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Abstract 

The road traffic environment is highly variable and unpredictable. 

Autonomous cars operating in such environments may face unexpected 

critical scenarios, where the risk of an accident rapidly increases compared to 

normal driving situations. These scenarios may arise due to unforeseen 

behavior from other road users or obstacles appearing on the road. In such 

crucial conditions, the primary objective of car motion control is to minimize 

the danger of an impending accident. 

The purpose of this study is to develop a system that can help prevent 

accidents in unpredictable and variable road traffic environments by 

addressing the problem of motion planning and control in critical situations 

for autonomous cars. The system generates optimal paths and control inputs 

for the car to follow while avoiding obstacles and following the center of the 

track predictably. To achieve this objective, motion planning technique for 

self-driving cars are presented. 

The motion planning technology utilized in this study is based on the 

A* and potential field algorithms, with an intelligent controller consisting of 

prediction supported by neural network technology. The model predictive 

controller predicts the car's future for a finite time horizon using a 

mathematical model of the car. The controller utilizes a linearized and 

discretized kinematic bicycle model as an internal car model. The A* strategy 

path is used as it is a powerful tool for solving pathfinding problems due to its 

optimality, efficiency, admissibility, flexibility, and potential function for 

path planning in an environment with obstacles. The potential function is used 

due to its simplicity, safety, and low computational cost. The control inputs 

are the car's steering angle and acceleration. 
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The model predictive controller solves the optimization problem as a 

quadratic programming problem that minimizes a cost function while 

satisfying a set of constraints. The neural network is used to adjust the rate of 

change of the steering angle value, adjusting the rate of steering angle is an 

important part of optimizing a self-driving car's performance and ensuring its 

safety and reliability on the road. Without adjusting the rate of steering angle, 

the car's ability to make precise turns and stop accurately may be 

compromised, which can lead to a higher risk of accidents and lower fuel 

efficiency. The cost function includes a set of objectives, including errors in 

desired and current states, inputs, and the rate of change of inputs, to guide 

the self-driving car away from high-cost regions. The decision-making 

module determines the next course of action for the car. After the subsequent 

maneuver is selected, a velocity profile and a lane center reference are 

generated for the self-driving car to track.  

The quadratic programming problem is solved using convex 

optimization in the optimization tool of python, with a sample time of 0.1 

seconds. The control parameters, including the cost function weights and the 

length of the horizon, are adjusted to make the lane safe and comfortable. The 

selected horizon length ranges from 8 m to 12 m, within which the control 

unit ensures that the car follows the intended path while avoiding obstacles. 

All the results were achieved within the constraints of the specified 

car, with a maximum speed of 15 m/s, maximum reverse speed of 5 m/s, 

maximum steering angle of 45°, maximum steering rate of 30°, maximum 

deceleration of 6 m/s^2 and a maximum for acceleration 2.5 m/s^2. 
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Chapter One: Introduction 

1.1 Overview 

When a person takes on the role of the driver in the morning, they are 

typically confident in their ability to safely reach their destination. However, 

this is becoming increasingly inaccurate. There are many reasons for a car 

accident: Driver negligence, bad weather, poor road conditions, and third-

party carelessness which can cause accidents that lead to deaths or serious 

injuries. 

In reference to [1], the statistical data reveals the following: 

– Around 1.36 million people die every year in road accidents; An average 

of 3,700 people is killed every day. In other words, one person is killed 

every 25 seconds.  

– An additional 20-50 million people are injured but do not die, frequently 

leading to long-term impairment. 

– Car crashes are the primary source of death among youngsters between the 

ages of 5-29. Young people aged 15-44 make up more than half of all 

deaths.  

– Road accidents may cost countries between 2-8% of their gross domestic 

product. 

– In direct medical expenditures, traffic accidents cost the United States 

more than $380 million. 
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In the United States, car accidents are the greatest cause of death for children 

aged 1-3 years. One of the most heart-breaking realities regarding car 

accidents is that the majority of them are avoidable. According to a 2016  

"National Highway Automobile Safety Administration (NHTSA)" research, 

human error accounts for 94% to 96% of all traffic accidents. 

These human errors include [2]: 

– High speed 

– Aggressive/Reckless driving 

– Distracted driving 

– Drunk driver 

– Sleepy driving  

Moreover, in the era of huge technological progress in which we live, 

technologies like cars are becoming more and more affordable to the point 

that almost every family owns at least one car. Thus, the number of accidents 

increased exponentially. As a result, there is a hole in the market for self-

driving car. In simple language, self-driving or autonomous cars can be called 

mobile robot. This car can sense the environment, understand the surrounding 

scene, and make decisions without human interaction from the road to the 

destination. Self-driving cars have gone from "likely possible" to "definitely 

possible" to "inevitable". The Society of Automotive Engineers (SAE) has 

created a "Levels of Driving Automation standard that defines the six levels 

of driving automation, from Level 0 (no automation) to Level 5 (fully 

autonomous)" [3], as shown in Fig. 1.1. 
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Fig. 1.1 levels of autonomous cars 

1.2 Thesis Background 

The topic of navigation is one of the most critical in robotics research. 

Mobility is required for all autonomous mobile robots in order to execute, 

locate, plan movement, and direct.  In this context, navigation is defined as the 

act of planning a moving robot's path from its current location to the desired 

Level 2 

Partial Autonomy  

The car can perform 

functions like 

steering and 

acceleration. The 

driver still monitors 

all tasks and can take 

control at any time. 

Level 1 

Driver Assistance  

The driver performs 

the driving task with 

some driving assist 

features. 

Level 0 

No Automation 

manual control. The 

driver performs all 

driving tasks. 

Level 3  

Conditional Autonomy 

The car performs the 

majority of the driving 

activities, but the 

driver must be ready to 

take control  of the car 

at any time with 

notifications. 

Level 4 

 High Autonomy  

Under specific 

situations, the car 

performs all driving 

functions. Although 

driver intervention is 

not required, the 

driver's attention is 

still essential. 

Level 5  

Full Autonomy  

Under all conditions, 

the car performs all 

driving functions. It 

is not necessary for 

the driver to 

intervene or pay 

attention. 
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target location, following the intended path and avoiding any obstacles 

encountered along the way[4]. 

To ensure the safety and practicality of navigation, a number of 

parameters must be met by the needed routes. In addition, pathways may be 

described in terms of requirements; for example, in highly dynamic situations, 

rapid or smooth paths are often preferable over long and curvy paths[5]. 

        The navigation challenge requires interaction with changes in the 

environment model in addition to route planning. The robots must travel fast 

to the goal while avoiding static or dynamic impediments detected by their 

sensors, which requires excellent trajectory planning and obstacle avoidance. 

Despite extensive research on these areas, there is still no conclusive answer 

to the difficulty of navigation in busy, dynamic surroundings [6]. 

        Many navigation technologies from mobile robots have been adapted to 

suit the problems of road networks and driving restrictions. These planning 

approaches are classified into four classes based on their applicability in 

autonomous driving: graph searching, sampling, interpolation, and numerical 

optimization [7]. 

        Intelligent control is becoming increasingly crucial in our society as 

route planning improves and information technology advances. Compact 

devices have tiny sizes, minimal power consumption, and strong 

functionalities, among other characteristics, this field is poised to have a 

diverse array of applications, including automobile electronics, aircraft, and 

smart homes. If any of these technologies are merged, it will lead to more 

intelligent applications. 

The self-driving car was selected as the research platform, and the 

predictive control model was used as the central control unit. The intelligent 

car can move independently with intelligent control while following the path. 
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Intellectual activities such as executing motion planning algorithm, steering 

drive direction and brake commands can be incorporated in the intelligent car 

application. The applications of the self-driving car technology are used in: 

1. Autonomous Robotic Systems. 

2. Auto-Pilot in the Airplane. 

3. Probe used in space exploration. 

4. Transfer robot 

5. Agricultural robot 

1.3 Problem Formulation 

After mentioning the proportion of human-caused accidents, it can be 

concluded that most car accidents can be avoided by keeping the humans 

away from the driving process.  

The overall objective of this thesis is to create an autonomous car system 

capable of comfortably and safely navigating with minimal jerks by finding a 

solution to the problem of path planning in environments containing road 

obstacles and to design an intelligent controller for an autonomous car capable 

of tracking certain paths.  After determining what is required for the 

performance of an autonomous car, it is possible to formulate the problem 

addressed in this thesis: 

• The car needs longitudinal control to maintain acceleration and speed. 

• The car needs lateral control to steer the car along the desired path. 

• The car must maintain safety distances, speed limits and acceleration limits.    

• Supporting the controller with intelligent techniques such as neural 

networks. 
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1.4 Objectives 

The aims of this thesis are:  

• Develop a path planning by using global and local planners to achieve 

computational efficiency in dealing with changing traffic environments in 

different road scenarios.  

• Design an intelligent controller that manipulates motion planning. 

• Integrate the controller with a path planning algorithm to minimize the 

tracking error as a result of continuous updating of the path with the 

control. 

 

1.5 Thesis Organization  

         This thesis consists of five chapters, which are briefly introduced as 

follows: 

1. The first chapter explained the background of self-driving cars and their 

applications. 

2. The second chapter discusses previous studies and researches that have 

been conducted related to the self-driving car. 

3. The third chapter presents the general structure of the self-driving car 

model, path planning algorithms (Dijkstra, A*, D*, state lattice, potential 

function) and the control design. 

4. The fourth chapter presents the proposed work. 

5. The fifth chapter explains the simulation results and their discussion. 

6.  The sixth chapter shows the conclusions of the current study and the 

suggested recommendations for future studies.
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Chapter Two: Literature Review 

2.1 Introduction  

An autonomous car transfers a manual driving car to autonomous 

driving using different sensors and actuators that decide on driving based on 

other criteria. In order to understand the evolution of research on self-driving 

in recent years, it is important to conduct a literature review to understand the 

different application areas from which self-driving has developed as well as 

to identify research gaps. Therefore, in the following sections, a review of the 

literature is presented. 

2.2 Related Work 

Several researchers presented a variety of studies to construct a self-

driving automobile system that incorporates a perception system and a 

decision-making system. The perception system is separated into multiple 

subsystems that are in charge of self-driving car localisation, mapping of 

stationary objects, detection and tracking of moving obstacles, road mapping, 

and traffic sign detection and identification. On the other hand the decision-

making system is separated into many subsystems that are in charge of path 

planning, behaviour selection, action planning, and control. Some research 

from different decision-making systems has been reviewed as follows: 

P Falcone et al. (2008) [8] suggested a control strategy that combines 

MPC with steering control devices as well as two model predictive 

controllers. The first was used in the all-wheel drive model, which changed 

the steering angle and brake torque to follow the intended trajectory. A 

modified bike model with fewer inputs was used to create the second MPC 
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controller. The findings reveal that the first microcontroller performs well in 

both low and high-speed monitoring of the reference route, however 

calculation is time consuming. The second controller, on the other hand, 

performed poorly at high speeds due to the simplicity of the automobile model 

but suitable for real-time execution. 

V T Minh (2016) [9] presented an approach for controlling and planning 

the path of autonomous robots using Nonlinear Model Predictive Control 

(NMPC) and Feasible Path Planning (FPP) techniques. The approach 

considers the dynamics and constraints of the robot, as well as environmental 

obstacles, in order to plan feasible paths and generate control signals that 

enable the robot to follow these paths while avoiding collisions. The NMPC 

algorithm optimizes the robot's control inputs over a finite time horizon, while 

the FPP algorithm plans the robot's path based on the current environment and 

the robot's constraints. The proposed approach has been validated through 

simulations and experiments on a mobile robot platform, demonstrating its 

effectiveness in controlling and navigating the robot in dynamic 

environments. 

A Koga et al. (2016) [10] implemented the lateral and longitudinal 

control subsystems using the MPC technique, which predicts autonomous 

vehicle motion using the standard bike model. The proposed autonomous 

driving system was tested on a small-scale experimental track at a speed of 

20[km/h] with seven different parameter settings. The results showed that the 

system was capable of following a reference path with small deviations and 

smooth operation. While the overall driving performance of the model 

predictive controller was inferior to that of human drivers, the system was able 

to produce a range of different driving characteristics by putting different 
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weights on tracking precision and steering smoothness. The performance of 

the controller could potentially be improved by setting more accurate values 

for the physical parameters of the vehicle using system identification 

techniques. 

B Paden et al. (2016) [11] provided a survey of driverless vehicle 

decision-making problems with a focus on motion planning and feedback 

control. The breakdown of decision-making into individual problems has 

allowed for the use of well-developed solution techniques from a variety of 

research areas. However, tailoring and integrating these methods so that their 

interactions are semantically valid remains a challenge. Additionally, the 

computational burden of the entire system is an issue that needs to be resolved. 

Nonetheless, these issues do not limit the potential of driverless vehicles as a 

means of personal mobility.  

