 10%.

The agent set up seven A* plans, incurred a route cost of 137, and expanded

6169 knots.

Fig. 3.6 State lattice planner when the agent's visibility is 1 unit

Chapter three system modelling

34

In Fig. 3.7, the agent's visibility is seven units, and the probability of node

blocking is 10%. The agent set up three A* plans, incurred a route cost of

70, and expanded 3969 knots.

Fig. 3.7 State lattice planner when the agent's visibility is 7 unit

In Fig. 3.8, the agent's visibility is 15 unit, and the probability of node

blocking is 10%. The agent set up two A* plans, incurred a route cost of 50,

and expanded 2745knots.

Fig. 3.8 State lattice planner when the agent's visibility is 15 unit

Chapter three system modelling

35

As the agent's visibility increases, the average number of A* plans have to

minimise because the agent can get more information and apply more

knowledge to each plan. Because of the randomisation of the case space, the

comparisons are not straightforward, but it is natural to see that if the agent is

less visibility, the cost will be higher, and the agent will likely have to make

more plans A*.

3.3.1.2 Local path planning

Path planning that requires the robot to navigate in an uncertain or

dynamic environment is known as local path planning. The algorithm will

adapt to barriers and changes in the environment wherever it is used for path

planning. Local route planning may be characterised as real-time obstacle

avoidance employing sensory-based information on contingencies impacting

the robot's safe navigation. Normally, a robot is driven with one path in local

path planning. The shortest path from the starting position to the goal point is

a straight line, which the robot follows until it encounters an obstruction. The

robot then executes obstacle avoidance by deviating from the line while also

updating certain key information, such as the updated distance from the

present location to the goal point, the obstacle departure point, and so on. In

order to reach the destination exactly, the robot must constantly know the

position of the destination point from its present position in this type of path

planning. The potential field approach is a well-known local path planning

technique [46].

1- Potential Field Algorithm

The potential field function will be to predict a comprehensive path

planning algorithm that takes the robot via vector quantities of the target's

attractive force and repulsive forces from obstacles in the area. The aim is to

Chapter three system modelling

36

discover a direct path from the robot's starting point to the destination position

while avoiding obstacles. The potential functions to be investigated are

differentiable real value functions; hence, given that the potential function's

value is energy, the gradient of this function will create the force. A field

potential gradient is predicted to drive the robot to the goal position based on

this simple but powerful assumption.

 The job's success is dependent on the robot's possible attractive and

repulsive gradients. The robot and the rest of the obstacles are believed to be

positively charged, whereas the target is supposed to be negatively charged.

This charge difference produces repulsive forces that push the robot and pull

the target. The potential function is the sum of the potential attractive and

repulsive on a robot.

𝑼 = 𝑼𝒂𝒕𝒕 + 𝑼𝒓𝒆𝒑 (3.3)

where, 𝑈𝑎𝑡𝑡 is the attractive potential and 𝑈𝑟𝑒𝑝 is the repulsive potential.

Attraction tends to drag the robot towards the target position, and repulsion

tends to push the robot away from obstacles. The gradient U yields a vector

field for artificial forces F(d).

𝑭(𝒅) = −𝛁𝑼𝒂𝒕𝒕 + 𝛁𝑼𝒓𝒆𝒑 (3.4)

𝑭(𝒅) = −𝑭𝒂𝒕𝒕 + 𝑭𝒓𝒆𝒑 (3.5)

Where, ∇U is the gradient vector of U at robot point d (x, y).

 The general form of suitable potential field functions suggested by

Kathip follows.

(a) attractive potential field and force

𝑼𝒂𝒕𝒕 =
𝟏

𝟐
𝜻 ∗ 𝒅𝟐 (3.6)

𝑭𝒂𝒕𝒕 = 𝛁𝑼𝒂𝒕𝒕 = 𝜻 ∗ (𝒅) (3.7)

Chapter three system modelling

37

Where, 𝑈𝑎𝑡𝑡 is the attractive potential field, 𝐹𝑎𝑡𝑡 is an attractive force, 𝜁 is the

attractive potential coefficient, 𝑑 = | 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑑𝑔𝑜𝑎𝑙 |, 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the car

location in the Cartesian coordinate system (𝑥, 𝑦), 𝑑𝑔𝑜𝑎𝑙 is the goal location

in the Cartesian coordinate system (𝑥, 𝑦). The attractive force is a linear

function which decreases as the car nears the goal.

(b) repulsion potential field and force

𝑼𝒓𝒆𝒑 = {
𝟏

𝟐
𝜼 ∗ (

𝟏

𝒅
−

𝟏

𝒅°
)
𝟐

=
𝟏

𝟐
𝜼 ∗ (𝐥𝐧𝒅 − 𝐥𝐧𝒅°)

𝟐 𝒊𝒇 𝐝 ≤ 𝒅°

𝟎, 𝒊𝒇 𝒅 > 𝒅°

 (3.8)

𝑭𝒓𝒆𝒑 = 𝛁𝑼𝒓𝒆𝒑 = 𝜼 ∗ 𝒆−|𝒅−𝒅°| (3.9)

Where 𝑈𝑟𝑒𝑝 is the repulsive potential field, 𝐹𝑟𝑒𝑝 is an repulsive force, 𝜂 is

the repulsive potential coefficient, 𝑑 = | 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 | , 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the

car position at (x, y), 𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 is the obstacle position at (𝑥, 𝑦), and 𝑑° is the

influence of distance. The repulsion capability ensures that the potential

increases significantly as the car approaches the obstacle and has no effect

when the car is further away [47].

3.3.2 Controller Design

3.3.2.1 model predictive control

"Model Predictive Control (MPC)" is a term that refers to a variety of

control approaches used in single input single output (SISO) and multiple

input multiple output (MIMO) systems. It was originally utilised in 1970 by

Shell Oil and is currently employed in a variety of sectors. One of the most

effective advanced control strategies necessitates the use of a process model

to minimise the discrepancy between predicted and actual outputs. The

intended result may be applied to both basic and complicated procedures. The

basic principle behind MPC is to forecast the future behaviour of the managed

Chapter three system modelling

38

system over a fixed time horizon and compute an optimal control input that

minimizes a present cost function while meeting the system limitations. More

specifically, at each sampling instant, the control input is calculated by solving

an optimal open-loop control problem with a finite horizon; the first part of

the resulting optimal control trajectory is then applied to the system until the

next sampling instant when the horizon is shifted and the procedure is

repeated. MPC is particularly effective because it enables the explicit insertion

of complex state and input limitations, as well as an acceptable performance

criterion, into controller design [48].

1) MPC strategy

Fig. 3.9 explains the MPC method clearly. At the current time k, the

future predicted outputs (y(k+N) for N=1 to P) of the system are projected at

each instant using the process model across a prediction horizon (P), knowing

values up to instant k (past inputs and outputs) and future inputs (u(k),

u(k+1),..., u(k+P)). The plant's state is measured at each sampling instant, and

only the first element of the future input is applied to the plant, as a new

measurement of the state may be available at the next sampling instant. This

method is repeated at the following sampling period with the addition of the

new measurement, which is known as the receding horizon method.

Chapter three system modelling

39

Fig. 3.9 MPC strategy[49]

 The MPC approach predicts future car motion states by combining

current sampling states and target states (reference trajectory) provided by the

path planner. At each period, the MPC controller generates a control action

sequence that satisfies the system constraints and optimizes the objective

function. The MPC controller chooses the system output variable by

minimizing a quadratic function of states and control inputs, which is the most

common objective function.

MPC consists of the following components[50] :

• Process Model: Describes the dynamics of a process in which all inputs

and outputs must be addressed. Models such as feedforward, feedback, and

disturbance can be used.

• Objective Function: The sum of all terms having a control need, also

known as the cost function. It can be both linear and nonlinear. The

objective function tracks a reference trajectory for predicting the future

output.

Chapter three system modelling

40

• Receding horizon method: Predicts how the process will behave within a

given range that takes into account both the present and the future. The

estimated output constraints at each time interval in the horizon depend on

the data provided to the controller at time t.

The fundamental structure of MPC is shown in Fig. 3.10. Based on the

system's previous inputs and outputs, a model predicts future outcomes. At

each time step, the predicted output of the plant is compared to its reference

path, and future errors of the plant are estimated. The optimizer determines

the optimal future control sequence by taking into account the intended

functionality and limitations. The plant receives only the first component of

this optimal control sequence, and the same operation is repeated at the

following sampling period [51].

Chapter three system modelling

41

 output

Fig. 3.10 Basic structure of MPC [51]

2) Basic parameter MPC [52]

The prediction horizon (P), control horizon (h), and sampling period

(∆t) are the important parameters that affects the performance of the MPC

system

the prediction horizon refers to the length of the future prediction made

by the model. It is the time over which the MPC algorithm predicts future

states of the system based on the current state and control inputs. A longer

prediction horizon provides more accurate predictions of future states, but also

requires more computational resources and longer computation times. A

shorter prediction horizon provides faster response time but may not

accurately capture the dynamics of the system.

MPC

Controller

Chapter three system modelling

42

The control horizon refers to the number of steps over which the control

actions are applied. It is the time interval over which the control inputs

calculated by the MPC algorithm are applied to the system. The control

horizon is usually shorter than the prediction horizon to ensure a fast response

time. The choice of control horizon is a trade-off between the accuracy of the

control inputs and the computational resources required to calculate them. A

longer control horizon provides more accurate control inputs but requires

more computational resources and longer computation times. A shorter

control horizon provides faster response time but may not accurately capture

the dynamics of the system.