C Götte et al. (2016) [12] proposed a model predictive control (MPC) 

approach for guiding a vehicle laterally. The aim of this approach is to 

generate real-time steering commands for a vehicle that are safe, smooth, and 

comfortable for passengers. The authors first present the mathematical model 

of the vehicle and describe how it can be used to generate reference 

trajectories for the vehicle to follow. Next, the authors introduce the MPC 

approach, which involves solving an optimization problem at each time step 

to generate the optimal steering command. Finally, the authors evaluate the 

performance of their approach through simulations and experiments on a test 

track. In the first scenario, the system successfully avoids a collision with two 

static obstacles by performing a double lane change maneuver. The planned 

trajectory is adjusted as soon as the first obstacle appears within the prediction 

horizon, and the system waits until the last-point-to-steer is detected before 



Chapter two                                                                         literature review 

10 
 

following the reference trajectory. The resulting maneuver reaches the limits 

of driving physics, but remains stable and collision-free. In the second 

scenario, the system is tested with a dynamic obstacle, and it is able to adjust 

the planned trajectory at an early stage to avoid a collision. The moving 

obstacle is taken into account, and the resulting maneuver is stable and 

collision-free. 

M Bojarski et al. (2016) [13] discussed a deep neural network 

approach to autonomous driving, specifically for lane and road following. The 

authors demonstrate that their convolutional neural network (CNN) can learn 

to perform this task without the need for manual decomposition into sub-tasks 

such as road or lane marking detection, semantic abstraction, path planning, 

and control. They evaluate the network's performance through simulation tests 

and on-road tests, and visualize the internal state of the CNN to show how it 

learns to detect useful road features on its own. The authors conclude that their 

approach is promising, but more work is needed to improve the network's 

robustness. 

Y Nishio  et al. (2017) [4] proposed a method for obstacle avoidance 

that combines the fuzzy potential method and model predictive control. While 

the fuzzy potential method can handle the shape and attitude of the robot and 

achieve obstacle avoidance through translational and rotational motion, it 

cannot explicitly include the dynamics of the robot and the motion of 

obstacles. On the other hand, model predictive control considers the dynamics 

of the robot and predicts its motion while handling the constraint explicitly 

through an index function. By considering the mobility range of obstacles as 

constraints, it guarantees obstacle avoidance. The proposed method was 
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verified through numerical simulations and was found to be effective even in 

complex situations where conventional methods fail. 

J Rios-Torres et al. (2017) [14] stated that reservations were one of 

the ways used to address the various initiatives in the literature to coordinate 

"Connected and Automated Vehicles" (CAVs) to enhance traffic flow and 

safety in certain transportation sectors. The biggest difficulty with this 

technique is the high level of communication required and the possibility of 

barriers. They reported that the most prevalent issue was minimising travel 

time. Alternative formulations, on the other hand, include reducing compound 

interference at the intersection region. Also, they investigated multi-objective 

optimisation factors such as acceleration, speed tracking error, and collision 

risk. Furthermore, they used traffic flow modelling to create control inputs 

that guarantee traffic flow at the intersection remains stable. 

G Bresson et al. (2017) [15] suggested a field survey of simultaneous 

localisation and mapping.  They began by discussing the limits of traditional 

autonomous driving systems before moving on to the requirements required 

for this sort of application. Then, they examined how the highlighted 

difficulties are being addressed. It focused on techniques to creating and 

reusing long-range maps under various settings (weather, season, etc.) and 

finished by providing an overview of the numerous, large-scale experiments 

done to date as well as outlining remaining obstacles and future perspectives. 

C Bila et al. (2017) [16] Provides an overview of research on support 

and services offered by information and communication technology for the 

safety of future linked cars. Vehicle detection, route detection, , pedestrian 

detection, collision avoidance, and drowsiness detection are the primary 
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classifications and a brief summary of the areas of concentration for research 

and development in this approach. These applications assist drivers and 

reduce the chance of an accident. 

C Liu et al. (2017) [17] suggested a unified method to route planning 

based on a predictive control model (MPC), with the aim of automatically 

determining manoeuvre placement while ensuring safety. To achieve this, 

neighbouring cars were represented as polygons and an MPC constraint was 

created to enforce collision avoidance between the ego vehicle and 

surrounding vehicles. A lane-related potential field was also integrated into 

the MPC's objective function to ensure safe and smooth manoeuvres. The 

MPC path planner was evaluated through simulations in three scenarios: 

normal highway driving, ramp merging, and intersection crossing. In the 

normal highway driving scenario, the path planner successfully planned a path 

for the ego vehicle to maintain a safe distance from surrounding vehicles and 

make a lane change when feasible. The simulation displayed the trajectory of 

the ego vehicle and surrounding vehicles, with the speed of each vehicle 

shown in subplots. In the ramp merging scenario, the path planner generated 

a safe longitudinal path for the ego vehicle to merge into the merging lane 

between two surrounding vehicles. The ego vehicle first accelerated to catch 

up with the gap and then decelerated to keep a comfortable distance from the 

car in front before successfully merging into the lane. In the intersection 

crossing scenario, the path planner planned a path for the ego vehicle to 

approach a stop sign, stop there, and remain in the "stop" state until it became 

safe to cross the intersection.  
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R Guidolini et al. (2017) [18] suggested a "Neural Model Predictive 

Control (N-MPC)" technique to overcome delays in the "Intelligent and 

Autonomous Robotic Automobile (IARA)". Due to the intricacy of the 

dynamics of IARA's reaction to stimuli, they attempted to create a neural 

network in N-MPC utilising this neural model. The experimental findings 

revealed that "N-MPC outperformed PID control" by eliminating the 

influence of IARA guidance station delays, allowing IARA autonomous 

running at speeds up to 37 km/h with a 48% improvement in maximum 

constant speed. 

D Cairano et al. (2018) [19] provided a high-level description of a real-

time optimisation issue for automotive and aerospace applications, with a 

focus on the MPC controller. The cost function and system limitations were 

used to define the optimum control issue. Also covered were numerical 

algorithms and their implementations on an embedded computer platform. 

G Williams et al. (2018) [20] provided an information-theoretical 

approach to optimize random control issues that utilised to develop broad 

sampling-based optimisation strategies. This novel mathematical technique 

was utilised to create a sampling-based model-based predictive control 

algorithm. They assessed the performance of the Information Theoretical 

Model Predictive Control Scheme (IT-MPC) to a typical predictive control 

version of the entropy technique on a demanding autonomous driving job over 

an earthy test track. 

C M Martinez et al. (2018) [21] suggested an important contribution 

by adding aspects impacting driving style and classification methodologies 

for intelligent automobile control applications, as well as implementation 
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restrictions. The intricacy of driving style is examined while assessing current 

interpretations of safety and fuel economy through the use of various 

algorithms. The continual advancement of Advanced Driver Assistance 

Systems and vehicle autonomous driving capabilities necessitates a more in-

depth examination of driving style and the incorporation of drivers in the 

systems. This has prompted the development of data-driven algorithms 

capable of processing larger amounts of data, as well as the deployment of 

machine learning algorithms capable of adapting to individual drivers. 

M V Smolyakov et al. (2018) [22] described the use of a car simulator 

to generate data for training neural networks to predict the steering angle of a 

car. The authors developed two different neural network architectures, one 

with convolutional layers and one with additional regularization and batch 

normalization layers. They trained these networks using data generated from 

the car simulator, which included images from the left, center, and right 

cameras and the corresponding steering angle. The results showed that the 

second architecture with regularization and batch normalization layers 

performed better and had fewer parameters. The authors suggest that this 

architecture may be suitable for testing on embedded systems. They also 

suggest adding recurrent layers to the network in future work to better predict 

the steering angle based on the data sequence. The authors conclude that using 

a simulator to generate data is efficient and avoids the need for expensive or 

resource-intensive data collection from the real world. 

J Wang et al. (2019) [23] explored networking and communication 

technologies for autonomous driving to improve the perception and planning 

ability of autonomous vehicles. The study covered intra-vehicle and inter-

vehicle networks, discussing various technologies suitable for autonomous 
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vehicles, including data bus wired interconnection, Ethernet, power-line 

communication, and wireless interconnection. The inter-vehicle network was 

further discussed, with a focus on low power technologies, 802.11 family 

technologies, base station driven technologies, and other auxiliary 

technologies. New trends in communication technologies, such as 5G, 

computing technologies, SWIPT, VLC, and deep learning, were also 

introduced. Verification methods, challenges, and open issues were 

summarized, highlighting the need for joint efforts between academia and 

industry to advance networking and communications for autonomous driving. 

Y Wang et al. (2019) [24] discussed the use of deep learning models 

in (Intelligent Transportation Systems and their applicability in different tasks 

such as computer vision, time series prediction, classification, and 

optimization.  It was explained that deep learning models could be applied if 

the problem could be formulated as a classification, regression, or Markov 

Decision Process problem, and sufficient training data and Graphics 

Processing Unit resources were available. The advantages of deep learning 

models, such as achieving state-of-the-art performance in various 

classification and prediction tasks, were also highlighted. However, the 

limitations of deep learning models were acknowledged, including their 

reliance on specific amounts of data and computing resources, the difficulty 

in parameter tuning, and the lack of interpretability in their black-box 

representations. 

J Gwak et al. (2019) [25] development of commercial autonomous 

driving research was reviewed. Several companies have developed self-

driving technologies and vehicles using their own systems and algorithms. 

The technologies used by these companies were compared based on the 
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sensors used in self-driving vehicles. Tesla developed its self-driving 

technology called "Autopilot," which uses 8 cameras, 12 ultrasonic sensors, 

and a radar sensor. Google's self-driving technology, Waymo, uses a vision 

system, lidar system, radar system, and supplemental sensors. Uber also 

developed self-driving technology using lidar, cameras, radar, GPS, a self-

driving computer, telematics, ultrasonic sensors, and a vehicle interface 

module. General Motors (GM) developed self-driving technology for its Volt 

EV vehicles using multiple cameras, lidar sensors, a radar sensor, and 4G LTE 

Connected.   

A Reda et al. (2020) [26] explored MPC and adaptive MPC controller 

implementations to operate an autonomous vehicle steering system. The 

implementations were carried out for systems with both constant and variable 

dynamics. The results demonstrated that the MPC controller gives adequate 

control for a constant dynamics system, but it cannot manage changing 

operating circumstances, while adaptive MPC provides adequate control for 

changing dynamics systems. 

K Muhammad et al. (2020) [27] identified the primary advantages of 

safe learning techniques and assessed existing approaches for safe 

autonomous driving that encompass significant accomplishments and limits. 

Furthermore, they identified the primary embodiments of the self-sustaining 

driving pipeline, which are measurement, analysis, implementation (also 

known as control processes), and evaluation of the performance of deep 

learning methods for various safety-related tasks such as road, vehicle, track, 

drowsiness, pedestrian, traffic light detection and collision avoidance. 
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Y Xu et al. (2021) [28] proposed a path-tracking strategy that 

incorporates predictive model control (MPC) and "preview follower theory 

(PFT)", as well as a reference generation unit and an MPC controller. The 

reference generating unit can use PFT to determine the lateral reference 

acceleration at the sample point and create the reference diffraction rate at 

each prediction point. PFT improves the accuracy of the diffraction rate 

computation as the sample range rises. The MPC controller can achieve 

optimal reference route tracking with physical constraints. To create an online 

predictive model from nonlinear to continuous linear vehicle dynamics, the 

MPC issue was written as a "linear time-varying (LTV)". 

S Kolachalama et al. (2022) [29] introduced a novel driving mode 

called "Intelligent Vehicle Driving Mode (IVDM)", which improves the 

vehicle's engine performance in real-time without increasing flight time under 

normal driving situations. When running, IVDM engages adaptive cruise 

control (ACC); hence, longitudinal acceleration (LOT) was automatically 

calculated by the ACC, and the parameters of lateral acceleration [LAT] and 

yaw rate [YAR] were estimated using particular mathematical models that 

assumed idealised steering behaviour (ISB). They created an Autonomous 

External Input Regression Network (NARX) for deep learning models. 

J L Vazquez et al. (2022) [30] suggested resolving the movement 

prediction issue as a policy learning problem in a novel approach. The policy 

is taught by model-based simulated learning, which, in conjunction with the 

Interactive Multi-Agent Prediction Policy (IMAP), enables us to comprehend 

a highly interactive prediction model/policy. Based on the optimal response 

frequencies, the two interactive motion planners offered based on this model. 

One is inspired by the leader-follower structure, while the other is derived 



Chapter two                                                                         literature review 

18 
 

from the Nash equilibrium. In genuine driving scenarios, simulation results 

are visible. The prediction architecture and interactive deep motion planning 

can handle difficult lane changes as well as hostile activities such as halting 

another vehicle. Each of their offered approaches are capable of planning the 

challenge of interacting motions and accurately predicting the effect of a 

certain action on other factors. 

These works of literature review are the most related papers in the field 

of decision systems involving path planning and control in the self-driving 

car, controlled with different control techniques, including predictive, 

adaptive, neural network, deep learning, and hybrid control systems. The 

literature has proven the effectiveness of the proposed motion planning and 

control systems used in the self-driving car system. 
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Chapter Three: System Modelling 

3.1 Introduction 

          The autonomous car uses the perception module to see its environment 

and the planning module to make decisions and create paths. The controller is 

responsible for controlling car moving by generating steering wheel angle 

(lateral control) and acceleration (longitudinal control). 

In this chapter, the general structure of the self-driving car model is 

presented in Section 3.2. Section 3.3, presented a theoretical model in detail. 

The model mainly consists of two parts, the first part is about path planning 

algorithms and the second part is the car control and it has four sections, the 

first section is the use of the predictive model, the second section is the use of 

the neural network, the third section is the mathematical model, and the fourth 

section about convex optimization.  

3.2 Self-Driving Car Structure 

One common approach to create a self-driving car system is to organise 

sensor perception and decision-making in a hierarchical structure as shown in 

Fig. 3.1. The decision-making unit of a self-driving automobile is represented 

by four components: route planning, behavioural layer, motion planning, and 

control system [11]. 
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Fig. 3.1 An illustration of the decision-making process hierarchy[11] 

3.2.1 Route Planning  

A car's decision-making system must determine a path via the road 

network from its current location to the intended destination at the highest 

level. By expressing the road network as a directed graph with edge weights 

proportional to the cost of traversing a segment of the road, such a path may 

be defined as the problem of finding the path with the lowest cost on the road 

network graph [11]. 

3.2.2 Behavioral Decision Making  

          Following the discovery of the route plan, the autonomous car must be 

able to traverse the allocated path and communicate with other traffic 

participants while following to driving rules and road laws. Given a series of 
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road segments that define a given lane, the behavioural layer is responsible 

for choosing the appropriate driving behaviour (follow the lane, change lane, 

turn right, etc.) at any moment based on assessed behaviour of other traffic 

participants, road conditions, and infrastructure signals. One of the most 

recent developments in this field is an artificial intelligence approach to 

modelling this step in decision-making [11]. 

3.2.3 Motion Planning   

          The requested behavior must be translated into a path that the low-level 

feedback controller may trace when the behavioral class determines which 

command behavior to conduct in the present environment. The resultant 

trajectory should be dynamically possible for the car, passenger-friendly, and 

avoid accidents with impediments identified by on-board sensors. The motion 

planning system is in charge of locating such a path [11]. 

A great deal of navigation technology has been taken from mobile 

robots and modified to meet the challenges of road networks and driving rules. 

According to their application in automated driving, these planning 

techniques are categorized into four groups: graph search, sampling, 

interpolation, and numerical optimization. The motion planning layer is 

responsible for the dynamic computation of a safe, convenient, and viable path 

from the current car configuration to the target configuration provided by the 

behavioral layer of the decision-making hierarchy. 

The motion diagram output is often forwarded to the local feedback 

control layer. The feedback controllers create an input signal to operate the 

car in accordance with the action plan. The purpose of motion planning for 

autonomous driving is to identify a suitable set of control inputs that will move 

a car from its beginning condition to its target state while remaining within 
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environmental and physical restrictions. Due to the high speed of autonomous 

driving compared to mobile robots, safety and driving comfort should be 

prioritized. To improve computing efficiency in dealing with changing traffic 

conditions in different road scenarios, the traffic planning issue for 

autonomous driving is frequently simplified to a global reference road 

planning level and a local traffic planning level [31]. 

3.2.4 Control System 

In control system, the determination of the appropriate actuator inputs 

to execute the planned motion and correct tracking issues during the execution 

of the motion plan is accomplished by a feedback controller. Intelligent 

control is utilized in this task, whereby a control objective is synthesized and 

reasonable methods to achieve it are identified through a general information 

process that operates independently or in a human-machine mode. The 

motivation and knowledge used in this process include information about the 

environment and its internal state. Currently, the aggregation of a control 

objective is achieved through human-machine interaction in car control [32]. 

Intelligent control systems simulate biological intelligence to solve 

problems, and they seek to replace humans in performing tasks or borrow 

ideas from natural systems to solve control problems. For example, neural 

networks can be used for control. Intelligence and control are closely related, 

and the phrase "intelligent control systems" emphasizes the control 

component of an intelligent system [33].  

To achieve their objectives, intelligent control systems must identify 

and employ targets, and control must direct the system towards those 

objectives. Any intelligent system is a control system because control is a key 

component of every intelligent system. However, intelligence is essential to 
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ensure that systems work as expected under changing situations, and a high 

degree of independence is required in the control system [34] 

3.3 System Modelling  

3.3.1 Path Planning  

Path planning is an essential aspect of car detection. It is defined as 

establishing a geometrical path from the car's present position to a destination 

point while avoiding obstacles. It must be permissible to cross the car and 

ideal in at least one variable to be considered an acceptable path.  For certain 

goal distance conditions, the shortest, smoothest, or fastest path that the car 

may follow can be the base path. In other words, the optimum path is 

determined using these factors. Path planning is commonly done by 

discretizing the space and using the centre of each unit as a moving point. 

Each movement location either has a barrier to avoid or is devoid of 

impediments that may be accessed. Various discretization processes produce 

various motion paths [35]. Creating an environmental map is required for path 

planning. The construction of an exact positional description of diverse items 

in the area in which the robot is positioned, such as road signs, obstacles, and 

so on, is known as environmental map construction: in other words, the 

creation of a model structure or map. The goal of creating an environmental 

map is to allow the robot to plan the most efficient path from the beginning 

point to the destination point in the model of the specific environment with 

obstacles. Path planning methods may be classified into two strategies based 

on the known level of environmental knowledge: path planning based on 

global map data and path planning based on local map data [36]. 
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3.3.1.1 Global path planning 

To compute an initial path, a global path planner requires the beginning 

and ending points of a constructed map, which is also known as a static map. 

The search is performed on the constructed global map model using a global 

map description of the area where the robot is placed. The best algorithm will 

find the best path. As a result, global route planning consists of two parts: 

“creating an environmental model and the path planning strategy.” Heuristic 

A* searching algorithm is commonly used for global path planning [37].   

A. Graph search based planner 

       Graph search based planning is a method that involves using graph 

exploration techniques to find solutions to problems represented as graphs. 

The first step in this approach is to create a graph representation of the 

problem, which can be done in various ways depending on the specifics of the 

problem. Once the graph is created, search-based planning algorithms are 

used to traverse the graph and find a solution to the problem. In the context of 

autonomous driving, the state space represents the environment in which the 

car operates, and the goal is to navigate from one point to another. The state 

space can be represented as a grid or lattice, where each cell represents a 

possible location of the car. Graph search algorithms can be used to search 

through this state space and find a path that leads from the starting point to the 

destination. One advantage of graph search-based planning is that it can 

handle complex environments with obstacles and other obstacles that must be 

avoided. By representing the environment as a graph, the planner can easily 

check for obstacles and avoid them by finding an alternative path. However, 

the solutions found by graph search algorithms may not always be optimal, 

and it can be challenging to scale the approach to larger state spaces. Overall, 
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graph search-based planning is a powerful technique for finding solutions to 

path planning problems, and it has many potential applications in autonomous 

driving and other fields. These algorithms have been applied to develop 

automated tools [8].  

1- Dijkstra algorithm 

        Dijkstra developed this systematic search technique in 1959 to discover 

the shortest path between two places on a map based on navigation costs. 

Priority queueing saves money on non-negative contract costs. Dijkstra's 

algorithm visits all nodes in the graph from the starting point and completes 

the solution if available. Without prior knowledge of the chart, it will not 

calculate the distance between each node and the destination under optimal 

conditions. It is used equation (3.1).  

𝒇(𝒏) = 𝒈(𝒏)                                      (3.1) 

Where g(n) is the real cost of travelling from node n to the beginning node. 

        Dijkstra's algorithm performs a blind search that takes time and wastes 

resources in processing. All nodes in the weighting scheme presented in this 

method are searched in ascending order based on their distance from the 

origin. The priority queue, which runs in a monotonic way, determines the 

nearest node from the starting point. events in discrete event simulation are 

prioritised by the times at which they occur and extracted monotonically. Prior 

knowledge of the target node is not required in Dijkstra, which makes it a 

naive algorithm. It can be implemented in a multi-node environment without 

a priori at the nearest node. It chooses the least expensive at every step and 

sometimes doesn't need to search all the edges. Due to its more generic, it is 

open to others, not just non-periodic charts. It usually searches a large area on 

a map and thus can be applied to geographical maps such as Google Maps. 
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The edges of the positive weight are kept in a priority queue and are referenced 

according to the distance between the positions in this algorithm.  

In Fig.3.2, an example of Dijkstra's algorithm is shown, whereby the 

shortest path from node v1 to all other nodes in the graph is generated by 

checking the distance from node v1 to its neighbouring nodes, which are v2 

and v3. From the list of distances, it can be immediately determined that node 

v3 has a distance of 4. Then the search is completed for all existing nodes to 

find the lowest cost for the path v1-v3-v4-v5-v6. Fig. 3.3 shows the flowchart 

of Dijkstra algorithm in path planning. 

 

Fig. 3.2 Dijkstra example [38] 

The Dijkstra technique is a well-known algorithm for determining the 

optimal path from the shortest route to find problems. However, with this 

method, the time required to find the optimal way is significantly longer when 

the search space is ample, so the Dijkstra method is unsuitable for real-time 

problems [39], [40]. 
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Fig. 3.3 Flowchart illustrates the Dijkstra algorithm, which is used in 

path planning 
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2- A* Algorithm 

In 1968, Hart proposed the A* heuristic technique. It is a common 

graph path planning algorithm. A* works in the same way as Dijkstra's 

algorithm, except that it directs its search to the most promising situations, 

which can save a large amount of processing time. A* is mostly utilised to 

provide a nearly perfect solution with the current dataset/nodes. This approach 

is widely utilised in stationary environments and, in certain circumstances, in 

dynamic environments. The core functionality of a particular application or 

domain can be customised according to our needs. A*, like Dijkstra, follows 

a road tree from its beginning point to its goal. A* must decide which of its 

pathways to expand at each iteration of its main loop. It does so based on the 

path's cost and an estimate of the cost of extending the path all the way to the 

target. Specifically, A* uses the formula below to choose the path that 

minimises node search space (3.2).  

 𝐟(𝐧) =  𝐠(𝐧) +  𝐡(𝐧)                                     (3. 2) 

Where n is the next node on the path, g(n) represents the actual expense cost 

from node n to the beginning node, and h(n) represents the cost of the best 

path from n to the destination node.  Fig. 3.4 shows an example of finding the 

short path in the A* algorithm. 

 

Fig. 3.4 A* example 
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In the game industry, the A* algorithm is commonly employed. The A* 

method has since been utilised for robot path planning, intelligent urban 

transportation, graph theory, and automated control as artificial intelligence 

has advanced. 

The A* algorithm is a heuristic that use heuristics to choose the best 

path. The A* algorithm must locate nodes on the map and apply appropriate 

heuristics for guidance as shown in Fig. 3.5. Table 3-1 contains common 

heuristic functions such as Euclidean distance, Manhattan distance, and Octile 

distance. 

Table 3-1 Most Common Types of Heuristic Functions Used in Path 

Planning Algorithms. 

Function Equation 

"Euclidean distance " √(𝑋1 − 𝑋2)
2 + (𝑌1 − 𝑌2)

2 

"Manhattan distance " |𝑋1 − 𝑋2| + 𝑌1 − 𝑌2| 

"Octile distance " Max(|𝑋1 − 𝑋2|, |𝑌1 − 𝑌2|) 

 

The A* algorithm is computationally simple compared with other 

algorithm ways of arranging calculations (ex; D*, state lattice). A* is suitable 

for car applications with car kinematics and steering angle [39]–[41]. 
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Fig. 3.5 Path planning flowchart using the A* algorithm 
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3- D* Algorithm 

In (1994), Stentz Anthony proposed an informed incremental search 

algorithm D*, that is developed based on the A-Star and Dijkstra algorithms. 

It is designed to solve route planning problems in unknown environments by 

managing the condition of the robot and computing the case sequence using 

back indications to guide the robot to the target position or to update the cost 

due to obstacle detection. The algorithm places the appropriate states in the 

available list, and the states are processed until the cost on the path from the 

current state to the target is less than the minimum, at which point the cost 

changes are propagated to the next state and the robot continues to follow the 

indicators in the next sequence target [9], [42], [43]. 

The D* algorithm has two main functions: process-state and modify-

cost. The process-state function is responsible for updating the state of the 

robot based on changes in the environment. This function takes the current 

state of the robot and the positions of any new obstacles that have been 

detected, and updates the paths in the inflation graph accordingly. The 

process-state function also places the updated states in the priority queue, so 

they can be expanded in the next iteration. The modify-cost function is 

responsible for updating the costs of the states in the inflation graph. This 

function is called when changes in the environment are detected, and it 

updates the costs of the states that are affected by the changes. The modify-

cost function also propagates the cost changes to the neighboring states, to 

ensure that the paths in the inflation graph remain consistent. 