The sampling time refers to the time interval at which the control

algorithm updates its predictions and control actions. It is the time interval

between two consecutive measurements of the system's state. In general, a

sampling time in the range of 10-100 milliseconds is commonly used in self-

driving car simulations. This provides a desirable balance between

computational efficiency and the accuracy of the simulation results.

3) MPC Formulation

Model Predictive Control (MPC) is a control strategy that uses a model

of a system to predict its future behavior and optimizes control actions to

achieve a desired objective. The optimization problem is solved at each time

step, using the predicted state and control inputs to determine the optimal

control action for the current time step and the predicted future. The MPC

controller is designed in three stages: Firstly, an augmented state-space model

is constructed. Second, the calculation of the vector of predicted outputs

within the prediction horizon through the augmented model is performed.

Finally, the control law is determined by solving an optimal control problem

[53].

Chapter three system modelling

43

A) Augmented State Space Model

The control equation for the standard discrete-time state-space model

is as follows:

𝐱(𝐤 + 𝟏) = 𝐀(𝐤)𝐱(𝐤) + 𝐁(𝐤)𝐮(𝐤) (3.10)

𝐲(𝐤 + 𝟏) = 𝐂(𝐤)𝐱(𝐤) + 𝐃 (𝐤)𝐮(𝐤) (3.11)

Where x(k) is the vector of state variable, y(k) is the vector of controlled

variables, u(k) is the vector of manipulated variables, 𝐴(k) is the system

matrix linearized at a time k, 𝐵(k) is the input matrix, 𝐶(k) is the output matrix,

and D(k) is the feedthrough matrix. 𝑥(k) and 𝑢(k) are members of a convex

set subject to a set of linear constraints[53].

B) Prediction of Output and State

Using the augmented model, the predicted output and state are

calculated at time instances k+1, k+2, ..., k+P based on the current state x(k)

and the future incremental inputs ∆u(k), ∆u(k+1), ∆u(k+2), ..., ∆u(k+h-1).

Here, P and h represent the prediction horizon and control horizon,

respectively.

The predicted output and state at time instance k+j|k (where j=1,2,3,...,P) are

denoted by:

y(k+j|k): predicted value of the output variable y at time step k+j, given the

information available at time step k.

x(k+j|k): predicted value of the state variable x at time step k+j, given the

information available at time step k.

C) Optimization

Future points are predicted based on the model, making the system

considered in open loop with the plant to drive towards the goal. A cost

Chapter three system modelling

44

function for the optimization problem is defined based on the state input,

providing optimal inputs while satisfying the constraints.

The cost function is defined as:

𝐂𝐨𝐬𝐭 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 = 𝐕(𝒙𝑷) + ∑ 𝐋(𝒙𝒌, 𝒖𝒌)
𝑷−𝟏
𝑲=𝟎 (3.12)

Where V(𝑥𝑃) is the positive definite terminal cost and L(𝑥𝑘, 𝑢𝑘) is the

positive definite cost function for the state and input variables. The states must

satisfy the system dynamics (3.10).

The V(𝑥𝑃) and L(𝑥𝑘, 𝑢𝑘) can be formulated using positive definite matrices.

𝐋(𝒙𝒌, 𝒖𝒌) = 𝒙(𝒌)𝑻𝐐𝐱(𝐤) + 𝒖(𝒌)𝑻𝐑𝐮(𝐤) (3.13)

𝐕(𝒙𝑷) = 𝒙(𝒑)𝑻𝐃𝐱(𝐩) (3.14)

Where Q and R are positive definite matrices on state and control variables.

D is so chosen matrices to make the system drive towards the final goal. At

each time step, this optimization problem should be solved, and the sequence

of the first element 𝑢*(𝑘) is applied to the system. The output 𝑥(𝑘+1) obtained

by optimizing the cost function provides the state vector, and the input vector

for the 𝑃 points on the horizon [54].

3.3.2.2 Neural Network Approach

 A neural network (NN) is a machine learning algorithm that is designed

to mimic the structure and function of the human brain. These algorithms use

machine learning to interpret sensory input, label or aggregate raw data, and

detect numerical patterns in vectors that include various types of real-world

data, such as images, audio, time series, and text. The primary objective of

neural networks is to categorize raw data. They can be trained on labelled or

unlabelled data to identify patterns and subsequently categorize new data, a

process known as learning. Neural networks have the ability to adapt to

Chapter three system modelling

45

changing inputs autonomously, meaning that the output parameters do not

need to be redefined every time the input changes in order to achieve optimal

results [55].

1) Components and Architectures of NN [56] [57] :

A neural network is consisting of the following parts:

• Neurons: Neurons simulate the behaviour of organic neurons using

mathematical operations. The neuron receives input data, calculates a

weighted average, and then applies a nonlinear function, such as an

activation function, to produce an output.

• Connection and weight: Connections connect neurons in one layer to

neurons in another layer, with each connection having a weight value that

represents the strength of the relationship between the two components.

The goal of training a neural network is to minimize a loss function, which

measures the difference between the network's predicted outputs and the

actual outputs for a given set of inputs. Lowering the weight values is one

way to achieve this goal.

• Propagation function: There are two types of propagation functions in a

neural network: forward propagation and backpropagation. Forward

propagation calculates the expected value, while backpropagation

computes the gradients of the loss function with respect to the weights of

the network, which is used to update the weights during training.

• Learning rate: To optimize the weights, neural networks are trained via

gradient descent, which is an optimization algorithm used to minimize the

loss function of a neural network by iteratively adjusting the weights in the

direction of steepest descent.

Chapter three system modelling

46

The main types of neural network architecture include:

• Forward neural networks: Are the most common type of architecture, with

the first layer serving as the input layer and the last serving as the output

layer, and all of the layers in between are hidden.

• Recurrent neural networks: This network's design is a collection of neural

networks in which the connections between nodes build a directed graph

over time, specifying a transient dynamic behavior.

• Symmetrically Connected Neural Networks are similar to recurrent neural

networks, but they differ in the connections between their modules. Unlike

non-symmetrically connected neural networks, where the weights of

connections between modules can differ in both directions, the connections

in symmetrically connected neural networks have the same weight values

in both directions.

2)Neural Networks in Control Systems:

Neural networks in control systems have been suggested by Werbos in

1989 and Narendra in 1990 [58]. The control of neural networks had two

primary purposes: and

• Approximate dynamic programming using neural networks

• Neural networks in optimum control problem solving and closed-loop

feedback control.

The challenge of using neural networks for feedback control purposes is to

define an appropriate control system architecture and then show how to adjust

neural network weights using mathematically proper techniques to ensure

Chapter three system modelling

47

stability and performance in a closed loop. A model predictive controller is a

well-known model controller for a neural network.

There are two steps when using neural networks for control:

• Defining the system: Developing a neural network model for the facility

on which we are based.

• Control design: A neural network factory model for designing (or training)

a control unit.

3)Neural network-based Model Predictive Control (N-MPC):

 The first step in predictive control of the model is to define the NN

facility model (system description). The controller then uses the plant model

to predict future performance.

System Description:

1. The first step in predictive control of the model is to train the NN to

represent the forward dynamics of the plant.

2. The estimation error between the plant output 𝑦𝑝 and the NN output 𝑦𝑚 is

used as the NN training signal.

3. The neural network plant model (NNPM) uses past inputs and past plant

outputs to predict future values of plant output [58]. NNPM is a critical

part of the N-MPC methodology. Fig. 3.11 depicts the structure of the

NNPM, where the input signal is u(t) represents the system input and 𝑦𝑝(t)

represents the plant output, in layer1 (hidden layer) the blocks labeled TDL

represent tapped delay lines that store previous values of the input signal

and IWI,j represents the weight matrix from the input j to layer i. The sum

of the weighted inputs and the bias forms the input to the transfer function

S. The job of the transfer function is to combine multiple inputs into one

Chapter three system modelling

48

output value so that the activation function can be applied. Layer 2 (output

layer) takes input from preceding hidden layers and comes to a final

prediction based on the model’s learnings, LWI,j denotes the weight matrix

from layer j to layer i. The sum of the weighted input and the bias of the

output layer pass to the activation transfer function l to get the output 𝑦𝑚(t).

This layer is considered the most important, as it provides the final output

of the neural network model plant [59].

Fig. 3.11 The structure of the neural network plant model [59]

Typically, all hidden layers in a neural network use the same activation

function. However, the activation function used in the output layer may differ

from the hidden layers, depending on the type of prediction or goal of the

model. Table 3-2 shows the different types of activation functions commonly

used in neural networks, according to sources [60], [61].

Chapter three system modelling

49

Table 3-2 Mathematical equations for activation function

Activation

Function

Description Equation Implementation

Sigmoid Transforms

any input to a

value between

0 and 1.

σ(x) =
1

1 + e−x

Linear Output is

equal to its

input

ylinear = x

Hyperbolic

tangent

activation

(Tanh)

Takes any real

value as input

and outputs

values

between -1

and 1

tanh(x) =
ex − e−x

ex + e−x

Derivative

of tanh

Used to find

the maxima

and minima of

functions

when the

slope is zero.

tanh

= 1 − (
ex − e−x

ex + e−x
)2

Chapter three system modelling

50

3.3.2.3 Mathematical Model

 The kinematic model of a non-holonomic car can be used to produce

successful autonomous driving on urban roadways under the following

assumptions:

1) The car is considered to go in a straight line, and vertical, pitch, and spin

motions are ignored.

2) Both wheels have zero slip angles.

In the context of a self-driving car, the MPC formulation can control the car's

behavior based on its current state and desired objective. The state of the car,

including position (𝑥 and 𝑦), orientation (ψ), and velocity (v), is approximated

using a kinematic model in this formulation. The control inputs, namely the

steering angle (𝛿), assuming only the front wheel is used for steering. and

acceleration (a), are considered as well. The center of the car is supposed to

be in the middle of the rear axle and in the case of the bike model, at the rear

wheel.