Together, the process-state and modify-cost functions allow the D* 

algorithm to efficiently adapt to dynamic changes in the environment and find 

the shortest path to the goal.  D* algorithm is typically used in robotics, where 
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the environment is constantly changing and the robot needs to adapt its path 

to the new conditions. It is also used in games and simulations where the 

environment is dynamic. However, it is important to note that D* has a higher 

computational cost than A* and it may not be suitable for real-time systems 

with limited computational resources [12]. 

4- State Lattices 

Automated route planning frequently uses lattice-based graphs. 

Aircraft, cars, boats, and all-terrain cars, for example, all use the country's 

navigation networks. The state lattice method is an improved graph search 

algorithm such as A*, work with a large complex environment, is a discrete 

collection of all the system's reachable configurations. It is built by 

discretizing space into a hyperdimensional grid and attempting to connect the 

origin to every grid node through a feasible path, an edge. In general, the 

lattice is assumed to contain all feasible paths up to a given resolution, which 

means that if a car can travel from one node to another, the lattice contains a 

sequence of paths to perform this manoeuvre. As a result, it is concluded that 

this formulation is capable of resolving entire planning issues. Many reference 

trajectories are produced in this manner, and then the best one is selected 

based on the given cost function [45]. 

State lattices planner uses an A* lookup to get an agent from the start 

state to the target state. This example where the start point at (0,0, east, centre) 

and the goal point at (14,14, east, centre), aims to find a path between a car of 

two states given heading, wheel angle, and the presence of random obstacles. 

Initially, the agent has no knowledge of the state space except how it is 

structured, so the agent makes an initial plan to go directly to the target, using 

A*. This means that the agent sees a certain amount of the actual state space, 
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which initially, as far as the agent knows, is entirely free of any obstacles. As 

the agent moves along its initial path, A* updates its knowledge of the state 

space by "perceiving" the area around it. If the agent realises an obstacle is 

blocking its path, it will remap with A*. The agent has only "seen" a certain 

amount of the virtual state network at any point along the way, so it will plan 

according to what it knows. Moreover, while on the move, each position in 

grid mode is grouped by shape (X, Y, vertex, wheel angle). X and Y are two 

integers that form a coordinate location. The head chooses one of four options: 

north, south, east or west, and the wheel angle chooses one of three options: 

centre, left, or right. The probability distribution shows the probability of an 

obstacle in a given region of the network of states. Because of these additional 

settings, the agent is a more realistic representation of a real robot. In Fig. 3.6, 

the agent's visibility is 1 unit, and the probability of node blocking is 10%. 

The agent set up seven A* plans, incurred a route cost of 137, and expanded 

6169 knots. 

 

Fig. 3.6 State lattice planner when the agent's visibility is 1 unit 
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In Fig. 3.7, the agent's visibility is seven units, and the probability of node 

blocking is 10%. The agent set up three A* plans, incurred a route cost of 

70, and expanded 3969 knots. 

 

Fig. 3.7 State lattice planner when the agent's visibility is 7 unit 

In Fig. 3.8, the agent's visibility is 15 unit, and the probability of node 

blocking is 10%. The agent set up two A* plans, incurred a route cost of 50, 

and expanded 2745knots. 

 

Fig. 3.8 State lattice planner when the agent's visibility is 15 unit 
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As the agent's visibility increases, the average number of A* plans have to 

minimise because the agent can get more information and apply more 

knowledge to each plan. Because of the randomisation of the case space, the 

comparisons are not straightforward, but it is natural to see that if the agent is 

less visibility, the cost will be higher, and the agent will likely have to make 

more plans A*. 

3.3.1.2 Local path planning 

Path planning that requires the robot to navigate in an uncertain or 

dynamic environment is known as local path planning. The algorithm will 

adapt to barriers and changes in the environment wherever it is used for path 

planning. Local route planning may be characterised as real-time obstacle 

avoidance employing sensory-based information on contingencies impacting 

the robot's safe navigation. Normally, a robot is driven with one path in local 

path planning. The shortest path from the starting position to the goal point is 

a straight line, which the robot follows until it encounters an obstruction. The 

robot then executes obstacle avoidance by deviating from the line while also 

updating certain key information, such as the updated distance from the 

present location to the goal point, the obstacle departure point, and so on. In 

order to reach the destination exactly, the robot must constantly know the 

position of the destination point from its present position in this type of path 

planning. The potential field approach is a well-known local path planning 

technique [46]. 

1- Potential Field Algorithm 

The potential field function will be to predict a comprehensive path 

planning algorithm that takes the robot via vector quantities of the target's 

attractive force and repulsive forces from obstacles in the area. The aim is to 



Chapter three                                                                     system modelling 

36 
   

discover a direct path from the robot's starting point to the destination position 

while avoiding obstacles. The potential functions to be investigated are 

differentiable real value functions; hence, given that the potential function's 

value is energy, the gradient of this function will create the force. A field 

potential gradient is predicted to drive the robot to the goal position based on 

this simple but powerful assumption. 

        The job's success is dependent on the robot's possible attractive and 

repulsive gradients. The robot and the rest of the obstacles are believed to be 

positively charged, whereas the target is supposed to be negatively charged. 

This charge difference produces repulsive forces that push the robot and pull 

the target. The potential function is the sum of the potential attractive and 

repulsive on a robot. 

𝑼 = 𝑼𝒂𝒕𝒕 + 𝑼𝒓𝒆𝒑                                                  (3.3) 

where, 𝑈𝑎𝑡𝑡 is the attractive potential and   𝑈𝑟𝑒𝑝  is the repulsive potential. 

Attraction tends to drag the robot towards the target position, and repulsion 

tends to push the robot away from obstacles. The gradient U yields a vector 

field for artificial forces F(d). 

𝑭(𝒅) = −𝛁𝑼𝒂𝒕𝒕 + 𝛁𝑼𝒓𝒆𝒑                                    (3.4) 

𝑭(𝒅) = −𝑭𝒂𝒕𝒕 + 𝑭𝒓𝒆𝒑                                           (3.5) 

Where, ∇U is the gradient vector of U at robot point d (x, y). 

        The general form of suitable potential field functions suggested by 

Kathip follows.  

(a) attractive potential field and force 

𝑼𝒂𝒕𝒕 =
𝟏

𝟐
𝜻 ∗ 𝒅𝟐                                                      (3.6) 

𝑭𝒂𝒕𝒕 = 𝛁𝑼𝒂𝒕𝒕 = 𝜻 ∗ (𝒅)                                      (3.7) 
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Where, 𝑈𝑎𝑡𝑡 is the attractive potential field, 𝐹𝑎𝑡𝑡 is an attractive force, 𝜁  is the 

attractive potential coefficient, 𝑑 = | 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑑𝑔𝑜𝑎𝑙 |, 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the car 

location in the Cartesian coordinate system (𝑥, 𝑦), 𝑑𝑔𝑜𝑎𝑙  is the goal location 

in the Cartesian coordinate system (𝑥, 𝑦). The attractive force is a linear 

function which decreases as the car nears the goal. 

(b) repulsion potential field and force 

𝑼𝒓𝒆𝒑 = {
𝟏

𝟐
𝜼 ∗ (

𝟏

𝒅
−

𝟏

𝒅°
)
𝟐

=
𝟏

𝟐
𝜼 ∗ (𝐥𝐧𝒅 − 𝐥𝐧𝒅°)

𝟐          𝒊𝒇 𝐝 ≤ 𝒅°

𝟎,                                                                             𝒊𝒇 𝒅 > 𝒅°

   (3.8) 

𝑭𝒓𝒆𝒑 = 𝛁𝑼𝒓𝒆𝒑 = 𝜼 ∗ 𝒆−|𝒅−𝒅°|                                  (3.9) 

Where 𝑈𝑟𝑒𝑝  is the repulsive potential field, 𝐹𝑟𝑒𝑝   is an repulsive force, 𝜂 is 

the repulsive potential coefficient, 𝑑 = | 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 |  , 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the 

car position at (x, y), 𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒   is the obstacle position at (𝑥, 𝑦), and 𝑑° is the 

influence of distance. The repulsion capability ensures that the potential 

increases significantly as the car approaches the obstacle and has no effect 

when the car is further away [47]. 

3.3.2 Controller Design 

3.3.2.1 model predictive control  

"Model Predictive Control (MPC)" is a term that refers to a variety of 

control approaches used in single input single output (SISO) and multiple 

input multiple output (MIMO) systems. It was originally utilised in 1970 by 

Shell Oil and is currently employed in a variety of sectors. One of the most 

effective advanced control strategies necessitates the use of a process model 

to minimise the discrepancy between predicted and actual outputs. The 

intended result may be applied to both basic and complicated procedures. The 

basic principle behind MPC is to forecast the future behaviour of the managed 
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system over a fixed time horizon and compute an optimal control input that 

minimizes a present cost function while meeting the system limitations. More 

specifically, at each sampling instant, the control input is calculated by solving 

an optimal open-loop control problem with a finite horizon; the first part of 

the resulting optimal control trajectory is then applied to the system until the 

next sampling instant when the horizon is shifted and the procedure is 

repeated. MPC is particularly effective because it enables the explicit insertion 

of complex state and input limitations, as well as an acceptable performance 

criterion, into controller design [48]. 

1) MPC strategy  

Fig. 3.9 explains the MPC method clearly. At the current time k, the 

future predicted outputs (y(k+N) for N=1 to P) of the system are projected at 

each instant using the process model across a prediction horizon (P), knowing 

values up to instant k (past inputs and outputs) and future inputs (u(k), 

u(k+1),..., u(k+P)). The plant's state is measured at each sampling instant, and 

only the first element of the future input is applied to the plant, as a new 

measurement of the state may be available at the next sampling instant. This 

method is repeated at the following sampling period with the addition of the 

new measurement, which is known as the receding horizon method. 
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Fig. 3.9 MPC strategy[49] 

           The MPC approach predicts future car motion states by combining 

current sampling states and target states (reference trajectory) provided by the 

path planner. At each period, the MPC controller generates a control action 

sequence that satisfies the system constraints and optimizes the objective 

function. The MPC controller chooses the system output variable by 

minimizing a quadratic function of states and control inputs, which is the most 

common objective function. 

MPC consists of the following components[50] :  

• Process Model: Describes the dynamics of a process in which all inputs 

and outputs must be addressed. Models such as feedforward, feedback, and 

disturbance can be used. 

• Objective Function: The sum of all terms having a control need, also 

known as the cost function. It can be both linear and nonlinear. The 

objective function tracks a reference trajectory for predicting the future 

output. 
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• Receding horizon method: Predicts how the process will behave within a 

given range that takes into account both the present and the future. The 

estimated output constraints at each time interval in the horizon depend on 

the data provided to the controller at time t. 

The fundamental structure of MPC is shown in Fig. 3.10. Based on the 

system's previous inputs and outputs, a model predicts future outcomes. At 

each time step, the predicted output of the plant is compared to its reference 

path, and future errors of the plant are estimated. The optimizer determines 

the optimal future control sequence by taking into account the intended 

functionality and limitations. The plant receives only the first component of 

this optimal control sequence, and the same operation is repeated at the 

following sampling period [51]. 
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          output 

 

Fig. 3.10 Basic structure of MPC [51] 

2) Basic parameter MPC [52] 

The prediction horizon (P), control horizon (h), and sampling period 

(∆t) are the important parameters that affects the performance of the MPC 

system  

the prediction horizon refers to the length of the future prediction made 

by the model. It is the time over which the MPC algorithm predicts future 

states of the system based on the current state and control inputs. A longer 

prediction horizon provides more accurate predictions of future states, but also 

requires more computational resources and longer computation times. A 

shorter prediction horizon provides faster response time but may not 

accurately capture the dynamics of the system.  

MPC 

Controller 
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The control horizon refers to the number of steps over which the control 

actions are applied. It is the time interval over which the control inputs 

calculated by the MPC algorithm are applied to the system. The control 

horizon is usually shorter than the prediction horizon to ensure a fast response 

time. The choice of control horizon is a trade-off between the accuracy of the 

control inputs and the computational resources required to calculate them. A 

longer control horizon provides more accurate control inputs but requires 

more computational resources and longer computation times. A shorter 

control horizon provides faster response time but may not accurately capture 

the dynamics of the system. 

The sampling time refers to the time interval at which the control 

algorithm updates its predictions and control actions. It is the time interval 

between two consecutive measurements of the system's state. In general, a 

sampling time in the range of 10-100 milliseconds is commonly used in self-

driving car simulations. This provides a desirable balance between 

computational efficiency and the accuracy of the simulation results. 

3) MPC Formulation  

Model Predictive Control (MPC) is a control strategy that uses a model 

of a system to predict its future behavior and optimizes control actions to 

achieve a desired objective. The optimization problem is solved at each time 

step, using the predicted state and control inputs to determine the optimal 

control action for the current time step and the predicted future. The MPC 

controller is designed in three stages: Firstly, an augmented state-space model 

is constructed. Second, the calculation of the vector of predicted outputs 

within the prediction horizon through the augmented model is performed. 