The state (S) and input (u) of the system are defined as [x, y, ψ ,v] and [a,

𝛿], respectively.

The kinematic bicycle model is represented by the following set of equations

in an inertial frame based on the axis system with SAE standards [62]

 𝑥̇ = 𝑣 ∗ 𝑐𝑜𝑠(𝜓) (3.15)

 𝑌̇ = 𝑣 ∗ 𝑠𝑖𝑛(𝜓) (3.16)

 𝜓̇ =
𝑣∗𝑡𝑎𝑛(𝛿)

𝐿
 (3.17)

 𝑉̇ = 𝑎 (3.18)

where 𝐿 is the wheelbase.

Chapter three system modelling

51

The kinematic model approximates the state by considering the car's motion

as a function of its position and velocity, taking into account the steering angle

and acceleration. The model is represented as:

𝑚̇ = 𝐴 ′ ∗ 𝑆 + 𝐵 ′ ∗ 𝑢 (3.19)

Or as a function of state and input:

 𝑚̇ = 𝑓(𝑆, 𝑢) (3.20)

Where 𝐴 ′ is the Jacobian of the state and 𝐵 ′ is the Jacobian of the control

input.

A ′ =

[

0 0 −v ∗ sin(ψ) cos(ψ)

0 0 v ∗ cos(ψ) sin(ψ)

0 0 0
tan(δ)

L
0 0 0 0]

B ′ =

[

0 0
0 0

0
v

L ∗ cos2(δ)
1 0]

The MPC algorithm predicts the future state of the car over a specified time

horizon using the kinematic model and the current state of the car. The state

at the next time step after converting this model into a discrete-time analysis

by setting the sampling time 𝑑𝑡 is calculated as:

𝑆(𝑘 + 1) = 𝑆(𝑘) + 𝑚̇ ∗ 𝑑𝑡 (3. 21)

Using expansion Taylor series up to the first degree around the reference

point (𝑚̇) we get,

𝑆(𝑘 + 1) = 𝑆(𝑘) + (𝑓(𝑆, 𝑢̂) + 𝐴 ′(𝑆(𝑘) − 𝑆) + 𝐵 ′(𝑢(𝑘) − 𝑢̂))𝑑𝑡 (3.22)

𝑆(𝑘 + 1) = (1 + 𝑑𝑡 𝐴′)𝑆(𝑘) + (𝑑𝑡 𝐵′)𝑢(𝑘) + (𝑓(𝑆 , 𝑢̂) − 𝐴′𝑆 − 𝐵′𝑢 ̂)𝑑𝑡

(3.23)

This can be simplified as [63]:

Chapter three system modelling

52

𝑆(𝑘 + 1) = 𝐴 ∗ 𝑆(𝑘) + 𝐵 ∗ 𝑢(𝑘) + 𝐶 (3.24)

Where A, B matrix are known and C is the matrix represent any constant

factors that affect the system’s current state.

 𝐴 =

[

1 0 −v ∗ sin(ψ)dt cos(ψ) dt

0 1 v ∗ cos(ψ) dt sin(ψ) dt

0 0 1
tan(δ)

L
dt

0 0 0 1]

𝐵 =

[

0 0
0 0

0
v

L ∗ cos2(δ)
dt

dt 0]

𝐶 =

[

𝑣 ∗ sin(𝜓) ∗ 𝜓 ∗ 𝑑𝑡

−𝑣 ∗ cos(𝜓) ∗ 𝜓 ∗ 𝑑𝑡
𝑣 ∗ 𝛿

𝐿 ∗ 𝑐𝑜𝑠2(𝛿)
𝑑𝑡

0]

The MPC algorithm optimizes the control inputs, namely the steering angle

and acceleration, over the same time horizon to minimize the objective

function while satisfying the constraints. The optimal control inputs are then

applied to the car, updating its current state, and the process is repeated.

Chapter three system modelling

53

3.3.2.4 Convex Optimization

Convex Optimization is one of the most significant approaches in the

world of mathematical programming, with several applications. It also has

considerably larger applications outside of mathematics, including machine

learning, data science, economics, medicine, and engineering.

Convexity is significant in convex optimizations. Convexity is defined as the

continuity of the first derivative of a convex function. It assures that convex

optimization problems are smooth and have well-defined derivatives,

allowing gradient descent to be used. Convex functions include linear,

quadratic, absolute value, logistic, and exponential functions, among others.

Convex sets are the most significant in terms of convexity. A convex set

comprises all points on or within its border, as well as all convex combinations

of points in its interior. A convex set is a collection of all convex functions.

Simply said, the convex function takes the shape of a hill. Finding the global

maximum or minimum of a convex function is thus a convex optimization

problem. Convex sets are frequently employed in convex optimization

approaches because they may be modified using certain operations to

maximize or minimize a convex function. An example of a convex set is a

convex hull, is the smallest convex set that may include a given convex set.

On every convex interval, a convex function takes the value between its

lowest and maximum values. This indicates that this convex function has no

local extremes (on the convex region). It also expresses that just one point in

this collection, which is on the convex hull, is closest to the minimum as

shown in Fig. 3.12 [64].

Chapter three system modelling

54

Fig. 3.12 Convex optimization (show that one point on the convex hull,

is closest to the minimum)

Convex optimization issues are classified into two types:

• Constrained convex optimization: The convex function to optimize is

constrained in some way.

• Unconstrained convex optimization: The convex function to optimize is not

constrained in any way.

55

Chapter Four: The Proposed Work

4.1 Python Implementation

To control the autonomous car to move from the starting point to the

end point, three different modules are used:

1-The map on which the car will operate, the starting and target location is

selected and presented to the program.

2- In order to select the best algorithm for both global and local path planning,

various path planning algorithms were tested. The results of these tests

revealed the following:

• Dijkstra algorithm: One of its primary benefits is its low complexity, which

is practically linear. It may be used to compute the shortest path between

a single node and all other nodes, as well as the shortest path between a

single source node and a single destination node, by ending the process

once the shortest distance is reached for the destination node.

as well as their drawbacks it does an occluded investigation that takes a

long time to process, it is unable to handle negative edges, it heads to the

acyclic graph, so it cannot accomplish the exact shortest path, and there is

also a requirement to keep track of vertices that have been visited.

• A* Algorithm: Is a heuristic search algorithm that uses an estimated cost

to the goal to guide the search. It is known for its simplicity and its ability

to guarantee the discovery of the optimal solution, i.e., the shortest path,

between the starting point and the destination. A* is an excellent choice

for global planning when the environment is relatively static, and the cost

of each edge is known beforehand. In such a scenario, A* is typically faster

than D* because it does not require incremental updates to the path.

Chapter four the proposed work

56

Furthermore, A* is often more memory-efficient than D* because it does

not need to store the entire graph in memory.

• D* algorithm: Is an incremental algorithm that updates the path as new

information becomes available. It begins with an initial path and then

iteratively improves it by considering the cost of edges and any

modifications in the environment. D* is a great choice when there is a

significant degree of uncertainty about the environment or when the

environment is constantly changing. This is because D* can adapt quickly

to changes in the environment by updating the path incrementally.

Additionally, D* has the ability to handle dynamic environments where

obstacles may move or appear suddenly.

• Potential field algorithm: A local path planning strategy used in real-time

obstacle avoidance. It is an attractive approach because of its elegance and

simplicity. However, the robot may quickly fall to a local minimum when

using this strategy. As a result, there is a need to use it with another

algorithm for global planning.

Based on the results of the above algorithms, the A* algorithm was selected

for global path planning, and the Potential field algorithm was chosen for local

path planning.

The A* algorithm was executed on the known environment to create a global

path from start to target, in order to prevent the car from getting stuck in local

minimums that may exist on the map if obstacles are not considered. The path

provided by the A* algorithm was then defined at multiple equally spaced

path points, which served as potential intermediate field targets. These

waypoints guided the car across the map, with the lane point closest to the

car's starting position generating an attractive starting potential field.

Chapter four the proposed work

57

The potential field algorithm was executed at each time step to generate a path

up to a few time steps into the future, enabling the car to navigate through

obstacles in dynamic environment.

The path planning algorithms provided a short and reference trajectory for the

car to follow, while constantly updating the path in response to moving

obstacles.

3- Predictive controller typically works in a continuous loop to ensure that a

car follows a specific path. The control unit achieves this by taking inputs

such as the current state of the car, the reference trajectory of the car, and a

predicted set of control inputs for future time steps up to the horizon.

The desired states of the car are calculated by the controller based on its

current speed and the coordinates of specific points on the reference path in

the future. The index of the closest point on the path to the current car position

is determined and used to set the initial desired state. The desired state is then

calculated up to the horizon by iterating through a loop. If the calculated point

is within the total points of the path, the desired state is set accordingly.

Otherwise, the final point of the path is used, and the desired states are

returned along with the target point.

After the desired state is set, a set of future states for the same number of

future time steps up to the horizon is computed by the controller. This

prediction is based on a given set of control input values, namely the steering

angle and acceleration, which are calculated by the controller to ensure that

the car follows the desired path.

Using these predicted states, the controller approximates the kinematic model

of the car by utilizing a mathematical model that describes the relationship

between the car's motion and its control inputs. This model takes into account

Chapter four the proposed work

58

various physical parameters of the car and uses them to predict how the car

will behave in response to different control inputs.

To make this prediction, the controller first calculates the current state of the

car, including its position, velocity, and heading angle. It then utilizes this

information, along with the predicted control inputs for future time steps, to

estimate the car's trajectory over that time horizon.

By comparing this predicted trajectory to the desired trajectory, the controller

can determine whether the car is on track or needs to be adjusted. The

kinematic model is crucial because it provides a way for the controller to

understand how the car will respond to different control inputs and to adjust

its control strategy accordingly.

Finally, the controller finds the cost of its actions at each point, considers a

range of objectives, including minimizing the discrepancy between the

desired and actual position and orientation of the car, reducing the control

input necessary to manage the car, and minimizing the rate of change of the

input. Each objective is assigned a weight based on its significance, and the

total cost is obtained by adding up the weighted objectives over a defined time

horizon with the terminal cost, as shown in equation (4.1):

C=∑

(

𝑄

[

(𝑥𝐾 − 𝑥𝐾𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2

(𝑦𝐾 − 𝑦𝐾𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2

(𝑣𝐾 − 𝑣𝐾𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2

(𝜓𝐾 − 𝜓𝐾𝑑𝑒𝑠𝑖𝑟𝑒𝑑)
2
]

+ 𝑅1 [
(𝛼𝐾)2

(𝛿𝐾)2] + 𝑅2 [
(𝛼𝐾+1 − 𝛼𝐾)

2

(𝛿𝐾+1 − 𝛿𝐾)2
]

)

+𝑃−1
𝑘=0

𝐷

[

(𝑥𝑃 − 𝑥𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2

(𝑦𝑃 − 𝑦𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2

(𝑣𝑃 − 𝑣𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2

(𝜓𝑃 − 𝜓𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑)
2
]

 (4. 1)

Chapter four the proposed work

59

Where Q is state error weightage matrix, R1 is input weighted matrix, R2 is

rate of input change weightage matrix and D is final state weighted matrix.

The cost function at each time step is typically computed by summing the

individual costs over all points in the prediction horizon P.

After calculating the total cost generated by a set of control inputs, the neural

network and optimizer (convex optimization was used) collaborate to identify

the appropriate inputs for the plant, specifically in adjusting the plant input of

self-driving cars as shown in Fig 4.1.

At the neural network, the training input is the difference between the

predicted steering angle and the last steering angle applied to the plant model

at each step. The training output is the required rate of change between the

steering angle value in each step.

At each step of the car's motion, the neural network receives the input, which

is the difference between the predicted steering angle for the current time and

the previous steering angle applied to the self-driving car model.

The neural network generates a prediction, which represents the weight value

necessary to achieve the appropriate rate of change in the steering angle. The

network weights are continuously updated until reaching a maximum number

of epochs or a minimal error, using the squared error of the difference between

predictions and train output at each time step until reaching the goal. The

hidden layer of the neural network utilizes the tanh activation, while the output

layer uses the derivative tanh activation.

The neural network output represents the required weight, which when

multiplied by the predicted steering angle, can control the change within an

acceptable range for each step see Fig. 4.2.

Chapter four the proposed work

60

The convex optimizer attempts to optimize the current conditions and control

the inputs to minimize the cost function, while the following considerations

are taken into consideration,

• 𝑆(k+1) = 𝐴* S(k)+ 𝐵* u(k)+ 𝐶 (car model)

• Maximum speed = 15 m/s

• Maximum reverse speed = 5 m/s

• Maximum steering angle = 45 ֩

• Maximum steering rate = 30 ֩

• Maximum deceleration = 6 m/𝑠2

• Maximum acceleration = 2.5 m/𝑠2

and then the optimal control input is input to the plant. The control inputs

found using this method are given to the car for a one-time step. Then the

whole process is repeated for the next step with its new state values. The

system flowchart is represented in Fig. 4.3.

Fig. 4.1 Diagram of N-MPC

Optimization
Neural network

model

plant

 controller

Predicted input

Current input

Cost function

& constrain

Neural

Predicted

optimal input

Chapter four the proposed work

61

Fig. 4.2 Neural network flowchart

Initialize weight

Create feed forward calculation

Output= tanh(input*weight)

Error=target output – actual output

If Error

acceptable

Freeze the

network weights Create back

propagation

End

Weights = weights +

adjustments weights

No yes

Predicted Output
Adjustments weights

=input*error*tanh derivative (output)

Input=|steering angle[t] - steering angle[t-1] |

Target output=steering angle rate*T/input

start

Chapter four the proposed work

62

Fig. 4.3 System implementation flowchart

Environment, start, goal

A* global planner

Establish potential intermediate

fields goals

Potential field local planner

plant

Select the next

potential field goal

If close to

potential goals

Goal reached

N-MPC module

 If stacked in the new

 local minimum

End No

No

No

Yes

Yes

Yes

start

63

Chapter Five: Results and Discussion
5.1 Overview

This chapter presents the results obtained. An intelligent controller is used

to control the self-driving car and supports motion planning in Python.

Dijkstra, A*, D* and potential filed algorithms results are discussed.

Appropriate performance is determined by clarifying parameters that affect

system performance, such as weights in the cost matrix, horizon distance, cost

equations and constraints. The controller's performance has been tested for

multiple paths to adjust the parameters to ensure static and dynamic obstacle

avoidance in a constrained environment.

5.2 Motion Planning Algorithm Results

5.2.1 Dijkstra Algorithm

The algorithm was tested with three different maps, as shown in the Fig.

5.1, Fig. 5.2, and Fig. 5.3.

Chapter five results and discussion

64

Fig. 5.1 Dijkstra algorithm path planning from (20,25) to (20,0)

Fig. 5.2 Dijkstra algorithm path planning from (45,45) to (0,0)

Chapter five results and discussion

65

Fig. 5.3 Dijkstra algorithm path planning from (5,185) to (140,0)

The algorithm's main disadvantage is that it does a blind search, wasting a

large amount of time, the blue color in the above figure represents the search

area. Another problem is that it is incapable of dealing with negative edges.

This results in acyclic graphs and, in most cases, failure to find the shortest

path.

5.2.2 A* Algorithm

An efficient method that guarantees the shortest path solution for a

relatively minor number of nodes is provided by A*. The cost that constitutes

the cost of getting to a node from the starting position, g(n), and the estimated

cost of the node to the target, h(n), are defined. These two are combined to get

f(n), which contains the information of both costs. A low f(n) cost is adequate

since it indicates that the nodes selected are closer to the goal, whereas a

bigger value indicates that the nodes are moving away from the target. The

nodes with the least f(n) in the algorithm are chosen. Choosing the number of

a successor depends on generating the next node. In this work, it was

Chapter five results and discussion

66

compared if the number was 4 or 8 to evaluate the trade-offs between the

efficiency of the search and the completeness of the search.

• When the 4 successors of the node (North, West, East, South) are

generated, it is observed that the path is zigzag and the search area is

large, as shown in Fig. 5.4(a), Fig. 5.5(a), and Fig. 5.6(a). This leads to

wasting time and energy consumption. The reason for this is that the

algorithm is only exploring four potential paths at each node, which can

result in a suboptimal solution if there are other better paths that are not

being considered. Additionally, the algorithm may need to backtrack

frequently to explore other paths, increasing the search area and wasting

time.

• When all 8 successors of the node (North, North West, North East,

South West, South East, West, South, East) are generated, the path

becomes smoother and the search area becomes smaller than when

generating only 4 successors. This is shown in Fig. 5.4(b), Fig. 5.5(b),

and Fig. 5.6(b), which indicates that the access time has become less

and energy savings are achieved.

The additional successors (North West, North East, South West, South

East) allow the algorithm to explore diagonal paths, which can be more

efficient than moving only in the cardinal directions (North, West, East,

South). This is because diagonals paths can cover more distance in fewer

steps, which reduces the amount of searching and backtracking the

algorithm has to do. Thus, generating eight successors rather than four can

enhance the algorithm's performance. After that, the algorithm was tested

in three different environments to ensure that the algorithm works

correctly, shown in Fig. 5.7, Fig. 5.8, and Fig. 5.9.

Chapter five results and discussion

67

(a) (b)

Fig. 5.4 A* algorithm path planning from (-30,-40) to (20,20),

 (a) 4 successors, (b) 8 successors

(a) (b)

Fig. 5.5 A* algorithm path planning from (40,0) to (-20,20),

(a) 4 successors, (b) 8 successors

Chapter five results and discussion

68

(a) (b)

Fig. 5.6 A* algorithm path planning from (20,-20) to (-20,20),

(a) 4 successors, (b) 8 successors

Fig. 5.7 A* algorithm path planning from (20,25) to (20,0)

Chapter five results and discussion

69

Fig. 5.8 A* algorithm path planning from (45,45) to (0,0)

Fig. 5.9 A* algorithm path planning from (5,185) to (140,0)

Chapter five results and discussion

70

5.2.3 D* Algorithm

The algorithm was tested with three different maps, as shown in Fig.

5.10, Fig. 5.11, and Fig. 5.12.

Fig. 5.10 D* algorithm path planning from (20,25) to (20,0)

Fig. 5.11 D* algorithm path planning from (45,45) to (0,0)

Chapter five results and discussion

71

Fig. 5.12 D* algorithm path planning from (5,185) to (140,0)

The D* algorithm is better suited for dynamic environments because it can

update the path as changes occur, which can be more efficient than re-

planning the path from scratch. This is due to its use of incremental search

and ability to reuse information from previous searches, enabling it to quickly

update the path. While the D* algorithm requires more complexity in its

implementation and uses more computational power than the A* algorithm, it

can be highly beneficial in scenarios where changes to the environment occur

frequently or in real-time.