Finally, the control law is determined by solving an optimal control problem 

[53]. 
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A) Augmented State Space Model  

The control equation for the standard discrete-time state-space model 

is as follows: 

𝐱(𝐤 +  𝟏) =  𝐀(𝐤)𝐱(𝐤) +  𝐁(𝐤)𝐮(𝐤)                                     (3.10) 

𝐲(𝐤 +  𝟏) =  𝐂(𝐤)𝐱(𝐤) +  𝐃 (𝐤)𝐮(𝐤)                                    (3.11) 

Where x(k) is the vector of state variable, y(k) is the vector of controlled 

variables, u(k) is the vector of manipulated variables, 𝐴(k) is the system 

matrix linearized at a time k, 𝐵(k) is the input matrix, 𝐶(k) is the output matrix, 

and D(k) is the feedthrough matrix. 𝑥(k) and 𝑢(k) are members of a convex 

set subject to a set of linear constraints[53].  

B) Prediction of Output and State 

Using the augmented model, the predicted output and state are 

calculated at time instances k+1, k+2, ..., k+P based on the current state x(k) 

and the future incremental inputs ∆u(k), ∆u(k+1), ∆u(k+2), ..., ∆u(k+h-1). 

Here, P and h represent the prediction horizon and control horizon, 

respectively.  

The predicted output and state at time instance k+j|k (where j=1,2,3,...,P) are 

denoted by: 

y(k+j|k): predicted value of the output variable y at time step k+j, given the 

information available at time step k. 

x(k+j|k): predicted value of the state variable x at time step k+j, given the 

information available at time step k. 

C) Optimization 

Future points are predicted based on the model, making the system 

considered in open loop with the plant to drive towards the goal. A cost 
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function for the optimization problem is defined based on the state input, 

providing optimal inputs while satisfying the constraints.  

The cost function is defined as:  

𝐂𝐨𝐬𝐭 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 =  𝐕(𝒙𝑷) + ∑ 𝐋(𝒙𝒌, 𝒖𝒌)
𝑷−𝟏
𝑲=𝟎                              (3.12) 

Where V(𝑥𝑃) is the positive definite terminal cost and L(𝑥𝑘, 𝑢𝑘)  is the 

positive definite cost function for the state and input variables. The states must 

satisfy the system dynamics (3.10). 

The V(𝑥𝑃) and  L(𝑥𝑘, 𝑢𝑘)  can be formulated using positive definite matrices.  

𝐋(𝒙𝒌, 𝒖𝒌) =  𝒙(𝒌)𝑻𝐐𝐱(𝐤) + 𝒖(𝒌)𝑻𝐑𝐮(𝐤)                  (3.13) 

𝐕( 𝒙𝑷) =  𝒙(𝒑)𝑻𝐃𝐱(𝐩)                                    (3.14) 

Where Q and R are positive definite matrices on state and control variables. 

D is so chosen matrices to make the system drive towards the final goal. At 

each time step, this optimization problem should be solved, and the sequence 

of the first element 𝑢*(𝑘) is applied to the system. The output 𝑥(𝑘+1) obtained 

by optimizing the cost function provides the state vector, and the input vector 

for the 𝑃 points on the horizon [54].  

3.3.2.2 Neural Network Approach  

         A neural network (NN) is a machine learning algorithm that is designed 

to mimic the structure and function of the human brain. These algorithms use 

machine learning to interpret sensory input, label or aggregate raw data, and 

detect numerical patterns in vectors that include various types of real-world 

data, such as images, audio, time series, and text. The primary objective of 

neural networks is to categorize raw data. They can be trained on labelled or 

unlabelled data to identify patterns and subsequently categorize new data, a 

process known as learning. Neural networks have the ability to adapt to 
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changing inputs autonomously, meaning that the output parameters do not 

need to be redefined every time the input changes in order to achieve optimal 

results [55]. 

1) Components and Architectures of NN [56] [57] : 

A neural network is consisting of the following parts: 

• Neurons: Neurons simulate the behaviour of organic neurons using 

mathematical operations. The neuron receives input data, calculates a 

weighted average, and then applies a nonlinear function, such as an 

activation function, to produce an output. 

• Connection and weight: Connections connect neurons in one layer to 

neurons in another layer, with each connection having a weight value that 

represents the strength of the relationship between the two components. 

The goal of training a neural network is to minimize a loss function, which 

measures the difference between the network's predicted outputs and the 

actual outputs for a given set of inputs. Lowering the weight values is one 

way to achieve this goal. 

• Propagation function: There are two types of propagation functions in a 

neural network: forward propagation and backpropagation. Forward 

propagation calculates the expected value, while backpropagation 

computes the gradients of the loss function with respect to the weights of 

the network, which is used to update the weights during training. 

• Learning rate: To optimize the weights, neural networks are trained via 

gradient descent, which is an optimization algorithm used to minimize the 

loss function of a neural network by iteratively adjusting the weights in the 

direction of steepest descent.  
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The main types of neural network architecture include: 

• Forward neural networks: Are the most common type of architecture, with 

the first layer serving as the input layer and the last serving as the output 

layer, and all of the layers in between are hidden. 

• Recurrent neural networks: This network's design is a collection of neural 

networks in which the connections between nodes build a directed graph 

over time, specifying a transient dynamic behavior.  

• Symmetrically Connected Neural Networks are similar to recurrent neural 

networks, but they differ in the connections between their modules. Unlike 

non-symmetrically connected neural networks, where the weights of 

connections between modules can differ in both directions, the connections 

in symmetrically connected neural networks have the same weight values 

in both directions. 

2)Neural Networks in Control Systems: 

Neural networks in control systems have been suggested by Werbos in 

1989 and Narendra in 1990 [58]. The control of neural networks had two 

primary purposes: and  

• Approximate dynamic programming using neural networks  

• Neural networks in optimum control problem solving and closed-loop 

feedback control. 

The challenge of using neural networks for feedback control purposes is to 

define an appropriate control system architecture and then show how to adjust 

neural network weights using mathematically proper techniques to ensure 
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stability and performance in a closed loop. A model predictive controller is a 

well-known model controller for a neural network.  

There are two steps when using neural networks for control: 

• Defining the system: Developing a neural network model for the facility 

on which we are based. 

• Control design: A neural network factory model for designing (or training) 

a control unit. 

3)Neural network-based Model Predictive Control (N-MPC): 

     The first step in predictive control of the model is to define the NN 

facility model (system description). The controller then uses the plant model 

to predict future performance. 

System Description: 

1. The first step in predictive control of the model is to train the NN to 

represent the forward dynamics of the plant. 

2. The estimation error between the plant output 𝑦𝑝 and the NN output 𝑦𝑚  is 

used as the NN training signal. 

3. The neural network plant model (NNPM) uses past inputs and past plant 

outputs to predict future values of plant output [58]. NNPM is a critical 

part of the N-MPC methodology. Fig. 3.11 depicts the structure of the 

NNPM, where the input signal is u(t) represents the system input and 𝑦𝑝(t) 

represents the plant output, in layer1 (hidden layer) the blocks labeled TDL 

represent tapped delay lines that store previous values of the input signal 

and IWI,j represents the weight matrix from the input j to layer i. The sum 

of the weighted inputs and the bias forms the input to the transfer function 

S. The job of the transfer function is to combine multiple inputs into one 
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output value so that the activation function can be applied. Layer 2 (output 

layer) takes input from preceding hidden layers and comes to a final 

prediction based on the model’s learnings,  LWI,j denotes the weight matrix 

from layer j to layer i. The sum of the weighted input and the bias of the 

output layer pass to the activation transfer function l to get the output 𝑦𝑚(t). 

This layer is considered the most important, as it provides the final output 

of the neural network model plant [59]. 

 

Fig. 3.11 The structure of the neural network plant model [59] 

Typically, all hidden layers in a neural network use the same activation 

function. However, the activation function used in the output layer may differ 

from the hidden layers, depending on the type of prediction or goal of the 

model. Table 3-2 shows the different types of activation functions commonly 

used in neural networks, according to sources [60], [61]. 
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Table 3-2 Mathematical equations for activation function  

Activation 

Function 

Description Equation Implementation 

Sigmoid Transforms 

any input to a 

value between 

0 and 1. 

σ(x) =
1

1 + e−x 
 

 

 

Linear Output is 

equal to its 

input 

ylinear = x  

 

Hyperbolic 

tangent 

activation 

(Tanh) 

Takes any real 

value as input 

and outputs 

values 

between -1 

and 1 

tanh(x) =
ex − e−x

ex + e−x
 

 

 

Derivative 

of tanh 

Used to find 

the maxima 

and minima of 

functions 

when the 

slope is zero. 

tanh

= 1 − (
ex − e−x

ex + e−x
)2 
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3.3.2.3 Mathematical Model 

           The kinematic model of a non-holonomic car can be used to produce 

successful autonomous driving on urban roadways under the following 

assumptions: 

1) The car is considered to go in a straight line, and vertical, pitch, and spin 

motions are ignored. 

2) Both wheels have zero slip angles. 

In the context of a self-driving car, the MPC formulation can control the car's 

behavior based on its current state and desired objective. The state of the car, 

including position (𝑥 and 𝑦), orientation (ψ), and velocity (v), is approximated 

using a kinematic model in this formulation. The control inputs, namely the 

steering angle (𝛿), assuming only the front wheel is used for steering.  and 

acceleration (a), are considered as well. The center of the car is supposed to 

be in the middle of the rear axle and in the case of the bike model, at the rear 

wheel.  

The state (S) and input (u) of the system are defined as [ x, y, ψ ,v ] and [a, 

𝛿], respectively. 

The kinematic bicycle model is represented by the following set of equations 

in an inertial frame based on the axis system with SAE standards [62] 

                                         𝑥̇ =  𝑣 ∗ 𝑐𝑜𝑠(𝜓)                                  (3.15) 

 𝑌̇ =  𝑣 ∗ 𝑠𝑖𝑛(𝜓)                                 (3.16) 

 𝜓̇ =  
𝑣∗𝑡𝑎𝑛(𝛿)

𝐿
                                    (3.17) 

 𝑉̇ =  𝑎                                              (3.18) 

where 𝐿 is the wheelbase.  
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The kinematic model approximates the state by considering the car's motion 

as a function of its position and velocity, taking into account the steering angle 

and acceleration. The model is represented as: 

𝑚̇  =  𝐴 ′ ∗ 𝑆 +  𝐵 ′ ∗ 𝑢               (3.19) 

Or as a function of state and input: 

     𝑚̇ = 𝑓(𝑆, 𝑢)                                     (3.20) 

Where 𝐴 ′ is the Jacobian of the state and 𝐵 ′ is the Jacobian of the control 

input. 

A ′ =

[
 
 
 
 
0 0 −v ∗ sin(ψ) cos(ψ)  

0 0 v ∗ cos(ψ) sin(ψ)

0 0 0
tan(δ)

L
0 0 0 0 ]

 
 
 
 

 

B ′ =

[
 
 
 
 
0 0
0 0

0
v

L ∗ cos2(δ)
1 0 ]

 
 
 
 

 

The MPC algorithm predicts the future state of the car over a specified time 

horizon using the kinematic model and the current state of the car. The state 

at the next time step after converting this model into a discrete-time analysis 

by setting the sampling time 𝑑𝑡 is calculated as: 

𝑆(𝑘 + 1) =  𝑆(𝑘) + 𝑚̇  ∗  𝑑𝑡                              (3. 21) 

Using expansion Taylor series up to the first degree around the reference 

point (𝑚̇) we get, 

𝑆(𝑘 + 1) = 𝑆(𝑘) + (𝑓(𝑆, 𝑢̂) + 𝐴 ′(𝑆(𝑘) − 𝑆) + 𝐵 ′(𝑢(𝑘 ) − 𝑢̂) )𝑑𝑡     (3.22)     

𝑆(𝑘 + 1 ) = (1 + 𝑑𝑡 𝐴′)𝑆(𝑘) + (𝑑𝑡 𝐵′)𝑢(𝑘) + (𝑓(𝑆 , 𝑢̂) − 𝐴′𝑆 − 𝐵′𝑢 ̂)𝑑𝑡 

(3.23) 

This can be simplified as [63]: 
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𝑆(𝑘 + 1) =  𝐴 ∗ 𝑆(𝑘) + 𝐵 ∗ 𝑢(𝑘) + 𝐶                                (3.24) 

Where A, B matrix are known and C is the matrix represent any constant 

factors that affect the system’s current state.  

  𝐴 =

[
 
 
 
 
1 0 −v ∗ sin(ψ)dt cos(ψ) dt

0 1 v ∗ cos(ψ) dt sin(ψ) dt

0 0 1
tan(δ)

L
dt

0 0 0 1 ]
 
 
 
 

 

 

𝐵 =

[
 
 
 
 
0 0
0 0

0
v

L ∗ cos2(δ)
dt

dt 0 ]
 
 
 
 

 

 

𝐶 =

[
 
 
 
 

𝑣 ∗ sin(𝜓) ∗ 𝜓 ∗ 𝑑𝑡

−𝑣 ∗ cos(𝜓) ∗ 𝜓 ∗ 𝑑𝑡
𝑣 ∗ 𝛿

𝐿 ∗ 𝑐𝑜𝑠2(𝛿)
𝑑𝑡

0 ]
 
 
 
 

 

The MPC algorithm optimizes the control inputs, namely the steering angle 

and acceleration, over the same time horizon to minimize the objective 

function while satisfying the constraints. The optimal control inputs are then 

applied to the car, updating its current state, and the process is repeated. 
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3.3.2.4 Convex Optimization 

Convex Optimization is one of the most significant approaches in the 

world of mathematical programming, with several applications. It also has 

considerably larger applications outside of mathematics, including machine 

learning, data science, economics, medicine, and engineering. 