Chapter five results and discussion

72

5.2.4 Potential Field Algorithm

 The potential field theory combines attractive and repulsive forces

generated by the environment to guide the robot towards a target while

avoiding collisions with obstacles. Each obstacle creates a repulsive force that

is proportional to the distance between the robot and the obstacle. The target

point generates an attractive force that pulls the robot towards it. However,

the potential field theory may fail to find a solution in an environment with

local minimums. The problem of local minima shown in Fig 5.13 can be

defined as the reactive problem for an agent, attracted to a goal at position G.

In general, a local minimum may form due to a superposition of the potential

target and obstacles, causing the factor to fall into a state other than target G.

To address this problem, the potential function in locales is used along with

the A* algorithm. The values of ζ and η in equation (3.6), (3.8) affect the

choice of the algorithm path, so the values must be adjusted according to the

required performance.

To observe how the system is affected by different ζ and η values, four

instances were taken:

• 𝜁 =1, 𝜂 =1: The force of attraction with the target is low, and the force

of repulsion with obstacles is low, creating an unwanted path, as shown

in Fig. 5.14.

• 𝜁 =1, 𝜂 =100: The force of attraction with the target is low, and the force

of repulsion with obstacles is high, which generates a safe path far from

obstacles and free of collision, as shown in Fig. 5.15.

Chapter five results and discussion

73

• 𝜁 =100, 𝜂 =1: The force of attraction with the target is high, and the

force of repulsion with obstacles is low. Generates an undesirable

direct path to the goal and does not avoid obstacles, as shown in Fig.

5.16.

• 𝜁 =100, 𝜂 =100: The force of attraction with the target is high, and the

force of repulsion with obstacles is high. Follow the desired path while

avoiding obstacles, as shown in Fig. 5.17.

 Fig. 5.13 The problem of local minima potential filed

Chapter five results and discussion

74

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.14 System response where 𝜻 =1, 𝜼 =1

Chapter five results and discussion

75

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.15 System response where 𝜻 =1, 𝜼 =100

Chapter five results and discussion

76

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.16 System response where ζ =100, η =1

Chapter five results and discussion

77

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.17 System response where 𝜻 =100, 𝜼 =100

Chapter five results and discussion

78

5.3 Using a Neural Network with Predictive Control

To evaluate the effect of adjusting the rate of change of the steering angle

on the response of the system, the simulation was tested both with and without

the use of the neural network with model predictive control unit for the same

path.

to clarify the results of the simulation, Fig. 5.18 displays the response of

the steering angle over time for both the scenario in which the neural network

and predictive control unit were used, as well as the scenario in which they

were not utilized with the predictive control.

Fig. 5.18 System steering angle response with and without use neural

network

Chapter five results and discussion

79

Fig. 5.19 displays the response of the acceleration over time for both the

scenario in which the neural network and predictive control unit were used, as

well as the scenario in which they were not utilized with the predictive control.

Fig. 5.19 System acceleration response with and without use neural

network

Fig. 5.20 displays the response of the speed over time for both the scenario

in which the neural network and predictive control unit were used, as well as

the scenario in which they were not utilized with the predictive control.

Fig. 5.20 System velocity response with and without use neural network

The simulation results showed that adjusting the change between

steering angle rates had a significant effect on the speed and acceleration of

Chapter five results and discussion

80

the self-driving car. When using the neural network, the self-driving car was

able to achieve a smoother and more consistent speed and acceleration

throughout the path. The results showed that the self-driving car was able to

maintain a more stable speed and acceleration, with less variation in these

parameters, when the change between steering angle rates was optimized

using the neural network.

In contrast, when the neural network was not used, the self-driving car's

speed and acceleration were more erratic and less stable, with more variation

in these parameters throughout the path. This indicates that the neural network

was able to improve the self-driving car's performance and stability by

optimizing the change between steering angle rates.

Overall, these results suggest that the use of a neural network can be an

effective way to optimize a self-driving car's performance and ensure its safety

and reliability on the road. By adjusting the change between steering angle

rates, the self-driving car can achieve a more stable and consistent speed and

acceleration, this can lead to a more comfortable ride for passengers, reduce

the risk of accidents, and enable more accurate and precise control of the car

movements, which is essential for safety and reliability on the road.

Chapter five results and discussion

81

5.4 Obstacle Avoidance in a Constrained Environment Results

 The proposed system was tested in a closed environment without

obstacles and in a closed environment with moving obstacles that may be

human or other cars. The movement towards the target is carried out by

following the initial path provided by the A* algorithm as shown in Fig. 5.21.

As for the moving obstacles in the path, they are detected using the potential

field generated by the obstacle during the step-by-step planning of the local

path as shown in Fig. 5.22.

 The path that the car follows is simulated, where the NMPC control unit

generates inputs within the specified constraints for the following path and

according to the type of environment, where Fig 5.23(a) represents the path if

the environment is fixed, and the Fig. 5.24(a) represents the path if there are

obstacles that were avoided during the simulation. It tries to maintain the

desired speed with the least positional error. Every jerk in steering angle and

acceleration is like a jerk on a car. Fig. 5.23(b), and Fig. 5.24(b) represent the

acceleration of the cars, and the variable speed rate is maintained in

controlling the car when the maximum acceleration must be less than the

acceptable acceleration of 2.5 m/𝑠2. Fig. 5.23 (c), and Fig. 5.24 (c) represent

the speed of the car vs time, and the variance should be good in speed. The

change in steering angle to time is plotted and displayed in Fig. 5.23 (d), and

Fig. 5.24 (d). The rate of change of the steering angle in car control must be

maintained at a maximum steering angle that is less than the accepted steering

angle of 45 ֩.

 The system was designed to provide comfort and safety with minimal

jerks, and the cost function was tuned accordingly. The simulation results

showed that the system was able to achieve a smooth change in acceleration

Chapter five results and discussion

82

and steering angle, resulting in a comfortable and safe ride in both static and

dynamic environments.

Fig. 5.21 A* path planning from starting point (-20,20) to the target

point (-20, -40)

Fig. 5.22 Avoid path obstacle by using the potential field in local planne

Chapter five results and discussion

83

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(c) Steering angle vs time

Fig. 5.23 Result static obstacle simulation path following from (-20,20)

to (-20, -40)

Chapter five results and discussion

84

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.24 Result dynamic obstacle simulation path following from

(-20,20) to (-20, -40)

Chapter five results and discussion

85

The performance of the controller is affected by:

1- Cost function

The cost function is a crucial component of the controller as it determines

the trade-off between different performance metrics, such as comfort, safety,

and energy efficiency. The choice of cost function can significantly impact

the behavior of the controller and the resulting car trajectory. In this proposed

system, the controller calculates the cost of its actions at each point in the

trajectory, taking into account a range of objectives such as minimizing the

discrepancy between the desired and actual position and orientation of the car,

reducing the control input necessary to manage the car, and minimizing the

rate of change of the input.

2- weights in the cost matrix

The weight of the cost matrix in equation (4.1) is used to assign weights to

each state variable in the cost function based on their relative importance.

These weights determine the trade-off between the different objectives in the

cost function. If a state variable has a higher weight, it will be prioritized more

in the cost function, and the controller will try to minimize its deviation from

the desired value more aggressively. On the other hand, if a state variable has

a lower weight, the controller will be less concerned with minimizing its

deviation from the desired value. The weights of the weight cost matrix should

be carefully chosen based on the specific application to achieve the desired

balance between different objectives. The weights of the cost matrix were

increased and decreased for two different paths to see their effect.

• Input cost weights: The simulation results for the self-driving car with

varying input cost weights are presented in Fig. 5.25 and Fig. 5.26 for low

input weight, while Fig. 5.27 and Fig. 5.28 illustrate the simulation results

for high input weight.

Chapter five results and discussion

86

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.25 Input cost weights low, path from (-30,40) to (20,20)

Chapter five results and discussion

87

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(d)Steering angle vs time

Fig. 5.26 Input cost weights low, path from (-20,20) to (40,0)

Chapter five results and discussion

88

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(c) Steering angle vs time

Fig. 5.27 Input cost weights high, path from (-30,40) to (20,20)

Chapter five results and discussion

89

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.28 Input cost weights high, path from (-20,20) to (40,0)

Chapter five results and discussion

90

From the simulation result, the behavior of self-driving cars during

simulation is significantly influenced by the input cost weights (R1).

In simulations where R1 is set to low values, the controller prioritizes

keeping the state of the car close to its desired values instead of controlling

inputs. This leads to larger and more aggressive control inputs, resulting in a

dynamic and responsive driving style. However, this behavior may cause the

car to make more aggressive maneuvers that could potentially affect

passenger comfort.

On the other hand, simulations with high input cost weights result in

smaller and less aggressive control inputs, potentially causing the car to

repeatedly overshoot its target and deviate from the intended path. The

controller prioritizes keeping the control inputs close to their desired values,

leading to small and repeated adjustments that may cause an uncomfortable

ride for passengers.

• State error cost weights: The impact of different state error cost weights

on the behavior of the self-driving car controller is depicted in Fig. 5.29

and Fig. 5.30 for low weight values, and Fig. 5.31 and Fig. 5.32 for high

weight values. These simulation results demonstrate how the choice of

state error cost weight influences the controller's priority between keeping

the state of the car close to its desired values versus the control inputs, and

how this affects the driving style and passenger experience.

Chapter five results and discussion

91

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.29 State error cost weights low, path from (-30,40) to (20,20)

Chapter five results and discussion

92

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.30 State error cost weights low, path from (20,20) to (40,0)

Chapter five results and discussion

93

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.31 State error cost weights high, path from (-30,-40) to (20,20)

Chapter five results and discussion

94

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.32 State error cost weights high, path from (-20,20) to (40,0)

Chapter five results and discussion

95

The simulation results reveal that the state error cost weights (Q) play

a critical role in determining the behavior of the controller in the self-driving

car.

When the state error cost weights are low, the controller focuses more

on the control inputs (u) being close to their desired values and less on keeping

the state of the car (x) close to its desired values. As a result, the self-driving

car simulation with low state error cost weights prioritizes the control inputs,

which may lead to imprecise and inaccurate path tracking. The car's behavior

could become less predictable, and passengers may experience an

uncomfortable ride due to the larger and more aggressive control inputs.

On the other hand, when the state error cost weights are high, the

controller focuses more on keeping the state of the car close to its desired

values, and less on the control inputs being close to their desired values. This

results in a more precise and accurate path tracking, but with larger and more

aggressive control inputs that could make the car's behavior less predictable

and cause an uncomfortable ride for passengers. The controller may also make

smaller and less aggressive control inputs to keep the state of the car close to

its desired values, which could cause the car to respond slowly to changes in

the environment.

• Rate input change cost weights: The simulation results for the self-

driving car with varying rate input change cost weights are presented in

Fig. 5.33 and Fig. 5.34 for low rate input change weight, while Fig. 5.35

and Fig. 5.36 illustrate the simulation results for high rate input change

weight.

Chapter five results and discussion

96

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.33 Rate input cost weights low, path from (-30,-40) to (20,20)

Chapter five results and discussion

97

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(d)Steering angle vs time

Fig. 5.34 Rate input cost weights low, path from (-20,20) to (40,0)

Chapter five results and discussion

98

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(d)Steering angle vs time

Fig. 5.35 Rate input cost weights high, path from (-30,-40) to (20,20)

Chapter five results and discussion

99

(a) Simulation of path following

(b)Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.36 Rate input cost weights high, path from (-20,20) to (40,0)

Chapter five results and discussion

100

The simulation results for varying rate input cost weights (R2)

indicate that the choice of R2 plays an important role in determining the

behavior of the self-driving car.

When the cost rate input weights are low, the controller is less

concerned with keeping the rate of change of the control inputs small,

resulting in larger adjustments to the control inputs. This behavior may lead

to a bumpy and unpredictable ride for passengers.

On the other hand, when the cost rate input weights are high, the

controller is more concerned with keeping the rate of change of the control

inputs small, resulting in smaller adjustments to the control inputs. This

behavior may lead to longer convergence time between path steps and could

result in overshooting or not following the intended path closely. However,

small adjustments can help to reduce energy consumption and prevent large

and unnecessary changes in the control inputs.

• Terminal cost weights: The simulation results of the self-driving car with

different terminal cost weights are presented in Fig. 5.37 and Fig. 5.38 for

low terminal weight, while Fig. 5.39 and Fig. 5.40 illustrate the simulation

results for high terminal weight.

Chapter five results and discussion

101

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.37 Terminal cost weights low, path from (-20,20) to (40,0)

Chapter five results and discussion

102

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.38 Terminal cost weights low, path from (-30,-40) to (20,20)

Chapter five results and discussion

103

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.39 Terminal cost weights high, path from (-20,20) to (40,0)

Chapter five results and discussion

104

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.40 Terminal cost weights high, path from (-30,-40) to (20,20)

Chapter five results and discussion

105

From the simulation result, the choice of terminal cost weights (D) also

has a significant impact on the behavior of the controller during the simulation

of self-driving cars. The terminal cost weights determine the importance of

the final state of the car compared to the intermediate states. A high value of

D emphasizes the importance of the final state and penalizes deviations from

it, while a low value of D places less emphasis on the final state.

In simulations with low terminal cost weights, the controller focuses

less on achieving the desired final state and more on achieving intermediate

states. This can result in more aggressive and dynamic driving behavior as the

controller prioritizes reaching intermediate states quickly.

3- Horizon Length

The effect of horizon length on the behavior of the self-driving car

controller during simulation is an important aspect to consider. The horizon

length represents the number of future steps the controller considers while

planning a trajectory for the car. The longer the horizon length, the more

future steps the controller considers, resulting in a smoother and more optimal

trajectory. However, this comes at the cost of increased computational

complexity and longer planning times. The effect of the horizon length value

was tested in two different paths.

Fig. 5.41 and Fig. 5.42 show the response when the low value used to set

the horizon length to 3.

 Fig. 5.43 and Fig. 5.44 shows the response when a high value of 20 was

used.

Fig. 5.45 and Fig. 5.46 shows the response when suitable value (8 to 12)

was used.

Chapter five results and discussion

106

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.41 Low horizon length effect, path from (-35,0) to (20, -20)

Chapter five results and discussion

107

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.42 Low horizon length effect, path from (20, -20) to (-20,20)

Chapter five results and discussion

108

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.43 High horizon length effect, path from (-35,0) to (20,-20)

Chapter five results and discussion

109

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.44 High horizon length effect, path from (20, -20) to (-20,20)

Chapter five results and discussion

110

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.45 Suitable horizon length effect, path from (-35,0) to (20, -20)

Chapter five results and discussion

111

(a) Simulation of path following

(b) Acceleration vs time (c) Speed vs time

(d) Steering angle vs time

Fig. 5.46 Suitable horizon length effect, path from (20, -20) to (-20,20)

Chapter five results and discussion

112

Simulation results show that decreasing the horizon length results in a

more responsive driving style, as the controller is only planning a few steps

ahead and can react more quickly to changes in the environment. However,

this may result in less optimal trajectories with more abrupt changes in control

inputs, as the controller has less time to plan ahead. Additionally, a very low

horizon length may not allow the MPC algorithm to consider the constraints

on the control inputs over a long enough time interval, which is important for

the safety and robustness of the control system.

Additionally, increasing the horizon length mean there is an increase in

the computational effort required leads to smoother driving behavior with

fewer abrupt changes in control inputs. This is because the controller has a

better understanding of the future state of the car and can plan ahead to avoid

sudden changes in direction or speed, allows the MPC algorithm to consider

the constraints on the control inputs over a long time interval, which is

important for the safety and robustness of the control system. However, this

also results in a slower response time to unexpected changes in the

environment, as the controller has already planned several steps ahead and

may need to replan the trajectory.

Based on the simulation results and analysis, a horizon length of 8 to

12 was found to be an appropriate range for the self-driving car controller.

This horizon length balances the trade-off between computational cost,

performance, and driving comfort. The controller was able to accurately

predict the car's future state and control inputs over a sufficient time interval,

considering the constraints on the control inputs over a long enough time

interval, which is crucial for safety and robustness of the control system.

Chapter five results and discussion

113

Numerous studies are related to the proposed work. One such study,

presented in [17], proposes a path planner based on Model Predictive Control

(MPC) that incorporates a convex relaxation approach for both lane change

and lane keeping maneuvers. The planner also employs a lane-associated

potential field to generate natural and comfortable trajectories. However, it

differs from the current work, which utilizes the A* algorithm for global path

planning, the Potential field algorithm for local path planning, and N-MPC for

motion planning. Despite the differences, both works demonstrate the

effectiveness of their respective approaches in generating safe and

comfortable paths for autonomous cars in various driving scenarios.

114

Chapter Six: Conclusions and Recommendations

6.1 Conclusions

The aim of this study was to develop an intelligent control system that

could support motion planning in self-driving cars. The system relies on

various path planning algorithms and a predictive controller to achieve motion

planning for an autonomous car. Global path planning was done using the A*

algorithm, while local path planning was done using the Potential field

algorithm. These algorithms provided a reference trajectory for the car while

updating the path in response to moving obstacles. Moreover, a predictive

controller was used to optimize the car's trajectory, ensuring safe and efficient

driving by computing a set of future states based on a given set of control

input values.

The system model utilized the kinematic model of a non-holonomic car

to approximate the car's state and input. The neural network was used to

predict the required weight for the control inputs of self-driving cars, while

the MPC algorithm was used to optimize these control inputs over a specified

time horizon. The MPC algorithm achieved this by minimizing the cost

function and satisfying the constraints. The results showed that the proposed

approach was successful in navigating through obstacles in both static and

dynamic environments. The study also demonstrated the importance of

carefully selecting the cost function weight and horizon length for the

predictive controller to achieve optimal performance. This research provides

valuable insights into the use of path planning algorithms and predictive

controllers for motion planning in autonomous cars.

However, the proposed approach has some limitations, and further

research is needed to optimize the proposed approach and integrate it with

Chapter six conclusions and recommendations

115

other components of self-driving cars, such as perception, localization, and

decision-making. Overall, this thesis has made significant contributions to the

field of autonomous driving and has paved the way for future innovations in

this area.

6.2 Future Work

The following recommendations can be considered for future work:

• Exploring the use of deep learning for path planning. This can be

achieved by training a neural network to learn the optimal path in

various environments.

• Integrating real-time sensor data into the system by incorporating

sensors such as LIDAR, cameras, or radar. These sensors can detect

obstacles and update the car's path and control inputs in real-time.

• Incorporating machine learning techniques to optimize the car's control

inputs based on real-time sensor data.

• Evaluating the system's performance in more complex environments to

identify areas where the system may need improvement or optimization

for different scenarios.

• Improving communication between autonomous cars to ensure

effective communication as more autonomous cars are introduced onto

the roads.

References

[1] N. Highway Traffic Safety Administration and U. Department of

Transportation, “Early Estimate of Motor Vehicle Traffic Fatalities for

the First 9 Months (January–September) of 2021,” 2021.

[2] “What Percentage of Car Accidents Are Caused by Human Error? |

Pittsburgh Law Blog.” https://www.cbmclaw.com/what-percentage-of-

car-accidents-are-caused-by-human-error/ (accessed Jun. 16, 2022).