Convexity is significant in convex optimizations. Convexity is defined as the 

continuity of the first derivative of a convex function. It assures that convex 

optimization problems are smooth and have well-defined derivatives, 

allowing gradient descent to be used. Convex functions include linear, 

quadratic, absolute value, logistic, and exponential functions, among others. 

Convex sets are the most significant in terms of convexity. A convex set 

comprises all points on or within its border, as well as all convex combinations 

of points in its interior. A convex set is a collection of all convex functions. 

Simply said, the convex function takes the shape of a hill. Finding the global 

maximum or minimum of a convex function is thus a convex optimization 

problem. Convex sets are frequently employed in convex optimization 

approaches because they may be modified using certain operations to 

maximize or minimize a convex function. An example of a convex set is a 

convex hull, is the smallest convex set that may include a given convex set. 

On every convex interval, a convex function takes the value between its 

lowest and maximum values. This indicates that this convex function has no 

local extremes (on the convex region). It also expresses that just one point in 

this collection, which is on the convex hull, is closest to the minimum as 

shown in Fig. 3.12 [64]. 
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Fig. 3.12 Convex optimization (show that one point on the convex hull, 

is closest to the minimum) 

Convex optimization issues are classified into two types: 

• Constrained convex optimization: The convex function to optimize is 

constrained in some way. 

•  Unconstrained convex optimization: The convex function to optimize is not 

constrained in any way.



 

55 
 

Chapter Four: The Proposed Work 

4.1 Python Implementation 

To control the autonomous car to move from the starting point to the 

end point, three different modules are used: 

1-The map on which the car will operate, the starting and target location is 

selected and presented to the program. 

2- In order to select the best algorithm for both global and local path planning, 

various path planning algorithms were tested. The results of these tests 

revealed the following:  

• Dijkstra algorithm: One of its primary benefits is its low complexity, which 

is practically linear. It may be used to compute the shortest path between 

a single node and all other nodes, as well as the shortest path between a 

single source node and a single destination node, by ending the process 

once the shortest distance is reached for the destination node.  

as well as their drawbacks it does an occluded investigation that takes a 

long time to process, it is unable to handle negative edges, it heads to the 

acyclic graph, so it cannot accomplish the exact shortest path, and there is 

also a requirement to keep track of vertices that have been visited. 

• A* Algorithm: Is a heuristic search algorithm that uses an estimated cost 

to the goal to guide the search. It is known for its simplicity and its ability 

to guarantee the discovery of the optimal solution, i.e., the shortest path, 

between the starting point and the destination. A* is an excellent choice 

for global planning when the environment is relatively static, and the cost 

of each edge is known beforehand. In such a scenario, A* is typically faster 

than D* because it does not require incremental updates to the path. 
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Furthermore, A* is often more memory-efficient than D* because it does 

not need to store the entire graph in memory. 

• D* algorithm: Is an incremental algorithm that updates the path as new 

information becomes available. It begins with an initial path and then 

iteratively improves it by considering the cost of edges and any 

modifications in the environment. D* is a great choice when there is a 

significant degree of uncertainty about the environment or when the 

environment is constantly changing. This is because D* can adapt quickly 

to changes in the environment by updating the path incrementally. 

Additionally, D* has the ability to handle dynamic environments where 

obstacles may move or appear suddenly. 

• Potential field algorithm: A local path planning strategy used in real-time 

obstacle avoidance. It is an attractive approach because of its elegance and 

simplicity. However, the robot may quickly fall to a local minimum when 

using this strategy. As a result, there is a need to use it with another 

algorithm for global planning. 

Based on the results of the above algorithms, the A* algorithm was selected 

for global path planning, and the Potential field algorithm was chosen for local 

path planning.  

The A* algorithm was executed on the known environment to create a global 

path from start to target, in order to prevent the car from getting stuck in local 

minimums that may exist on the map if obstacles are not considered. The path 

provided by the A* algorithm was then defined at multiple equally spaced 

path points, which served as potential intermediate field targets. These 

waypoints guided the car across the map, with the lane point closest to the 

car's starting position generating an attractive starting potential field.  
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The potential field algorithm was executed at each time step to generate a path 

up to a few time steps into the future, enabling the car to navigate through 

obstacles in dynamic environment.  

The path planning algorithms provided a short and reference trajectory for the 

car to follow, while constantly updating the path in response to moving 

obstacles. 

3- Predictive controller typically works in a continuous loop to ensure that a 

car follows a specific path. The control unit achieves this by taking inputs 

such as the current state of the car, the reference trajectory of the car, and a 

predicted set of control inputs for future time steps up to the horizon.  

The desired states of the car are calculated by the controller based on its 

current speed and the coordinates of specific points on the reference path in 

the future. The index of the closest point on the path to the current car position 

is determined and used to set the initial desired state. The desired state is then 

calculated up to the horizon by iterating through a loop. If the calculated point 

is within the total points of the path, the desired state is set accordingly. 

Otherwise, the final point of the path is used, and the desired states are 

returned along with the target point. 

After the desired state is set, a set of future states for the same number of 

future time steps up to the horizon is computed by the controller. This 

prediction is based on a given set of control input values, namely the steering 

angle and acceleration, which are calculated by the controller to ensure that 

the car follows the desired path. 

Using these predicted states, the controller approximates the kinematic model 

of the car by utilizing a mathematical model that describes the relationship 

between the car's motion and its control inputs. This model takes into account 
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various physical parameters of the car and uses them to predict how the car 

will behave in response to different control inputs. 

To make this prediction, the controller first calculates the current state of the 

car, including its position, velocity, and heading angle. It then utilizes this 

information, along with the predicted control inputs for future time steps, to 

estimate the car's trajectory over that time horizon. 

By comparing this predicted trajectory to the desired trajectory, the controller 

can determine whether the car is on track or needs to be adjusted. The 

kinematic model is crucial because it provides a way for the controller to 

understand how the car will respond to different control inputs and to adjust 

its control strategy accordingly. 

Finally, the controller finds the cost of its actions at each point, considers a 

range of objectives, including minimizing the discrepancy between the 

desired and actual position and orientation of the car, reducing the control 

input necessary to manage the car, and minimizing the rate of change of the 

input. Each objective is assigned a weight based on its significance, and the 

total cost is obtained by adding up the weighted objectives over a defined time 

horizon with the terminal cost, as shown in equation (4.1): 
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Where Q is state error weightage matrix, R1 is input weighted matrix, R2 is 

rate of input change weightage matrix and D is final state weighted matrix. 

The cost function at each time step is typically computed by summing the 

individual costs over all points in the prediction horizon P.  

After calculating the total cost generated by a set of control inputs, the neural 

network and optimizer (convex optimization was used) collaborate to identify 

the appropriate inputs for the plant, specifically in adjusting the plant input of 

self-driving cars as shown in Fig 4.1.  

At the neural network, the training input is the difference between the 

predicted steering angle and the last steering angle applied to the plant model 

at each step. The training output is the required rate of change between the 

steering angle value in each step.  

At each step of the car's motion, the neural network receives the input, which 

is the difference between the predicted steering angle for the current time and 

the previous steering angle applied to the self-driving car model.  

The neural network generates a prediction, which represents the weight value 

necessary to achieve the appropriate rate of change in the steering angle. The 

network weights are continuously updated until reaching a maximum number 

of epochs or a minimal error, using the squared error of the difference between 

predictions and train output at each time step until reaching the goal. The 

hidden layer of the neural network utilizes the tanh activation, while the output 

layer uses the derivative tanh activation.  

The neural network output represents the required weight, which when 

multiplied by the predicted steering angle, can control the change within an 

acceptable range for each step see Fig. 4.2. 
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The convex optimizer attempts to optimize the current conditions and control 

the inputs to minimize the cost function, while the following considerations 

are taken into consideration, 

• 𝑆(k+1) = 𝐴* S(k)+ 𝐵* u(k)+ 𝐶 (car model) 

• Maximum speed = 15 m/s 

• Maximum reverse speed = 5 m/s 

• Maximum steering angle = 45 ֩ 

• Maximum steering rate = 30 ֩  

• Maximum deceleration = 6 m/𝑠2 

• Maximum acceleration = 2.5 m/𝑠2 

and then the optimal control input is input to the plant. The control inputs 

found using this method are given to the car for a one-time step. Then the 

whole process is repeated for the next step with its new state values. The 

system flowchart is represented in Fig. 4.3. 
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Fig. 4.2 Neural network flowchart 
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Fig. 4.3 System implementation flowchart 
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Chapter Five: Results and Discussion 
5.1  Overview 

This chapter presents the results obtained. An intelligent controller is used 

to control the self-driving car and supports motion planning in Python. 

Dijkstra, A*, D* and potential filed algorithms results are discussed. 

Appropriate performance is determined by clarifying parameters that affect 

system performance, such as weights in the cost matrix, horizon distance, cost 

equations and constraints. The controller's performance has been tested for 

multiple paths to adjust the parameters to ensure static and dynamic obstacle 

avoidance in a constrained environment. 

5.2 Motion Planning Algorithm Results 

5.2.1 Dijkstra Algorithm 

The algorithm was tested with three different maps, as shown in the Fig. 

5.1, Fig. 5.2, and Fig. 5.3. 
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Fig. 5.1 Dijkstra algorithm path planning from (20,25) to (20,0) 

 
Fig. 5.2 Dijkstra algorithm path planning from (45,45) to (0,0) 
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Fig. 5.3 Dijkstra algorithm path planning from (5,185) to (140,0) 

The algorithm's main disadvantage is that it does a blind search, wasting a 

large amount of time, the blue color in the above figure represents the search 

area. Another problem is that it is incapable of dealing with negative edges. 

This results in acyclic graphs and, in most cases, failure to find the shortest 

path. 

5.2.2 A* Algorithm 

An efficient method that guarantees the shortest path solution for a 

relatively minor number of nodes is provided by A*. The cost that constitutes 

the cost of getting to a node from the starting position, g(n), and the estimated 

cost of the node to the target, h(n), are defined. These two are combined to get 

f(n), which contains the information of both costs. A low f(n) cost is adequate 

since it indicates that the nodes selected are closer to the goal, whereas a 

bigger value indicates that the nodes are moving away from the target. The 

nodes with the least f(n) in the algorithm are chosen. Choosing the number of 

a successor depends on generating the next node. In this work, it was 
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compared if the number was 4 or 8 to evaluate the trade-offs between the 

efficiency of the search and the completeness of the search.  

• When the 4 successors of the node (North, West, East, South) are 

generated, it is observed that the path is zigzag and the search area is 

large, as shown in Fig. 5.4(a), Fig. 5.5(a), and Fig. 5.6(a). This leads to 

wasting time and energy consumption. The reason for this is that the 

algorithm is only exploring four potential paths at each node, which can 

result in a suboptimal solution if there are other better paths that are not 

being considered. Additionally, the algorithm may need to backtrack 

frequently to explore other paths, increasing the search area and wasting 

time. 

• When all 8 successors of the node (North, North West, North East, 

South West, South East, West, South, East) are generated, the path 

becomes smoother and the search area becomes smaller than when 

generating only 4 successors. This is shown in Fig. 5.4(b), Fig. 5.5(b), 

and Fig. 5.6(b), which indicates that the access time has become less 

and energy savings are achieved. 

The additional successors (North West, North East, South West, South 

East) allow the algorithm to explore diagonal paths, which can be more 

efficient than moving only in the cardinal directions (North, West, East, 

South). This is because diagonals paths can cover more distance in fewer 

steps, which reduces the amount of searching and backtracking the 

algorithm has to do. Thus, generating eight successors rather than four can 

enhance the algorithm's performance. After that, the algorithm was tested 

in three different environments to ensure that the algorithm works 

correctly, shown in Fig. 5.7, Fig. 5.8, and Fig. 5.9. 
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(a)                                                      (b) 

Fig. 5.4  A* algorithm path planning from (-30,-40) to (20,20), 

 (a) 4 successors, (b) 8 successors  

 

(a)                                                        (b) 

Fig. 5.5 A* algorithm path planning from (40,0) to (-20,20), 

(a) 4 successors, (b) 8 successors 
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(a)                                                      (b) 

Fig. 5.6 A* algorithm path planning from (20,-20) to (-20,20), 

(a) 4 successors, (b) 8 successors 

 

Fig. 5.7 A* algorithm path planning from (20,25) to (20,0) 
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Fig. 5.8 A* algorithm path planning from (45,45) to (0,0) 

 

Fig. 5.9 A* algorithm path planning from (5,185) to (140,0) 
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5.2.3 D* Algorithm 

The algorithm was tested with three different maps, as shown in Fig. 