[3] “SAE Levels of Driving AutomationTM Refined for Clarity and

International Audience.” https://www.sae.org/blog/sae-j3016-update

(accessed Jun. 14, 2022).

[4] Y. Nishio, K. Nonaka, and K. Sekiguchi, Moving Obstacle Avoidance

Control by Fuzzy Potential Method and Model Predictive Control. 2017.

doi: 10.0/Linux-x86_64.

[5] M. Nolte, M. Rose, T. Stolte, and M. Maurer, “Model Predictive Control

Based Trajectory Generation for Autonomous Vehicles-An

Architectural Approach,” 2017.

[6] A. Franco and V. Santos, “Short-term Path Planning with Multiple

Moving Obstacle Avoidance based on Adaptive MPC,” 2019.

[7] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A Review of

Motion Planning Techniques for Automated Vehicles,” IEEE

Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp.

1135–1145, Apr. 2016, doi: 10.1109/TITS.2015.2498841.

[8] P. Falcone, H. Eric Tseng, F. Borrelli, J. Asgari, and D. Hrovat, “MPC-

based yaw and lateral stabilisation via active front steering and braking,”

in Vehicle System Dynamics, 2008, pp. 611–628. doi:

10.1080/00423110802018297.

[9] V. T. Minh, “Nonlinear Model Predictive Controller and Feasible Path

Planning for Autonomous Robots,” Open Computer Science, vol. 6, no.

1, pp. 178–186, 2016, doi: 10.1515/comp-2016-0015.

[10] A. Koga, H. Okuda, yuichi tazaki, and et al., “Realization of Different

Driving Characteristics for Autonomous Vehicle by Using Model

Predictive Control*,” IEEE Intelligent Vehicles Symposium, 2016.

[11] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A Survey

of Motion Planning and Control Techniques for Self-driving Urban

Vehicles,” Apr. 2016, [Online].

[12] Christian Gotte, martin keller, till nattermann, alois seewald, and et al.,

“A Real-Time Capable Model Predictive Approach to Lateral Vehicle

Guidance,” IEEE , 2016.

[13] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” Apr.

2016, [Online]. Available: http://arxiv.org/abs/1604.07316

[14] J. Rios-Torres and A. A. Malikopoulos, “A Survey on the Coordination

of Connected and Automated Vehicles at Intersections and Merging at

Highway On-Ramps,” IEEE Transactions on Intelligent Transportation

Systems, vol. 18, no. 5, pp. 1066–1077, May 2017.

[15] G. Bresson, Z. Alsayed, L. yu, S. Glaser, and L. Yu, “Simultaneous

Localization And Mapping: A Survey of Current Trends in Autonomous

Driving,” vol. XX, 2017, doi: 10.1109/TIV.2017.2749181ï.

[16] C. Bila, F. Sivrikaya, M. A. Khan, and S. Albayrak, “Vehicles of the

Future: A Survey of Research on Safety Issues,” IEEE Transactions on

Intelligent Transportation Systems, vol. 18, no. 5, pp. 1046–1065, May

2017, doi: 10.1109/TITS.2016.2600300.

[17] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path Planning for

Autonomous Vehicles using Model Predictive Control,” IEEE , 2017.

[18] R. Guidolini, A. F. de Souza, F. Mutz, and Badue Claudine, “Neural-

Based Model Predictive Control for Tackling Steering Delays of

Autonomous Cars*,” IEEE, 2017.

[19] S. di Cairano and I. v Kolmanovsky, “Real-time optimization and model

predictive control for aerospace and automotive applications,”

MITSUBISHI ELECTRIC RESEARCH LAPORATORIES, 2018,

[Online]. Available: http://www.merl.com

[20] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,

“Information Theoretic Model Predictive Control: Theory and

Applications to Autonomous Driving,” IEEE Xplore, 2018.

[21] C. Marina Martinez, M. Heucke, F. Y. Wang, B. Gao, and D. Cao,

“Driving Style Recognition for Intelligent Vehicle Control and

Advanced Driver Assistance: A Survey,” IEEE Transactions on

Intelligent Transportation Systems, , pp. 666–676, Mar. 2018.

[22] M. v. Smolyakov, A. I. Frolov, V. N. Volkov, and I. v. Stelmashchuk,

“Self-Driving Car Steering Angle Prediction Based on Deep Neural

Network An Example of CarND Udacity Simulator,” in IEEE 12th

International Conference on Application of Information and

Communication Technologies, AICT 2018 - Proceedings, Institute of

Electrical and Electronics Engineers Inc., Oct. 2018.

[23] J. Wang, J. Liu, and N. Kato, “Networking and Communications in

Autonomous Driving: A Survey,” IEEE Communications Surveys and

Tutorials, vol. 21, no. 2, pp. 1243–1274, Apr. 2019.

[24] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing

transportation systems via deep learning: A survey,” Transportation

Research Part C: Emerging Technologies, vol. 99. Elsevier Ltd, pp.

144–163, Feb. 01, 2019. doi: 10.1016/j.trc.2018.12.004.

[25] J. Gwak, J. Jung, R. D. Oh, M. Park, M. A. K. Rakhimov, and J. Ahn,

“A review of intelligent self-driving vehicle software research,” KSII

Transactions on Internet and Information Systems, vol. 13, no. 11, pp.

5299–5320, Nov. 2019, doi: 10.3837/tiis.2019.11.002.

[26] A. Reda, A. Bouzid, and J. Vásárhelyi, “Model Predictive Control for

Automated Vehicle Steering,” Acta Polytechnica Hungarica, vol. 17,

no. 7, pp. 2020–163.

[27] K. Muhammad, A. Ullah, J. Lloret, J. del Ser, and V. H. C. de

Albuquerque, “Deep Learning for Safe Autonomous Driving: Current

Challenges and Future Directions,” IEEE Transactions on Intelligent

Transportation Systems, vol. 22, no. 7, pp. 4316–4336, Jul. 2021, doi:

10.1109/TITS.2020.3032227.

[28] Y. Xu, W. Tang, B. Chen, L. Qiu, and R. Yang, “A model predictive

control with preview-follower theory algorithm for trajectory tracking

control in autonomous vehicles,” Symmetry (Basel), vol. 13, no. 3, pp.

1–16, Mar. 2021, doi: 10.3390/sym13030381.

[29] S. Kolachalama and H. Malik, “Intelligent vehicle drive mode which

predicts the driver behavior vector to augment the engine performance

in real-time,” Data-Centric Engineering, vol. 3, no. 10, Apr. 2022, doi:

10.1017/dce.2022.15.

[30] J. L. Vazquez, A. Liniger, W. Schwarting, D. Rus, and L. van Gool,

“Deep Interactive Motion Prediction and Planning: Playing Games with

Motion Prediction Models,” Apr. 2022, [Online]. Available:

http://arxiv.org/abs/2204.02392

[31] X. Jin, Z. Yan, G. Yin, S. Li, and C. Wei, “An Adaptive Motion Planning

Technique for On-Road Autonomous Driving,” IEEE Access, vol. 9, pp.

2655–2664, 2021, doi: 10.1109/ACCESS.2020.3047385.

[32] S. N. Vassilyev, A. Y. Kelina, Y. I. Kudinov, and F. F. Pashchenko,

“Intelligent Control Systems,” in Procedia Computer Science, Elsevier

B.V., 2017, pp. 623–628. doi: 10.1016/j.procs.2017.01.088.

[33] K. M. Passino, “Intelligent Control: An Overview of Techniques *.”,

2015.

[34] P. Antsaklis, “Intelligent Control.” Jan. 01, 1994. Accessed: Jan. 02,

2023.

[35] S. Azadi, R. Kazemi, and H. R. Nedamani, “Trajectory planning of

tractor semitrailers,” Vehicle Dynamics and Control, pp. 429–478, Jan.

2021, doi: 10.1016/B978-0-323-85659-1.00010-0.

[36] H. Liu, Robot Systems for Rail Transit Applications. Elsevier, 2020.

doi: 10.1016/B978-0-12-822968-2.01001-9.

[37] K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright, and H.

M. Tai, “Autonomous local path planning for a mobile robot using a

genetic algorithm,” Proceedings of the 2004 Congress on Evolutionary

Computation, CEC2004, vol. 2, pp. 1338–1345, 2004, doi:

10.1109/CEC.2004.1331052.

[38] “An Introduction to Dijkstra’s Algorithm: Theory and Python

Implementation | by Andreas Soularidis | Python in Plain English.”

https://python.plainenglish.io/dijkstras-algorithm-theory-and-python-

implementation-c1135402c321 (accessed Apr. 08, 2023).

[39] S. K. Debnath et al., “A review on graph search algorithms for optimal

energy efficient path planning for an unmanned air vehicle,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 15, no. 2,

pp. 743–750, Aug. 2019, doi: 10.11591/ijeecs.v15.i2.pp743-749.

[40] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, “A Survey of

Path Planning Algorithms for Mobile Robots,” Vehicles, vol. 3, no. 3,

pp. 448–468, Aug. 2021, doi: 10.3390/vehicles3030027.

[41] I. M. Zidane and K. Ibrahim, “Wavefront and a-star algorithms for

mobile robot path planning,” Advances in Intelligent Systems and

Computing, vol. 639, pp. 69–80, 2018, doi: 10.1007/978-3-319-64861-

3_7.

[42] A. Stentz, “Optimal and Efficient Path Planning for Unknown and

Dynamic Environments,” 1993.

[43] Z. Zhang, J. Wu, J. Dai, and C. He, “A Novel Real-Time Penetration

Path Planning Algorithm for Stealth UAV in 3D Complex Dynamic

Environment,” IEEE Access, vol. 8, pp. 122757–122771, 2020, doi:

10.1109/ACCESS.2020.3007496.

[44] S. Singh, R. Simmons, T. Smith, A. Stents, and V. Verma, “Recent

Progress in Local and Global Traversability for Planetary Rovers,”

IEEE, 2000.

[45] M. Pivtoraiko and A. Kelly, “EFFICIENT CONSTRAINED PATH

PLANNING VIA SEARCH IN STATE LATTICES”, 2005.

[46] W. Ngah WAJ, “A Simple Local Path Planning Algorithm for

Autonomous Mobile Robots”, 2011.

[47] F. Arambula Cosío and M. A. Padilla Castañeda, “Autonomous robot

navigation using adaptive potential fields,” Math Comput Model, vol.

40, no. 9–10, pp. 1141–1156, 2004, doi: 10.1016/j.mcm.2004.05.001.

[48] “Model Predictive Control 20.1 OVERVIEW OF MODEL

PREDICTIVE CONTROL From online version of book by Seborg et

al. (2011) on ‘Process Dynamics and Control.’”

[49] K. P and B. R, “Design of PID and Model Predictive Controller for

Three Phase Flow (Crude Oil+Water+Air) through Helical Coil and

Control Valve in Series,” International Journal of Chemical Sciences,

vol. 15, no. 1, p. 114, Mar. 2017, Accessed: Apr. 08, 2023.

[50] P. E. Orukpe, “MODEL PREDICTIVE CONTROL

FUNDAMENTALS,” Nigerian Journal of Technology (NIJOTECH),

vol. 31, no. 2, pp. 139–148, 2012.

[51] E. F. Camacho and C. Bordons, Model Predictive Control. Springer,

2013.

[52] I. Aşar, “‘“MODEL PREDICTIVE CONTROL (MPC)

PERFORMANCE FOR CONTROLLING REACTION SYSTEMS”’ A

THESIS SUBMITTED TO THE GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES OF MIDDLE EAST

TECHNICAL UNIVERSITY,” 2004.

[53] A. Khalaf MAlmaliki, N. Abdul Wahab, and S. AL-Haddad, “Model-

based Predictive Control of a Tower Crane,” MACE Technical Journal

(MTJ), 2019.

[54] M. F. Manzoor and Q. Wu, “Control and Obstacle Avoidance of

Wheeled Mobile Robot,” in Proceedings - 7th International Conference

on Computational Intelligence, Communication Systems and Networks,

CICSyN 2015, Institute of Electrical and Electronics Engineers Inc.,

Oct. 2015, pp. 235–240. doi: 10.1109/CICSyN.2015.48.

[55] S. Lek and J. F. Guégan, “Artificial neural networks as a tool in

ecological modelling, an introduction,” 1999.

[56] E. Castillo, “Functional Networks Related papers Funct ional Net

works: A New Net work-Based Met hodology Enrique Cast illo

Functional Networks,” 1998.

[57] K. (Kevin N.) Gurney, An introduction to neural networks. UCL Press,

1997.

[58] M. T. Hagan, H. B. Demuth, and O. De Jesus, “AN INTRODUCTION

TO THE USE OF NEURAL NETWORKSIN CONTROL SYSTEMS,”

International Journal of Robust and Nonlinear Control: IFAC-Affiliated,

2002.

[59] A. Vasičkaninová, M. Bakosova, and M. Bakošová, “Neural Network

Predictive Control Of A Chemical Reactor,” Acta Chimica Slovaca, vol.

2, no. 2, pp. 21–36, 2009, doi: 10.7148/2009-0563-0569.

[60] J. Feng, X. He, Q. Teng, C. Ren, H. Chen, and Y. Li, “Reconstruction

of porous media from extremely limited information using conditional

generative adversarial networks,” Sep. 2019.

[61] “Derivative of Neural Activation Function | by Yash Garg | Medium.”

https://yashgarg1232.medium.com/derivative-of-neural-activation-

function-64e9e825b67 (accessed Dec. 06, 2022).

[62] L. Tang, F. Yan, B. Zou, K. Wang, and C. Lv, “An improved kinematic

model predictive control for high-speed path tracking of autonomous

vehicles,” IEEE Access, vol. 8, pp. 51400–51413, 2020, doi:

10.1109/ACCESS.2020.2980188.

[63] P. R. B. Monasterios and P. A. Trodden, “Model predictive control of

linear systems with preview information: Feasibility, stability, and

inherent robustness,” IEEE Trans Automat Contr, Sep. 2019

[64] “Convex optimization explained: Concepts & Examples - Data

Analytics.” https://vitalflux.com/convex-optimization-explained-

concepts-examples/ (accessed Dec. 02, 2022).

 الخلاصة

بيئة حركة المرور على الطرق متغيرة للغاية ولا يمكن التنبؤ بها. قد تواجه السيارات ذاتية القيادة

البيئات سيناريوهات حرجة غير هذه مثل في تعمل وقوع حادث متوقعة، التي يزداد خطر حيث

متوقع غير سلوك بسبب السيناريوهات هذه تنشأ قد العادية. القيادة بمواقف مقارنة من بسرعة

يكون الحرجة،مستخدمي الطريق الآخرين أو ظهور عوائق على الطريق. في مثل هذه الظروف

 .الهدف الأساسي للتحكم في حركة السيارة هو تقليل خطر وقوع حادث وشيك

الغرض من هذه الدراسة هو تطوير نظام يمكن أن يساعد في منع الحوادث في بيئات المرور على

الطرق التي لا يمكن التنبؤ بها والمتغيرة من خلال معالجة مشكلة تخطيط الحركة والتحكم فيها في

رة لاتباعها المواقف الحرجة للسيارات المستقلة. يولد النظام المسارات المثلى ومدخلات التحكم للسيا

تم تقديم تقنية تخطيط الحركة الهدف،مع تجنب العوائق واتباع مركز المسار بشكل متوقع. لتحقيق هذا

 للسيارات ذاتية القيادة.

(A* potential field ,تعتمد تقنية تخطيط الحركة المستخدمة في هذه الدراسة على خوارزميات)

 neural network .بتقنية المدعوم predictionن ، مع وحدة تحكم ذكية تتكون م رلتخطيط المسا

النموذجية بمستقبل السيارة لأفق زمني محدود باستخدام model predictive controller تتنبأ

نموذج رياضي للسيارة. تستخدم وحدة التحكم نموذج دراجة حركي خطي ومنفصل كنموذج سيارة

لأنه أداة قوية لحل مشاكل تحديد المسار نظرًا لما يتمتع *Aداخلي. يتم استخدام مسار الإستراتيجية

لتخطيط المسار في بيئة بها potential fieldنة. ويتم استخدام به من أمثلية وكفاءة وقبول ومرو

عوائق بسبب بساطتها وأمانها وتكلفة حسابية منخفضة. مدخلات التحكم هي زاوية توجيه السيارة

 والتسارع.

في النموذج على حل مشكلة التحسين باعتبارها مشكلة model predictive controllerتعمل

لضبط neural networkبرمجة تربيعية تقلل من دالة التكلفة مع تلبية مجموعة من القيود. تسُتخدم

ويعد تعديل معدل زاوية التوجيه جزءًا مهمًا من تحسين أداء السيارة التوجيه، معدل تغيير قيمة زاوية

قد تتأثر التوجيه،متها وموثوقيتها على الطريق. بدون تعديل معدل زاوية ذاتية القيادة وضمان سلا

الدقيق والتوقف الدوران السيارة على الحوادث بدقة،قدرة إلى زيادة مخاطر وقوع يؤدي قد مما

بما في ذلك الأخطاء في الأهداف،وتقليل كفاءة استهلاك الوقود. تتضمن وظيفة التكلفة مجموعة من

والمدخلات، ومعدل تغيير المدخلات، لتوجيه السيارة ذاتية القيادة بعيدًا والحالية، مرغوبة الحالات ال

بعد تحديد المناورة ، للسيارةعن المناطق عالية التكلفة. تحدد وحدة اتخاذ القرار مسار العمل التالي

 قيادة. اللاحقة يتم إنشاء ملف تعريف السرعة ومرجع مركز المسار لتتبع السيارة ذاتية ال

في أداة التحسين، python convex optimisationتم حل مشكلة البرمجة التربيعية باستخدام

لجعل الأفق،بما في ذلك أوزان دالة التكلفة وطول التحكم،. يتم ضبط معلمات s 0.1بوقت عينة يبلغ

وفيه تضمن وحدة التحكم أن ، m12إلى m8المسار آمنًا ومريحًا. يتراوح طول الأفق المحدد من

 السيارة تتبع المسار المقصود مع تجنب العوائق.

، اقصى سرعة m/s 15تم تحقيق جميع النتائج ضمن قيود السيارة المحددة والتي هي، اقصى سرعة

تباطؤ °30اقصى معدل توجيه ، °45، اقصى زاوية توجيه m/s 5 عكسية m/ 𝑆2 6 ، اقصى

 . m/ 𝑆2 2.5واقصى تسارع

 جمهورية العراق

 وزارة التعليم العالي و البحث العلمي

 جامعة كربلاء

 كلية الهندسة

 الكهربائية والالكترونية قسم الهندسة

الماجستير مقدمة الى مجلس كلية الهندسة / جامعة كربلاء وهي جزء من متطلبات نيل درجة رسالة

 الكهربائية في علوم الهندسة

 من قبل:

 فاطمه منير عبدالرسول

 باشراف :

 أ.م.د. احمد عبدالهادي احمد

 حيدر جليل كامل أ.م.د.

 2023 - نيسان 1444 - رمضان

العصبية نموذج المسيطر التنبؤي المستند على الشبكة

 لتتبع السيارة ذاتية القيادة

 السيارة ذاتية الحركة