5.10, Fig. 5.11, and Fig. 5.12. 

 

Fig. 5.10 D* algorithm path planning from (20,25) to (20,0) 

 

Fig. 5.11 D* algorithm path planning from (45,45) to (0,0) 
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Fig. 5.12 D* algorithm path planning from (5,185) to (140,0) 

The D* algorithm is better suited for dynamic environments because it can 

update the path as changes occur, which can be more efficient than re-

planning the path from scratch. This is due to its use of incremental search 

and ability to reuse information from previous searches, enabling it to quickly 

update the path. While the D* algorithm requires more complexity in its 

implementation and uses more computational power than the A* algorithm, it 

can be highly beneficial in scenarios where changes to the environment occur 

frequently or in real-time. 
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5.2.4 Potential Field Algorithm 

           The potential field theory combines attractive and repulsive forces 

generated by the environment to guide the robot towards a target while 

avoiding collisions with obstacles. Each obstacle creates a repulsive force that 

is proportional to the distance between the robot and the obstacle. The target 

point generates an attractive force that pulls the robot towards it. However, 

the potential field theory may fail to find a solution in an environment with 

local minimums. The problem of local minima shown in Fig 5.13 can be 

defined as the reactive problem for an agent, attracted to a goal at position G. 

In general, a local minimum may form due to a superposition of the potential 

target and obstacles, causing the factor to fall into a state other than target G. 

To address this problem, the potential function in locales is used along with 

the A* algorithm.  The values of ζ and η in equation (3.6), (3.8) affect the 

choice of the algorithm path, so the values must be adjusted according to the 

required performance. 

To observe how the system is affected by different ζ and η values, four 

instances were taken: 

• 𝜁 =1, 𝜂 =1: The force of attraction with the target is low, and the force 

of repulsion with obstacles is low, creating an unwanted path, as shown 

in Fig. 5.14. 

 

• 𝜁 =1, 𝜂 =100: The force of attraction with the target is low, and the force 

of repulsion with obstacles is high, which generates a safe path far from 

obstacles and free of collision, as shown in Fig. 5.15. 
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• 𝜁 =100, 𝜂 =1: The force of attraction with the target is high, and the 

force of repulsion with obstacles is low.  Generates an undesirable 

direct path to the goal and does not avoid obstacles, as shown in Fig. 

5.16. 

• 𝜁 =100, 𝜂 =100: The force of attraction with the target is high, and the 

force of repulsion with obstacles is high.  Follow the desired path while 

avoiding obstacles, as shown in Fig. 5.17.  

 

 

       Fig. 5.13 The problem of local minima potential filed 
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(a) Simulation of path following 

 
(b) Acceleration vs time                                   (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.14 System response where  𝜻 =1, 𝜼 =1 
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(a) Simulation of path following 

 

(b) Acceleration vs time                        (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.15 System response where 𝜻 =1, 𝜼 =100 
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(a) Simulation of path following 

 
(b) Acceleration vs time                            (c) Speed vs time 

 
(d) Steering angle vs time 

Fig. 5.16 System response where ζ =100, η =1 
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(a) Simulation of path following 

 
(b) Acceleration vs time                            (c) Speed vs time 

 
(d) Steering angle vs time 

Fig. 5.17  System response where 𝜻 =100, 𝜼 =100 
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5.3 Using a Neural Network with Predictive Control         

To evaluate the effect of adjusting the rate of change of the steering angle 

on the response of the system, the simulation was tested both with and without 

the use of the neural network with model predictive control unit for the same 

path. 

to clarify the results of the simulation, Fig. 5.18 displays the response of 

the steering angle over time for both the scenario in which the neural network 

and predictive control unit were used, as well as the scenario in which they 

were not utilized with the predictive control. 

 

Fig. 5.18 System steering angle response with and without use neural 

network  

 



Chapter five                                                                    results and discussion 

79 
 

Fig. 5.19 displays the response of the acceleration over time for both the 

scenario in which the neural network and predictive control unit were used, as 

well as the scenario in which they were not utilized with the predictive control. 

                

Fig. 5.19 System acceleration response with and without use neural 

network  

Fig. 5.20 displays the response of the speed over time for both the scenario 

in which the neural network and predictive control unit were used, as well as 

the scenario in which they were not utilized with the predictive control. 

 

Fig. 5.20 System velocity response with and without use neural network  

The simulation results showed that adjusting the change between 

steering angle rates had a significant effect on the speed and acceleration of 
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the self-driving car. When using the neural network, the self-driving car was 

able to achieve a smoother and more consistent speed and acceleration 

throughout the path. The results showed that the self-driving car was able to 

maintain a more stable speed and acceleration, with less variation in these 

parameters, when the change between steering angle rates was optimized 

using the neural network. 

In contrast, when the neural network was not used, the self-driving car's 

speed and acceleration were more erratic and less stable, with more variation 

in these parameters throughout the path. This indicates that the neural network 

was able to improve the self-driving car's performance and stability by 

optimizing the change between steering angle rates. 

Overall, these results suggest that the use of a neural network can be an 

effective way to optimize a self-driving car's performance and ensure its safety 

and reliability on the road. By adjusting the change between steering angle 

rates, the self-driving car can achieve a more stable and consistent speed and 

acceleration, this can lead to a more comfortable ride for passengers, reduce 

the risk of accidents, and enable more accurate and precise control of the car 

movements, which is essential for safety and reliability on the road. 
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5.4 Obstacle Avoidance in a Constrained Environment Results 

          The proposed system was tested in a closed environment without 

obstacles and in a closed environment with moving obstacles that may be 

human or other cars.  The movement towards the target is carried out by 

following the initial path provided by the A* algorithm as shown in Fig. 5.21. 

As for the moving obstacles in the path, they are detected using the potential 

field generated by the obstacle during the step-by-step planning of the local 

path as shown in Fig. 5.22. 

        The path that the car follows is simulated, where the NMPC control unit 

generates inputs within the specified constraints for the following path and 

according to the type of environment, where Fig 5.23(a) represents the path if 

the environment is fixed, and the Fig. 5.24(a) represents the path if there are 

obstacles that were avoided during the simulation.  It tries to maintain the 

desired speed with the least positional error.  Every jerk in steering angle and 

acceleration is like a jerk on a car.  Fig. 5.23(b), and Fig. 5.24(b) represent the 

acceleration of the cars, and the variable speed rate is maintained in 

controlling the car when the maximum acceleration must be less than the 

acceptable acceleration of 2.5 m/𝑠2. Fig. 5.23 (c), and Fig. 5.24 (c) represent 

the speed of the car vs time, and the variance should be good in speed.  The 

change in steering angle to time is plotted and displayed in Fig. 5.23 (d), and 

Fig. 5.24 (d). The rate of change of the steering angle in car control must be 

maintained at a maximum steering angle that is less than the accepted steering 

angle of 45 ֩.  

        The system was designed to provide comfort and safety with minimal 

jerks, and the cost function was tuned accordingly. The simulation results 

showed that the system was able to achieve a smooth change in acceleration 
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and steering angle, resulting in a comfortable and safe ride in both static and 

dynamic environments.  

 
Fig. 5.21 A* path planning from starting point (-20,20) to the target 

point (-20, -40) 

 
Fig. 5.22 Avoid path obstacle by using the potential field in local planne 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 
(c) Steering angle vs time 

 

Fig. 5.23  Result static obstacle simulation path following from (-20,20) 

to (-20, -40) 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 
(d) Steering angle vs time 

 

Fig. 5.24  Result dynamic obstacle simulation path following from           

(-20,20) to (-20, -40) 
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The performance of the controller is affected by: 

1- Cost function 

The cost function is a crucial component of the controller as it determines 

the trade-off between different performance metrics, such as comfort, safety, 

and energy efficiency. The choice of cost function can significantly impact 

the behavior of the controller and the resulting car trajectory. In this proposed 

system, the controller calculates the cost of its actions at each point in the 

trajectory, taking into account a range of objectives such as minimizing the 

discrepancy between the desired and actual position and orientation of the car, 

reducing the control input necessary to manage the car, and minimizing the 

rate of change of the input. 

2- weights in the cost matrix 

The weight of the cost matrix in equation (4.1) is used to assign weights to 

each state variable in the cost function based on their relative importance. 

These weights determine the trade-off between the different objectives in the 

cost function. If a state variable has a higher weight, it will be prioritized more 

in the cost function, and the controller will try to minimize its deviation from 

the desired value more aggressively. On the other hand, if a state variable has 

a lower weight, the controller will be less concerned with minimizing its 

deviation from the desired value. The weights of the weight cost matrix should 

be carefully chosen based on the specific application to achieve the desired 

balance between different objectives. The weights of the cost matrix were 

increased and decreased for two different paths to see their effect. 

• Input cost weights: The simulation results for the self-driving car with 

varying input cost weights are presented in Fig. 5.25 and Fig. 5.26 for low 

input weight, while Fig. 5.27 and Fig. 5.28 illustrate the simulation results 

for high input weight. 
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(a) Simulation of path following 

   
(b)Acceleration vs time                             (c) Speed vs time 

 
(d) Steering angle vs time 

 

Fig. 5.25  Input cost weights low, path from (-30,40) to (20,20) 
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(a) Simulation of path following 

 
(b)Acceleration vs time                             (c) Speed vs time 

 
(d)Steering angle vs time 

 

Fig. 5.26 Input cost weights low, path from (-20,20) to (40,0) 
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(a) Simulation of path following 

 
(b)Acceleration vs time                             (c) Speed vs time 

 
(c) Steering angle vs time 

 

Fig. 5.27 Input cost weights high, path from (-30,40) to (20,20) 
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(a) Simulation of path following 

 

 
(b) Acceleration vs time                             (c) Speed vs time 

 

 
(d) Steering angle vs time 

 

Fig. 5.28 Input cost weights high, path from (-20,20) to (40,0) 
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From the simulation result, the behavior of self-driving cars during 

simulation is significantly influenced by the input cost weights (R1). 

In simulations where R1 is set to low values, the controller prioritizes 

keeping the state of the car close to its desired values instead of controlling 

inputs. This leads to larger and more aggressive control inputs, resulting in a 

dynamic and responsive driving style. However, this behavior may cause the 

car to make more aggressive maneuvers that could potentially affect 

passenger comfort. 

On the other hand, simulations with high input cost weights result in 

smaller and less aggressive control inputs, potentially causing the car to 

repeatedly overshoot its target and deviate from the intended path. The 

controller prioritizes keeping the control inputs close to their desired values, 

leading to small and repeated adjustments that may cause an uncomfortable 

ride for passengers. 

• State error cost weights: The impact of different state error cost weights 

on the behavior of the self-driving car controller is depicted in Fig. 5.29 

and Fig. 5.30 for low weight values, and Fig. 5.31 and Fig. 5.32 for high 

weight values. These simulation results demonstrate how the choice of 

state error cost weight influences the controller's priority between keeping 

the state of the car close to its desired values versus the control inputs, and 

how this affects the driving style and passenger experience. 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 

 
(d) Steering angle vs time 

 

Fig. 5.29 State error cost weights low, path from (-30,40) to (20,20) 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 
(d) Steering angle vs time 

Fig. 5.30  State error cost weights low, path from (20,20) to (40,0) 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 
(d) Steering angle vs time 

Fig. 5.31 State error cost weights high, path from (-30,-40) to (20,20) 
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(a) Simulation of path following 

 

(b)Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.32 State error cost weights high, path from (-20,20) to (40,0) 
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The simulation results reveal that the state error cost weights (Q) play 

a critical role in determining the behavior of the controller in the self-driving 

car.  

When the state error cost weights are low, the controller focuses more 

on the control inputs (u) being close to their desired values and less on keeping 

the state of the car (x) close to its desired values. As a result, the self-driving 

car simulation with low state error cost weights prioritizes the control inputs, 

which may lead to imprecise and inaccurate path tracking. The car's behavior 

could become less predictable, and passengers may experience an 

uncomfortable ride due to the larger and more aggressive control inputs. 

On the other hand, when the state error cost weights are high, the 

controller focuses more on keeping the state of the car close to its desired 

values, and less on the control inputs being close to their desired values. This 

results in a more precise and accurate path tracking, but with larger and more 

aggressive control inputs that could make the car's behavior less predictable 

and cause an uncomfortable ride for passengers. The controller may also make 

smaller and less aggressive control inputs to keep the state of the car close to 

its desired values, which could cause the car to respond slowly to changes in 

the environment. 

• Rate input change cost weights: The simulation results for the self-

driving car with varying rate input change cost weights are presented in 

Fig. 5.33 and Fig. 5.34 for low rate input change weight, while Fig. 5.35 

and Fig. 5.36 illustrate the simulation results for high rate input change 

weight. 
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(a) Simulation of path following 

 

(b) Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.33 Rate input cost weights low, path from (-30,-40) to (20,20) 
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(a) Simulation of path following 

 

(b)Acceleration vs time                             (c) Speed vs time 

 

(d)Steering angle vs time 

Fig. 5.34 Rate input cost weights low, path from (-20,20) to (40,0) 
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(a) Simulation of path following 

 

(b)Acceleration vs time                             (c) Speed vs time 

 

(d)Steering angle vs time 

Fig. 5.35  Rate input cost weights high, path from (-30,-40) to (20,20) 



Chapter five                                                                    results and discussion 

99 
 

 

(a) Simulation of path following 

 

(b)Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.36 Rate input cost weights high, path from (-20,20) to (40,0) 
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The simulation results for varying  rate input cost weights (R2) 

indicate that the choice of R2 plays an important role in determining the 

behavior of the self-driving car.  

When the cost rate input weights are low, the controller is less 

concerned with keeping the rate of change of the control inputs small, 

resulting in larger adjustments to the control inputs. This behavior may lead 

to a bumpy and unpredictable ride for passengers. 

On the other hand, when the cost rate input weights are high, the 

controller is more concerned with keeping the rate of change of the control 

inputs small, resulting in smaller adjustments to the control inputs. This 

behavior may lead to longer convergence time between path steps and could 

result in overshooting or not following the intended path closely. However, 

small adjustments can help to reduce energy consumption and prevent large 

and unnecessary changes in the control inputs. 

 

• Terminal cost weights: The simulation results of the self-driving car with 

different terminal cost weights are presented in Fig. 5.37 and Fig. 5.38 for 

low terminal weight, while Fig. 5.39 and Fig. 5.40 illustrate the simulation 

results for high terminal weight. 
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(a) Simulation of path following 

  

(b) Acceleration vs time                        (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.37 Terminal cost weights low, path from (-20,20) to (40,0) 
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(a) Simulation of path following 

 

(b) Acceleration vs time                        (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.38 Terminal cost weights low, path from (-30,-40) to (20,20) 



Chapter five                                                                    results and discussion 

103 
 

 

(a) Simulation of path following 

 

(b) Acceleration vs time                        (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.39 Terminal cost weights high, path from (-20,20) to (40,0) 
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(a) Simulation of path following 

 

(b) Acceleration vs time                        (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.40 Terminal cost weights high, path from (-30,-40) to (20,20) 
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From the simulation result, the choice of terminal cost weights (D) also 

has a significant impact on the behavior of the controller during the simulation 

of self-driving cars. The terminal cost weights determine the importance of 

the final state of the car compared to the intermediate states. A high value of 

D emphasizes the importance of the final state and penalizes deviations from 

it, while a low value of D places less emphasis on the final state. 

In simulations with low terminal cost weights, the controller focuses 

less on achieving the desired final state and more on achieving intermediate 

states. This can result in more aggressive and dynamic driving behavior as the 

controller prioritizes reaching intermediate states quickly.  

3- Horizon Length 

The effect of horizon length on the behavior of the self-driving car 

controller during simulation is an important aspect to consider. The horizon 

length represents the number of future steps the controller considers while 

planning a trajectory for the car. The longer the horizon length, the more 

future steps the controller considers, resulting in a smoother and more optimal 

trajectory. However, this comes at the cost of increased computational 

complexity and longer planning times. The effect of the horizon length value 

was tested in two different paths.  

Fig. 5.41 and Fig. 5.42 show the response when the low value used to set 

the horizon length to 3. 

 Fig. 5.43 and Fig. 5.44 shows the response when a high value of 20 was 

used. 

Fig. 5.45 and Fig. 5.46 shows the response when suitable value (8 to 12) 

was used. 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 
(d) Steering angle vs time 

Fig. 5.41 Low horizon length effect, path from (-35,0) to (20, -20)  
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(a) Simulation of path following 

 

(b) Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.42 Low horizon length effect, path from (20, -20) to (-20,20) 
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(a) Simulation of path following 

  
(b) Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.43 High horizon length effect, path from (-35,0) to (20,-20)  
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.44 High horizon length effect, path from (20, -20) to (-20,20) 
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(a) Simulation of path following 

  
(b) Acceleration vs time                             (c) Speed vs time 

 
(d) Steering angle vs time 

Fig. 5.45 Suitable horizon length effect, path from (-35,0) to (20, -20) 
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(a) Simulation of path following 

 
(b) Acceleration vs time                             (c) Speed vs time 

 

(d) Steering angle vs time 

Fig. 5.46 Suitable horizon length effect, path from (20, -20) to (-20,20) 
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Simulation results show that decreasing the horizon length results in a 

more responsive driving style, as the controller is only planning a few steps 

ahead and can react more quickly to changes in the environment. However, 

this may result in less optimal trajectories with more abrupt changes in control 

inputs, as the controller has less time to plan ahead. Additionally, a very low 

horizon length may not allow the MPC algorithm to consider the constraints 

on the control inputs over a long enough time interval, which is important for 

the safety and robustness of the control system. 

Additionally, increasing the horizon length mean there is an increase in 

the computational effort required leads to smoother driving behavior with 

fewer abrupt changes in control inputs. This is because the controller has a 

better understanding of the future state of the car and can plan ahead to avoid 

sudden changes in direction or speed, allows the MPC algorithm to consider 

the constraints on the control inputs over a long time interval, which is 

important for the safety and robustness of the control system. However, this 

also results in a slower response time to unexpected changes in the 

environment, as the controller has already planned several steps ahead and 

may need to replan the trajectory. 

Based on the simulation results and analysis, a horizon length of 8 to 

12 was found to be an appropriate range for the self-driving car controller. 

This horizon length balances the trade-off between computational cost, 

performance, and driving comfort. The controller was able to accurately 

predict the car's future state and control inputs over a sufficient time interval, 

considering the constraints on the control inputs over a long enough time 

interval, which is crucial for safety and robustness of the control system.  



Chapter five                                                                    results and discussion 

113 
 

Numerous studies are related to the proposed work. One such study, 

presented in [17], proposes a path planner based on Model Predictive Control 

(MPC) that incorporates a convex relaxation approach for both lane change 

and lane keeping maneuvers. The planner also employs a lane-associated 

potential field to generate natural and comfortable trajectories. However, it 

differs from the current work, which utilizes the A* algorithm for global path 

planning, the Potential field algorithm for local path planning, and N-MPC for 

motion planning. Despite the differences, both works demonstrate the 

effectiveness of their respective approaches in generating safe and 

comfortable paths for autonomous cars in various driving scenarios.



 

114 
 

Chapter Six: Conclusions and Recommendations 

6.1 Conclusions 

The aim of this study was to develop an intelligent control system that 

could support motion planning in self-driving cars. The system relies on 

various path planning algorithms and a predictive controller to achieve motion 

planning for an autonomous car. Global path planning was done using the A* 

algorithm, while local path planning was done using the Potential field 

algorithm. These algorithms provided a reference trajectory for the car while 

updating the path in response to moving obstacles. Moreover, a predictive 

controller was used to optimize the car's trajectory, ensuring safe and efficient 

driving by computing a set of future states based on a given set of control 

input values. 

The system model utilized the kinematic model of a non-holonomic car 

to approximate the car's state and input. The neural network was used to 

predict the required weight for the control inputs of self-driving cars, while 

the MPC algorithm was used to optimize these control inputs over a specified 

time horizon. The MPC algorithm achieved this by minimizing the cost 

function and satisfying the constraints. The results showed that the proposed 

approach was successful in navigating through obstacles in both static and 

dynamic environments. The study also demonstrated the importance of 

carefully selecting the cost function weight and horizon length for the 

predictive controller to achieve optimal performance. This research provides 

valuable insights into the use of path planning algorithms and predictive 

controllers for motion planning in autonomous cars. 

However, the proposed approach has some limitations, and further 

research is needed to optimize the proposed approach and integrate it with 
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other components of self-driving cars, such as perception, localization, and 

decision-making. Overall, this thesis has made significant contributions to the 

field of autonomous driving and has paved the way for future innovations in 

this area. 

6.2 Future Work 

The following recommendations can be considered for future work: 

• Exploring the use of deep learning for path planning. This can be 

achieved by training a neural network to learn the optimal path in 

various environments. 

• Integrating real-time sensor data into the system by incorporating 

sensors such as LIDAR, cameras, or radar. These sensors can detect 

obstacles and update the car's path and control inputs in real-time. 

• Incorporating machine learning techniques to optimize the car's control 

inputs based on real-time sensor data. 

• Evaluating the system's performance in more complex environments to 

identify areas where the system may need improvement or optimization 

for different scenarios. 

• Improving communication between autonomous cars to ensure 

effective communication as more autonomous cars are introduced onto 

the roads.
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                        الخلاصة         

بيئة حركة المرور على الطرق متغيرة للغاية ولا يمكن التنبؤ بها. قد تواجه السيارات ذاتية القيادة  

البيئات سيناريوهات حرجة غير   هذه  مثل  في  تعمل  وقوع حادث   متوقعة، التي  يزداد خطر  حيث 

متوقع  غير  سلوك  بسبب  السيناريوهات  هذه  تنشأ  قد  العادية.  القيادة  بمواقف  مقارنة  من    بسرعة 

يكون    الحرجة،مستخدمي الطريق الآخرين أو ظهور عوائق على الطريق. في مثل هذه الظروف  

 .الهدف الأساسي للتحكم في حركة السيارة هو تقليل خطر وقوع حادث وشيك 

الغرض من هذه الدراسة هو تطوير نظام يمكن أن يساعد في منع الحوادث في بيئات المرور على  

الطرق التي لا يمكن التنبؤ بها والمتغيرة من خلال معالجة مشكلة تخطيط الحركة والتحكم فيها في  

رة لاتباعها  المواقف الحرجة للسيارات المستقلة. يولد النظام المسارات المثلى ومدخلات التحكم للسيا

تم تقديم تقنية تخطيط الحركة    الهدف،مع تجنب العوائق واتباع مركز المسار بشكل متوقع. لتحقيق هذا  

 للسيارات ذاتية القيادة. 

(  A*  potential field ,تعتمد تقنية تخطيط الحركة المستخدمة في هذه الدراسة على خوارزميات ) 

 neural network .بتقنية المدعوم    predictionن  ، مع وحدة تحكم ذكية تتكون م رلتخطيط المسا

النموذجية بمستقبل السيارة لأفق زمني محدود باستخدام    model predictive controller  تتنبأ 

نموذج رياضي للسيارة. تستخدم وحدة التحكم نموذج دراجة حركي خطي ومنفصل كنموذج سيارة  

لأنه أداة قوية لحل مشاكل تحديد المسار نظرًا لما يتمتع    *Aداخلي. يتم استخدام مسار الإستراتيجية  

لتخطيط المسار في بيئة بها    potential fieldنة. ويتم استخدام  به من أمثلية وكفاءة وقبول ومرو 

عوائق بسبب بساطتها وأمانها وتكلفة حسابية منخفضة. مدخلات التحكم هي زاوية توجيه السيارة  

 والتسارع. 

في النموذج على حل مشكلة التحسين باعتبارها مشكلة    model predictive controllerتعمل  

لضبط    neural networkبرمجة تربيعية تقلل من دالة التكلفة مع تلبية مجموعة من القيود. تسُتخدم  

ويعد تعديل معدل زاوية التوجيه جزءًا مهمًا من تحسين أداء السيارة    التوجيه، معدل تغيير قيمة زاوية  

قد تتأثر    التوجيه،متها وموثوقيتها على الطريق. بدون تعديل معدل زاوية  ذاتية القيادة وضمان سلا

الدقيق والتوقف   الدوران  السيارة على  الحوادث    بدقة،قدرة  إلى زيادة مخاطر وقوع  يؤدي  قد  مما 

بما في ذلك الأخطاء في   الأهداف،وتقليل كفاءة استهلاك الوقود. تتضمن وظيفة التكلفة مجموعة من 

والمدخلات، ومعدل تغيير المدخلات، لتوجيه السيارة ذاتية القيادة بعيدًا    والحالية، مرغوبة  الحالات ال



 

 
 

بعد تحديد المناورة    ، للسيارةعن المناطق عالية التكلفة. تحدد وحدة اتخاذ القرار مسار العمل التالي  

 قيادة. اللاحقة يتم إنشاء ملف تعريف السرعة ومرجع مركز المسار لتتبع السيارة ذاتية ال

في أداة التحسين،    python convex optimisationتم حل مشكلة البرمجة التربيعية باستخدام  

لجعل    الأفق،بما في ذلك أوزان دالة التكلفة وطول    التحكم،. يتم ضبط معلمات  s 0.1بوقت عينة يبلغ 

وفيه تضمن وحدة التحكم أن    ، m12إلى    m8المسار آمنًا ومريحًا. يتراوح طول الأفق المحدد من  

 السيارة تتبع المسار المقصود مع تجنب العوائق. 

، اقصى سرعة  m/s 15تم تحقيق جميع النتائج ضمن قيود السيارة المحددة والتي هي، اقصى سرعة  

تباطؤ °30اقصى معدل توجيه    ، °45، اقصى زاوية توجيه  m/s 5  عكسية   m/ 𝑆2 6  ، اقصى 

 . m/ 𝑆2 2.5واقصى تسارع  
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